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Abstract: This paper develops asymptotic normality results for individual
coordinates of robust M-estimators with convex penalty in high-dimensions,
where the dimension p is at most of the same order as the sample size n, i.e,
p/n ≤ γ for some fixed constant γ > 0. The asymptotic normality requires
a bias correction and holds for most coordinates of the M-estimator for
a large class of loss functions including the Huber loss and its smoothed
versions regularized with a strongly convex penalty.

The asymptotic variance that characterizes the width of the resulting
confidence intervals is estimated with data-driven quantities. This estimate
of the variance adapts automatically to low (p/n → 0) or high (p/n ≤ γ)
dimensions and does not involve the proximal operators seen in previous
works on asymptotic normality of M-estimators. For the Huber loss, the
estimated variance has a simple expression involving an effective degrees-of-
freedom as well as an effective sample size. The case of the Huber loss with
Elastic-Net penalty is studied in details and a simulation study confirms
the theoretical findings. The asymptotic normality results follow from Stein
formulae for high-dimensional random vectors on the sphere developed in
the paper which are of independent interest.
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1. Introduction

1.1. Robust inference

In his seminal paper on robustness, Huber [20] introduced M -estimators for an
unknown location parameter μ ∈ R from observations Yi = μ + εi, i = 1, . . . , n,
where εi are iid noise random variables distributed as a mixture F = (1 −
ε)N(0, 1) + εH with H being the distribution of the contaminated samples,
possibly chosen by an adversary. Given a differentiable loss function ρ : R →
R and its derivative ψ = ρ′, Huber defined M -estimators as minimizers μ̂ =
argminb∈R

∑n
i=1 ρ(Yi − b), or equivalently as solutions to

∑n
i=1 ψ(Yi − b) = 0.

Huber [20] went on to prove consistency and asymptotic normality of such M -
estimators, obtaining among other results that if ρ is convex and ψ is absolutely
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continuous, then under mild assumptions on F , the convergence μ̂ → μ in
probability holds as well as the asymptotic normality

n1/2(μ̂ − μ) →d N
(
0,E[ψ2(ε1)]

/
E[ψ′(ε1)]2

)
.

Huber’s M -estimators were extended to regression models, where a design
matrix X ∈ R

n×p is observed together with responses yi = x�
i β + εi where

x1, ..., xn are the rows of X and ε1, ..., εn are possibly contaminated noise ran-
dom variables as in the previous paragraph. For fixed or slowly growing dimen-
sion p as n → +∞, consistency and asymptotic normality of M -estimators of
the form β̂ = argminb∈Rp

∑n
i=1 ρ(yi −x�

i b) were obtained, see [21, Section 7] or
[27] among others. Explicitly, if ej ∈ R

p is a canonical basis vector and one is
interested in the asymptotic normality of β̂j − βj for the purpose of confidence
intervals, [27] shows that

(
e�

j (X�X/n)−1ej

)−1/2 √
n(β̂j − βj) →d N

(
0,

E[ψ2(ε1)]
E[ψ′(ε1)]2

)
(1.1)

if (p log n)3/2/n → 0 and under mild assumptions on X. As in the location
parameter problem of the previous paragraph, the asymptotic variance is char-
acterized by the ratio E[ψ2(ε1)]/E[ψ′(ε1)]2.

The last decade has seen striking developments of similar asymptotic normal-
ity results in high-dimensions, where p/n → γ for some constant γ < 1, cf. [17, 3,
25, 15, 16]. In terms of asymptotic normality, these works show that if X has iid
N(0, Σ) rows, the unregularized M -estimator β̂ = argminb∈Rp

∑n
i=1 ρ(yi −x�

i b)
satisfies asymptotic normality of the form

(e�
j Σ−1ej)−1/2 √

p(β̂j − βj) →d N(0, r2) (1.2)

where r > 0 is a deterministic constant that captures the high-dimensionality
of the problem [17, Lemma 1]. The constant r > 0 is determined by solving a
system of nonlinear equations with two unknowns: In the unregularized setting,
[17, S2] describes this system of nonlinear equations with unknowns (r, c) as{

E
[
1 − [proxc(ρ)]′(ε1 + rZ)

]
= γ,

E
[(

ε1 + rZ − [proxc(ρ)](ε1 + rZ)
)2]

= γr2
as p/n → γ, (1.3)

where Z ∼ N(0, 1) is independent of ε1, and proxc(ρ)(t) = argminu∈R
ρ(u) +

(t − u)2/(2c) denotes the proximal operator of the convex function t → cρ(t)
with derivative [proxc(ρ)]′(t). The optimality conditions

c−1(t − [proxc(ρ)](t)) = ψ([proxc(ρ)](t))

of the proximal minimization problem leads to the expressions

c−2γr2 =E
[
ψ([proxc(ρ)](ε1+rZ))2]

and c−1γ =E
[

d
dt ψ([proxc(ρ)](t))

∣∣
t=ε1+rZ

]
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for the solutions (r, c) to the above system. Hence (1.2) can be rewritten as

(e�
j Σ−1ej)−1/2√

n(β̂j − βj) →d N
(

0,
E[ψ([proxc(ρ)](ε1 + rZ))2]

E[ d
dt ψ([proxc(ρ)](t))|t=ε1+rZ ]2

)
, (1.4)

see, e.g., [15, Theorem 4.1 and Corollary 4.6]. These results embody that when p
and n are of the same order, the asymptotic variance in (1.1) must be modified
to account for the high-dimensionality of the problem by (a) replacing ψ in the
numerator and ψ′ in the denominator by their compositions with the proximal
operator proxc(ρ), and (b) adding the extra Gaussian term rZ to the initial noise
ε1. The distribution of ε1 + rZ is sometimes referred to as the effective noise.
The Gaussian assumption can be relaxed and some of the above results are still
valid if X has iid centered entries with variance one [25, 16]. Despite the subtle
introduction of the proximal operator and the constants (r, c), it is remarkable
that the informal ratio average[ψ2]

average[(d/dt)ψ]2 unifies the results (1.1) and (1.4) in both
low and high-dimensions.

All results of the previous section are applicable when p/n → γ with γ < 1.
For γ > 1 regularization is required to ensure the uniqueness of β̂, for instance
through an additive penalty which leads to regularized M -estimators of the form

β̂ = argmin
b∈Rp

1
n

n∑
i=1

ρ(yi − x�
i b) + g(b) (1.5)

for some convex penalty function g : Rp → R. The case of Ridge regularization
with g(b) = τ‖b‖2

2/2 for some constant τ > 0 is treated in [25, 16]. In this case,
the two solutions (r, c) of a system of two nonlinear equations similar to (1.3)
characterize the error ‖β̂ − β‖2, asymptotic normality and asymptotic variance
of

√
n((1+a)β̂j −βj) where a is a constant capturing the bias induced by regular-

ization [16, Proposition 3.30] and a is a function of (γ, r, c). Thrampoulidis et al.
[29] characterize the error ‖β̂ − β‖2 for a large class of (ρ, g) pairs using a tech-
nique known as the Convex Gordon Min-Max theorem pioneered by [28], and
the recent paper [19] on Approximate Message Passing focused on g(b) = λ‖b‖1
and ρ either the Huber loss or the absolute value. Little is known, however, on
asymptotic normality of the regularized estimators (1.5) for penalty functions
different from the square norm b 	→ τ‖b‖2

2. The theories developed in [29, 19] do
not readily provide asymptotic normality results and regularized M -estimators
of the form (1.5) lack confidence interval capabilities. One goal of the present
paper is to fill this gap.

A separate line of research develops asymptotic normality results and confi-
dence intervals for regularized least-squares estimators of the form

β̂ = argmin
b∈Rp

1
2n

n∑
i=1

(yi − x�
i b)2 + g(b) = argmin

b∈Rp

‖y − Xb‖2
2/(2n) + g(b) (1.6)

where X has rows x1, ..., xn. Early results studied the Lasso with g(b) = λ‖b‖1
[33, 22, 30] under a sparsity condition s log(p) = o(

√
n) where s = ‖β‖0, or
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Ridge regression [11]. For the Lasso the sparsity condition was later improved
to s log2(p)/n → 0 [24], to s log(p/s)/n → 0 [8] and p/n → γ ∈ (0, ∞) with
s � n/ log(p/s) ([23, 26] for isotropic Gaussian design and [13] [7, Theorem 3.2]
for non-isotropic Gaussian design). For penalty functions beyond the Lasso and
Ridge regularization, [12, Proposition 4.3(iii)] provides asymptotic normality
on average over the coordinates for permutation invariant penalty function g
in (1.6), and [7, Theorem 3.1] proves asymptotic normality for individual coor-
dinates of (1.6) under a strong convexity assumption. A high-level message of
these works is that one must de-bias the regularized estimator (1.6) in order to
obtain asymptotic normality at the

√
n-adjusted rate and construct confidence

intervals. In the p/n → γ regime that is the focus of the present paper, this bias
correction takes the following form. Under a strong convexity assumption and
for X with iid N(0p, Σ) rows, [7] proves that for most coordinates j = 1, ..., p,

(n − d̂f)(β̂j − βj) + e�
j Σ−1X�(y − Xβ̂)

‖y − Xβ̂‖2
Ω−1/2

jj →d N(0, 1) (1.7)

where Ωjj = e�
j Σ−1ej and d̂f is the effective degrees of freedom of β̂ defined as

the Jacobian of the map y 	→ Xβ̂ for fixed X. For Σ = Ip and consequently
Ωjj = 1, a similar bias correction proportional to e�

j X�(y − Xβ̂) is visible
in the asymptotic normality result [12, Proposition 4.3(iii)], although there the
coefficients (n − d̂f) and ‖y − Xβ̂‖2 in (1.7) are replaced with deterministic
scalar counterparts obtained by solving a system of nonlinear equations of a
similar nature as (1.3). Another goal of the present paper is to equip robust
M -estimators (1.5), with ρ different than the squared loss, with de-biasing and
asymptotic normality results similar to the previous display, allowing for general
robust loss functions ρ coupled with general convex penalty functions g.

1.2. Contributions

Our contributions are the following.

1. We provide de-biasing and asymptotic normality results for robust M -
estimators with convex penalty functions when p and n are of the same
order. This leads to confidence intervals for the j-th coordinate βj of the
unknown coefficient vector β. Asymptotic normality holds for a large class
of robust loss functions, including the Huber loss and its smoothed ver-
sions.

2. Although this bias correction required for asymptotic normality resem-
bles the one-step estimators recommended in the theory of classical M -
estimator to improve efficiency (e.g., [31, Eq. (1.11)]), a notable difference
from the low-dimensional case is the requirement of a degrees-of-freedom
adjustment to amplify the one-step correction. For the squared loss, this
degrees-of-freedom adjustment takes the form of multiplication by (n− d̂f)
in (1.7); one contribution of this paper is to identify the degrees-of-freedom
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adjustment that leads to asymptotic normality for robust and regularized
M -estimators, beyond the squared loss.

3. The asymptotic variance is estimated by random, data-driven quantities,
as opposed to the deterministic scalars (r, c) that determine the asymptotic
variance for unregularized estimators in (1.4). The fact that the asymptotic
variance is estimated by observable quantities makes this results more suit-
able for confidence intervals (case in point: computing the solution (r, c)
of (1.3) and the asymptotic variance in (1.4) requires the knowledge of
the noise distribution subject to contamination). The asymptotic normal-
ity result takes the form

V̂ −1/2Ω−1/2
jj

√
n(β̂j − βj) + [observable bias correction] ≈ N(0, 1)

where the data-driven variance estimate V̂ again is a ratio of the form
average[ψ2]

average[(d/dt)ψ]2 for a particular sense of average to be defined in (2.14)
below. Interestingly, the expression for this average and V̂ does not involve
the proximal mapping in (1.4). This informal statement will be made
precise in Section 2.4 below.

4. In order to derive these new asymptotic normality results, we develop in
Appendix B new identities for random vectors uniformly distributed on
the Euclidean sphere. Although the argument of the present paper for
asymptotic normality is closely related to that used in [7] for the squared
loss, this previous theory for the squared loss for functions of standard
normal vector does not extend to robust loss functions due to the lack of
strong convexity of ρ for robust losses, and consequently the lack of explicit
lower bounds on 1

n

∑n
i=1 ψ(yi − x�

i β̂)2. Developing these new identities
and the corresponding asymptotic normality results for random vectors
uniformly distributed on the sphere is a crucial step to overcome the lack of
global strong convexity of ρ for robust losses and to obtain the asymptotic
normality results. These new identities provide novel Stein formulae for
random vectors on the sphere and may be used more broadly for elliptical
distributions.

2. Model and main results

2.1. Model and assumptions

We consider a linear model
y = Xβ + ε, (2.1)

where y ∈ R
n, X ∈ R

n×p and ε ∈ R
n, with a regularized M-estimator

β̂ = argmin
b∈Rp

1
n

n∑
i=1

ρ(yi − x�
i b) + g(b), (2.2)

where ρ : R → R is the loss and g : Rp → R is the penalty.
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Table 1

Left: robust loss functions satisfying Assumption A: the Huber loss
x �→ H(x) =

∫ |x|
0 min(t, 1)dt, its smoothed versions x �→

√
1 + x2 and

x �→ x2

2 I{|x| ≤ 1} + ( 1
6 − |x|

2 + x2 − |x|3

6 )I{|x| ∈ (1, 2)} + ( −7
6 + 3|x|

2 )I{(|x| ≥ 2)}. Right:
two loss functions that do not satisfy Assumption A: the absolute deviation loss x �→ |x| and

the 1-insensitive loss x �→ H[(|x| − 1)+] where H(·) is the Huber loss.

Assumption A (Assumptions on the loss). Let ρ : R → R be convex and
continuously differentiable on R, with derivative ψ = ρ′ being L-Lipschitz with

K2 ≤ ψ′(x) + ψ(x)2 for almost every x ∈ R (2.3)

for some positive constant K > 0 independent of n, p.

Two families of robust losses that do not satisfy Assumption A are non-
differentiable losses such as the least absolute deviations ρ(x) = |x|, and δ-
insensitive losses such as ρ(x) = (|x|−δ)2

+ as ψ(x)2+ψ′(x) = 0 in a neighborhood
of 0. Assumption A is verified by the Huber loss ρ(x) =

∫ |x|
0 min(1, t)dt with

K = 1, as well as by any smooth version of the Huber loss, for instance ρ(x) =√
1 + x2 with K2 = 23

27 ≈ 0.852. The one-sided logistic loss ρ(x) = log(1 + ex)
also satisfies Assumption A.

Assumption B (Strong convexity of g). For some constant τ > 0 independent
of n, p, the penalty g : R

p → R is τ -strongly convex in the sense that x 	→
g(x) − τ‖x‖2

2/2 is convex.

Some useful characterizations of strong convexity (Assumption B) are the
following. Throughout, ∂g(b) denotes the subdifferential of g at b ∈ R

p. Then
g is τ -strongly convex if and only if

g(a) − g(b) ≥ u�(a − b) + (τ/2)‖a − b‖2
2 for all u ∈ ∂g(a) and a, b ∈ R

p.
(2.4)

Similarly g is τ -strongly convex if and only for any a, b ∈ R
p

(u − v)�(a − b) ≥ τ‖a − b‖2
2 for all u ∈ ∂g(a), v ∈ ∂g(b). (2.5)

As ψ in Assumption A is increasing, Assumption A implies that ρ is K2/2-
strongly convex in the interval {x ∈ R : ψ(x)2 ≤ K2/2}, and conversely if ρ is
μ-strongly convex in the interval {x ∈ R : ψ(x)2 ≤ C} then Assumption A is
satisfied with K2 = min(μ, C).
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Assumption C. The rows of the design matrix X are iid N(0, Σ) random
vectors and all the eigenvalues of Σ ∈ R

p×p are in [κ, 1/κ] for some constant
κ ∈ (0, 1) independent of n, p. The noise ε is independent of X and admits a
density with respect to the Lebesgue measure.

Assumption D. p/n ≤ γ for some constant γ > 0 independent of n, p.

2.2. Notation

Throughout the paper Φ(t) = (2π)−1/2 ∫ t

−∞ exp(−u2/2)du is the standard nor-
mal cumulative distribution function. Furthermore, [n] = {1, ..., n} and we use
the notation

ψ = (ψ(yi − x�
i β̂))i∈[n], ψ′ = (ψ′(yi − x�

i β̂))i∈[n], h = β̂ − β. (2.6)

For each j ∈ [p], let ej denote the j-th vector in the standard basis of Rp, and
let

Ωjj = e�
j Σ−1ej , zj = XΣ−1Ω−1

jj ej , Qj = Ip − Σ−1Ω−1
jj eje�

j . (2.7)

We remark that the above definition implies the following properties:

• X = XQj + zje�
j and Xβ = XQjβ + zjβj .

• zj ∼ N(0, Ω−1
jj In) is independent of XQj (cf. Proposition D.1).

• Under Assumption C, Ωjj ∈ [κ, 1/κ].

By construction of zj and Qj , the response y can be decomposed as y = βjzj +
XQjβ + ε where βj ∈ R is the scalar parameter of interest for a fixed covariate
j ∈ [p], the vector Qjβ is a high-dimensional nuisance parameter and ε is
independent noise. Under the additional assumption of εi ∼ N(0, 1), Ω−1

jj is the
Fisher information for the estimation of βj .

In the proof, it will be useful to treat ψ = ψ(ε, X) as a map from R
n×(p+1) →

R
n, formally defined as

β̂(ε, X) = argmin
b∈Rp

∑
i∈[n]

ρ(εi − x�
i (b − β))
n

+ g(b),

ψ(ε, X) = ψ(ε + Xβ − Xβ̂(ε, X)).

(2.8)

Since (β, ε) are unknown, we cannot compute the derivatives of ψ a priori.
However, for a fixed X, the quantity ψ(y − Xβ, X) is observable since all
terms in (β, ε) cancel out (indeed ψ(y − Xβ, X) is simply ψ(y − Xβ̂) with β̂
in (2.2)). We can thus define the observable matrix of size n × n

[∇yψ]� def= (∂/∂y)ψ(y − Xβ, X) (2.9)

holding X fixed, at every point y ∈ R
n where y 	→ ψ(y − Xβ, X) is differen-

tiable. By Proposition C.4 below, the map y 	→ ψ(y − Xβ, X) is L-Lipschitz
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and ∇yψ exists at Lebesgue almost every y, and with probability one since
y has continuous distribution under Assumption C. Furthermore, the gradi-
ent (2.9) at the currently observed data (y, X) does not depend on any un-
known quantity. It can be computed from (y, X) either by finding a closed form
expression for (2.9) for a given penalty function, or by approximation using
finite difference or other numerical methods (e.g., [4, Section 2.7] in the same
regularized M-estimation setting as the present paper). Note that in the concur-
rent paper [5] that focuses on asymptotic normality of residuals and estimation
of the generalization error, the n × n matrix (2.9) is denoted V [5, (2.3)], and
V = diag(ψ′)(In − XÂXT diag(ψ′)) for the matrix Â ∈ R

p×p defined in [5,
Theorem 1].

2.3. Main result

In the following result, we consider a sequence of integer pairs (n, p), regres-
sion problems (2.1) and M -estimator (2.2), without explicit reference to their
dependence on n or p. For instance, one can think of p = pn as a nondecreas-
ing function of n and (g, β, β̂, ρ) are also implicitly indexed by n with values
possibly changing with n.

Theorem 2.1 (Asymptotic Normality result for M-estimator). Consider the
linear model (2.1) and the M-estimator β̂ in (2.2). Assume E[‖Σ1/2h‖2

2] ≤ R <
+∞. Let Assumptions A, B, C and D be fulfilled for constants R, τ, κ, K, L, γ >
0 independent of n, p. Define the map y 	→ ψ(y − Xβ, X) and its Jacobian
[∇yψ]� in (2.9) holding X fixed. For each j ∈ [p] let

ξj = ‖ψ‖−1[
ψ�zj − n−1‖zj‖2

2(βj − β̂j) tr(∇yψ)
]
, (2.10)

ξ′
j = ‖ψ‖−1[

ψ�zj − Ω−1
jj (βj − β̂j) tr(∇yψ)

]
. (2.11)

Then for any positive sequence (ap) with limp→+∞ ap = +∞,

max
j∈Jn,p

∣∣∣P(
Ω1/2

jj ξj ≤ t
)

− Φ(t)
∣∣∣ +

∣∣∣P(
Ω1/2

jj ξ′
j ≤ t

)
− Φ(t)

∣∣∣ → 0, (2.12)

for some Jn,p ⊆ [p] satisfying |Jn,p|/p ≥ 1 − ap/p.

The proof is given in Appendix A.2. To interpret the above result, we remark
that for any slowly increasing sequence ap such as ap = log p or ap = log log p,
the asymptotic normality (2.12) holds uniformly over all coordinates j = 1, ..., p
except ap of them, so that both ξj and ξ′

j are asymptotically pivotal for an
overwhelming majority of βj . Another interpretation is given in the following
Corollary: For any given precision threshold υ > 0, there exist at most a∗
coordinates j = 1, ..., p such that |P(Ω1/2

jj ξj ≤ t) − Φ(t)| ≥ υ where a∗ is a
constant independent of n, p.

Corollary 2.2. Let the setting and assumptions of Theorem 2.1 be fulfilled. For
any arbitrarily small constant υ > 0 independent of n, p, define

Jυ
n,p =

{
j ∈ [p] :

∣∣∣P(Ω1/2
jj ξj ≤ t) − Φ(t)

∣∣∣ > υ
}

.
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Then, supn,p |Jυ
n,p| ≤ a∗ for a certain constant a∗ depending on {υ, τ, R, γ, L,

K, t} only. In other words, for any (n, p) with p/n ≤ γ there are at most a
constant number of coordinates j = 1, ..., p such that

∣∣P(Ω1/2
jj ξj ≤ t)−Φ(t)

∣∣ > υ.
The same conclusion holds with ξj replaced by ξ′

j.

Proof of Corollary 2.2. We proceed by contradiction. If the claim does not hold,
there exists a constant υ∗ > 0 such that |Jυ∗

n,p| ≥ 2ap for an unbounded sequence
ap. By extracting a subsequence if necessary, we may assume without loss of
generality that ap is monotonically increasing with ap → +∞. By Theorem 2.1
there exists Jn,p ⊂ [p] such that (2.12) holds. By definition of Jυ∗

n,p and Jn,p, we
have Jn,p ∩ Jυ∗

n,p = ∅ for p large enough. This implies that p ≥ |Jn,p| + |Jυ∗
n,p| ≥

(p − ap) + 2ap for p large enough, a contradiction.

Remark 2.1. Theorem 2.1 requires the assumption E[‖Σ1/2(β̂ − β)‖2
2] ≤ R <

+∞ for some constant R. This assumes that the expected risk of β̂ is bounded,
which holds true under the following additional assumptions:

• The penalty is minimized at 0: 0 ∈ argminb∈Rp g(b);
• The loss is Lipschitz: supt∈R |ψ(t)| ≤ L ;
• The noiseless signal has bounded variance: E[(x�

i β)2] = ‖Σ1/2β‖2 ≤ V .

Above, L , V > 0 are constants. Then by the KKT conditions, X�ψ ∈ n∂g(β̂)
and thanks to (2.5) from Assumption B and the first bullet above,

(β̂ − 0)�X�ψ ∈ n(β̂ − 0)�(∂g(β̂) − ∂g(0) ≥ nτ‖β̂‖2.

If follows by the Cauchy-Schwarz inequality that nτ‖β̂‖ ≤ ‖X‖op
√

nL . Thanks
to Assumption C we thus obtain

E[‖Σ1/2(β̂ − β)‖2
2] ≤ 2E[‖Σ1/2β‖2

2] + 2E[‖Σ1/2β̂‖2
2]

≤ 2V + 2(L 2κ−2τ−2)E[‖XΣ−1/2‖2
op/n].

The upper bound (C.1) completes the proof that we can find a suitable constant
R depending on γ, τ, κ, L , V only.
Remark 2.2. The set Jn,p in (2.12) excludes a few coordinates j ∈ {1, ..., p}\Jn,p.
A natural question is whether the exclusion of some coordinates is necessary or
an artefact of the current proofs. By Section 3.7 in [7], there are known examples
where a “variance spike” occurs in at most a finite number of coordinates j ∈
{1, ..., p}: for these few coordinates, the asymptotic variance of ξj or ξ′

j is strictly
larger than 1 and the convergence in distribution ξj →d N(0, 1) cannot hold.

2.4. Data-driven variance estimate

Except for at most a constant number of coordinates j ∈ [p], the approximation

V̂ −1/2Ω−1/2
jj

√
n(β̂j − βj) + [bias correction] ≈ N(0, 1) (2.13)
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holds, where the bias correction is observable and determined by the first term
in (2.11) and the data-driven variance estimate is

V̂ = ‖ψ‖2
2/n

(tr(∇yψ)/n)2 =
n−1 ∑n

i=1 ψ2
i(

n−1 ∑n
i=1(∂/∂yi)ψi

)2 . (2.14)

which characterizes the length of confidence intervals for βj . This ratio of an
average of ψ2 by a squared average of a derivative of ψ mirrors the robust
asymptotic results in (1.1) and (1.4) as discussed in the introduction. Con-
fidence intervals can be readily constructed from Theorem 2.1 or the infor-
mal approximation (2.13): a 95%-confidence interval for βj is given by β̂j +
(Ωjj V̂ /n)1/2([bias correction] ± 1.96), that is,[

β̂j + Ωjjψ�zj

tr[∇yψ] −
(Ωjj V̂

n

)1/2
1.96, β̂j + Ωjjψ�zj

tr[∇yψ] +
(Ωjj V̂

n

)1/2
1.96

]
.

In contrast with the asymptotic variance in (1.4), the above V̂ involves observ-
able quantities. In particular, while the asymptotic variance in (1.4) depends on
the distribution of the noise through the solutions (r, c) of the system (1.3), the
knowledge of the noise distribution is not required to compute V̂ and construct
confidence intervals for βj .

Theorem 2.1 is valid for p/n ≤ γ, without requiring a specific limit for the
ratio p/n. Theorem 2.1 is also valid for p = o(n), so that Theorem 2.1 and the
estimated asymptotic variance (2.14) unifies both low- and high-dimensional
asymptotic normality results.

For the Huber loss

H(u) =
∫ |u|

0
min(1, t)dt =

{
u2/2 if |u| ≤ 1,

|u| − 1/2 if |u| > 1,
(2.15)

the quantity tr[∇yψ] has a simpler form: By the chain rule

tr[∇yψ] = tr[diag ψ′] − tr[diag(ψ′)(∂/∂y)Xβ̂]

where the differentiation is understood holding X fixed as in (2.9). With n̂ =
tr[diag ψ′] the number of observations such that yi − x�

i β̂ falls in the range
where the Huber loss is quadratic and d̂f = tr[diag(ψ′)(∂/∂y)Xβ̂] representing
the degrees-of-freedom of the M-estimator β̂, the quantity tr[∇yψ] appearing in
the dominator of V̂ simplifies to tr[∇yψ] = n̂ − d̂f. In this case, the asymptotic
normality for ξ′

j in Theorem 2.1 takes the form

Ω1/2
jj ξ′

j =
(n̂ − d̂f)(β̂j − βj) + Ωjjz�

j ψ(y − Xβ̂)
‖ψ(y − Xβ̂)‖2

Ω−1/2
jj →d N(0, 1) (2.16)

uniformly over all j ∈ Jn,p. This extends the asymptotic normality result (1.7)
to the Huber loss with the following important modifications: the sample size
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n is replaced by n̂ and the residuals y − Xβ̂ are replaced by ψ = ψ(y −
Xβ̂). The variance V̂ that determines the length of the confidence interval
resulting from (2.13) presents a trade-off among ‖ψ‖2/n, an effective sample
size n̂ and the degrees-of-freedom d̂f: For confidence intervals with small length,
the M-estimator β̂ should have small residuals measured as ‖ψ(y−Xβ̂)‖2, small
degrees-of-freedom d̂f, and large effective sample size n̂.

2.5. Example

This section specializes the above results to scaled versions of the Huber loss
(2.15) and the Elastic-Net penalty g(b) = λ‖b‖1+τ‖b‖2

2/2 for tuning parameters
λ, τ > 0. We consider the M -estimator

β̂ = argmin
b∈Rp

1
n

n∑
i=1

σ2H(σ−1(yi − x�
i b)) + λ‖b‖1 + τ‖b‖2

2/2, (2.17)

which corresponds to the scaled Huber loss ρ(u) = σ2H(σ−1u) where σ > 0
is a scaling parameter. Since the derivative H ′ is 1-Lipschitz, so is ψ = ρ′.
Furthermore, ψ′(u) = H ′′(σ−1u) = 1 for |u| ≤ σ and |ψ(u)| = σ|H ′(σ−1u)| = σ
for |u| > σ, so that minx∈R[ψ2(x) + ψ′(x)] ≥ min(1, σ2) and Assumption A is
satisfied with L = 1 and K2 = min(1, σ2). Assumption B is also satisfied as the
penalty is the sum of the �1 norm plus τ‖b‖2/2. The quantity tr[∇yψ] appearing
in Theorem 2.1 in the denominator of estimated variance V̂ is computed in [4,
Proposition 2.3]: For almost every (X, y),

tr[∇yψ] = n̂ − d̂f,
d̂f = tr

[
diag(ψ′)XŜ(X�

Ŝ
diag(ψ′)XŜ + nτI|Ŝ|)

−1X�
Ŝ

diag(ψ′)
]
,

where n̂ = tr[diag(ψ′)] = |{i ∈ [n] : ψ′(yi − x�
i β̂) = 1}| is the number of

observations i = 1, ..., n such that yi−x�
i β̂ falls in the range where ρ is quadratic,

Ŝ = {j ∈ [p] : β̂j �= 0} and XŜ ∈ R
n×|Ŝ| is the submatrix of X containing

columns indexed in Ŝ.

2.6. Simulation study

We provide here simulations to showcase the asymptotic normality in the Huber
loss and Elastic-Net penalty example of the previous section.

We set n = 200, p = 300, and generate εi ∼ N(0, 1) and the coordinates of β
from iid Bernoulli variables with parameter 0.1. We compute 1000 simulations
of the Z-score Ω1/2

jj ξ′
j from Theorem 2.1 for j = 1 for the M -estimator with

the Huber loss and the Elastic-Net penalty (2.17) with σ = 1 and the four
combinations (λ, τ) ∈ {n−1/2, 2n−1/2}×{0, 0.1}. The covariance matrix Σ is set
as R�R/(2p) where R ∈ R

2p×p has iid Rademacher entries; Σ is generated once
and is the same across the 1000 simulations. The average value and standard
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Table 2

Averages and standard errors over 1000 simulations of (n̂, d̂f, |Ŝ|, V̂ 1/2n−1/2), as well as
histograms and QQ-plots for Ω1/2

jj ξ′
j given in (2.11). The coordinate j is always j = 1. The

noise εi is set as iid standard Cauchy. The red line on the QQ-plots is the diagonal line
with equation x = y.

Table 3

Averages and standard errors over 1000 simulations of (n̂, d̂f, |Ŝ|, V̂ 1/2n−1/2), as well as
histograms and QQ-plots for Ω1/2

jj ξ′
j given in (2.11). The coordinate j is always j = 1. The

noise εi is set as iid t-distribution with degree of freedom 2. The red line on the QQ-plots is
the diagonal line with equation x = y.

error over the 1000 simulations of n̂, d̂f, |Ŝ| and V̂ 1/2n−1/2 are presented in
Table 2 for ε with iid standard Cauchy components and Table 3 for ε with iid
components from the t-distribution with 2 degrees of freedom, together with
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Fig 1. Boxplots of simulated V̂ 1/2n−1/2. The simulation setup is described in Sec-
tion 2.6. The top plot corresponds to iid standard Cauchy noise εi. The noise in the sec-
ond plot is iid from the t-distribution with 2 degrees of freedom. Different colors corre-
spond to different values of τ ∈ {0, 10−3, 10−2, 0.1, 0.5}. In the x-axis, λ takes values in
{0.1n−1/2, 0.2n−1/2, 0.5n−1/2, n−1/2, 2n−1/2}.

histograms and QQ-plots against standard normal quantiles of Ω1/2
jj ξ′

j in (2.16).
The quantity V̂ 1/2n−1/2 = ‖ψ‖2/(n̂ − d̂f) featured in the boxplots of Fig-

ure 1 characterizes the length of our confidence intervals in (2.13). Computing
the values V̂ 1/2 for different tuning parameters lets the practitioner pick the
tuning parameters leading to the smallest confidence interval width, although
this process amounts to the construction of multiple confidence intervals and
warrants a Bonferroni multiple testing correction.

The histograms and QQ-plots in Table 2 and Table 3 confirm the normality
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of ξ′
j for these two heavy-tailed continuous noise distributions.

Since n̂−d̂f appears in the denominator of V̂ , the length of confidence intervals
can be large if n̂ − d̂f is nearly zero and the length is infinite if n̂ − d̂f = 0. This
explains the large values and large variances observed in the boxplots of Figure 1
for small tuning parameters.

Appendix A: Proof of the main result

Throughout, φmin(M) and φmax(M) denote the smallest and largest eigenvalues
of a positive definite matrix M . We also recall the important notation defined
in (2.6)-(2.7): h = β̂ − β is the error vector, ψ and ψ′ are the random vectors
in R

n with coordinates (ψ(yi − x�
i β̂))i∈[n] and (ψ′(yi − x�

i β̂))i∈[n] respectively.
Finally,

Ωjj = e�
j Σ−1ej , zj = XΣ−1Ω−1

jj ej , Qj = Ip − Σ−1Ω−1
jj eje�

j

and zj ∼ N(0, Ω−1
jj In) is independent of XQj (cf. Proposition D.1).

A.1. Supporting propositions

The proof of Theorem 2.1 relies on the two intermediary results given below.
Proposition A.1 will be proved in Appendix B and Lemma A.2 in Appendix C.

Proposition A.1. Let n ≥ 3, R > 0 and z ∼ Unif(Sn−1(R)), where S
n−1(R)

is sphere of radius R in R
n. Assume either:

• f is locally Lipschitz on S
n−1(R) with E[‖∇f(z)�‖2

F ] < ∞.
• f(z) is of the form f̃(z)/‖f̃(z)‖2 where f̃ : Rn → R

n is locally Lipschitz
and satisfies P(‖f(z)‖2 �= 0) = 1 and E[‖f̃(z)‖−2

2 ‖∇f̃(z)‖2
F ] < +∞.

Define P ⊥
z = In − zz�/‖z‖2

2 and ξf (z) = f(z)�z − R2n−1 tr(∇f(z)�P ⊥
z ).

Then

E
[(

ξf (z) − E[f(z)]�z
)2]

≤ 2R4(n2 − 2n)−1
E[‖∇f(z)�P ⊥

z ‖2
F ], (A.1)

E
[∣∣‖f(z)‖2 − ‖E[f(z)]‖2

∣∣]2 ≤ R2(n − 2)−1
E[‖∇f(z)�P ⊥

z ‖2
F ]. (A.2)

Lemma A.2. Let Assumptions A, B and C be fulfilled. Let ηn =
√

2 log(n)/n+
n−1/2, define the events

Ej = {‖XQjΣ−1/2n−1/2‖op ≤ 1 +
√

p/n + ηn} ∩ {
∣∣n−1/2Ω1/2

jj ‖zj‖2 − 1
∣∣ ≤ ηn

for each j ∈ [p], define u ≥ 0 by

u∗ =
[
K2(1 − 1/n)(Lτ−1‖Σ‖op(2 +

√
p/n + 2ηn)2 + 1)−1 − 3L/n

]
+,
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and let Ej be the conditional expectation given (‖zj‖2, XQj , ε). Then, when
u∗ > 0

sup
δ>0

E

[ n

‖ψ‖2
2 + δ

∑
j∈[p]

IEj h2
j

]1/2
≤

[
(1 +

√
p
n )2 + 1

n

]1/2

φmin(Σ)1/2(1 − ηn)2
+u∗

+
[ 2p

nτ + E[‖h‖2
2]

]1/2

u
1/2
∗

.

(A.3)

A.2. Proof of the main result

Proof of Theorem 2.1. Since ψ �= 0n for almost every X by Proposition D.2, ξj

is well-defined with P-probability 1. By Lemma A.2 and the monotone conver-
gence theorem as δ → 0 for the left-hand side (A.3), when u∗ > 0

E

[ n

‖ψ‖2
2

∑
j∈[p]

IEj h2
j

]
≤

[
(1 +

√
p
n )2 + 1

n

]1/2

φmin(Σ)1/2(1 − ηn)2
+u∗

+
[ 2p

nτ + E[‖h‖2
2]

]1/2

u
1/2
∗

.

Under our assumptions, ‖Σ‖op ≤ 1/κ < +∞ and E[‖Σ1/2h‖2
2] ≤ R < +∞, so

that there exists some finite constant N > 0 and A < +∞ independent of n, p,
such that for n ≥ N , ∑

j∈[p]

E

[
n‖ψ‖−2

2 IEj h2
j

]
≤ A < +∞. (A.4)

By Markov’s inequality with respect to the uniform distribution on [p] = {1, ...,
p}, the set

Jn,p :=
{

j ∈ [p] : E
[
nIEj ‖ψ‖−2

2 h2
j

]
≤ A /ap

}
satisfies |Jn,p|/p ≥ 1 − ap/p.

(A.5)
While the function φ(ε, X) in (2.8) is formally R

n × R
n×p → R

n, in this
paragraph it is useful to only consider variations in zj , holding a fixed value
of (ε, XQj). Since (ε, XQj) is independent of zj , the conditional probability
distribution of zj given (ε, XQj) is still N(0, Ω−1

jj In). To this end and with a
slight abuse of notation, for a given, fixed value of (ε, XQj) we view ψ as a
function of zj only,

ψ : Rn → R
n, ψ : zj 	→ ψ(zj) = ψ(ε, XQj + zje�

j ) (A.6)

and we denote its Jacobian by ∇ψ(zj)� at any point zj where (A.6) is Fréchet
differentiable. Next, we argue conditionally on (XQj , ‖zj‖2): Since zj/‖zj‖2 is
independent of (‖zj‖2, XQj) and by rotational invariance of the Gaussian dis-
tribution, conditionally on (‖zj‖2, XQj) the vector zj is uniformly distributed
on the sphere Sn−1(‖zj‖2). Let Ej denote the conditional expectation of zj given
(XQj , ‖zj‖2). By Proposition C.4, the above function is locally Lipschitz. From
Proposition C.4 (iii) we have that

IEjEj [‖ψ‖−2
2 ‖∇ψ(zj)‖2

F ] ≤ L(nτ)−1 + IEjEj [nL2‖ψ‖−2
2 h2

j ] (A.7)
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and the right-hand side is finite with probability one with respect to (XQj ,
‖zj‖2) thanks to (A.4) and Tonelli’s theorem for non-negative measurable func-
tions. By Proposition D.2, conditional on almost every (XQj , ‖zj‖2), ψ(zj) �=
0n for almost every zj ∈ R. We are now in position to apply Proposition A.1
with f = ψ/‖ψ‖2, z = zj and

ξf (zj) := ‖ψ‖−1
2

(
ψ�zj − (‖zj‖2

2/n) tr
[
P ⊥

ψ (∇ψ(zj))�P ⊥
zj

])
,

where P ⊥
v := In −Pv with Pv := vv�/‖v‖2

2 for any v ∈ R
n. By Proposition A.1

and (A.7),

IEjEj [(ξf (zj) − Ej [f(zj)]�zj)2]
≤ 2IEj ‖zj‖4

2(n2 − 2n)−1
Ej [‖(∇f(zj))�P ⊥

zj
‖2

F ]

≤ 2(1 + ηn)4(1 − 2/n)−1IEj Ω−2
jj Ej [‖ψ‖−2

2 ‖∇ψ(zj)‖2
F ]

≤ 2(1 + ηn)4(1 − 2/n)−1κ−2(
L(nτ)−1 + IEjEj [nL2‖ψ‖−2

2 h2
j ]

)
and

IEj (‖Ej [f(zj)]‖2 − 1)2

≤ IEj ‖zj‖2
2(n − 2)−1

Ej [‖(∇f(zj))�P ⊥
zj

‖2
F ].

≤ (1 + ηn)2(1 − 2/n)−1IEj Ω−1
jj Ej [‖ψ‖−2

2 ‖∇ψ(zj)‖2
F ]

≤ (1 + ηn)2(1 − 2/n)−1κ−1(
L(nτ)−1 + IEjEj [nL2‖ψ‖−2

2 h2
j ]

)
,

where the upper bounds follow from IEj ‖zj‖4
2 ≤ (1 + ηn)4n2Ω−2

jj . Taking E on
both sides, we obtain maxj∈Jn,p E

[
IEj (ξf (zj) − Ej [f(zj)]�zj)2 + IEj

|‖Ej [f(zj)]‖2 − 1|
]

→ 0. Thanks to minj∈[p] P(Ej) → 1 by Lemma C.1 this
implies that both |‖Ej [f(zj)]‖2 − 1| and |ξf (zj)�zj − Ej [f(zj)]�zj | converge
in probability to 0 uniformly over j ∈ Jn,p.

We now study the asymptotic distribution of ξf (zj). Since zj ∼ N(0n, Ω−1
jj In)

is independent with XQj by Proposition D.1, without loss of generality, we
can assume that zj = ‖zj‖2ζj/‖ζj‖2 for some ζj ∼ N(0n, In) independent of
(XQj , ‖zj‖2). Then Ej coincides with the conditional expectation of ζj given
(XQj , ‖zj‖2). After some rearrangement,

ξf (zj) = ξf (zj) − Ej [f(zj)]�zj + ‖Ej [f(zj)]‖2
‖zjn−1/2‖2

‖ζjn−1/2‖2

(
Ej [f(zj)]

‖Ej [f(zj)]‖2

)�
ζj .

Uniformly over j ∈ Jn,p, we have (i) the limit |ξf (zj) − Ej [f(zj)]�zj | → 0
and the limit ‖Ej [f(zj)]‖2 → 1 both in probability, (ii) Ej [f(zj)]�

‖Ej [f(zj)]‖2
ζj ∼ N(0, 1)

and (iii) the limit ‖Ω1/2
jj zj‖2/‖ζj‖2 → 1 in probability. By Slutsky’s Theorem,

Ω1/2
jj ξf (zj) converges in distribution to N(0, 1) uniformly over j ∈ Jn,p. That

is, for any t ∈ R, maxj∈Jn,p |P(Ω1/2
jj ξf (zj) ≤ t) − Φ(t)| → 0.

It remains to relate ξf (zj) to ξj defined in (2.10). As the term ‖ψ‖−1
2 z�

j ψ
present in both ξj and ξf (zj) cancel out, we have the decomposition

‖ψ‖2‖zj‖−2
2 n

(
ξj − ξf (zj)

)
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= (β̂j − βj) tr[∇yψ�] + tr(P ⊥
ψ (∇ψ(zj))�P ⊥

zj
) (A.8)

= tr
[(

(β̂j − βj)∇yψ� + ∇ψ(zj)�)
P ⊥

ψ

]
(A.9)

+ (β̂j − βj) tr
[
Pψ∇yψ�]

+ tr
[
P ⊥

ψ ∇ψ(zj)�Pzj

]
. (A.10)

The matrix inside the trace in (A.8) is zero thanks to (C.24). It follows that
only the two terms in (A.10) remain, hence

E[IEj (ξj −ξf (zj))2] ≤ 2
nE

[
IEh

‖zj‖2
2‖ψ‖−2

2
(
(β̂j −βj)2‖∇yψ‖2

op +‖∇ψ(zj)‖2
op

)]
.

Since IEj ‖zj‖2/n ≤ Ω−1
jj (1+ηn)2 and ‖∇yψ‖op ≤ L by Proposition C.4 (i) with

X = X̃, the first term is bounded from above by LΩ−1
jj (1 + ηn)2

E[IEj ‖ψ‖−2
2 h2

j ]
which converges to 0 uniformly over j ∈ Jn,p by definition of Jn,p in (A.5).
The second term also converges to 0 uniformly over j ∈ Jn,p thanks to (A.7).
Thus maxj∈Jn,p E[IEj (ξj −ξf (zj))2] → 0 which implies that |ξj −ξf (zj)| → 0 in
probability uniformly over j ∈ Jn,p and Slutsky’s theorem completes the proof
of (2.12) for ξj .

To prove a similar result for ξ′
j , it is enough to prove Ω1/2

j |ξ′
j − ξj | →P 0

uniformly over j ∈ Jn,p by Slutsky’s theorem. As

|ξj − ξ′
j | =

∣∣ tr[∇yψ]
∣∣‖ψ‖−1

2
∣∣hj

∣∣ ∣∣‖zj‖2
2/n − Ω−1

jj

∣∣
and | tr[∇yψ]| ≤ nL, by the Cauchy-Schwarz inequality we find

E[IEj |ξj − ξ′
j |] ≤ Ω−1

jj nLE[IEj h2
j‖ψ‖−2

2 ]1/2
E[(Ωjj‖zj‖2

2/n − 1)2]1/2.

Since E[(Ωjj‖zj‖2
2/n − 1)2]1/2 =

√
2/n and Ωjj ∈ [κ, 1/κ], the previous display

converges to 0 uniformly over j ∈ Jn,p by definition of Jn,p in (A.5).

Appendix B: Stein formulae on the sphere

The goal of this section is to prove Proposition A.1 and to develop Stein formulae
for random vectors z uniformly distributed on the sphere.

Let S
n−1(R) be the sphere in R

n with center 0 and radius R > 0. We say
that z is uniformly distributed in S

n−1(R) and write z ∼ Unif(Sn−1(R)) if z is
equal in distribution to Rζ/‖ζ‖2 where ζ ∼ N(0, In). We first develops Stein’s
formulae with respect to z ∼ Unif(Sn−1(R)) for functions f : z ∈ S

n−1(R) 	→
f(z) ∈ R

n in Sobolev spaces over S
n−1(R).

We derive next Stein formulae for functions in Sobolev spaces over S
n−1(R).

One possible construction of such Sobolev spaces is obtained by completion
of the space of infinitely differentiable functions S

n−1(R) → R with respect
to the desired Sobolev norm as follows. Here, S

n−1(R) is viewed as a com-
pact Riemannian manifold equipped with the canonical metric (the metric in-
duced as a submanifold of Rn equipped with the Euclidean metric). As it will
be convenient for compatibility with the rest of the paper to conserve the
partial derivatives with respect to the canonical basis in R

n, we adopt the
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following notation. For a smooth function h : S
n−1(R) → R and Ω ⊂ R

n

an open neighborhood of S
n−1(R), define the smooth function ȟ : Ω → R

by ȟ(x) = h(Rx/‖x‖2) and define the gradient of h as that of ȟ, i.e., for
x ∈ S

n−1(R), set ∇h(x) = ((∂/∂x1)ȟ(x), ..., (∂/∂xn)ȟ(x)). For every x ∈ S
n−1,

the gradient ∇h(x) belongs to the hyperplane orthogonal to x which is the tan-
gent space of Sn−1 at x. Furthermore if γ : R → S

n−1(R) is a smooth curve with
γ(0) = x, (d/dt)γ(t)|t=0 = v then v�x = 0 and ∇h(x)�v = (d/dt)h(γ(t))|t=0.
For such smooth function h and equipped with its gradient, for α ∈ {1, 2} we
define the Sobolev norm

‖h‖1,α = E
[
|h(z)|α

]1/α + E
[
‖∇h(z)‖α

2
]1/α

, z ∼ Unif(Sn−1(R))

and the Sobolev space W 1,α(Sn−1(R)) as the completion of the space of smooth
functions over Sn−1(R) with respect to the above norm. This definition is equiv-
alent to the definition given in [18, Definition 2.1]. By [18, Proposition 2.3], since
the manifold S

n−1(R) is compact the resulting Sobolev spaces do not depend on
the chosen metric. Equivalently, the Sobolev space W 1,α(Sn−1(R)) is also the
completion with respect to the above norm of the space of once continuously
differentiable functions on S

n−1(R).
If h is locally Lipschitz on S

n−1(R) (i.e., every point has a neighborhood in
S

n−1(R) on which h is Lipschitz), then again by considering an open neighbor-
hood Ω ⊂ R

n of Sn−1(R), the function ȟ(x) = h(Rx/‖x‖2) is locally Lipschitz
on Ω. Thus, in this case and by Rademacher’s theorem, ∇h(z) is well defined al-
most everywhere in S

n−1(R) as the gradient of ∇ȟ(x), and h ∈ W 1,α(Sn−1(R))
if and only if E

[
‖∇h(z)‖α

2
]

< ∞. For example, h ∈ W 1,α(Sn−1(R)) when h is
L-Lipschitz on S

n−1(R).
Finally, for α ∈ {1, 2} define W 1,α(Sn−1(R))n as the space of R

n valued
functions f = (f1, ..., fn) with all coordinates fi belonging to W 1,α(Sn−1(R)),
equipped with the norm

‖f‖1,α = E[‖f(z)‖α
2 ]1/α + E[‖∇f(z)‖α

F ]1/α

where the gradient ∇f is the matrix in R
n×n with columns ∇f1, ..., ∇fn,

Lemma B.1 (Stein’s formula on the sphere). Let n ≥ 3, R > 0 and z ∼
Unif(Sn−1(R)). Let P ⊥

x = In − xx�/‖x‖2
2 for x �= 0. Then, for all f =

(f1, . . . , fn) ∈ W 1,1(Sn−1(R))n,

E[f(z)�z] = (n − 1)−1R2
E[tr((∇f(z))�P ⊥

z )], (B.1)

where ∇f = (∇f1, . . . , ∇fn). For all f = (f1, . . . , fn) ∈ W 1,2(Sn−1(R))n we
also have

E[‖f(z) − E[f(z)]‖2
2] ≤ (n − 2)−1R2

E[‖∇f(z)�P ⊥
z ‖2

F ], (B.2)

E
[(

nR−2f(z)�z − tr[∇f(z)�P ⊥
z ]

)2]
=nR−2

E
[
‖f‖2

2
]
+(1 − 2/n)−1

E tr
[(

∇f(z)�P ⊥
z

)2]
− 2

n−2E
[
tr(∇f(z)�P ⊥

z )2]
(B.3)

≤ nR−2
E

[
‖f‖2

2
]

+ (1 − 2/n)−1
E

[
‖∇f(z)�P ⊥

z ‖2
F

]
. (B.4)
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Note that (B.2) is the classical Poincaré inequality on the sphere. A proof is
provided for completeness.

Proof of Lemma B.1. As the operators T and Tij defined by Tf(z) = f(z)�z
and Tijf(z) = [∇f(z)�P ⊥

z ]ij for every i, j = 1, ..., n are all continuous lin-
ear mappings from W 1,α(Sn−1(R))n to the Lα space with the norm ‖f‖Lα =
(E[|f(z)|α])1/α, we assume without loss of generality that all coordinates of f
are continuously differentiable. Indeed, if (f (q))q≥1 is a sequence of smooth func-
tions over the sphere converging to f in W 1,α(Sn−1(R))n for α = 1 and (B.1)
holds for f (q) then (B.1) also holds for the limit by continuity; the same argu-
ment applies with α = 2 for (B.2)-(B.3)-(B.4).

Let ζ ∼ N(0, In). Assume without loss of generality z = Rζ/‖ζ‖2 as
Rζ/‖ζ‖2 ∼ Unif(Sn−1(R)). Let φ(t) be a continuously differentiable function
in R with φ(t) = 0 for t ≤ 0 and φ(t) = 1 for t ≥ 1. For δ > 0 define
ϕδ(x) = φ(‖x‖2/δ)f(Rx/‖x‖2). As ‖ζ‖2 is independent of z and ϕδ(x) has
uniformly bounded gradient, the first order Stein formula for ϕδ yields

E
[
φ(‖ζ‖2/δ)‖ζ‖2

]
E[f(z)�z] = E

[
Rϕδ(ζ)�ζ

]
= RE

[
tr(∇ϕδ(ζ))

]
.

By the product and chain rules, ∇ϕδ(x) is given by

φ′(‖x‖2/δ)(x/(‖x‖2δ))f(Rx/‖x‖2)�+φ(‖x‖2/δ)(R/‖x‖2)P ⊥
x

(
∇f(Rx/‖x‖2)

)
with φ′(t) = (d/dt)φ(t) and φ′(0) = φ′(1)=0. As supδ>0,x∈Rn ‖x‖2‖∇ϕδ(x)‖F ≤
C < ∞ and E[‖ζ‖−2

2 ] = 1/(n − 2) < ∞, the dominated convergence theorem
gives

E[f(z)�z] =
R limδ→0 E

[
tr(∇ϕδ(ζ))

]
limδ→0 E

[
φ(‖ζ‖2/δ)‖ζ‖2

] =
R2

E
[
1/‖ζ‖2

]
E

[
tr(∇f(z)�P ⊥

z )
]

E
[
‖ζ‖2

] ,

which yields (B.1) due to E[‖ζ‖2]/E[‖ζ‖−1
2 ] = (n − 1).

Next, as the exchange of limit and expectation is allowed when ϕδ → ϕ0+ =
f , the Gaussian Poincaré inequality [9, Theorem 1.6.4] yields

E[‖f(z) − E[f(z)]‖2
2] ≤ lim

δ→0+
E[‖∇ϕδ(ζ)‖2

F ] = E[R2‖∇f(z)�P ⊥
z ‖2

F ‖ζ‖−2
2 ].

Since E[‖ζ‖−2
2 ] = 1/(n − 2) and (‖ζ‖2, z) are independent, we obtain (B.2).

Finally by applying the Second Order Stein formula of [6] to ϕδ(ζ) we find by
dominated convergence

E
[(

R−1‖ζ‖2z�f(z) − R‖ζ‖−1
2 tr[∇f(z)�P ⊥

z ]
)2]

= lim
δ→0+

E
[(

ζ�ϕδ(ζ) − tr[∇ϕδ(ζ)]
)2]

= lim
δ→0+

E
[
‖ϕδ(ζ)‖2

2
]

+ E tr
[(

∇ϕδ(ζ)�)2]
= E

[
‖f(z)‖2

2
]

+ R2
E tr

[(
∇f(z)�P ⊥

z

)2]
E

[
‖ζ‖−2

2
]

= E
[
‖f(z)‖2

2
]

+ R2
E tr

[(
∇f(z)�P ⊥

z

)2]
/(n − 2),
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where the last equality follows from the independence of z and ‖ζ‖2. We now
simplify the left-hand side in order to get rid of ‖ζ‖2. By expanding the square,
using the independence of (z, ‖ζ‖2) and E[‖ζ‖−2

2 ] = 1
n−2 , the above display is

equal to {
R−2

E
[
‖ζ‖2

2
]
E

[
(z�f(z))2]

− 2E
[
z�f(z) tr[∇f(z)�P ⊥

z ]
]

+R2
E

[
‖ζ‖−2

2
]
E

[
(tr[∇f(z)�P ⊥

z ])2]
=

{
nR−2

E
[
(z�f(z))2]

− 2E
[
z�f(z) tr[∇f(z)�P ⊥

z ]
]

+R2(n − 2)−1
E

[
(tr[∇f(z)�P ⊥

z ])2]
=

{
E

[( √
n

R z�f(z) − R√
n

tr[∇f(z)�P ⊥
z ]

)2]
+R2(

(n − 2)−1 − n−1)
E

[(
tr[∇f(z)�P ⊥

z ]
)2]

.

Since 1/(n − 2) − 1/n = 2n−1(n − 2)−1, we obtain (B.3) after multiplying
by n/R2. The proof is complete since (B.4) follows directly from (B.3) by the
Cauchy-Schwarz inequality.

Proof of Proposition A.1. If f is locally Lipschitz and E[‖∇f(z)�‖2
F ] < ∞,

then f ∈ W 1,2(Sn−1(R)). We consider the mapping f(z)−E
[
f(z)

]
rather than

f(z) in (B.3) and (B.4). Multiplying R4n−2 on both sides of the inequality (B.4),
it provides

E[(ξf (z) − E[f(z)]�z)2]
≤ R2n−1

E[‖f − E[f(z)]‖2
2] + R4(n2 − 2n)−1

E[‖∇f(z)�P ⊥
z ‖2

F ]
≤ 2R4(n2 − 2n)−1

E[‖∇f(z)�P ⊥
z ‖2

F ],

where the second inequality follows from (B.2). By the triangle inequality and
(B.2),

E[|‖f(z)‖2 − ‖E[f(z)]‖2|2] ≤ E[‖f(z) − E[f(z)]‖2
2]

≤ R2(n − 2)−1
E[‖∇f(z)�P ⊥

z ‖2
F ].

If f(z) = f̃(z)/‖f̃(z)‖2 with locally Lipschitz f̃ on S
n−1(R) then f̃(z)/(δ ∨

‖f̃(z)‖2) is locally Lipschitz for δ > 0 and converges to f in W 1,2(Sn−1(R))n

as δ → 0+ when P(‖f(z)‖2 �= 0) = 1 and E[‖f̃(z)‖−2
2 ‖∇f̃(z)‖2

F ] < +∞. Thus,
the proof still applies.

Appendix C: Bounds on (β̂j − βj)2‖ψ‖−2
2

The goal of this section is to prove Lemma A.2.

C.1. High probability events Ej

Lemma C.1 (high probability of Ej). Assume that X has iid N(0, Σ) rows.
Then

E[‖XΣ−1/2‖2
op] ≤ (

√
n + √

p)2 + 1. (C.1)
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Furthermore, with ηn =
√

2 log(n)/n + n−1/2 and for the events

Ej = {‖XQjΣ−1/2n−1/2‖op ≤ 1 +
√

p/n + ηn} ∩ {
∣∣n−1/2Ω1/2

jj ‖zj‖2 − 1
∣∣ ≤ ηn},

we have P(∩j∈[p]Ej) ≥ 1 − (p + 1/2)n−1(π log(n))−1/2.

Proof of Lemma C.1. Let us first notice that XΣ−1/2 is a random Gaussian
matrix with iid standard normal entries. Theorem 7.3.1 in [32] provides that
E[‖XΣ−1/2‖op] ≤ √

n+√
p. Since the operator norm of a matrix is a 1-Lipschitz

function of the entries of the matrix, by the Gaussian Poincaré inequality [10,
Theorem 3.20], Var(‖XΣ−1/2‖op) ≤ 1. This proves (C.1).

By Theorem II.13 in [14], we have for t > 0,

P(‖XΣ−1/2n−1/2‖op ≥ 1 +
√

p/n + t) ≤ Φ(−t
√

n),

P(
∣∣Ω1/2

jj ‖zjn−1/2‖2 − 1
∣∣ ≥ n−1/2 + t) ≤ 2Φ(−t

√
n).

Since XQjΣ−1/2 = XΣ−1/2(Σ1/2QjΣ−1/2) and ‖Σ1/2QjΣ−1/2‖op ≤ 1,

‖XQjΣ−1/2‖op ≤ ‖XΣ−1/2‖op

for all j ∈ [p]. Next, using a union bound over j ∈ [p] when t =
√

2 log(n)/n

we have P(∩j∈[p]Ej) ≥ 1 − (2p + 1)Φ(−
√

2 log(n)). We conclude the proof using
Φ(−t) ≤ (2π)−1/2 exp(−t2/2)/t for t > 0, which provides

P(∩j∈[p]Ej) ≥ 1 − (p + 1/2)n−1(π log(n))−1/2.

Remark C.1. Our specific construction of Ej satisfies the following properties:

1. IEj is a function of ‖XQj‖op and ‖zj‖2 only, consequently the event Ej

is independent of zj/‖zj‖2.
2. ‖XΣ−1/2n−1/2‖opIEj ≤ 1 +

√
p/n + ηn + (1 + ηn) = 2 +

√
p/n + 2ηn.

C.2. Twice continuously differentiable penalty

Lemma C.2. Let L, τ be such that Assumptions A and B are fulfilled. Further
assume that the Hessian matrix G = (∇2g(b))

∣∣
b=β̂

of g at β̂ exists and is
symmetric, and define

M = (X� diag(ψ′)X + nG)−1, (C.2)
V = diag(ψ′) − diag(ψ′)XMX� diag(ψ′). (C.3)

Then with the partial order A � B if and only if the matrix B − A is positive
semi-definite, we have

‖ diag(ψ′)XM‖op ≤ (1/2)L1/2(nτ)−1/2, (C.4)
M � (nτ)−1Ip, (C.5)

(Lτ−1‖Xn−1/2‖2
op + 1)−1 diag(ψ′) � V � diag(ψ′) � LIn. (C.6)
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Proof of Lemma C.2. Throughout the proof we use the notation

B = diag(ψ′)1/2Xn−1/2G−1/2.

By some algebra, we have B(B�B+Ip)−1B� =diag(ψ′)1/2XMX�diag(ψ′)1/2.
For an upper bound of diag(ψ′)XM , we notice

diag(ψ′)XM = diag(ψ′)X(X� diag(ψ′)X + nG)−1

= diag(ψ′)1/2B(B�B + Ip)−1n−1/2G−1/2.

For any matrix B, ‖B(B�B +Ip)−1‖op ≤ maxt≥0 t/(t2 +1) = 1/2. By strongly
convexity of g, ‖G−1/2‖op ≤ τ−1/2. Since ψ is L-Lipschitz, ‖ diag(ψ′)1/2‖op ≤
L1/2. Combining those upper bounds, we obtain (C.4). For the upper bound of
M , we notice M = n−1G−1/2(B�B + Ip)−1G−1/2 � n−1G−1 � (nτ)−1Ip.
This gives (C.5). For lower and upper bounds on V , we first notice that by
definition of B, ‖B‖op ≤ L1/2τ−1/2‖Xn−1/2‖op, thus

(Lτ−1‖Xn−1/2‖2
op + 1)−1In � In − B(B�B + Ip)−1B� � In.

Since V = diag(ψ′)1/2(In − B(B�B + Ip)−1B�) diag(ψ′)1/2, we have

(Lτ−1‖Xn−1/2‖2
op + 1)−1 diag(ψ′) � V � diag(ψ′).

By the L-Lipschitz property of ψ, we have diag(ψ′) � LIn. Thus (C.6) holds.

Proposition C.3. Assume that g is strongly convex with parameter τ > 0 and
ψ = ρ′ is L-Lipschitz. Let β̂ = β̂(ε, X), ψ = ψ(ε, X) be as in (2.8) and set
h(ε, X) = β̂(ε, X) − β. Define ∇zh = (∂/∂z)h(ε, X + za�)

∣∣
z=0 and ∇zψ =

(∂/∂z)ψ(ε, X + za�)
∣∣
z=0 for fixed a, ε and X. Let P ⊥

x = In − xx�/‖x‖2
2 for

x �= 0. Then
(i) For fixed ε, h(ε, X) and ψ(ε, X) are Lipschitz in X on every compact

subset of Rn×p.
For (ii) and (iii), additionally assume that g is twice continuously differen-

tiable.
(ii) For almost every X and every a ∈ R

p,

(∇zh)� = −(h�a)MX� diag(ψ′) + Maψ�, (C.7)
(∇zψ)� = −(h�a)V − diag(ψ′)XMaψ�. (C.8)

(iii) For almost every X and every a ∈ R
p, if ψ �= 0, then

(∇z(ψ/‖ψ‖2))� = ‖ψ‖−1
2 P ⊥

ψ

[
− (h�a)V − diag(ψ′)XMaψ�]

(C.9)

We remark that in view of (A.6), ∇zψ = ∇ψ(zj) when a = ej .
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Proof. (i) We refer our readers to the proof of Proposition C.4.
(ii) As the functions h and ψ are Lipschitz on every compact, their Fréchet

derivatives exist almost everywhere by Rademacher’s theorem. Moreover, the
chain rule holds almost everywhere by [34, Theorem 2.1.11]. Let G, V and M
be as in Lemma C.2. By differentiating these KKT conditions X�ψ(X) =
n(∇g(b))

∣∣
b=β+h

, and by the chain rule, we obtain that for almost every X,

nG
(
∇zh

)� = aψ� + X�(
∇zψ

)�
,(

∇zψ
)� = diag(ψ′)

{
− (a�h)In − X

(
∇zh

)�}
.

Solving the above system of equations gives (C.7) and (C.8).
(iii) Since the map v 	→ v/‖v‖2 with v ∈ R

n has Fréchet derivative ‖v‖−1
2 P ⊥

v

at every point v �= 0 ∈ R
n, by chain rule, (C.9) follows for almost every X if

ψ(X) �= 0n.

Proof of Lemma A.2 when g is twice continuously differentiable. Here, we fur-
ther assume that g is twice differentiable so that V , M in Lemma C.2 are
well-defined.

By Proposition C.4, the map zj 	→ (h, ψ) is locally Lipschitz, thus the map
of the product zj 	→ hjψ(‖ψ‖2

2 + δ)−1 is also locally Lipschitz. By Proposi-
tion D.2, without loss of generality, we can assume that ψ �= 0n at almost
every point zj ∈ R

n. By the first order Stein’s formula on the sphere (B.1) for
(n − 1)‖zj‖−2

2 Ej [z�
j f(zj)] with f(zj) = hjψ(‖ψ‖2

2 + δ)−1, we have

Ej [h2
j(‖ψ‖2

2 + δ)−1 tr(V P ⊥
zj

)] (C.10)

= − Ej [hj(‖ψ‖2
2 + δ)−1ψ�zj ](n − 1)‖zj‖−2

2 (C.11)
− 2Ej [hj(‖ψ‖2

2 + δ)−1e�
j (diag(ψ′)XM)�P ⊥

zj
ψ] (C.12)

+ Ej [(‖ψ‖2
2 + δ)−1e�

j Mejψ�P ⊥
zj

ψ] (C.13)

+ 2Ej [h2
j(‖ψ‖2

2 + δ)−2ψ�V P ⊥
zj

ψ] (C.14)

+ 2Ej [hj(‖ψ‖2
2 + δ)−2ψ� diag(ψ′)XMejψ�P ⊥

zj
ψ]. (C.15)

For the terms (C.12)-(C.14), by Lemma C.2 and ‖P ⊥
zj

‖op ≤ 1 we find

(C.12) ∨ (C.15) ≤
√

L/(τn)Ej [|hj |(‖ψ‖2
2 + δ)−1/2] by (C.4)

≤ 1
2 (τn)−1 + L

2 Ej [h2
j (‖ψ‖2

2 + δ)−1],
(C.13) ≤ (τn)−1 by (C.5),
(C.14) ≤ 2LEj [h2

j (‖ψ‖2
2 + δ)−1] by (C.6).

By leaving term (C.11) unchanged and using the above inequalities,

(C.10) ≤ − (n − 1)‖zj‖−2
2 Ej [hj(‖ψ‖2

2 + δ)−1ψ�zj ]
+ 2(τn)−1

+ 3LEj [h2
j (‖ψ‖2

2 + δ)−1].
(C.16)
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We now bound (C.10) from below. Let

Uj = (Lτ−1(‖XQjn−1/2‖op + ‖zjn−1/2‖2)2 + 1)−1.

By (Lτ−1‖Xn−1/2‖2
op + 1)−1 diag(ψ′) � V � diag(ψ′) � LIn in (C.6) and by

‖X‖op ≤ ‖XQj‖op +‖zj‖2 for all j ∈ [p], we have that Uj diag(ψ′) � V � LIn.
Since Uj diag(ψ′) � V and K2In � diag(ψ′) + diag{ψ2

i , i = 1, ..., n} both
holds, multiplying the second inequality by Uj and summing yields K2UjIn �
Uj diag ψ2

i +V . Multiplying both sides P ⊥
zj

to the left and to the right and using
that P ⊥

zj
� In and tr P ⊥

zj
= n − 1 we find

K2UjP ⊥
zj

� Uj diag ψ2
i + P ⊥

zj
V P ⊥

zj
, K2Uj(n − 1) ≤ Uj‖ψ‖2 + tr[P ⊥

zj
V ].

Multiplying by (‖ψ‖2
2 + δ)−1h2

j and taking the conditional expectation Ej ,

K2Uj(n − 1)Ej [(‖ψ‖2
2 + δ)−1h2

j ] ≤ Ej [h2
j ] + Ej [tr[P ⊥

zj
V ]h2

j(‖ψ‖2
2 + δ)−1]

= Ej [h2
j ] + (C.10). (C.17)

Note that by definition of u∗ and the events in Lemma C.1, we have when
u∗ > 0,

Ej ⊂ {nu∗ ≤ K2Uj(n − 1) − 3L} ∩ {Ωjj‖zj‖2
2 ≥ n(1 − ηn)2

+}. (C.18)

Then combining (C.16) with the previous display, multiplying both sides by IEj

and summing over j ∈ [p] we find

nu∗

p∑
j=1

Ej

[ IEj h2
j

‖ψ‖2
2 + δ

]
≤ 2p

τn
+

p∑
j=1

Ej [IEj h2
j ] − (n − 1)Ej

[ ψ�zjIEj e�
j h

(‖ψ‖2
2 + δ)‖zj‖2

2

]
.

Taking expectations E, letting diag{IEj } denote the diagonal matrix with the
j-th diagonal element IEj , we find

nu∗E
[
(‖ψ‖2

2 + δ)−1h� diag{IEj }h
]

− 2p/(τn) − E[‖h‖2
2]

≤ −(n − 1)E
[
(‖ψ‖2

2 + δ)−1ψ�XΣ−1 diag{Ω−1
jj IEj ‖zj‖−2

2 }h
]

≤ (n−1)E
[
‖XΣ−1 diag{Ω−1

jj IEj ‖zj‖−2
2 }‖2

op
] 1

2
E

[
(‖ψ‖2

2+δ)−1h� diag{IEj }h
] 1

2

≤ (1 − ηn)−2
+ E

[
‖XΣ−1‖2

op
] 1

2
E

[
(‖ψ‖2

2 + δ)−1h� diag{IEj }h
] 1

2

where the second inequality follows from the Cauchy-Schwarz inequality and
(‖ψ‖2

2 + δ)−1/2‖ψ‖2 ≤ 1, and the third inequality follows from Ω−1
jj IEj (n −

1)‖zj‖−2
2 ≤ (1 − ηn)−2

+ thanks to (C.18). This implies that x = (nE[(‖ψ‖2
2 +

δ)−1h� diag{IEj }h])1/2 satisfies Ax2 + Bx + C ≤ 0 where the polynomial coef-
ficients are

A = u∗, C = −2p(τn)−1 −E[‖h‖2
2] and B = −(1−ηn)−2

+ E[‖XΣ−1n−1‖2
op]1/2.
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As A > 0, inequality Ax2 + Bx + C ≤ 0 implies that x lies between the two real
roots of the polynomial AX2 + BX + C. In particular, x is smaller than the
largest root, i.e., x ≤ (−B +

√
B2 − 4AC)/(2A) ≤ |B|/A + (|C|/A)1/2. Here,

|C|/A = (2p(nτ)−1 + E[‖h‖2
2])/u∗ and

|B|/A ≤ u−1
∗ (1 − ηn)−2

+
∣∣‖Σ−1/2‖opE[‖XΣ−1/2n−1/2‖2

op]1/2.

The upper bound (C.1) on E[‖XΣ−1/2‖2
op] completes the proof.

C.3. Non-smooth strongly convex penalty g

C.3.1. Almost everywhere differentiability

In this section, we provide the almost everywhere existence of the Jacobian
matrices. We also notice that if our penalty g is not twice differentiable, the
matrices M and V in Lemma C.2 are not well defined. In this case we do not
have explicit formula for the Jacobian matrices (∂/∂zj)ψ and (∂/∂zj)h such as
those in terms of V , diag(ψ′), M in Proposition C.3 (ii) and (iii). In this section
we provide upper bounds of the norms of these Jacobian matrices without using
Proposition C.3.

Proposition C.4. Let ρ : R → R be convex and continuously differentiable
with derivative ψ = ρ′ being L-Lipschitz. Let g : Rp → R be strongly convex with
parameter τ > 0. Let X, X̃ ∈ R

n×p, ε, ε̃ ∈ R
n and correspondingly,

β̂(ε, X) = argmin
b∈Rp

∑
i∈[n]

ρ(εi − x�
i (b − β))
n

+ g(b), β̃ = β̂(ε̃, X̃),

h(ε, X) = β̂(ε, X) − β, h̃ = h(ε̃, X̃),

ψ(ε, X) = ψ(ε − Xh(ε, X)), ψ̃ = ψ(ε̃, X̃).

(C.19)

Then (i)

nτ‖h−h̃‖2
2+L−1‖ψ−ψ̃‖2

2 ≤ (h−h̃)�(X−X̃)�ψ+(ε−ε̃+X̃h−Xh)�(ψ−ψ̃).
(C.20)

(ii) The map (ε, X) 	→
(
h(ε, X), ψ(ε, X)

)
is Lipschitz on every compact of

R
n × R

n×p.
(iii) For any ε ∈ R

n fixed, and for any η ∈ R
n and a ∈ R

p

nτ‖β̂(ε, X + ηa�) − β̂(ε, X)‖2
2 + L−1‖ψ(ε, X + ηa�) − ψ(ε, X)‖2

2

≤ (nτ)−1‖a‖2
2(η�ψ)2 + L(h�a)2‖η‖2

2.

Furthermore,∑
i∈[n]

‖ψ(ε, X + eia
�) − ψ(X)‖2

2 ≤ L(nτ)−1‖a‖2
2‖ψ‖2

2 + nL2(h�a)2. (C.21)
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(iv) If η ∈ R
n is such that η�ψ(ε, X) = 0 then ψ(ε + h(ε, X)�ejη, X +

ηe�
j ) = ψ(ε, X), so that if ψ(ε, X) is Fréchet differentiable at (ε, X) then

n∑
i=1

ηi

[ ∂ψ

∂xij
(ε, X)+

(
e�

j h(ε, X)
)∂ψ

∂εi
(ε, X)

]
= 0 provided that η�ψ(ε, X) = 0.

(C.22)

The content of the above proposition appeared in [4, Proposition 5.2] with
variables (y, X) instead of (ε, X). It follows from strong convexity and the
KKT conditions of β̂ and β̃. Its proof is provided below for completeness. An
application of the above Proposition C.4 to normalized ψ yields the following.

Corollary C.5. Under the conditions of Proposition C.4 and with the notation
of Proposition C.3, at a point where ‖ψ‖2 > 0 and ψ is Fréchet differentiable,∥∥∥∥∇z

(
ψ

‖ψ‖2

)∥∥∥∥2

F

≤ L‖a‖2
2

nτ
+ nL2(h�a)2

‖ψ‖2
2

, (C.23)

and with the ∇yψ in (2.9)(
∇z

(
ψ

‖ψ‖2

)
+

(
a�h

) ∇yψ

‖ψ‖2

)�
P ⊥

ψ = 0. (C.24)

Proof. For (C.23), by the chain rule

‖∇z(ψ/‖ψ‖2)�‖2
F = ‖ψ‖−2

2 ‖P ⊥
ψ (∇zψ)�‖2

F ≤ ‖ψ‖−2
2 ‖∇zψ‖2

F .

By definition of the Frobenius norm ‖∇zψ‖2
F =

∑
i∈[n] ‖∂ψ/∂zi‖2

2. By (C.21)
with a replaced by ta and taking the limit as t → 0 we obtain ‖∇z(ψ/‖ψ‖2)‖2

F ≤
L(nτ)−1‖a‖2

2 + nL2(h�a)2‖ψ‖−2
2 .

For (C.24), we have((
∂

∂η
+

(
a�h

) ∂

∂y

)
ψ

‖ψ‖2

)
P ⊥

ψ =
(

P ⊥
ψ

‖ψ‖2

(
∂ψ

∂η
+

(
a�h

)∂ψ

∂y

))
P ⊥

ψ = 0

due to ψ
(
ε + h(ε, X)�a(P ⊥

ψ η), X + (P ⊥
ψ η)a�)

= ψ(ε, X) by (C.20) as in
the proof of Proposition C.4 (iv). Note that if F (y, X) and G(ε, X) are func-
tions such that G(ε, X) = F (ε + Xβ, X) and F (y, X) = G(y − Xβ, X)
then (∂/∂yi)F (y, X) = (∂/∂εi)G(ε, X) whenever F is Fréchet differentiable at
(y, X) and G is Fréchet differentiable at (ε, X) (i.e., translation by a constant
in the variables does not change the derivatives).

Proof of Proposition C.4 (i). Let ∂g(·) denote the subdifferential of g. The KKT
conditions read X�ψ ∈ n∂g(β̂) and X̃�ψ̃ ∈ n∂g(β̃). Taking the difference and
by τ -strong convexity of g, we have

nτ‖β̂ − β̃‖2
2 ≤ (β̂ − β̃)�(X�ψ − X̃�ψ̃)

= (β̂ − β̃)�[
(X − X̃)�ψ + X̃�(ψ − ψ̃)

]
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For the second term,

(β̂ − β̃)�X̃�(ψ − ψ̃)

= (X̃h − X̃h̃)�(ψ − ψ̃)

= −(ε − Xh − (ε̃ − X̃h̃))�(ψ − ψ̃) + (ε − ε̃ + X̃h − Xh)�(ψ − ψ̃).

Since ψ is non-decreasing and L-Lipschitz, L−1‖ψ − ψ̃‖2
2 ≤

(
ε − Xh − (ε̃ −

X̃h̃)
)�(ψ − ψ̃) holds. Combining the above displays we obtain (C.20).

Proof of Proposition C.4 (ii). For fixed values of (ε, X, h, ψ), inequality (C.20)
divided by 1 + ‖h − h̃‖2 + ‖ψ − ψ̃‖2 implies that (h̃, ψ̃) → (h, ψ) as (ε̃, X̃) →
(ε, X), hence the function (ε, X) 	→ (h(ε, X), ψ(ε, X)) is everywhere continu-
ous. This implies that S(K) = sup(ε,X)∈K

(
(nτ)−1‖ψ(ε, X)‖2

2 + L‖h(ε, X)‖2
2
)

is finite for any compact K ⊂ R
n × R

n×p. The Cauchy-Schwarz inequality on
the right hand side of (C.20) gives for any (ε, X), (ε̃, X̃) ∈ K

nτ‖h − h̃‖2
2 + L−1‖ψ − ψ̃‖2

2

≤ ‖X − X̃‖op(‖h − h̃‖2‖ψ‖2 + ‖h‖2‖ψ − ψ̃‖2) + ‖ε − ε̃‖2‖ψ − ψ̃‖2

≤ ‖X − X̃‖op(nτ‖h − h̃‖2
2 + L−1‖ψ − ψ̃‖2

2) 1
2 S(K) 1

2 + ‖ε − ε̃‖2‖ψ − ψ̃‖2,

This implies that (ε, X) 	→ (h, ψ) is Lipschitz on K.

Proof of Proposition C.4 (iii). Combined with (C.20) with ε = ε̃, we have

nτ‖h − h̃‖2
2 + L−1‖ψ − ψ̃‖2

2

≤ −(h − h̃)�a(η�ψ) + (h�a)η�(ψ − ψ̃)

≤ ‖h − h̃‖2‖a‖2|η�ψ| + |h�a|‖η‖2‖ψ − ψ̃‖2

≤
(
nτ‖h − h̃‖2

2 + L−1‖ψ − ψ̃‖2
2
)1/2(

(nτ)−1‖a‖2
2(η�ψ)2 + L(h�a)2‖η‖2

2
)1/2

so that the first inequality holds. Taking summation over η = ei for i ∈ [n]
gives (C.21).

Proof of Proposition C.4 (iv). For ε̃ = ε + h(ε, X)�ejη and X̃ = X + ηe�
j we

have (X − X̃)�ψ = 0 thanks to η�ψ = 0 as well as ε − ε̃ + (X̃ − X)h = 0.
Hence the two terms in the right-hand side of (C.20) are 0 and ‖ψ − ψ̃‖2

2 = 0.
Identity (C.22) then follows by definition of the Fréchet differentiability.

C.3.2. Approximation using smooth penalty g̃ν

Lemma C.6 (Approximation of strongly convex functions). Let g : Rp → R

be strongly convex with constant τ ≥ 0. Then for every ν > 0 there exists a
real-analytic strongly convex function gν : R

p → R with constant τ such that
gν − ν ≤ g ≤ gν .



5618 P. C. Bellec et al.

Proof. Since g is proper, i.e., −∞ �∈ g(Rp) and {b ∈ R
p | g(b) < +∞} �= ∅,

by Proposition 10.8 in [2], g is strongly convex with constant τ ≥ 0 if and only
if f := g − (τ/2)‖ · ‖2

2 is convex. By Theorem 1 in [1], there exists a function
fν : R

p → R real-analytic and convex that satisfies fν − ν ≤ f ≤ fν . The
conclusion follows by letting gν := fν + (τ/2)‖ · ‖2

2.

Lemma C.7. Let ρ : R → R be convex and continuously differentiable with
derivative ψ = ρ′ being L-Lipschitz. Let g, g̃ : Rp → R be strongly convex with
parameter τ, τ̃ ≥ 0. Let ‖g − g̃‖∞ = maxx∈Rp |g(x) − g̃(x)|. For b ∈ R

p, let
L(b; g) = 1

n

∑
i∈[n] ρ(yi − x�

i b) + g(b) and define

β̂ = argmin
b∈Rp

L(b; g), β̃ = argmin
b∈Rp

L(b; g̃), ψ = ψ(y−Xβ̂), ψ̃ = ψ(y−Xβ̃).

Then inequality ((τ + τ̃)/2)‖β̃ − β̂‖2
2 + (nL)−1‖ψ − ψ̃‖2

2 ≤ 2‖g − g̃‖∞ holds.

Proof of Lemma C.7. Denote by ∂g(b) subdifferential of g at b ∈ R
p. The KKT

conditions read

(1/n)X�ψ ∈ ∂g(β̂), (1/n)X�ψ̃ ∈ ∂g̃(β̃).

By the definition of the strongly convexity, the above display implies that

(τ/2)‖β̃ − β̂‖2
2 + (β̃ − β̂)�(1/n)X�ψ ≤ g(β̃) − g(β̂),

(τ̃ /2)‖β̂ − β̃‖2
2 + (β̂ − β̃)�(1/n)X�ψ̃ ≤ g̃(β̂) − g̃(β̃).

Summing over the above displays, we have
τ+τ̃

2 ‖β̂ − β̃‖2
2 + (β̂ − β̃)�(1/n)X�(ψ̃ − ψ) ≤ g(β̃) − g̃(β̃) + g̃(β̂) − g(β̂)

≤ 2‖g − g̃‖∞.

We notice that the second term in the left hand side is can be rewritten

1
n

〈
y−Xβ̂−(y−Xβ̃), ψ(y−Xβ̂)−ψ(y−Xβ̃)

〉
=

n∑
i=1

(ai − bi)(ψ(ai) − ψ(bi))
n

where ai = yi−x�
i β̂ and bi = yi−x�

i β̃. Since ψ non-decreasing and L-Lipschitz,
inequality (ai − bi)(ψ(ai) − ψ(bi)) = |ai − bi||ψ(ai) − ψ(bi)| ≥ 1

L (ψ(ai) − ψ(bi))2

completes the proof.

Proof of Lemma A.2 for g τ -strongly convex but not continuously differentiable.
In this proof, we approximate the non-smooth g with smooth g using Lemma C.6.
Let g be strongly convex with constant τ > 0, not necessarily twice differen-
tiable. By Lemma C.6, for all ν > 0, there exists g̃ν strongly convex with
constant τ > 0 such that ‖g̃ν − g‖∞ ≤ ν. Let β̃ν = argminb∈Rp L(b; g̃ν) and
ψ̃ν = ψ(y − Xβ̃ν) be as in Lemma C.7. For any δ > 0,

E

[ n

‖ψ̃ν‖2
2 + δ

∑
j∈[p]

IEj h̃2
j

]1/2
≤

[
(1 +

√
p
n )2 + 1

n

]1/2

φmin(Σ)1/2(1 − ηn)2
+u∗

+
[ 2p

nτ + E[‖h̃ν‖2
2]

]1/2

u
1/2
∗

(C.25)
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by (A.3) since g̃ν is twice continuously differentiable. By Lemma C.7, we have

τ‖β̃ν − β̂‖2
2 + (nL)−1‖ψ̃ν − ψ‖2

2 ≤ 2ν.

This implies that, as ν → 0+, the pointwise convergence (h̃ν
j , ψ̃ν) → (h, ψ)

holds. By the dominated convergence theorem, a sufficient condition that (C.25)
holds with (h̃ν , ψ̃ν) replaced by its pointwise limit (h, ψ) inside the two expec-
tations in (C.25) is that E supν∈(0,1) ‖h̃ν‖2

2 < +∞. By Lemma C.7,

‖h̃ν‖2
2 ≤ 2‖h̃ν − h‖2

2 + 2‖h‖2
2 < (2ν/τ) + 2‖h‖2

2 (C.26)

which provides integrability of supν∈(0,1) ‖h̃ν‖2
2 as E[‖Σ1/2h‖2

2] < +∞ when the
right-hand side of (A.3) is finite.

Appendix D: Auxiliary propositions

D.1. Decomposition of the design matrix into independent
components

Proposition D.1 (Independence between X(Ip −ba�) and Xb). Let each row
xi of X ∈ R

n×p satisfy that xi ∼iid N(0, Σ). Then for any deterministic vectors
a, b ∈ R

p, Σb = (b�Σb)a holds if and only if X(Ip − ba�) is independent with
Xb. Furthermore, if the above holds and the inverse matrix Σ−1 exists, then
(b�Σb)(a�Σ−1a) = 1.

Proof. From the fact that (X(Ip − ba�), Xb) can be represented in a linear
transformation of n × p iid N(0, 1) random variable, the pair is distributed
in a multivariate normal distribution. Since the rows of X are independent,
the independence between X(Ip − ba�) and Xb reduces to the independence
between x�

i (Ip − ba�) and x�
i b for each i ∈ [n], which holds if and only if the

two random quantities are uncorrelated in the sense that

E[(x�
i (Ip − ba�))(x�

i b)] = E[b�xix
�
i (Ip − ba�)] = b�Σ(Ip − ba�) = 0.

If the inverse Σ−1 exists, the above display implies (b�Σb)(a�Σ−1a) = 1.

D.2. ψ at the residuals is almost surely nonzero

Proposition D.2. If Assumptions A, B and C hold then P(ψ(y − Xβ̂) �= 0) =
1.

Proof of Proposition D.2. If ψ(y − Xβ̂) = 0 then β̂ must be a minimizer of the
penalty g. Let b0 be a minimizer of g, which is unique by strong convexity.

Our assumption on the convexity of ρ implies that ψ(x) is non-decreasing in
x ∈ R. Combined with our assumption ψ′(x) + ψ2(x) ≥ K2 > 0 for every point
x ∈ R, this implies that ψ(x) = 0 at no more than one point in R. (Otherwise,
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there exists an open interval on which ψ(x) = 0 and ψ′(x) + ψ2(x) = 0. A
contradiction then follows.)

Thus we have P(ψ(y − Xβ̂) = 0) ≤ P(ψ(ε − X(b0 − β)) = 0) = 0 as
ε − X(b0 − β) has continuous distribution by Assumption C and {x ∈ R :
ψ(x) = 0} has zero Lebesgue measure.
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