Modeling colloidal interactions that predict
equilibrium and non-equilibrium states

Cite as: J. Chem. Phys. 156, 224101 (2022); https://doi.org/10.1063/5.0086650

Submitted: 27 January 2022 - Accepted: 19 May 2022 - Accepted Manuscript Online: 19 May 2022 -
Published Online: 08 June 2022

Brian K. Ryu, Scott M. Fenton, Tuan T. D. Nguyen, et al.

COLLECTIONS

Paper published as part of the special topic on Slow Dynamics

¢
)

Chemical Physics

Y
O
®
c
-
-
O

ﬁ
()

ol e

-

View Online Export Citation CrossMark

ARTICLES YOU MAY BE INTERESTED IN

On Oreology, the fracture and flow of “milk's favorite cookie®"
Physics of Fluids 34, 043107 (2022); https://doi.org/10.1063/5.0085362

The Asakura-Oosawa theory: Entropic forces in physics, biology, and soft matter
The Journal of Chemical Physics 156, 080401 (2022); https://doi.org/10.1063/5.0085965

Using tensor network states for multi-particle Brownian ratchets
The Journal of Chemical Physics 156, 221103 (2022); https://doi.org/10.1063/5.0097332

Learn More
The Journal

of Chemical Physics /Special Topics Open for Submissions

AIP
é Publishing

J. Chem. Phys. 156, 224101 (2022); https://doi.org/10.1063/5.0086650 156, 224101

© 2022 Author(s).



https://images.scitation.org/redirect.spark?MID=176720&plid=1817977&setID=533015&channelID=0&CID=668198&banID=520703476&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6a06a51a28cd72ad43dfa364682722e3de2b7626&location=
https://doi.org/10.1063/5.0086650
https://doi.org/10.1063/5.0086650
https://orcid.org/0000-0002-7943-3567
https://aip.scitation.org/author/Ryu%2C+Brian+K
http://orcid.org/0000-0003-2084-8327
https://aip.scitation.org/author/Fenton%2C+Scott+M
http://orcid.org/0000-0002-9726-9764
https://aip.scitation.org/author/Nguyen%2C+Tuan+T+D
/topic/special-collections/slow2021?SeriesKey=jcp
https://doi.org/10.1063/5.0086650
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0086650
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0086650&domain=aip.scitation.org&date_stamp=2022-06-08
https://aip.scitation.org/doi/10.1063/5.0085362
https://doi.org/10.1063/5.0085362
https://aip.scitation.org/doi/10.1063/5.0085965
https://doi.org/10.1063/5.0085965
https://aip.scitation.org/doi/10.1063/5.0097332
https://doi.org/10.1063/5.0097332

The Journal

of Chemical Physics ARTICLE

scitation.org/journalljcp

Modeling colloidal interactions that predict
equilibrium and non-equilibrium states

Cite as: J. Chem. Phys. 156, 224101 (2022);
Submitted: 27 January 2022 - Accepted: 19 May 2022 -
Published Online: 8 June 2022

© & @

Brian K. Ryu, Scott M. Fenton,
and Roseanna N. Zia

Tuan T. D. Nguyen, Matthew E. Helgeson,

AFFILIATIONS

Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA

Note: This paper is part of the JCP Special Topic on Slow Dynamics.
Author to whom correspondence should be addressed:

ABSTRACT

Modulating the interaction potential between colloids suspended in a fluid can trigger equilibrium phase transitions as well as the formation
of non-equilibrium “arrested states,” such as gels and glasses. Faithful representation of such interactions is essential for using simulation to
interrogate the microscopic details of non-equilibrium behavior and for extrapolating observations to new regions of phase space that are dif-
ficult to explore in experiments. Although the extended law of corresponding states predicts equilibrium phases for systems with short-ranged
interactions, it proves inadequate for equilibrium predictions of systems with longer-ranged interactions and for predicting non-equilibrium
phenomena in systems with either short- or long-ranged interactions. These shortcomings highlight the need for new approaches to represent
and disambiguate interaction potentials that replicate both equilibrium and non-equilibrium phase behavior. In this work, we use experiments
and simulations to study a system with long-ranged thermoresponsive colloidal interactions and explore whether a resolution to this challenge
can be found in regions of the phase diagram where temporal effects influence material state. We demonstrate that the conditions for non-
equilibrium arrest by colloidal gelation are sensitive to both the shape of the interaction potential and the thermal quench rate. We exploit this
sensitivity to propose a kinetics-based algorithm to extract distinct arrest conditions for candidate potentials that accurately selects between
potentials that differ in shape but share the same predicted equilibrium structure. The algorithm selects the candidate that best matches the
non-equilibrium behavior between simulation and experiments. Because non-equilibrium behavior in simulation is encoded entirely by the
interparticle potential, the results are agnostic to the particular mechanism(s) by which arrest occurs, and so we expect our method to apply
to a range of arrested states, including gels and glasses. Beyond its utility in constructing models, the method reveals that each potential has
a quantitatively distinct arrest line, providing insight into how the shape of longer-ranged potentials influences the conditions for colloidal
gelation.

Published under an exclusive license by AIP Publishing.

I. INTRODUCTION central to the flow of foodstuffs, such as mayonnaise,” ~ or indus-

trial fluids and polymeric solutions.” Increased concentration of

Colloidal suspensions, gels, and glasses form the majority of
biological fluids and many pharmaceutical preparations, and are
prevalent in personal-care, agricultural, and industrial-coating
materials. Even the simplest colloidal system—hard spheres
suspended in a solvent—can display a wide range of behavior
from Newtonian liquid-like flow to viscoelasticity to hard solid-
like response, imparted by a hierarchy of microstructural relaxation
length and time scales. Competition between Brownian relaxation
and imposed flow can produce pronounced shear thinning, while
hydrodynamic forces can induce shear thickening, ~ phenomena

suspended particles can amplify such non-Newtonian behavior,
while changes in particle-scale interaction can dramatically alter
hydrodynamic shear thickening’ or induce discontinuous shear
thickening.”” Changes in concentration and particle interactions
can also trigger thermodynamic phase transformation, such as phase
separation or crystallization.'’ A key point is that phase transforma-
tion can be manipulated to produce desirable microstructures that
in turn impart desirable bulk properties. Foodstuffs provide many
examples, including milk, a colloidal suspension that comprises
fat droplets suspended in water to form an oil-in-water emulsion.
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Processing techniques, such as heating, acidification, and enzyme
treatment, control the size and interactions between the droplets,
leading to the formation of cream yogurt, and imbue unique
textures to cheese.'' " Industrial coatings are another example of
how colloidal microstructure is engineered during phase transfor-
mation, e.g., to cure a solid state for toughness or develop color and
electronic properties. For example, phases of colloidal laponite,"*"”
pigment,'”"” or metal oxide particles'”'’ can be fine-tuned to
create colloidal films that impart corrosion resistant glazes, color,
and magnetic properties for storage. Techniques, such as attraction-
driven self-assembly or evaporation-driven convective assembly that
sculpt crystalline, glassy, or bi-continuous network structures, have
been developed for manufacturing paint,'"” ceramics,””*' magnetic
storage, 1919 and biomedical devices.”””’

Relating interparticle potentials to equilibrium phase envelopes
in colloids is routine for a wide range of systems.”* *° The resulting
crystalline or liquid states have properties that are straightforward
to connect to underlying microstructure and tunable interparticle
potential (IPP). However, there are exceptions for which conven-
tional methods for relating IPP to phase behavior break down,
for example, colloidal gels and glasses, which can form by the
so-called arrested phase transitions.” ”’ Even the “phase” lines
for gels and glasses cannot be predicted using conventional equi-
librium approaches. Such colloidal states hold enormous promise
for the development of novel materials, but techniques for fine
tuning structure and rheology of novel materials are typically
empirical.

The goal of the present study is to develop methods and tools
for connecting material processing conditions, such as temperature
to microstructure, that will enable detailed control over material
properties and will reveal processing strategies that produce novel
materials. Our method aims to apply to complex fluids in general,
but to develop fundamental control principles, we develop it
based on the workhorse model systems of spherical colloids
suspended in a quiescent Newtonian liquid. In this case, two thermo-
dynamic variables can control phase behavior: interparticle potential
and colloid concentration. Although equilibrium phase transitions
of hard-sphere colloids are routinely predicted by molecular
theories, we are interested in colloidal gels and glasses, which are
out-of-equilibrium states. Gels and glasses freeze in microstructures
and exhibit rich properties that cannot be predicted by existing
theories. The demand for design control of gel- and glass-based
materials has opened a new frontier in the non-equilibrium
colloids-processing space of materials science and engineering.

Here, we develop a predictive toolset that incorporates the
impact of kinetics on the interparticle potential that predict
non-equilibrium phases. Specifically, we identify and interrogate
a competition between three kinetic processes as a material is
“quenched” from weak attractions to strong attractions: the rate of
the quench, the rate of Brownian diffusion, and the rate of bond
formation. The first step in interrogating this competition is to
develop an analytical form of the interparticle potential for an
experimental model system; we select a colloidal system with IPPs
that are thermo-sensitive because these hold great promise for
future application to quench-and-anneal strategies for sculpting
microstructure. We will demonstrate the basic mechanistic princi-
ples that govern structural connections to IPP, and we will identify
how broadly these principles apply to other colloidal systems.
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The first goal is a method that gives an analytical form of the
interparticle potential between colloids. This analytical relation can
be obtained directly by interrogating forces between particle pairs
or indirectly by measuring particle distribution and inferring the
underlying interparticle potential (IPP) that sets their spatial dis-
tribution. Examples of direct-measurement methods probe forces
required to separate colloidal surfaces such as surface force appara-
tus (SFA) and’’ surface force balance (SFB) techniques,”“” atomic
force microscopy (AFM),”**" and laser tweezer microscopy.“’r
However, these methods are intractable when colloids are nanome-
ters in size or have slippery surfaces.”””* Alternatively, scatter-
ing techniques’”” and optical microscopy'’ ** yield measurements
of spatial distribution of colloids, from which the IPP can be
inferred using liquid-state theory, and provide robust data for even
nanometer-size particles and droplets.

Here, we develop a toolkit for extracting the thermodynamic
variables that define an analytical IPP. For the widest applica-
bility to many types of colloidal systems, we build it based on
using measurements of particle configuration, rather than direct
force measurements. We will expand the conventional approach,
which is illustrated in Fig. 1: light, neutrons, or x rays are scat-
tered through a sample and analyzed to produce the static structure
factor, Sexpi(q) [Fig. 1(b)], which is the wave-space microstructure.
In parallel, an initial form of the IPP is proposed [see Fig. 1(c-i),
1(c-ii), or 1(c-iii)], which is inserted into a liquid-state theory
model and solved iteratively to produce a predicted static struc-
ture factor, Sineo(q). This Speo(q) is compared to the experimen-
tal Sexpr(q); any mismatch indicates that the IPP needs to be
refined. The refined IPP is again inserted into the theory model,
and the process is repeated until Sy.,(q) converges to Sexp:(q).
This procedure is illustrated as a flow chart in Fig. 2. While this
approach accurately predicts equilibrium phase lines, it fails to
predict gel or glass lines. As will be discussed in Sec. 111 A, this failure
arises from two requirements of the conventional approach: dilute-
ness and equilibrium.”” We remark that closure approximations
that account for many-body effects’* augment the dilute structural
model, permitting the conventional method to accurately predict
dense equilibrium liquid states."”"® This approach is a powerful tool
for integrating simulations with experiments and yields remark-
able universal behavior across a wide range of physico-chemical
origins of the IPP because the IPP is approximated by the second
virial coefficient B,. The extended law of corresponding states
(ELCS) explains this success.”” However, this approach breaks down
in non-equilibrium conditions, such as gelation, or when the IPP is
long-ranged.

There are two problems with relying on the ELCS to jus-
tify the conventional approach: it does not work with long-
range potentials, and guarantees nothing regarding non-equilibrium
conditions—it is an equilibrium-based law. For the former, the
ELCS fails to accurately predict phase lines for intermediate or long-
ranged potentials” "’ because the detailed variation of potential
with colloidal separation cannot be captured by B,. For the latter
issue, the liquid-state integral-equation theory** at the heart of the
conventional approach is valid only at equilibrium. A quintessential
example is the gelation of octadecyl-coated silica particles initially
studied by Grant and Russel”’ and Verduin and Dhont’” and later
by Eberle et al.,”*”’ where small-angle scattering was used to extract
the static structure factor and thence refine a Baxter potential. Under

J. Chem. Phys. 156, 224101 (2022); doi: 10.1063/5.0086650
Published under an exclusive license by AIP Publishing

156, 224101-2


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

(@) e 9

Incident
beam Sample
M) S~ <
5 L >
23 Divide o
27 byP@) £ 2
? 5 — =G
23 o5 Reduce
Su D g Data

Wavevector, g Wavevector, g

() Fit V(r; p)l \\‘

V(r; p) V(r;p) V(r;p)
(i) (ii) (iii) i

FIG. 1. The conventional approach to extracting an interparticle potential using
small angle scattering (SAS) measurements. (a) SAS is conducted on a colloidal
fluid at equilibrium. (b) The radially averaged scattering profile /(q) is computed
from the detector data, from which the static structure factor, S(q), is extracted
from knowledge of the morphology of individual colloidal particles. (c) Next, an
interparticle potential V(r; p) is obtained by selecting a functional form of V(r; p)
and fitting the structure factor globally across a parameter space defined by p.
Here, r is the interparticle separation and p is a general vector of parameters that
specify V(r; p). This process may generate multiple families of potentials V(r; p)
[panels (i)—(iii)] that fit the data equivalently well.

dilute equilibrium conditions, the theory accurately predicted mea-
sured structure. However, this approach significantly over-predicted
the attraction strength necessary to trigger gelation. These results
show that the IPP that triggers equilibrium phase transitions changes
qualitatively during non-equilibrium conditions and that the second
virial coefficient does not contain sufficient information to capture
the how an IPP changes with crowding, temperature, pH, or other
conditions. We believe this gap underlies the failure of conventional
methods in predicting non-equilibrium phase behavior.
Nonetheless, attempts have been made to apply the conven-
tional approach for predicting gelation. Lu et al. concluded that any
potential profile (Asakura-Oosawa, Lennard-Jones, square-well) is
equally suitable to describe the structural measurements needed to
deduce a value of the second virial coefficient, ultimately suggesting
that gelation of hard colloids with short-ranged attractions can be
predicted via equilibrium theory with little sensitivity to the details
of the theoretical form of the attraction profile.”! An equally impor-
tant outcome of their study was the assertion that gelation occurs as
a result of interrupted phase separation, a groundbreaking advance
in the understanding of routes to gelation that suggests that the gel
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(1b) Collect dilute,
equilibrium S,,,(g)

(1a) Propose basic
form of potential V(r; p)

(2) Construct a simple
potential to compute
a value of B,

(8) Constrain model parameters using prior
knowledge of system to guess V(r; p)

(4) lteratively refine V(r; p) until it predicts
a good match with S,,,(q)

(5) Possibly use other measurements,
for example, equilibrium phase envelopes
to validate potential

FIG. 2. Schematic of conventional iterative approach to extracting an interparticle
potential. (1a) A model for the interaction potential is selected among candi-
date functional forms, e.g., Yukawa, Morse, Asakura-Oosawa potential. (1b) The
structure Sext(q) of a suspension is measured via experiments. In equilibrium
systems, this measurement can be taken across a range of volume fraction to
verify that the potential is invariant with particle concentration. (2) The second
virial coefficient B, is extracted from structure to constrain model parameters.
(3) An initial guess is constructed by constraining potential parameters p using
prior knowledge of system and By. (4) The initial guess potential is refined until it
predicts a good match with structure measured from experiments. (5) The poten-
tial may be validated via comparison of predicted behavior with experimentally
measured behavior.

line and binodal are the same. However, the gel line is not always
coincident with the binodal, as reported by Verhaegh et al.;"* Buz-
zaccaro, Rusconi, and Piazza;> and Zaccarelli et al.” In fact, studies
by Gibaud et al.”> and Foffi et al.”® suggest that arrest lines depend
sensitively on the detailed interaction potential even when equi-
librium phase boundaries can be robustly predicted using only
B; without regard to the detailed potential. This sensitive depen-
dence is consistent with the much earlier findings of mode cou-
pling theory, which showed that colloidal glass transition lines
for various potential profiles with the same value of B; do not
collapse upon rescaling with B5.”” Overall, these foundational
works indicate that gelation is a non-equilibrium phase transition
that results from arrested phase separation and suggest that the
location of the gelation line relative to the location of the bin-
odal in a colloidal phase diagram is sensitive to the details of
interaction potential profile. (For a more detailed discussion of
these works, see Appendix A.) Moreover, the current consensus
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paradigm concerning arrested phase separated is that that the
gel line and binodal are distinct from one another. However,
theoretical and modeling methods fail to predict the location of the
gel line—and are still anchored in equilibrium metrics. We believe
that there are two roots of the failure: first, the assumption that
the interaction potential is invariant with colloid concentration and,
second, utilizing strictly equilibrium metrics (i.e., B2) to construct
the gel line.

In the present study, we propose a new method for deter-
mining the interaction potential that accurately predicts both the
equilibrium phase lines and the arrest line for a model colloidal
system: a nanoemulsion of oil-in-water droplets with adhering poly-
mer chains for which phase instability is triggered via temperature
changes that induce attractive forces between the non-deformable
droplets. We select this system because it requires the use of a
non-trivial analytical form of IPP, which demonstrates the appli-
cability of our approach to a wide range of colloidal systems, and
because our ultimate vision is to execute complex quench-and-
anneal trajectories throughout the phase instability region to sculpt
new materials, temperature is an easily accessible control variable
to execute such trajectories. Finally, thermo-sensitivity permits
gelation in a rheometer; rheology of a “pristine” gel avoids the issues
of history required by shear rejuvenation.

The remainder of this paper is organized as follows: In Sec. II,
we present the in vitro (experiments) and in silico (simulation)
model systems and methods utilized in this study. In Sec. III A,
we present the framework of our approach, outlining the iterative
connection between experiments and simulations. The approach
is demonstrated in Sec. III B by constructing an interparticle
potential model of a thermoresponsive nanoemulsion system, in
which gelation can be triggered from thermal quenches. We show
via a comparison of gel lines constructed in vitro and in silico
that a single IPP that accurately predicts both equilibrium and non-
equilibrium behavior of a laboratory sample can be constructed. The
study is concluded with a discussion of findings and prospects.

ARTICLE scitation.org/journalljcp

Il. MATERIALS AND METHODS
A. Experimental system and methods
1. Thermoresponsive colloidal system

The experimental colloidal system is comprised of an oil-
in-water nanoemulsion, in which polydimethylsiloxane (PDMS,
viscosity = 5 cSt) nanodroplets [with an average radius of
50 nm and polydispersity index (PDI) of 0.28 determined by
dynamic light scattering] stabilized by sodium dodecyl sulfate (SDS)
surfactant are dispersed in an aqueous continuous phase contain-
ing telechelic oligomer, poly(ethylene glycol) diacrylate (PEGDA;
M, =700 g mol_l), and deionized water. In extensive previous
works, it has been shown that this system exhibits temperature-
responsive interdroplet colloidal attractions that produce colloidal
gels at sufficient volume fraction of droplets, ¢.”* ' Figure 3
schematically illustrates the current consensus regarding the
molecular mechanism of thermoresponsive colloidal attractions in
this experimental model system. Specifically, hydrophobic effects
associated with the acrylic ends of the PEGDA oligomers result
in preferential bridging of the polymer between the nanoemulsion
droplets at elevated laboratory temperatures, which gives rise to net
attractions between droplets at moderate separations. In addition
to the attractive interactions that arise from polymer bridging of
the nanoemulsion droplets, short range repulsions from compres-
sion of bridging chains and longer range repulsive electrostatic
interactions from the ionic SDS surfactant at the droplet interface
are also present. These effects combine to produce a composite
interaction—with a potential profile, which likely resembles those
illustrated in the sketch in Fig. 3(c). Variation in the relative
magnitudes and ranges of each individual contribution permits
a wide range of potential profile shapes, as illustrated by the
three curves in the figure. This complex combination of interac-
tions were originally characterized in Helgeson et al>® through
analysis of temperature-dependent small-angle neutron scattering
(SANS) data collected on a dilute (¢ = 0.01) sample. The SANS

| Temperature,
time

Interparticle Potential, V(rlj)/kT

Hard Sphere Contact

Interparticle Separation, r;/2a

FIG. 3. The model thermoresponsive colloidal system is composed of silicone oil-in-water nanoemulsions with SDS as surfactant and short-chain PEGDA as the thermore-
sponsive bridging polymer. (a) At room temperature, the nanoemulsions are stably dispersed in aqueous solution with the polymer chain ends predominately unattached.
Inset shows a zoomed in view of the intercolloidal gap. (b) At elevated temperatures, the PEGDA chain ends preferentially adsorb onto the oil droplet surface. (c) Represen-
tative examples of coarse-grained representation of the detailed interactions between bridged particles into a model system in which each pair of colloids interacts across a
structureless intervening medium. Circled insets illustrate how the presence of PEGDA chains can induce soft entropic repulsion, bridging attractions, and no interactions at
various separation distances, r;. The example in black represents a potential arising from these contributions with a repulsive energy barrier; dark gray shows the interaction
when the repulsive barrier is absent; and light gray shows an example of when soft entropic repulsion is negligible.
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data were fit with a square-well potential model to determine how
the strength of attractions, quantified by the square-well potential
well-depth, changed with laboratory temperature. For more detailed
SANS sample preparation and SANS data collection methods, see
Helgeson et al.”*

Because the square-well model represents a gross oversimplifi-
cation of the nanoemulsion interactions illustrated in Fig. 3(c), the
SANS data from Helgeson et al.”® were refit with a different interac-
tion potential model, the Two-Yukawa (2Y) model. We note that
several assumptions were made in the selection of the 2Y model
to represent the coarse-grained description of the effective inter-
droplet interactions. The first assumption is that, regardless of the
chosen shape of the interaction potential, this description of the
system treats the continuous phase, including the polymer, as an
effective medium, such that the sole contribution of the polymer is
in determining the effective interaction potential between droplets.
In reality, the polymer density need not be uniform throughout the
continuous phase such that a full description would require model-
ing the polymer explicitly. However, in a recent work,®” it was found
experimentally that the local polymer concentration is approxi-
mately insensitive to the droplet density, supporting the approx-
imation of an effective medium to which the polymer implicitly
contributes. The second assumption is that, although the quanti-
tative magnitudes of the features in the interaction potential will
depend on temperature, the qualitative shape (i.e., the number
and relative order of local maxima and minima) does not. The
final assumption is that the thermodynamics of the experimental
system with the “true” interaction potential sketched in Fig. 3(c)
can be faithfully approximated by the 2Y potential. Although the
sketch in Fig. 3(c) is clearly better described by a potential with
three or more contributions, the decision to limit the number of
contributing terms to two is made in order to limit the number of
adjustable parameters in the model interaction potential, thereby
avoiding problems with uniqueness and convergence when opti-
mizing the model parameters and also avoiding sharp features in
the best-fit potentials that are challenging to replicate in numeri-
cal simulation. Under these assumptions, the 2Y model was used
to describe the shape of the effective interdroplet interaction poten-
tial at different temperatures and was applied to refit the previously
reported SANS measurements. Details for how the SANS data were
refit with the 2Y potential can be found in Sec. II B. Nanoemulsion
sample preparation, droplet size characterization, and rheological
analysis for the nonequilibrium comparison testing are described in
Sec. IT A 2.

2. Nanoemulsion preparation

Polydimethylsiloxane (PDMS, viscosity = 5 ¢St) is used for
the dispersed droplet phase and PEGDA (M, =700 g mol™),
sodium dodecyl sulfate (SDS) surfactant, and deionized (18.3 MQ)
water make up the continuous phase. Nanoemulsions of various
dispersed phase volume fractions, ¢ = 0.2,0.3, and 0.4, were made
via homogenization or ultrasonication. The continuous phase
contains a polymer volume fraction, P = 0.33, of PEGDA. The total
SDS surfactant concentration was changed with ¢ in order to hold
fixed the final “free” surfactant concentration in the bulk continuous
phase at 20 mM for all ¢. For ¢ = 0.2,0.3, and 0.4, this corresponds
to total SDS concentrations of 130, 180, and 240 mM SDS, respec-
tively, which were determined according to the work of Pagenkopp
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and Mason.®’ In brief, for small ¢, a lower total surfactant concen-
tration is needed to obtain the final free surfactant concentration of
20 mM because less surfactant goes toward the stabilizing droplet
interface. All chemicals mentioned earlier were purchased from
Sigma-Aldrich and used without further purification.

The nanoemulsions were prepared according to previously
published procedures.” A crude emulsion was prepared by
mixing the continuous phase [PEGDA, SDS, de-ionized (DI) water,
photoinitiator] with a stir plate set at 700 rpm followed by dropwise
addition of the dispersed phase (PDMS). High pressure homoge-
nization of emulsions with ¢ = 0.2 and 0.3 was performed using an
Avestin Emulsiflex-C5 homogenizer operating at 15 kpsi. Between
each pass, the samples were cooled in ice and 12-16 passes were
needed until the desired droplet size distribution was achieved.

The high volume fraction emulsion with ¢ = 0.4 was processed
using an ultrasonicator instead of the homogenizer because higher
¢ samples gel during processing in the homogenizer, which seizes
the homogenization valve. The sample was stirred continuously
during ultrasonication processing using a stir plate and cooled using
an ice bath. The droplet sizes were periodically checked during
processing until the desired droplet size was achieved. After synthe-
sis, the nanoemulsions were stored at 8 °C to slow droplet growth.
Subsequent characterization of the nanoemulsions shows that,
under the appropriately controlled conditions reported, the two
methods of nanoemulsification produce indistinguishable droplet
size distributions.

3. Droplet size characterization by dynamic
light scattering

Droplet sizes were measured upon ultrasonication and homog-
enization using dynamic light scattering (DLS). DLS was performed
using a Brookhaven Instruments BI-200SM goniometer operating
system equipped with a 500 mW dye-pumped solid state laser oper-
ating at a wavelength of 532 nm. Before measurements, 100 ul
of mother nanoemulsion were diluted in 3 ml of DI water. Mea-
surements were conducted at 20 °C at a scattering angle of 90°.
The measured average diameter of the nanoemulsion droplets was
2a =50+ 3 nm with a polydispersity index (PDI) of 0.28 + 0.02,
where a is the average radius of the droplets.

4. Rheological characterization

Gelation of the nanoemulsions upon changes in temperature
was monitored using small amplitude oscillatory shear (SAOS) rhe-
ological characterization performed on a TA Instruments ARG2
rheometer with a 60 mm, 2° upper-cone geometry and a Peltier
bottom stage. Temperature ramp experiments were performed at
various ramp rates spanning 0.05-15 °C/min, from an initial tem-
perature of 25°C and ramped until gelation was observed (i.e., a
dominant elastic response, G' > G'"). SAOS experiments were car-
ried out with an applied oscillation frequency of @ = 10 rad s™' and
an oscillation strain of y = 0.1%.

B. Computational system and methods
1. Computational model system

We model the experimental system in silico by performing a
simulated continuous ramp in laboratory temperature resulting in
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(b)

Interparticle Potential, V(r)/kT

Potential Parameters

— K/K, = 12.0;2,/Z, = 5.0
— K/K,=10,2,/Z,=05
— K,/K,=15;2/Z,=09

FIG. 4. The computational model system
represents experimentally derived par-
ticle interactions. (a) In a polydisperse
suspension of Brownian spheres, any
two particles of size a; and &; separated
by a distance r; interact via the pre-
scribed interaction potential over a total
interaction distance A. (b) Selection of
different ratios K1/Kz and Z1/Z; in the
Two-Yukawa potential [Eq. (1)] can lead
to different types of Two-Yukawa poten-
tials, which underlies the versatility of
the Two-Yukawa potential in modeling

Two-Yukawa

corresponding changes in the interaction potential. The computa-
tional model system is a colloidal suspension of 740 000 neutrally
buoyant, hard Brownian spheres of average radius a dispersed in
an implicit Newtonian solvent (representing the effective medium
including the polymer and surfactant in the continuous phase) with
viscosity 1 and density p. The Reynolds number, pUa/#, where
U is a characteristic particle velocity, characterizes the relative
strength of inertial forces relative to viscous forces. The small par-
ticle size a ensures that the Reynolds number is small (Re « 1)
and fluid motion is thus governed by the Stokes equations. The
colloids are size-polydisperse with 28% variance that matches the
experimental model system. For dilute equilibrium structural char-
acterization to match the experimental conditions in which neutron
scattering experiments were conducted, we choose particle fraction
¢ = 4ma’n/3 = 0.01. For quench simulations that result in colloidal

oo,

Vii(ris T) _

kBT —Kl(T)
Tij

where kg is Boltzmann’s constant, T is absolute temperature, r;; is
the center-to-center separation distance between particles i and j,
and a; is the size of particle i (Fig. 4). The interaction variables
Ki(T),K2(T),Z:1(T), and Z,(T) depend on the laboratory tem-
perature, T, as described in Helgeson et al.”® The selection of the
variables K, K3, Z1, and Z, provides extremely broad utility of the
Two-Yukawa potential. It is straightforward to identify values of
these variables based on the physico-chemical origins of the attrac-
tive and repulsive forces as done widely in the literature to generate
equilibrium phase lines.”* *’

One can select a variety of values of the four variables and
obtain identical values of B; and thus equivalent equilibrium phase
lines. The fact that the selection made for K;, K», Z;, and Z,
produces distinct interaction potential shapes is of little impor-
tance for predicting equilibrium phase envelopes (for short-range

Interparticle Separation r;/2a

8721 (T)[ry—(ai+a;)]
_ 4 Kz ( T) ——

various colloidal systems.

gelation, ¢ = 0.20,0.30, and 0.40 were selected to match parallel
experiments. The simulation cell is periodically replicated to model
an infinite medium.

We select one of the simplest non-trivial models of attractions
and repulsions of arbitrary strength and range is the Two-Yukawa
model. Two variables K and Z set the strength and range of attrac-
tions, respectively. When a system exhibits both attractive and
repulsion interactions, each variable has an attractive and repulsive
form: K1, K2, Z1, and Z5. This workhorse analytical theory then gives
the IPP as a function of colloid-colloid separation distance r and the
interaction variables: V(r,K, Z).

For the thermoreversible system we study here, the temperature
alters the attraction strength and range V(r; T) [Fig. 4(b)] aris-
ing from the hard-sphere repulsion and polymer-induced attraction
[Fig. 3(c)]. The interaction between particles i and j is thus given by

rij < ai + a;,
e*Zz(T)[V,‘j*(a,‘Fa))] (1)
rij > ai + aj,
T‘,'j

attractions). In fact, these combinations can be grouped into values
of the ratios K1 /K> and Z1/Z; to give a family of interaction profiles
as sketched in Fig. 4(b). The blue, red, and green curves illus-
trate the three types of Two-Yukawa potentials. This versatility of
the Two-Yukawa potential allows it to model a wide variety of
systems.

However, as with any other potential, the value of B associ-
ated with the IPP is insufficient to predict non-equilibrium behavior,
such as gelation and gel lines. As a result, the details of the IPP will
predict distinct gel lines. In the case of the Two-Yukawa potential,
one will start with the three possible IPP profiles sketched in
Fig. 4(b), but then a new method is required to tie one or more
of those IPPs to match the gel line found in experiments to those
predicted by the IPP, which will typically require dynamic simula-
tion. In the present study, we will determine values of the variables
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Ki(T),K2(T),Z:1(T), and Z,(T) using scattering data selected
temperatures (T =10,25,40 and 60°C) and the iterative refine-
ment process as described in Sec. II B 3. Values at intermediate
temperatures were computed via linear interpolation.

2. Dynamic simulation method

The motion of colloidal particles in the Stokes flow regime
is governed by three forces: Brownian F®, hydrodynamic F”, and
interparticle F*. The Langevin equation describes the time-evolution
of particle motion

d
m-d—I::FB+FH+FP, (2)

where m is the mass or moment of inertia tensor, U is the particle
velocity, and ¢ is time.

The Brownian force acting on any particle i arises from thermal
fluctuations of the solvent and obeys Gaussian statistics,

FB =0,

! FB(0)FB(t) = 2kpT(6mna;)18(t), (3)
where the overbar denotes a time-averaged quantity over time scales
longer than the solvent time scale, I is the identity tensor, and &(t)
is the Dirac delta function.

For a freely draining system, the hydrodynamic force acting on
particle i by the surrounding solvent is described by Stokes’ drag law

F = —67ma;[U; - (u)], (4)

where U; is the velocity of particle i and (u) is the bulk flow velocity
of the suspension. The angle brackets (-) indicate an average over
fluid plus particles.

Finally, the interparticle force F¥ modeled here is derivable
from a potential Vjj(r; T) between two particles i and j and is
computed as a summation of pairwise interparticle interactions as
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oVi(rij) ,
Ff) = _Z#riﬁ (5)
] 1,

where f; is the unit vector along the line of centers of particles i
and j. It is this potential Vi;(r; T) that we seek to model in the
present work.

We use the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) molecular dynamics package® with the
implementation of an implicit solvent to construct the computa-
tional model system and conduct dynamic simulations. The sim-
ulation cell is first populated with particles distributed randomly
throughout the domain. The simulation cell is initialized with
only Brownian forces and hard-sphere repulsion to equilibrate the
particle distribution. Following this, the attractive potential between
particles is turned on, and the simulation commences. This in silico
system evolves over time as particles diffuse due to Brownian
motion, where an embedded Langevin “thermostat” enforces Brow-
nian statistics, and particles undergo deterministic displacements
due to attractive forces between them dictated by the potential
Vii(r; T) [Eq. (5)] as set by the Two-Yukawa potential [Eq. (1)].
In LAMMPS, the motion of each particle is computed by integrating
the Langevin equation [Eq. (2)] forward over time using the velocity
Verlet algorithm.””

The system is brought to and held at simulated ambient
laboratory temperature, V(r; T = 25 °C)/kpT; because this system is
in the liquid phase, particles still diffuse freely and equilibrate. Next,
quenches are performed by implementing changes in the parameters
in the Two-Yukawa potentials, as follows: An in silico temperature
ramp is induced by adjusting the parameters of the interparticle
potential K1(T),Kz(T),Z1(T), and Z,(T) over time, which alters
the strength of the interparticle potential and mimics experimental
temperature ramps. The in silico temperature ramp induces a
self-assembly into a scaffold-like bicontinuous network of parti-
cles. Figure 5 shows rendered images of a simulation cell during
the ramp with magnified snapshots that highlight the strand
structure.

To detect whether the material undergoes gelation during the
ramp, a small amplitude oscillatory shear (SAOS) is imposed, with

Number of Contacts

FIG. 5. Snapshots of simulation cell during temperature ramp. (a) and (b) The periodic simulation cell. (c) 5x magnification of the simulation cell. Particles are colored by

number of contacts, ranging from red for no contacts to blue for many contacts.
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displacement y(t) = y, sin(wt); this oscillation continues through-
out the temperature ramp and is analogous to the procedure
performed in experiments. To probe the linear-response regime,
we impose strain amplitude y, =0.01 and oscillation frequency
w = 1/(a*/Dy), which produce a small dimensionless displacement,
Pe/(wa®/Dy) = ya* /Dy, where Pe is the Péclet number, that give
the linear response. The resultant shear stress (o(¢)) is monitored
continuously throughout the quench and comprises contributions
from both the solvent and from the particle phase, (X),

(2) = —nkTI - n(xF"), (6)

where x is the distance from particle i to particle j and
F’ = -V V(r; T) [cf. Eq. (5)]. The angle brackets indicate an aver-
age over the entire particle phase, which deforms and relaxes over
measurable time scales producing both a viscous response, G', and
an elastic response, G'’. The viscoelastic moduli are averaged over
several oscillation periods as described in Landrum, Russel, and
Zia.”’

Particle positions and motion are tracked throughout each
simulation to interrogate structure and dynamics. In addition,
we calculate the static structure factor, S(q), the wave-space
measurement of structure obtained in experiments,

S(q) = %ZeXp[iq- (xj —xx) ], 7

where x; is the position of particle j and q is the wave vector
normalized by the average particle size a. We radially average the
static structure factor to compute S(g), where g = |q|. Additional
details about this calculation in our simulations are described in
Zia, Landrum, and Russel.”’ The next step is development of the
interparticle potential that will change with temperature to mimic
the experimental system.

3. Iterative refinement process for constructing
candidate interparticle potentials

The naive approach for representing particle interactions of the
experimental system in our computational model is to simply extract
the reduced second virial coefficient, B}, by inferring the potential
from structural configurations measured via SANS.”® According to
the extended law of corresponding states (ELCS), any short-ranged
analytical potential adequately predicts the equilibrium phase enve-
lope.” The premise of the present work is that this model-agnostic
predictive power does not extend to predicting the conditions of
out-of-equilibrium arrest, but it still provides the starting point for
the formulation of valid candidate potentials. We will, using our new
method, down-select to that which simultaneously predicts both
the equilibrium structure (under conditions it can be sampled) and
the arrest line (determined by the state points producing a transi-
tion to the arrested state). Thus, the first step is to construct this
family of candidate potentials. Here we summarize our process for
constructing interparticle potentials from scattering measurements
(see the work of Helgeson et al.”® for SANS sample preparation
and data collection methods). The scattering intensity I(q) obtained
from SANS encodes both intraparticle morphology (shape) and
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interparticle configuration: the shape of individual particles is quan-
tified in the form factor intensity, P(q), and the spatial distribution
or configuration of particles in the static structure factor S(q).
Here, it is assumed that the particles are sufficiently dilute so that
contributions to intra-particle and inter-particle interference are
separable, such that I(q) = P(q)S(q). The form factor intensity P(q)
is computed as part of the intensity calculation using size-dependent
dynamic correlation data obtained separately via dynamic light scat-
tering, also under semi-dilute conditions.”® The static structure
factor S(q) is then obtained directly once the scattering intensity
I(q) is measured and P(q) factored out. Here, the wave vector mag-
nitude q is a scalar, indicating a radial average of both the scattering
intensity and static structure factor.

We next produce interparticle potentials V(r) that are con-
sistent with the static structure factor S(q) obtained via scattering
measurements. The connection between V(r) and real-space struc-
ture g(r), which is the Fourier transform of S(q), is a liquid-state
integral-equation,* namely, the Ornstein-Zernike (O-Z) equation.
The O-Z equation posits that pair correlations g(r) are separa-
ble: they can be split into direct correlations between pairs, ¢(r),
and indirect correlations, where the correlation between particle
pairs is influenced by the background ensemble configuration as
follows:

g(ra) =c(r2) +1+p / drsc(ri3)[g(rs2) - 1], (8)

where r; is the center-to-center separation distance between
particles i and j. Because Eq. (8) contains g(r) and c¢(r) that are
unknown, a closure relation is needed to relate the configuration
integral [last term in Eq. (8)] to these two unknown functions. For
example, the Percus-Yevick approximation is often used as a closure
for many-body correlations; it approximates all interactions using a
Boltzmann-like distribution, with direct and indirect potentials,

w(rip)

glrz)=e # (9a)

1+p f drsc(ri3)[g(r) - 1] = e_é[w(r”)_v(m)], (9b)

where w(r) is the potential of mean force that accounts for the free
energy contribution arising from the surrounding particles. Sub-
stituting Eq. (9) into Eq. (8) gives the well-known Percus-Yevick
equation,

V() V(r3)
g(rn)e # :pfdrgg(rlg)(l—e KT )[g(m)—l]. (10)

In theory, Eq. (10) provides a direct connection between V(r)
and g(r), and therefore S(q), meaning, one should be able to
measure S(q), compute its Fourier transform g(r), and then solve
Eq. (10) for V(r). Yet, analytically solving the integral expression
in Eq. (10) to obtain V(r) from g(r) [or S(q)] is only tractable
for monodisperse and purely repulsive hard spheres (or a simple
potential, e.g., the square-well potential). A standard workaround is
to propose an “initial” potential of known analytical form (ideally
one that has features that represent physical sources of repulsion
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and attraction in the experimental system, e.g., the Two-Yukawa
potential), whence it is tractable to numerically compute g(r) from
Eq. (10). When a numerical solution to Eq. (10) is not tractable
for the selected potential, other closure approximations may be
necessary to further approximate Eq. (10). However, the selection
of closure relation—e.g., Percus-Yevick (PY) approximation or
hypernetted-chain (HNC)—is just as important as the O-Z equa-
tion because each involves approximations that ultimately propagate
to the detailed shape of the interparticle potential. For example, a
commonly used truncation of the PY closure, the mean-spherical
approximation (MSA), underestimates the attractive strength
B required to induce the formation of large clusters or induce phase
separation. To avoid this pitfall, we utilize the full Percus-Yevick
equation, for which we developed a new numerical solution algo-
rithm, and we combine it with the O-Z equation to predict a
structure. This structure is compared with that obtained in experi-
ment; any difference between the two is used to refine the proposed
V(r), and this iterative process is continued until Eq. (10) produces a
structure S(q) that matches experimental results. The details of how
this process is carried out in the present study for the Two-Yukawa
potential are given in Appendix B.

This process leads to the construction of a family of several
interparticle potential profiles [constrained to have matching
values of B3 (T)] via use of different initial guesses that, as we will
show, produce indistinguishably accurate predictions of the experi-
mentally observed S(q). In previous applications of the conventional
approach, this degeneracy is ignored for sufficiently short-ranged
potentials by invoking the ELCS. While prior studies have attempted
to utilize S(g) obtain at non-dilute ¢, these efforts faced significant
challenges in the collection and analysis of scattering data due to
multiple scattering and emergence of arrested states (see Appendix C
for a more detailed discussion on these attempts to resolve the
degeneracy).”*”’

These shortcomings of the conventional approach motivate the
need for our new approach to selecting model potentials among
candidate shapes. We propose to down select a single poten-
tial from multiple degenerate candidates that faithfully reproduces
both equilibrium and non-equilibrium states. We utilize this
novel approach, which builds upon the conventional approach
as described in the sections to follow to directly incorpo-
rate non-equilibrium property determination (in this case, time-
dependent SAOS rheological response) into the down-selection
process.

Ill. RESULTS

A. Non-equilibrium algorithm to predict
interaction potential

When colloidal interactions are long-ranged or undergoing
non-equilibrium transitions, the ELCS does not apply, which is
borne out in the fact that a given value of B; alone cannot pre-
dict gel lines, for example. We described in Sec. II B that in such
conditions, one must select some analytical form of a potential
that is responsive to the actual colloidal system and then begin the
iterative process. This new process is illustrated schematically in
Fig. 6. Here, we present the results of this approach, starting with
selection of the Two-Yukawa potential.
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(1b) Collect dilute,
equilibrium S,,,.,(g)

(1a) Propose basic
form of potential V(r; p)

(2) Construct a simple
potential to compute
a value of B,

(3) Construct and iteratively refine several
potentials V(r; p;) until S;,.,(q) = S,y,(q)

(4) Implement V(r; p,) in silico. Validate

self-consistency: equilibrium Sg;,(q) & S,,,(q)

(5) Perform non-equilibrium tests in simulation &
experiment (e.g. gel or glass line)

(6) Compare simulation & experimental results to
identify V(r; p;) that gives best qualitative match

(7) Continue to refine variables p; of selected
V(r; p;) by repeating steps 5 & 6 for exact match

FIG. 6. New approach for constructing and selecting an interparticle potential. The
steps (1) and (2) are the same as the conventional approach (cf. Fig. 2). The
new approach starts with step (3) A family of specific potential shapes, V(r; p;),
V(r; p,), and V(r; p;), is generated via iterative refinement. (4) Implement
the V(r; p;) into the computational model and validate the model by simulat-
ing dilute equilibrium structure and comparing to experiments. (5) Non-equilibrium
tests are performed both in silico and in vitro. (6) Comparison of experiments and
simulations identifies the best potential V(r; p;). The resultant interaction poten-
tial model is obtained and accurately describes both equilibrium and the chosen
aspects of non-equilibrium behavior in the system.

In both the new and the conventional process, the first goal is
to obtain a value of B} to constrain the initial guess for the variables
that set the proposed interaction potential. This goal is achieved
by the first two steps in Fig. 6. First, the experimental system is
interrogated to measure scattering intensities [using small-angle
light, neutron or x-ray scattering (SALS/SANS/SAXS), described in
Sec. I1] that are then used to compute the static structure factor S(q)
at equilibrium, where q is the wave vector. In the present study,
we used neutron scattering (cf. Sec. III B) for the nano-emulsion
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system under dilute or semi-dilute conditions to isolate the con-
tributions of pair-level potential interactions (these measurements
can be repeated for several volume fractions to determine if they
depend on volume fraction even in dilute conditions). The inter-
action potential may be sensitive to, e.g., temperature or depletion
or concentration, for example; this dependence must be encoded
into the potential, which can be done by systematically altering the
control variables to obtain a set of scattering data. In the present
study, we collected scattering data for a range of values of
laboratory temperature. Following the procedure, we propose a
simple potential (here, a square-well potential), insert it into the
Ornstein-Zernicke equation as described (here) to predict struc-
ture; this structure is compared to scattering data and then iteratively
refines the Vsw (r) until the predicted structure matches the experi-
ments. We then insert this Vsw () into the definition of the reduced
second virial coefficient to obtain B;,

B3 (T) = —% f[exp(f%;r)) - l]rzdr. (11)

We now have the B} needed to constrain the selected potential [here,
the Two-Yukawa potential, Eq. (1)], i.e., we used the square-well
potential as a bridge to develop an initial guess of the more sophisti-
cated potential. We selected the Two-Yukawa potential [Eq. (1)] for
our nano-emulsion system because it readily models temperature-
dependent attractions and repulsions. This approach is general; one
can apply the same procedure for obtaining an initial guess for
a Lennard-Jones or DLVO (Deraguin-Landau-Verwey-Overbeek)
potential. As detailed in Sec. II B, a single value of B; provided
three equally valid forms of the Two-Yukawa potential as sketched
in Fig. 4(b); any of the three will accurately predict the binodal, but
not gel lines.

The goal of the new method is to extract which of the
equilibrium-equivalent potentials also predicts gelation. To make
progress, we recognized that the degeneracy problem involves the
kinetic behavior of the IPP, which is most observable during
non-equilibrium transformations, such as gelation or vitrification.
Dynamic simulations are free of assumptions of diluteness or
equilibrium constraints; instead, they enforce conservation of
momentum to capture colloidal-scale diffusive dynamics and
detailed particle interactions directly. As a result, simulations
directly model the competition between interparticle attractions and
Brownian motion that underlies colloidal gelation or arrested phase
separation. The three candidate Two-Yukawa potentials each exhibit
distinct changes in attraction and repulsion during a quench.

Thus, the key aspect of our method is the use of dynamic
simulations to implement the set of potentials that satisfy equi-
librium conditions and also induce gelation and vitrification; we
implemented these new steps in the method (steps 3-6 in Fig. 6)
as follows. We constructed an algorithm for translating laboratory
temperature to the model parameters Ki(T),K>(T),Z:1(T), and
Z>(T), and the analytical expression used to calculate the interac-
tion between all pairs encodes the impact of relative size, producing
a computational model that represents the diffusive and interpar-
ticle colloidal-scale dynamics of the experimental system, and how
it varies with laboratory temperature, size distribution, and volume
fraction. This step of connecting the in silico model to the labora-
tory conditions is essential and generalizable to other model systems
where one might instead translate pH or salt content, for example,
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to the in silico potential. One must then validate the model in
dilute conditions to assure recovery of the equilibrium behavior. Our
results for this step of the process are discussed in Sec. I1I B.

The next step is to subject the suspension—both experimen-
tal and computational—to conditions of high concentration and/or
stronger attractions, limits in which the ELCS does not apply, and
defines the matching condition. In the present system, we aim to
trigger gelation over a range of volume fractions and identify which
of the candidate potentials modeled in silico accurately predicts it.
Our thermo-sensitive system will produce a gelation line unique to
each potential. Each gel line is a set of state points (in B} and ¢)
that separates equilibrium fluids from gels. The candidate interpar-
ticle potential that produces the best agreement between the in silico
gelation line and the experimentally constructed gelation line will
be selected as the correct potential, i.e., the potential that passes the
non-equilibrium test as well as the equilibrium test.

B. Extracting the potential that predicts a gel line

In this section, we demonstrate how the details of an interpar-
ticle potential exert a discernible influence on gelation and therefore
demonstrate how the proposed algorithm enables development of
an interparticle potential model that accurately predicts equilibrium
and non-equilibrium phase transformation. The method we present
is agnostic to the origin of colloidal scale interactions. We follow the
steps in the process in Fig. 6.

We first performed step 1(a) in the process (Fig. 6), working
with two qualitative features of a Two-Yukawa potential: attrac-
tion and repulsion. Next, we perform step 1(b): measure the static
structure factor as a function of wave vector at semi-dilute equi-
librium conditions in laboratory samples of our model system.
To do so, we conducted Small Angle Neutron Scattering (SANS)
experiments (described in Sec. II A) on samples of colloids vol-
ume fraction ¢ = 0.01, measuring neutron scattering intensities at
laboratory temperatures T = 10,25,40, and 60°C to capture the
temperature dependence of the polymeric bridging interactions
the underlie attractive and repulsive colloidal interactions.”® The
radially averaged static structure factor S(q) for each temperature
is plotted in Fig. 7(a).

We then completed step 2 in the algorithm: we computed the
temperature-dependent reduced second virial coefficient B (T) for
each temperature using Eq. (11) and plotted it in Fig. 7(b).

We now commence step 3, the first of the new algorithm
steps: we use the second virial coefficient to constrain the four
variables in the Two-Yukawa potential. This produces a family of
Two-Yukawa potentials consistent with B,: depending on the selec-
tion of the Ki, K, Zi, and Z,—or rather the ratios K;/K, and
Z1/Z, as discussed above—the potential can have any of three dis-
tinct shapes as sketched in Fig. 4(b): (1) short-range repulsion plus
longer short-range attraction (blue curve); (2) hard-sphere repulsion
plus short-range attraction (red curve); or (3) short-range attrac-
tion and a longer short-ranged repulsion (green curve). (A similar
process is applied for other types of systems, for example, gelation
via depletion interactions, where one would systematically alter the
colloid-to-depletant size ratio A instead of K and Z, and depletant
concentration instead of temperature.) Starting with the SR-LSRA
profile [blue curve, Fig. 4(b)], we produced an initial estimate for
the potential V(r; T = 10°C) for the range and strength variables
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repulsion + longer short-range attraction (SR-LSRA) potential. (d)—(f) (step 3) Three distinct potential shapes resulting from fits to the droplet scattering in (a).

K1, K3, Z1, and Z; using a seed estimate based on the Bj just calcu-
lated. We then iteratively refined this potential until convergence—
i.e., the predicted Sy, (q) from Ornstein-Zernike equation matched
Sexpt (q) from experimental SANS data, as shown in Fig. 7(c). Next,
to construct the potential for higher temperatures (T = 25,40, and
60 °C), we used the potential at T = 10 °C as an initial guess for the
iterative refinement process to ensure that the shape remains con-
stant as attraction strength changes with temperatures. The resulting
final potential at each temperature is shown for the SR-LSRA poten-
tial in Fig. 7(d) (see Sec. I1 B 3 and Appendix B for additional details).
We repeat step 3 for the other two potentials, the Hard-Sphere
Repulsion plus Short-Range Attraction (HS-SRA) [red curves in
Fig. 4(b)] and Hard-Sphere Repulsion plus Short-Range Attraction
and Longer Short-Range Repulsion (HS-SRA-LSRR) [green curves
in Fig. 4(b)]; the structural comparison is provided in Fig. S2 of the
supplementary material, and the final converged potentials are plot-
ted in Figs. 7(e) and 7(f). (In another type of system, e.g., depletant
gelation, one would induce deeper and deeper quenches by system-
atically increasing depletant concentration.) This validation of the
equilibrium condition recovers behavior predicted by the extended
law of corresponding states and justifies our use of the Bj.

For step 4, we next implement these potentials into our
computational model and perform a detailed in silico validation
at equilibrium by comparing simulation-generated structures to
experimentally measured structure.

We first simulated the same semi-dilute conditions and tem-
peratures of the SANS experiments and measured Ssim(q). We then
compare the in silico structure to Sye,(q) and Sexr(q). The data
are presented in Fig. 8 and show excellent agreement between
all three, validating our computational model. Furthermore, these
results confirm that the three potentials constructed from equilib-
rium methods accurately predict equilibrium behavior. Finally, the
results in Fig. 8 reaffirm the ambiguity of equilibrium methods: three
distinct shapes of the interparticle potential produce identical equi-
librium structure over a range of laboratory temperatures. Distin-
guishing the three potential shapes—i.e., deciding which accurately
predicts both equilibrium behavior and gelation—requires one of
two approaches. One could increase the volume fraction of the sam-
ple but, as discussed in Sec. I, multiple scattering undermines the
accuracy of structural characterization. The second approach, taken
here, is to connect each potential to its unique non-equilibrium
state.
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We now prepare to commence step 5 of the method. In our
thermo-reversible system, we trigger non-equilibrium conditions
by subjecting the laboratory sample and computational sample to
temperature ramps. (Similar ramps should be employed in other
systems, e.g., adding depletant or salt, for example.) Kinetics are
expected to play an important role in how the system responds to
increased attractions, for example, the rate at which the temper-
ature is increased may change the temperature at which gelation
commences, thus altering the gel line. We emphasize that since
kinetics will play a role, one must first establish and validate a
method for interrogating the rheology and structure during the
quench-ramping procedure.

To mimic the laboratory temperature ramp, we developed an
in silico algorithm that ramps up the interactive potential following
the same ramp rate. We implemented the ramp [Fig. 9(a)] and inter-
rogated the material throughout the temperature ramp. To extract
the elastic and viscous moduli G'(w) and G” (w), we imposed small-
amplitude oscillatory shear (SAOS) with strain amplitude y, = 0.01

and fixed frequency w = 1/(a*/Dy). This moderate frequency was
selected because it will give viscous response in a suspension but
elastic response in a gel. Simultaneously, we monitored the static
structure factor S(qa) over a range of wave vectors qa at key
instants in time during the quench. Finally, we monitored the con-
tact number N, which is the number of neighboring particles within
center-to-center distance 2 < r/a < 2.2. We evaluated each of these
metrics to identify the gel temperature. We compare the simulation
results to experiments at the same initial temperature T = 25 °C and
colloid volume fraction ¢ = 0.30 at a ramp rate of 0.05 °C/(a*/Dy).
Here, a is the average colloid radius in the computational model,
and Dy is the diffusivity of a particle of radius a alone in
solvent.

Results are plotted in Fig. 9 for the HS-SRA-LSRR poten-
tial (Figs. S3 and S4 for other potentials in the supplementary
material). Simulation images of the structure are shown for five
instants in time (and instantaneous temperatures) during the ramp
[Fig. 9(b)]. The images show the formation of particle strands and
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FIG. 9. Time evolution of structural features from dynamic simulations shown from a thermo-temporal quench with the HS-SRA-LSRR potential. (a) Thermal trajectory of
a constant linear quench in which in silico quench was performed from T = 25 to 65 °C at a quench rate 0.05°C/(a?/D) for ¢ = 0.30. (b) Simulation snapshots show
emergence of a bicontinuous network of particle strands and interconnected voids during the quench. (c) Linear viscoelastic moduli as a function of time during a finite
ramp rate quench probed via SAOS with dimensionless oscillation frequency w = 1/(a?/D) and strain amplitude y, = 0.01. Time evolution of (d) static structure factor and
(e) contact number distribution reveals structural growth that qualitatively agrees with those expected from experiments.” "

solvent-filled pores that coarsen during the ramp, both hallmarks
of gelation and aging.”””' The storage and loss moduli are plot-
ted in Fig. 9(c). We find that the sample is predominantly viscous
(G" > G") at the beginning of the temperature ramp, matching
expectations for the dispersed structure in the image in Fig. 9(b).
As temperature ramps up, the material becomes dominantly elastic,
commencing with a crossover of the linear viscoelastic moduli G’
and G” at At = 420a*/D (T = 46 °C). This emergence of elasticity
matches the apparent emergence of bi-continuous structure in the
corresponding simulation image. As the final temperature (65 °C) is
approached, both moduli approach a plateau; structural coarsening
[Fig. 9(b)] also appears to slow down.

These rheological signatures of gelation were confirmed by
structural measurements in Figs. 9(d) and 9(e). The static structure
factor S(ga) is plotted in Fig. 9(d) for x < qa < y at several times
during the quench. The structure curve is nearly flat at early times
(corresponding to 38 °C) except a weak peak at large ga, consistent
with of a fluid of transient clusters. A small-qa peak first emerges at
At = 4204%/D (corresponding to 46 °C) at the cross-over tempera-
ture from the modulus plot. The location of the peak corresponds to

long-range structure—a hallmark of gel morphology—that emerges
at precisely the same time as the crossover of G’ and G” and when
the images reveal an apparent bi-continuous network. As the tem-
perature ramps up over time and particles become more attractive,
the low-ga peak shifts to lower-qa and grows, in agreement with
the structural images, signaling gelation with concomitant phase
separation.s‘)‘”

We next investigate the particle-scale structure as it evolves
during the quench,”’ as shown in Fig. 9(e), a plot of the distri-
bution of contact numbers P(N.) at the same instants in time
during the quench at which rheology and mesoscale structure were
presented in Figs. 9(c) and 9(d). At the beginning of the ramp
(At =0), a peak in P(N.) at N, =2 indicates very little bonded
structure. A rightward shift and broadening of the peak during the
quench shows that clusters have formed by 2704?/D and that even
larger structures subsequently form. While the rightward shift indi-
cates a growing volume-to-surface-area ratio, this shift slows down,
indicating the arrest of structural evolution.”' We remark that the
presence of N, > 12 arises from the 28% polydispersity of the sam-
ple. These results showing emergence of arrested phase separation at
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approximately T = 46 °C are consistent with our prior experiments
elsewhere.”™”” This completes validation of the computational
model.

We now commence step 5 in the method. Our validated non-
equilibrium test is gelation. Cognizant that kinetics are an important
part of the picture, we repeated the temperature ramp just discussed
at several temperature ramp-rates [Fig. 10]. As expected, changing
the quench rate changes the crossover time [Fig. 10]. In addition
to different potentials producing different gel lines, we have differ-
ent ramp rates of a given potential producing different gel lines.
Ideally, we would like to find a gel line that is independent of the
ramp rate. We approached this condition by quenching the material
at a systematically slower ramp rate.

Starting with simulations at a colloid volume fraction ¢ = 0.30
and initial temperature T = 30 °C, we subjected the system to the
four ramp rates shown in the bottom row of Fig. 10, looking for
a crossover temperature as indicated by G’ > G" using the same
SAOS protocols. G’ and G are plotted as a function of ramp time in
Figs. 10(a) and 10(b) for simulations and experiments, respectively.
The temperature ramp was continued, but the crossover is marked
with a vertical dashed line from the modulus to the temperature
ramp, denoting where gelation occurred in the ramp. In simula-
tions, this process was repeated for all three IPP profiles; Fig. 10
shows the data for the HS-SRA-LSRR potential, and Fig. S5 of the
supplementary material shows the results from other potentials. In
both experiments and simulations, slower quenches lead to slower
gelation, but the crossover occurs at lower temperatures (shallower
B, quench) as illustrated by the heavy curve in the T vs At plots. That
is, we find that lowering the quench rate permits gelation at lower
temperatures (shallower B, quenches). This trend can be under-
stood by recalling the microscopic forces that contribute to particle
dynamics during phase transitions: attractive forces and crowd-
ing, which hinder particle rearrangements, and diffusion, which
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promotes particle migration. Attractive forces and crowding
promote condensation into particle-rich structures, but diffusion
is required for such rearrangement to occur. However, attractions
hinder this diffusive rearrangement, and this underlies the arrest
of phase separation.”’ A slow quench gives the system more time
in the phase separation process where particle mobility is strong,
allowing the formation and coarsening of the structure into large,
dense domains. Steric crowding is then able to contribute and
combined, and these produce an elastic network. In contrast, a
fast quench plunges the system quickly to a regime where particles
bond together with little rearrangement, allowing little coarsening
of the newly formed bi-continuous structure. The resulting tenuous
network must rely almost entirely on the bond strength to acquire
elastic strength. Overall, systems subjected to fast ramps form thin
strands of particles due to rapid arrest of phase separation and
thus require stronger attractions (higher temperature, larger B}) to
produce an elastically dominant mechanical response. In contrast,
systems evolving during a slow ramp have time to undergo some
phase separation before bonds become strong enough to arrest the
phase separation.

Getting back to our goal of finding a ramp-rate independent gel
line: connecting the gel point at each ramp rate (heavy curve in the
T vs At plots) reveals a plateau for slower and slower quenches, as
indicated by the dashed projection line. This projected plateau
suggests an asymptotic limit—a quench above which (temperature
below which) gelation will never occur; that is, there exists a
minimum temperature of gelation. We suggest that this minimum
gelation temperature sets the fundamental emergence of gelation in
the system, that there is a “fundamental” gel line that is a unique
identifier of an interparticle potential that robustly predicts gelation,
and that this fundamental gel point is that quench temperature
below which (or quench depth B, above which) gelation would never
occur, i.e., that phase separation will not arrest.
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FIG. 10. Representative G’ and G’ vs time measurements during constant temperature ramps in (a) simulations using the HS-SRA-LRR potential and (b) experiments for
¢ = 0.30. Top plots show G” and G”’ vs elapsed time during ramps, and bottom plots show temperature vs time during ramps.
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We repeated step 5 in silico for several volume fractions, in
pursuit of a gel line, for each of the three candidate potentials. In
parallel, the same temperature quenches were applied in experi-
ments to reveal the in vitro gelation behavior. Based on the findings
discussed in the previous paragraph (Fig. 10), each quench was
repeated for several quench rates. The quenching and interrogation
protocols remained identical to that discussed earlier. The resulting
data are plotted for ¢ = 0.20, 0.30, and 0.40 in Figs. 11(a), Figs. 11(b),
and 11(c), respectively. There are two key features of the three plots.
First, gelation temperature varies with the quench rate; we will need
a rationale for picking of the “true” gel point from the data points.
Second, the curves within each plot are separated from one another,
showing that the variation with the quench rate differs from one
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potential to another, confirming the suspicion that despite their
common value of Bj, the three potentials predict different gelation
behavior.

For the first point, the quench-rate dependence of the gel point:
there are at least two distinct regimes. For fast quenches, varia-
tion is approximately linear, in contrast to gel temperature that is
very sensitive to changes in the quench rate at slower quenches.
The sensitivity to quench rate is most pronounced when the attrac-
tion range is short and the volume fraction is low [Fig. 11(a)],
and, conversely, gelation temperature is less sensitive to the quench
rate when attractions are longer-ranged and volume fraction is
high [Fig. 11(c)]. Mechanistically, reduced particle mobility reflects
an “effective temperature” that, when decreased, induces gelation
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because bond formation and crowding arrest dynamical rearrange-
ments required for phase separation to complete. Longer-range
attractions arrest dynamics at lower volume fractions, where higher
crowding sterically reduces mobility that can arrest dynamics with
shorter attractions. Consequently, there is a crossover in the curves
at the transition from the fast- to the slow-quench regime, most
prominent in Fig. 11(a). However, as crowding grows [Figs. 11(b)
and 11(c)], this effect becomes less pronounced because particles are
brought closer together by high volume fraction. The slow-quench
regime is the most important because there the gelation temperature
is highly sensitive to changes in the quench rate.

The slowest quenches provide data that extrapolate (quadrat-
ically) to the infinitely slow quench rate axis, which suggests that
there is a limit below which gelation will not occur—a fundamental
gelation temperature independent of the quench rate. We propose
that this minimum gelation temperature sets the fundamental non-
equilibrium behavior of the system, and that this regime corresponds
to a quasi-equilibrium quench that, in principle, should allow phase
separation. Furthermore, each potential reaches the vertical axis
at a different point, indicating that each potential has a unique
gelation temperature. Now that we have identified a unique gela-
tion temperature for each candidate potential at a range of volume
fractions, we compare the experimental and simulation results to
find the best match among the models that best describe the
experimental system.

We now complete step 6: Plot the phase diagram of the
computational model and the experimental system and compare the
gel lines. For the in silico system, we extract the fundamental gelation
temperature at each volume fraction studied and plot it as a func-
tion of volume fraction in Fig. 11(d). Below this gel line (the locus
of fundamental gelation temperatures at various volume fractions),
the system will equilibrate and never arrest, regardless of the quench
rate. We sketch in an extension of the arrest line and an equilib-
rium phase envelope for each potential (the equilibrium fluid-fluid
phase boundaries are presented in our companion article®’). The
extension of arrest line delineates the expected kinetically arrested
glassy behavior outside of the equilibrium phase envelope.”””* The
sketched phase envelopes are shown as shaded regions to emphasize
that these are estimates. Dashed lines suggest low-volume fraction
percolation behavior and high-volume fraction vitrification lines
(also explored in our companion article®”).

Each in silico potential gives a distinct gel line. Overall, a
shorter-ranged potential (HS-SRA-LSRR) produces gelation that
is more sensitive to changes in volume fraction than a longer-
ranged potential (as evidenced by the more pronounced slope
of the gel line). The shorter the attraction range, the higher the
concentration must be in order to gather particles together into a
fully connected network (hence the steeper slope at lower volume
fraction). In contrast, longer bonds can span a greater space between
particles, such that the bonded network can be less dense but fully
connected (thus the flatter gel line across a wider range of volume
fraction). Comparison of the three in silico gels with the labora-
tory sample [black in Fig. 11(d)] reveals that the HS-SRA-LRR
potential is the best predictor of gelation. Indeed, the in silico
predictions for the gel line for this potential [green filled triangles in
Fig. 11(d)] is statistically nearly indistinguishable from that obtained
in the experiments, without any additional adjustment in the model
parameters.
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Steps 1-6 identify the best qualitative match between the pre-
dicted and the experimental gel line. The selected potential can be
further refined (step 7) by adjusting the range of attraction and
repulsion (in our example, the variables K and Z) and repeating
steps 5 and 6 to obtain exact quantitative match. If steps 1-6 pro-
duce predictions with poor qualitative match between simulation
and experiment away from equilibrium, the recourse is to examine
whether the originally selected potential in step 1(a) was the best
choice (in our study, the Two-Yukawa potential). In the present
case, because predictions from the selected potential [green filled
triangles in Fig. 11(d)] lie nearly within the associated uncertainty
in the gel point extrapolated from experiments (black filled dia-
monds), steps 1-6 are sufficient to demonstrate the success of the
method.

IV. CONCLUSION

In this study, we devised and validated an algorithm that
extracts the detailed interparticle potential from an experimental
system and replicates it in a computational model that successfully
recovers the equilibrium phase envelope as well as the gel line. This
result is novel because prior approaches to modeling interparticle
potential could only predict the family of potentials that give the
correct equilibrium phase envelope but could not predict the gel
line. We showed that the potential must encode non-equilibrium
phenomena that embody the competition between quenching kinet-
ics and particle dynamics to faithfully match the experimental
system.

Our framework can be applied to any system in which arrested
states can be formed via temporal changes in interparticle interac-
tions or colloid density, whether such changes are induced by tem-
perature, pH, or concentrations of other components. The require-
ment is the capability to perform such temporal changes and detect
the emergence of arrested states.

The results of the non-equilibrium test provide a deeper under-
standing of the arrest line in the gelling system. The locus of state
points defining the fundamental transition to the gelled state is set
by the interplay of quench kinetics with the steric and attractive
hindrance (¢ and 1/T) that slow particle dynamics sufficiently to
interrupt phase separation. Although the second virial coefficient is
essential to constructing the gel line, it predicts multiple possibilities.
Moreover, even if the correct interparticle potential was known in
analytical form, the rate of the quench also predicts multiple possi-
ble locations of the gel line. The latter behavior is somewhat similar
to vitrification in molecular liquids, where a “fictive temperature”
is often used to communize experiments but does not resolve the
issue of kinetics-induced ambiguity. Our algorithm extracted mech-
anistic differences between the multiple potentials; in the case tested,
changes in the gel line with variation in the ratios K; /K, and Z,/Z,
pointed to the relative influence of steric and attractive hindrance
on gelation temperature. From this, we found that the quench can
further tip this balance.

We deduced that this path dependence can be removed by an
infinitely slow quench that will predict the deepest quench possible
that does not subsequently arrest. Using this part of our algorithm,
we identified the time-independent limit. From this comparison,
we identified a single potential that captures both the equilibrium
and non-equilibrium behavior of experiments. We claim that this

J. Chem. Phys. 156, 224101 (2022); doi: 10.1063/5.0086650
Published under an exclusive license by AIP Publishing

156, 224101-16


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

process reveals the fundamental arrest line for a given potential
because, “above” this arrest line, phase separation always proceeds
unobstructed.

Overall, the new algorithm provides a platform for constructing
models that can be rapidly tuned to faithfully represent an
experimental colloidal system undergoing equilibrium and non-
equilibrium phase transformations. We expect that this framework
will also be useful for predicting percolation, vitrification, and other
self-assembled states. The nearly hard sphere parameters selected
in the present work do not place a restriction on the regime of
validity of our method; conversely, our method will be particularly
useful for handling soft repulsions and deformability. Size polydis-
persity is also an important factor to be considered because many
real colloidal systems present great variation from one type to the
next or even one batch to the next in technologically relevant mate-
rials. In the present work, both the in situ and in silico particles had
28% size polydispersity. There is no limitation on size polydispersity
inherent in the model or the method. Alterations in polydispersity
do shift the average diffusivity of particles in the system, which we
expect will produce quantitative shifts of the fundamental arrest
line, with the volume fraction adjusted accordingly. These effects
will emerge naturally from the model. Our method can be applied to
colloidal systems where interactions are patchy, *” long-ranged,’®
or between irregularly shaped particles—including globular
proteins, depletion systems, electrostatically interacting systems,
and would be especially powerful for industrial suspensions
where little is known about particle interactions. For systems with
extremely complex interactions, our method can be applied with
a more expressive potential, such as a Three-Yukawa potential.
Clearly, the use of a more complex interaction potential model
will increase difficulty of optimizing the potential. If such added
complexity is warranted, one might elect to construct a potential de
novo using molecular-dynamics simulations.

In silico quench studies in this work were conducted in the
freely draining limit. Hydrodynamic coupling between colloidal
particles is expected to reduce particle mobility, with an effective
influence that is O(kgT), which is weaker than the influence of
attractive forces of order a few to several kgT during a quench.
Although hydrodynamic interactions do not influence equilibrium
properties, several viewpoints on the role of hydrodynamic interac-
tions on the location of the non-equilibrium arrest line have been
suggested by prior literature.”” ** These effects produce quantita-
tive shifts in linear-response rheology and structure® that are not
fundamentally different from changes in attraction strength and
range. We expect the impact of hydrodynamics to emerge directly
in the asymptotic limit of the gel temperature as the quench rate is
decreased, which is where the quantitative position of the arrest line
is set.

The seven-step method can be carried out just one time in order
to construct a model that can be used over and over for a given
laboratory system. We described the computational process in detail,
which was carried out very efficiently using the highly optimized
and parallelized LAMMPS algorithm.”® Now that the procedure is
established, routine computational activities are sufficient to
implement it. Implementations of the process for a totally new
potential can be completed in less than a week, from start to
finish: laboratory experiments, model set up, validation, and
selection of the potential. Once completed, the computational model

ARTICLE scitation.org/journalljcp

can be used for as many experiments or projects as desired with no
further algorithmic intervention.

Future studies should widen the predictive power to percola-
tion and vitrification. Within the phase-separated region, the new
understanding of how quench rate competes with diffusion and
attractions can be leveraged to reveal a “goldilocks zone” where
structure is forming but malleable, ideal for intervention to sculpt
the forming microstructure. This approach would be very useful in
designing new soft materials with novel structural, mechanical, and
optical properties.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complete predicted
scattering intensity profiles I, (q), figures demonstrating influence
of square-well potential depth on extracted Bj, and time evolution
of structural and rheological features.

ACKNOWLEDGMENTS

This research was supported by NSF (Grant No. 1729017) from
the program for Designing Materials to Revolutionize and Engi-
neer our Future (DMREF). B.K.R. acknowledges the support of an
NSF Graduate Research Fellowship (Grant No. 1656518). R.N.Z.
acknowledges computational support from the National Science
Foundation Extreme Science and Engineering Discovery Environ-
ment (XSEDE) Research Award (Grant No. OCI-1053575) and its
resources at the Texas Advanced Computing Center (TACC) at the
University of Texas at Austin. We acknowledge the support of the
National Institute of Standards and Technology, U.S. Department of
Commerce, in providing the neutron research facilities used in this
work. This work utilized facilities supported by the Center for High
Resolution Neutron Scattering, a partnership between the National
Institute of Standards and Technology and the National Science
Foundation under Agreement No. DMR-2010792. We thank Dr.
Yun Liu (NIST) for helpful discussions.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

All datasets underlying the conclusions of the paper are either
published directly in the figures or are available to readers upon
request to the corresponding author. Raw data were generated at
the TACC Stampede large scale facility, as well as NIST. Derived
data supporting the findings of this study are available from the
corresponding author upon reasonable request.

APPENDIX A: PRIOR STUDIES THAT SUPPORT
GELATION IS A NON-EQUILIBRIUM TRANSITION

In Sec. [, we discussed examples that aimed to apply the conven-
tional approach for equilibrium gelation. These studies clearly show
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that the gel line is not coincident with the binodal. For example,
in a study of globular protein solutions, Gibaud et al. interro-
gated three ideas: first, globular proteins behave as colloids in the
context of phase separation and gelation; second, phase separation
is a route to gelation;’” and third, the binodal and gel line are coinci-
dent. The authors established that the proteins exerted short-ranged
attractions and verified that the ELCS held for the equilibrium phase
envelopes; they found that the proteins did indeed exhibit colloidal
phase transitions. In addition, they found that gelation followed
the onset of phase separation, but the resulting gel line did not
overlay the binodal. Thus, Gibaud et al. provide strong evidence
that suggests that gelation is a non-equilibrium phase transition by
connecting it to the glass line outside the binodal. That study is
particularly convincing owing to the fact that the gel line and bin-
odal were both generated by direct measurements in experiments,
although without regard to absolute values of the potential. A hint
for the mechanistic origin of this non-equilibrium behavior can be
gleaned from the fact that, while changes in the induced attractive
force between proteins could be scaled out for the equilibrium phase
transition, that approach failed for the gel line: the reduced second
virial coefficient could collapse all equilibrium phase separation onto
a single binodal, but the resulting gel lines were distinct and could
not be collapsed onto a single gel line using the reduced second
virial coefficient B, alone.” In fact, earlier work provides further
insight into a possible mechanistic origin of the separation between
binodal and arrest line: Foffi ef al.”® found that the arrest line is set
by the intersection point of the glass line (outside the phase enve-
lope) and the binodal; even earlier simulation studies® demonstrate
that this intersection point depends sensitively on the details of the
attraction potential. From this, one can conclude that arrest lines
depend sensitively on the detailed interaction potential even when
equilibrium phase boundaries can be robustly predicted using only
B5 without regard to the detailed potential. This sensitive depen-
dence is consistent with the much earlier findings of mode cou-
pling theory, which showed that colloidal glass transition lines for
various potential profiles with the same value of B; do not collapse
upon rescaling with B;.”” Overall, these foundational works indi-
cate that gelation is a non-equilibrium phase transition that results
from arrested phase separation and suggest that the location of the
gelation line relative to the location of the binodal in a colloidal
phase diagram is sensitive to the details of interaction potential
profile. Moreover, the current consensus paradigm concerning
arrested phase separated is that that the gel line and binodal are dis-
tinct from one another. However, theoretical and modeling methods
fail to predict the location of the gel line—and are still anchored in
equilibrium metrics.

We believe that there are two roots of the failure: first, the
assumption that the interaction potential is invariant with colloid
concentration and, second, utilizing strictly equilibrium metrics
(i.e., By) to construct the gel line. This can be explained as fol-
lows. The study by Lu et al.”! determined the interaction potential
from a system with a given depletant concentration via an itera-
tive refinement procedure: the structure required to compute the
potential is first extracted experimentally by measuring cluster-size
distribution at equilibrium using microscopy, restricted to 16% max-
imum volume fraction. Separately, a set of interparticle potentials
V(r) was implemented in simulation to induce cluster forma-
tion in a colloidal suspension, also at low volume fraction. Each
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simulation potential was iteratively refined until the in silico cluster
size distribution matched the experimentally measured cluster size
distribution. Fortunately or unfortunately, all of the candidate
potentials (Asakura-Oosawa, Lennard-Jones, and square-well)
produced a matching structure. Moreover, the value of B, calcu-
lated directly from the in silico V(r) was identical at fixed depletant
concentration. Thus, the authors were free to select the simplest
potential. However, the fact that the calculations were restricted
to equilibrium cluster formation at low volume fraction all but
guarantees that the phase transition predicted will be the binodal
rather than the gel line. The problem with this approach is the
assumption that the potential V(r) is independent of volume
fraction—that the potential predicted at lower volume fraction is
sufficient to describe interactions at high concentration—a dubious
supposition if one assumes that gelation follows phase separa-
tion into a dense phase. Validation of their approach should have
included implementing the potential in silico to generate gelation
and, from it, construct a gel line. We expect this would have
yielded not only one gel line distinct from the binodal, but three
distinct gel lines, and a conclusion that the interparticle potential
changes with volume fraction and that the non-equilibrium nature
of arrested phase separation requires non-equilibrium tests to iden-
tify the unique potential that accurately predicts both the binodal
and the arrest line for a given colloidal system.

APPENDIX B: DETAILED PROCEDURE
FOR EXTRACTING TWO-YUKAWA POTENTIALS
VIA ITERATIVE POTENTIAL REFINEMENT

In the case of the Two-Yukawa potential, there are four inde-
pendent parameters that are intractable to fix by iteration without
an initial estimate for each, i.e., a means to constrain them. To
address this added challenge, we devised an iterative algorithm for
constructing an interparticle potential that consists of two steps:
first, we extract a B; of interparticle interactions using a square-well
potential; second, we utilize this B} as a constraint to construct a
Two-Yukawa potential.

In the first step of our algorithm, we estimate the parameters
of a square-well potential Vsw(r; T) that models the thermore-
sponsive bridging interactions. This Vsw(r; T) is inserted into
Eq. (10) to output the predicted structure and its Fourier transform
is computed to obtain at theoretical prediction of the structure fac-
tor, Speo(q). The predicted structure Sye,(q) is compared to the
experimentally obtained static structure factor Sexpr(g) as follows. If
[Stheo(q) — Sexpt (q)| is greater than a prescribed threshold, we refine
Vsw(r; T).If the error is smaller than the threshold, we “accept” the
square-well parameters and compute the B} via

B5(T) = 7% / [exp(f VS}:;’j(f) ) - l]rzdr, (B1)

where a is the average size of a particle. This B; is utilized in the
next step as an additional constraint for a Two-Yukawa poten-
tial. We note that the choice of the square-well model—made by
convenience due to its minimal number of parameters and feature-
less attraction shape—is arbitrary, and we found in initial testing
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of the algorithm that this choice, including the square-well width,
has negligible influence on the extracted values of B; for sufficiently
dilute values of ¢, consistent with the dilute, small-angle approxima-
tion of the virial expansion S(g — 0,¢ — 0) ~ 1+ B2(T)¢ + O(¢*)
(see Fig. S1 of the supplementary material for the negligible influence
of square-well width on B).

In the second step of the algorithm, we estimate the para-
meters of a Two-Yukawa model V(r; T) that is consistent with
the value of B;(T) from the square-well model. This estimated
V(r; T) is inserted into the O-Z equation to predict S, (g), which
is again compared to Sexpr(g). When comparing the two structure
factors, we account for instrument resolution smearing effects and
variable uncertainty in Sx:(q) by “smearing” Sy,,(q) and appro-
priately weighing the difference between Sy, (q) and Sexpr(q) (see
Appendix E for details of this process). We find that if these effects
are not accounted for, this comparison and refinement process may
result in erroneous values of B;. The potential V(r; T) is again
refined until suitable agreement is achieved between Sy,,(q) and
Sexpt(q). For construction of a family of Two-Yukawa potentials,
we select several different initial estimates of Ki(T), K2(T), Z1(T),
and Z,(T) and repeat this part to obtain Two-Yukawa potentials
with different detailed profiles for different values of T. The two-step
process above is necessary because the iterative refinement process
becomes under-constrained for complex models, such as the Two-
Yukawa potential, in which a multiplicity of potential shapes with
its own Bj are permissible from a set of potential parameters (Kj,
Kz, Zl, and Zz).

In the present work, the attractive interactions between parti-
cles change with temperature. Temperature dependence is extracted
and implemented in our Two-Yukawa potential model as fol-
lows. Beginning with a “Soft Repulsion plus Longer Short-Range
Attraction” (SR-LSRA), we produced an initial estimate for the pro-
file V(r; T =10°C) for the range and strength parameters K1, K,
Zy, and Z; using a seed estimate based on the B} just calculated.
We then iteratively refined this potential until convergence to the
correct value of B5 (T = 10°C) was obtained and the predicted I(q)
from Ornstein-Zernike equation matched I(q) from experimental
SANS data. Next, to construct the potential for higher temperatures
(where the attractions are stronger and, presumably, higher-order
interactions can become more important), one path forward is to
“bootstrap” from one temperature to the next using all four para-
meters from one temperature as seed estimates at the next temper-
ature. However, doing so permits the attraction strength parameter
K, to change non-monotonically with temperature—which is both
unphysical and difficult to represent analytically or computation-
ally. Instead, for higher temperatures, (T = 25,40, and 60°C), we
held three of the parameters fixed: the attraction range, Z;, repul-
sive strength, K>, and repulsive range, Z,. The interparticle potential
was then constructed by iteratively refining the attraction strength
K until the correct value of B; (T) was obtained and S(g) from
theory matched S(q) measured from experiments. The justification
of this process is as follows. The attraction range Z; can be fixed
because the range of polymer bridging attractions is set primarily
by the length of the PEGDA oligomer and does not change sig-
nificantly with temperature.”® Next, the repulsion strength K> and
range Z, are only weakly dependent on temperature, because they
are governed by screened electrostatic repulsions, which are deter-
mined primarily by the free surfactant (SDS) concentration in the
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bulk phase,” *” which is held fixed. The resultant set of V(r) curves
are shown for the SR-LSRA in Fig. 7(d). For the reader’s refer-
ence, the theoretical predictions for the scattering intensity Iy.,(q)
at each temperature are shown in the inset in Fig. 7(a) (solid lines)
for the SR-LSRA potential, which show excellent agreement with
the experimental data (open symbols). This process is repeated for
a “Hard-Sphere Repulsion plus Short-Range Attraction” (HS-SRA)
potential and “Hard-Sphere Repulsion plus Short-Range Attraction
and Longer Short-Range Repulsion” (HS-SRA-LSRR) potentials to
produce the sets of curves in Figs. 7(e) and 7(f).

APPENDIX C: PRIOR APPROACHES FOR RESOLVING
THE MULTIPLICITY OF INTERACTION POTENTIALS

The conventional method (Fig. 2) produces a degeneracy of
interaction potentials V(r) accurately predicts equilibrium struc-
tures. In previous applications of the conventional approach, this
degeneracy can be ignored for sufficiently short-ranged potentials
by invoking the ELCS. Otherwise, it is typically resolved by two
approaches. The first is to make empirical guesses regarding the
qualitative shape of V (), which rules out certain candidate families
of potential shapes. The second is to extend the analysis, including
fitting of S(g), to sufficiently large ¢ where the high-g features of
S(q) are influenced by the detailed shape of V(r) so that the pre-
dicted S(q) begins to differ significantly between different candidate
shapes with otherwise equal B. Although such ¢-dependent anal-
ysis has been applied in colloidal systems involving short-ranged
attractions,”””” this approach is challenging due to the multiple scat-
tering events and also because the appropriate choice and accuracy
of a closure approximation to the O-Z equation becomes critical
due to differences in the way the different closures approximate the
many-body interaction term encoded in the configuration integral
in Eq. (8).

There is another, more fundamental issue with the extension of
the conventional approach to larger ¢ as typically applied, which is
that the analysis above, starting with the O-Z equation and contin-
uing through the various closure approximations for g(r), assumes
that the sampled S(q) is the one corresponding to thermodynamic
equilibrium. Although this will always be true for systems with
sufficiently weak interactions under sufficiently dilute conditions,
in many cases, the equilibrium analysis under the conventional
approach is applied to conditions, both in terms of sufficiently large
¢ and sufficiently strong attractions in V(r), in which the struc-
ture measured in experiment corresponds to a state of the system
that is arrested out-of-equilibrium. For example, in Eberle, Wag-
ner, and Castaneda-Priego,”® interaction potentials were extracted
under conditions where the system formed colloidal gels that do
not represent the equilibrium state of the system, thereby invali-
dating the analysis, resulting in a fictive V() that may accurately
describe the measured non-equilibrium structure, but does not accu-
rately represent the “true” underlying V(r) that drives the system
from equilibrium to begin with. Thus, the approach produces a
situation in which a unique interaction potential (or temperature-
dependent family thereof) cannot simultaneously predict or rec-
oncile the observed equilibrium properties and phase behavior of
the system for some regions of state space with the appearance of
non-equilibrium arrested states in others.
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These shortcomings of the conventional approach motivates
the need for our new approach to selecting model potentials among
candidate shapes, which is not based on subjective decisions and,
more importantly, can simultaneously reconcile the prediction
of equilibrium behavior with the appearance of non-equilibrium
arrested states across the phase diagram, by down-selecting a sin-
gle potential from multiple degenerate candidates that faithfully
reproduces both equilibrium and non-equilibrium states. We utilize
this novel approach, which builds upon the conventional approach
as described in the sections to follow to directly incorporate non-
equilibrium property determination (in this case, time-dependent
SAOS rheological response) into the down-selection process.

APPENDIX D: TWO-YUKAWA POTENTIAL
PARAMETERS

Table T shows the Two-Yukawa potential parameters con-
structed and utilized in this study. Parameter uncertainties were
estimated by computing ranges that increase the difference in pre-
dicted and experimentally measured structure |Syo(q) — Sexpt (q)]
by 5%.

APPENDIX E: SANS DATA PROCESSING
FOR CONSTRUCTING INTERPARTICLE POTENTIAL

1. Instrumental resolution smearing effects

Intensity measurements from small-angle neutron scattering
(SANS) experiments are typically smeared due to the resolution
of the instrument. The SANS instrument utilized in this work
for collection of dilute structure is pinhole collimated and uses
a detector with finite pixel size.”® While the effect of resolution
smearing is often slight especially for dilute samples without
sharp structural features in scattering intensities, we account for
pinhole-smearing effects as described as follows. Upon detection, the
incident scattering intensity, I,,gneared(q), is smeared as
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Ismeared(q) = ‘/0‘ R(q/) q)Iunsmeared(q)dq,> (El)

where Inearea(q’) is the smeared intensity and R(q',q) is the
resolution function.®® The resolution function can be described as
a Gaussian-like function to good approximation as

(q-4) ) (E2)

2
20,

’ _ 1
R(q ’q) - \/@ exp(

where o is the standard deviation of the Gaussian approximation to
the g-resolution. In theory, the integral in Eq. (E1) can be solved to
correct the measured, smeared intensity (i.e., “desmear”). However,
such calculation is typically challenging. Thus, when construction
of an interparticle potential, smearing the structure predicted from
theory is preferred rather than desmearing the measured inten-
sity.*” In this work, we smear the theoretically calculated structure
predicted by Eq. (8) in the iterative process described in
Sec. 11 B 3 as

Stheo,smeared(q) = \/0 R(q,) q)stheo,unsmeared (q)dq, (E3)

This smeared and predicted structure Speo, smearea(q) 1is then
compared to the experimentally obtained structure for iterative
refinement of V(7).

2. Incorporating error-weighting in model
parameter optimization

Radially averaged SANS intensity measurements typically
produce variable uncertainty at different g-values because of differ-
ences in area of the detector that is binned to each g-value—error
bars are smaller for small-q data and larger for high-q data (see error

TABLE I. Two-Yukawa potential parameters [K1(T), K2, Z1, and Z; in Eq. (1)] for profiles shown in Figs. 7(d)-7(f). Note that
for Z4, Ky, and Z,, the values of the potentials are invariant with temperature.

Temp (°C)
Potential Parameter 10 25 40 60
Ky (T) -7.01 £ 0.04 -9.03 £ 0.04 —10.44 £+ 0.04 —11.46 £ 0.03
SR-LSRA VAL 14.13 + 0.06 14.13 + 0.06 14.13 £ 0.06 14.13 + 0.06
K; 10.07 + 0.08 10.07 + 0.08 10.07 + 0.08 10.07 £ 0.08
Z, 25.38 £ 0.11 25.38 £ 0.11 25.38 £ 0.11 25.38 £ 0.11
Ky (T) -9.86 + 0.03 —-11.10 £ 0.03 —-11.93 £ 0.03 -12.62 £ 0.04
HS-SRA 71 17.95 + 0.06 17.95 + 0.06 17.95 + 0.06 17.95 + 0.06
K; 8.35+0.03 8.35+0.03 8.35+0.03 8.35+0.03
Z, 19.90 + 0.08 19.90 + 0.08 19.90 + 0.08 19.90 + 0.08
Ky (T) -3.18 £ 0.02 —-4.13 £ 0.02 -4.86 + 0.02 —-5.42 + 0.02
Z 23.07 £ 0.24 23.07 £ 0.24 23.07 £ 0.24 23.07 £ 0.24
HS-SRA-LSRR K; 0.401 + 0.008 0.401 + 0.008 0.401 + 0.008 0.401 + 0.008
Z, 4.67 +0.25 4.67 +0.25 4.67 + 0.25 4.67 + 0.25
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bar sizes of markers in Fig. 8). Error bars are computed in the iter-
ative refinement process by normalizing the error in static structure
factor,

|[Stheo,smeared(q) - Sexpt(q)]/gq(q)|2> (E4)

where 0,4(q) is the standard deviation of the intensity for each radi-
ally averaged intensity data point. In our V(r) refinement process
described in Sec. II B 3, we iteratively minimize the error in Eq. (E4)
to accurately account for the influence of resolution smearing and
data uncertainty.
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