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ABSTRACT

The scientific community is rapidly generating protein sequence information, but only a
fraction of these proteins can be experimentally characterized. While promising deep
learning approaches for protein prediction tasks have emerged, they have computational
limitations or are designed to solve a specific task. We present a Transformer neural net-
work that pre-trains task-agnostic sequence representations. This model is fine-tuned to
solve two different protein prediction tasks: protein family classification and protein in-
teraction prediction. Our method is comparable to existing state-of-the-art approaches for
protein family classification while being much more general than other architectures.
Further, our method outperforms other approaches for protein interaction prediction for
two out of three different scenarios that we generated. These results offer a promising
framework for fine-tuning the pre-trained sequence representations for other protein pre-
diction tasks.
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1. INTRODUCTION

HE ADVENT OF NEW PROTEIN SEQUENCING TECHNOLOGIES has accelerated the rate of protein discovery

(Restrepo-Pérez et al., 2018). While protein sequence repositories are growing exponentially, existing
methods for experimental characterization are not able to keep up with the present rate of novel sequence
discovery (Oh et al., 2018; The UniProt Consortium, 2018). Currently, less than 1% of all amino acid
sequences in the UniProtKB database have been experimentally characterized (The UniProt Consortium,
2018). The explosion of uncharacterized proteins presents opportunities in computational approaches for
protein characterization.
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Harnessing protein sequence data to identify functional characteristics is critical to understanding cel-
lular functions and developing potential therapeutic applications (Chen et al., 2019). Sequence-based
methods to computationally infer protein characteristics have been critical for inferring protein function
and other characteristics (Smith et al., 1981). Thus, the development of computational methods to infer
protein characteristics (which we generally describe as ‘‘protein prediction tasks’’) has become paramount
in the field of bioinformatics and computational biology. Here, we adapt a Transformer neural network to
establish task-agnostic representations of protein sequences, and use the Transformer network to solve two
protein prediction tasks.

1.1. Deep learning for natural language processing tasks

In applying deep learning to sequence-based protein characterization tasks, we first consider the field of
natural language processing (NLP), which aims to analyze human language through computational tech-
niques (Manning and Schiitze, 1999). Deep learning has recently proven to be a critical tool for NLP,
achieving state-of-the-art performance on benchmarks for named entity recognition, sentiment analysis,
question answering, and text summarization, among others (Young et al., 2017).

Neural networks are functions that map one vector space to another. Thus, to use them for NLP tasks, we
first need to represent words as real-valued vectors. Often referred to as word embeddings, these vector
representations are typically ‘‘pre-trained” on an auxiliary task for which we have (or can automatically
generate) a large amount of training data. The goal of this pre-training is to learn generically useful
representations that encode deep semantic and syntactic information (Young et al., 2017). Then, these
representations can be used to train systems for NLP tasks for which we have only a moderate amount of
training data.

Word embeddings can be broadly categorized as either context-free or contextualized. Methods such as
Skip-Gram (as popularized by the seminal software package word2vec) and GloVe generate context-free
word vector representations (Mikolov et al., 2013; Pennington et al., 2014). Once trained, these methods
assign the same embedding to a given word independent of its context. Contextualized embedding models
such as OpenAI-GPT (Radford et al., 2019) and Embedding from Language Model (ELMo) (Peters et al.,
2018) were later developed to generate on-demand contextualized embeddings given a word and its
surrounding sequence. Contextualized word representations have been shown to have superior performance
to context-free representations on a variety of benchmarks (Peters et al., 2018), and have become the new
standard practice in NLP.

Building upon these methods, Devlin et al. (2019) developed a state-of-the-art contextualized word
embedding technique called Bidirectional Encoder Representations from Transformers (BERT), to create
“deeply bidirectional’’ embeddings using transformers. BERT’s architecture includes multiple Transfor-
mer encoder layers (Vaswani et al., 2017), whose architecture we explain in Section 2.2, to construct a
model that generates token representations by simultaneously incorporating the leftward and rightward
context of sentences. Recently, a new procedure called Robustly Optimized BERT Pretraining Approach
(RoBERTa) was developed that improved BERT’s performance on the original masked language task (Liu
et al., 2019).

1.2. From NLP to protein prediction tasks

Because of the unprecedented success in applying deep learning to NLP tasks, one of the recent interest
areas in computational biology has been applying NLP-inspired techniques to amino acid sequence charac-
terization. These techniques typically treat amino acids as analogous to individual characters in a language
alphabet. Following the pre-training regime established in NLP, tools such as seq2vec (Heinzinger et al., 2019)
and ProtVec (Asgari and Mofrad, 2015) have been developed to create amino acid sequence embeddings for
protein prediction tasks. These two representation methods are based on the ELMo and Skip-Gram technique,
respectively, and demonstrate state-of-the-art accuracy when applied to bioinformatics tasks.

Inspired by the success of BERT in NLP, in this article we pre-train a Transformer network on amino
acid sequence representations for protein prediction tasks. Our model first appeared at a conference in 2020
(Nambiar et al., 2020), and similar Transformer neural networks have been proposed for protein prediction
tasks in recent years. In fact, Transformer neural networks have become the workhorse of the protein
representation learning, with multiple publicly available pre-trained models such as ESM-1b (Rives et al.,
2021) and ProtBert (Elnaggar et al., 2021). These models can be distinguished based on several
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TABLE 1. CHARACTERISTICS OF THREE DIFFERENT BIDIRECTIONAL ENCODER REPRESENTATIONS
FROM TRANSFORMERS-INSPIRED PROTEIN LANGUAGE MODELS

Params Dataset Tokenization
ESM-1b (Rives et al., 2021) 650 million UniRef50 Single amino acid
ProtBert (Elnaggar et al., 2021) 420 million BFD Single amino acid
PRoBERTa (Nambiar et al., 2020) 44 million UniProt Byte-pair encoding

PRoBERTa is the model used in this work.
BFD, Big Fat Database.

characteristics including the size of the neural network, the dataset it was pre-trained on, and how se-
quences were tokenized (Table 1).

The largest model, ESM-1b, was trained on the UniRef50 dataset where 250 million sequences were
clustered at 50% sequence identity and a representative sequence from each cluster was used (Rives et al.,
2021). Using UniRef50 could be advantageous because the clustering of sequences decreases the redun-
dancy of sequences seen by the model. The disadvantage of using UniRef50 is that this dataset might not
allow the model to learn evolutionary information as easily, which has been addressed in other work by
clustering using 90% sequence identity (Meier et al., 2021). ProtBert, on the other hand was trained on the
Big Fat Database (BFD) that is made up of over 2 billion proteins. This increase in number of proteins was
due to the inclusion of metagenomic data in the dataset, allowing the model to be trained on a wider range
of sequences (Elnaggar et al., 2021).

However, the fact that a large fraction of the dataset is made up of sequences obtained from metage-
nomic data could also be a source of bias in the data. Finally, we use the SwissProt dataset that contains
only 450,000 reviewed sequences for Protein ROBERTa (PRoBERTa) (Nambiar et al., 2020). The benefit
of using SwissProt is that since all of the sequences are reviewed it is less likely that the dataset contains
low quality sequences. This was especially important for us since one of the goals of our work was to pre-
train a model with a small number of sequences, to be cost efficient.

This need for cost efficiency also led to our use of byte-pair encoding (BPE) for sequence tokenization, a
characteristic that is not shared by other transformer-based protein language models. The differences
between models allow researchers to use the model that best fits their downstream tasks and computational
budget. These and similar models have been used for various tasks including protein localization predic-
tion, variant effect prediction, and protein contact prediction, among others (Bhattacharya et al., 2020;
Elnaggar et al., 2021; Meier et al., 2021; Stérk et al., 2021). In this article, we focus on using our pre-trained
models for two tasks: protein family prediction and protein interaction prediction.

1.2.1. Task: Protein family classification. Protein families are groups of evolutionarily-related
proteins that typically share similar sequence, structural, and functional characteristics. By taking advan-
tage of the evolutionary conservation of amino acid sequence and structure, resources such as CATH-
Gene3D, PANTHER, Pfam, and SUPERFAMILY cluster amino acid sequences that share an inferred
origin into hierarchical groups known as protein superfamilies, families, and subfamilies (Gough et al.,
2001; Punta et al., 2011; Mi et al., 2015; Dawson et al., 2017). Traditionally, family classification has
required the comparison of experimentally identified characteristics. However, methods have also been
developed to computationally classify proteins based solely on sequence similarity. This approach enables
us to infer functional and structural characteristics of proteins in a high-throughput manner.

Current computational approaches for protein family classification include methods such as BLASTp
and profile hidden Markov models (pHMMs) that compare sequences to a large database of pre-annotated
sequences. However, inference using these alignment-based methods is computationally inefficient, as they
require repeated comparison of sequences to an exponentially growing database of labeled family profiles
and are limited by expensive, manually tuned processing pipelines (Das and Orengo, 2016). With the
exponential growth of protein discovery, the development of more scalable approaches is required to
overcome traditional bottlenecks (Bileschi et al., 2022).

Guided by a deep learning framework, recent models based on convolutional neural network (CNN) and
recurrent neural network (RNN) architectures have been successful in achieving state-of-the-art accuracy
on the protein family classification task (Heinzinger et al., 2019; Bileschi et al., 2022). However, these
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methods still produce task-specific models that are unable to generalize toward a broader range of protein
prediction tasks. One recent model, UDSMProt, used an RNN architecture in a similar pre-training and
fine-tuning framework to predict whether a given protein is contained in the same superfamily or fold of a
reference protein (Strodthoff et al., 2020). Such an approach requires pairwise comparison of sequences
against multiple reference proteins, which may not be entirely representative of a protein family.

1.2.2. Task: Protein—protein interaction prediction. The next protein prediction task we highlight
is protein—protein interaction (PPI) prediction. Defined as physical contacts involving molecular docking
between proteins in a specific context, PPIs are fundamental to most cellular processes (De Las Rivas and
Fontanillo, 2010). Research has shown that proteins, which comprise the functional machinery of cells, do
not act on their own in most cases. Instead, through PPIs, proteins form physical complexes that, acting as
molecular machines, are responsible for processes such as cell-cell signaling, immune response, gene
expression, and cellular structure formation (Sevimoglu and Arga, 2014).

Identifying PPIs and creating PPI networks, or interactome networks, has thus become central to the
study of biological systems (De Las Rivas and Fontanillo, 2010). By mapping these relationships, we can
understand the complex interactions between individual components in a living system with a holistic
approach. For instance, through the comparative analysis of PPIs in both healthy and diseased states, we
can study disease mechanisms as a whole and identify potential therapeutic targets (Kuzmanov and Emili,
2013; Petta et al., 2016). However, experimental identification of PPIs has proven to be a complex and
time-consuming process, thus creating the need for an efficient and reliable method of computationally
predicting PPIs.

Traditionally, computational identification of PPIs has relied on genomic, structural, or domain infor-
mation of the interacting proteins (Guo et al., 2008). However, such knowledge is not readily available for
most proteins. Instead, sequence-based identification currently relies on domain-based methods such as
support vector machines and random forest classifiers that extract features such as amino acid distributions
and domain compositions. These current approaches have limited information extraction capability and
demonstrate low prediction accuracy (Chen and Liu, 2005; Zhang et al., 2014; Alonso-Lépez et al., 2019).
More recent work has leveraged deep learning-based architectures such as stacked autoencoders, RNNs,
and recurrent convolutional neural networks (RCNNSs) (Sun et al., 2017; Chen et al., 2019; Guo and Chen,
2019). These models have achieved state-of-the-art accuracy in the binary PPI classification task, and the
ability to generalize to similar PPI characterization tasks such as interaction type prediction and binding
affinity estimation (Chen et al., 2019; Guo and Chen, 2019).

1.3. Contributions

We apply a Transformer neural network, which we call PROBERTa, to pre-train task-agnostic vector
representations of amino acid sequences. PRoOBERTa modifies the ROBERTa procedure by reducing the
number of transformer layers, using the Layerwise Adaptive Moments optimizer for Batch training
(LAMB), and training the model on amino acid sequences tokenized using BPE (You et al., 2019). We then
fine-tune these representations toward two protein prediction tasks: protein family classification and PPI
prediction.

We present two variants for the protein family classification task: (1) a multi-class classification problem
of predicting a family label for a given sequence and (2) a binary classification problem of predicting
whether a sequence is a member of a chosen family label. We show that the embeddings produced by
PRoBERTa can be used to produce models for family classification that contain more information about
protein family membership than the pre-trained embeddings, and have comparable performance to current
methods that use specialized task-specific architectures. We define PPI prediction as a binary classification
task to predict whether two proteins will interact given their amino acid sequences. We present three
experimental settings for binary PPI prediction based on how negative examples (non-interacting proteins)
are chosen. PROBERTa outperforms other methods in two out of the three settings.

PRoBERTa is also much more computationally efficient than past work that applies Transformer networks
to encode protein sequences to predict protein secondary structure. Using a BERT-based model, Rives et al.
(2021) pre-trained their model on 128 NVIDIA V100 GPUs for 4 days. In comparison, we pre-train PRo-
BERTa on four NVIDIA V100 GPUs in 18 hours using (1) a modified architecture, (2) the RoOBERTa training
procedure (Liu et al., 2019), and (3) the LAMB optimizer (You et al., 2019). By using this framework, we can
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use a smaller pre-training corpus while obtaining state-of-the-art accuracies, increasing the computational
efficiency for pre-training by a factor of 170 compared to the most recently published model.

2. METHODS

We treat proteins as a ‘‘language’” and draw ideas from the state-of-the-art techniques in NLP to obtain a
vector representation for proteins. For a sequence of amino acids to be treated as a sentence, the alphabet of
the language is defined such that X=X ;.0 U Z.., Where:

Zamino = {A, R, N, D, C,E, Q, G, H, I, L, K, M, F, P, O, S, U, T, W, Y, V}
Taw = {X, B, Z}

Each symbol ¢ € X, represents 1 of 22 amino acids, while X,,, contains three auxiliary symbols
used for unknown amino acids (X) and for when it is not possible to differentiate between asparagine/
aspartic acid (B) and glutamine/glutamic acid (Z).

2.1. Tokenization with BPE

Before amino acid sequences can be interpreted as a language, we must first define what a word is. This
is more challenging for proteins than most natural languages because unlike the space character in lan-
guages like English, there is no single character (or amino acid) that is used to divide parts of an amino acid
sequence into meaningful chunks. In the past, deep learning models have either used individual amino acids
as input (Hashemifar et al., 2018; Chen et al., 2019) or have chosen to group every three amino acids as a
“word”” (Asgari and Mofrad, 2015). However, there has been recent interest (Asgari et al., 2019) in
statistically determining segments of amino acids to be used as inputs for downstream machine learning
algorithms using a method called BPE (Gage, 1994). BPE was originally developed as a compression
algorithm although it has been adapted more recently as an NLP method for identifying subword units
(Sennrich et al., 2016).

In our application, given an amino acid sequence s={oy, ..., ad,) such that o; € X, a tokenization
function is a mapping 7 such that t(s)={z, t5, ..., t,) and each #; is a nonempty substring of s such that
s=t - ...-t,. The BPE algorithm iteratively merges the most frequent pair of tokens to form a new token
until a set maximum number of tokens are obtained (Gage, 1994; Kudo and Richardson, 2018).

2.2. Transformer network architecture

Inspired by the BERT language representation model architecture, PROBERTa consists of (1) an em-
bedding layer, followed by (2) T =5 stacked Transformer encoder layers, and (3) a final layer that con-
structs a task-specific output (Fig. 1). By stacking multiple Transformer encoder layers, the aim is to
capture complex higher-level information and relationships from the amino acid sequence. In total, our
model has ~44 million trainable parameters.

2.2.1. Model input. A tokenized amino acid sequence (u, ua, ..., u,) is either truncated or padded
to a fixed-length sequence of 512 tokens. Concretely, the model input t={t|, 1>, ..., ts12) is defined:
Ui if2 <i<n+1
e [CLS] ifi =1
! [EOS] ifi = min(n + 2512)°
[PAD] ifn+2 < i

where [CLS], [EOS], and [PAD] are reserved symbols.

2.2.2. Embedding layer. To prepare an input sequence r={t|, 1, ..., 1,) for the Transformer en-
coder layers, we train an embedding layer that independently converts each token #; into a vector with
dimension d=768. The choice of 768 was made after empirically testing d € {192, 384, 768}. Because
the model does not contain any convolution or recurrence, we incorporate sequence order information by
adding positional encodings to the input embedding vectors (Vaswani et al., 2017).
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FIG. 1. PRoBERTa architecture for pre-training and fine-tuning. (A) Overview of the architecture that is pre-trained
on the MLM task and fine-tuned on the protein prediction tasks. (B) The encoder block contains an embedding layer
and five transformer encoder layers. (C) Each encoder layer includes a multi-head self-attention mechanism and a fully-
connected feed-forward network. MLM, masked language modeling; PRoBERTa, protein RoBERTa.
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2.2.3. Transformer encoder layer. Each Transformer encoder layer contains two sub-layers—a
multi-head self-attention mechanism and a fully-connected feed-forward network—with residual connec-
tions around each sub-layer followed by a layer normalization operation (Ba et al., 2016). Each sub-layer,
and thus the entire encoder layer, takes as input and produces a list of n vectors, each of dimension d=768.

Given an input list of vectors x={xi, x2, ..., X,), each vector x; first travels through the multi-head self-
attention mechanism. This mechanism is composed of a= 12 separate randomly initialized attention heads,
which are trained to identify and then focus on certain subsets of positions in x based on their computed
context relevance to x;. Using this mechanism, the sub-layer encodes context information from each vector
x; in x, weighted by its relevance to x;, into an output vector y;.

The initial input vector x; is then added to the output vector y;, after which y; undergoes a layer-
normalization step and passes through a fully connected feed-forward network that has a single hidden
layer of size h=3072 and uses a GeLU activation (Hendrycks and Gimpel, 2016). The choice of 3072
comes from multiplying 768 by 4 as suggested in the original BERT publication (Devlin et al., 2019). Each
vector y; passes independently through the same feed-forward network to generate the output vector z;. The
vector y; is then added to z;, after which z; undergoes another layer-normalization step. The output for the
entire Transformer layer is the list of vectors {z;, 22, - .., 2,y (Vaswani et al., 2017).

2.2.4. Model output. Without adding any task-specific heads to the architecture, the model output is
a list of /=512 vectors, each with length d=768. The first vector, which corresponds to the special [CLS]
token, acts as an aggregate sequence representation that we use for sequence classification tasks. We refer
to the entire output as the deep representation of the amino acid sequence.

2.3. Model pre-training

Following the BERT framework, we train PROBERTa in two stages: pre-training and fine-tuning (Devlin
et al.,, 2019). In the pre-training stage, our objective is to train the model to learn task-agnostic deep
representations that capture the high-level structure of amino acid sequences.

Based on the RoBERTa procedure, we pre-train PRoOBERTa using only the unsupervised masked lan-
guage modeling (MLM) task, which adds a Language Modeling head to the network architecture. MLM
randomly masks certain tokens and then trains the network to predict their original value (Liu et al., 2019).
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We expect MLM to be a useful task because it will train the neural network to predict groups of amino
acids in a sequence based on the other amino acids and their order in the sequence. This should impart some
general-purpose, biologically relevant information regarding the sequences to the network. Specific training
hyperparameters and optimization are detailed in Section 2.5.

Given a tokenized input sequence {fy, f, ..., t,), we select a random sample of tokens in the sequence to
be replaced with a special token [MASK]. Then we train the network to predict the masked tokens. Unlike
the original BERT procedure, following the RoOBERTa procedure, we generate a new masking pattern every
time we feed a sequence to the model (Liu et al., 2019). The original BERT procedure also included a Next
Sentence Prediction (NSP) task. However, given that proteins are not made up of multiple sentences, as we
have defined them, NSP is not an appropriate pre-training task. In addition, removing the NSP task has been
shown to improve downstream performance in NLP (Liu et al., 2019).

2.3.1. Pre-training data. We use UniProtKB/Swiss-Prot (450K unique sequences with a mean to-
kenized length of 129.6 tokens), a collection of experimentally reviewed amino acid sequences (The
UniProt Consortium, 2018). Sequences are tokenized with the BPE algorithm described in Section 2.1. In
our experiments, the maximum vocabulary size was set to 10,000 because we empirically observed that the
mean token length increased very little beyond 10,000 tokens, indicating that most of the longer tokens
were detected in the first 10,000 iterations.

2.4. Model fine-tuning

The pre-trained model can then be specialized for downstream protein prediction tasks. In the fine-tuning
stage, we initialize the model with the pre-trained parameters. We then modify the pre-trained architecture by
replacing the output layer with a task-specific layer with dimensions tailored to the specific task. Parameters
are fine-tuned using labeled data from the prediction tasks. Here, we fine-tune the pre-trained model for our
two specific prediction tasks: family classification and PPI prediction. For our selected tasks, we feed the
aggregate sequence representation corresponding to the special [CLS] token, as described in Section 2.2, into
an output layer, which consists of a single-layer feed-forward neural network and softmax classifier.

2.4.1. Task: Protein family classification. For this task, we perform two modes of classification:
binary family classification and multi-class family classification. In binary family classification, we train a
separate classifier for each protein family to identify which sequences belongs to a given family. This
classifier performs logistic regression on the trained sequence representations from the pre-trained model.
We create a balanced training dataset for each classifier consisting of all the positive examples and the same
number of negative examples drawn uniformly at random without replacement from outside the family. In
multi-class family classification, we train a single classifier that outputs a probability distribution over the
set of all protein families. In both classification modes, we require amino acid sequences to have mem-
bership in only one protein family for ease of classification.

2.4.1.1. Fine-tuning data. For the Family Classification tasks, we use 313,214 unique protein se-
quences from UniProtKB/Swiss-Prot whose manually curated annotations include protein family infor-
mation and are not associated with multiple families or hierarchical family classifications (The UniProt
Consortium, 2018).

2.4.2. Task: PPI prediction. Given a pair of tokenized amino acid sequences
@V, Dy and (1, £P, .12,

we pack them together into a single input sequence separated by a special token [SEP], which in the
RoBERTa procedure is composed of two [EOS] tokens. The input representation becomes

(CLS], £V, 80, ..., £V, [SEP], 7,47, ..., Y, [EOS]).

s in o shn o

We truncate each tokenized amino acid sequence to 254 tokens before concatenation so the maximum
combined length of the input sequence after the addition of the special tokens is /=512 tokens. For this problem,
we use the fine-tuning procedure to add a binary classifier layer to the existing pre-training architecture.
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FIG. 2. Average degree of negative interacting proteins for the aggressive and ultra-aggressive scenarios. The
average degree of the negative protein pairs are shown on the x-axis. Negative pairs in the ultra-aggressive scenario are
chosen by weighted sampling based on these average degrees.

2.4.2.1. Fine-tuning data. For the PPI prediction task, we use experimentally identified human PPIs
from the Human Integrated Protein-Protein Interaction rEference (HIPPIE) database that are confidence
scored and functionally annotated (Alanis-Lobato et al., 2016). Because HIPPIE only reports interacting
protein pairs, we generated three sets of putative non-interacting protein pairs to serve as negative ex-
amples. In the ‘“‘conservative’’ scenario, we generated 275,401 pairs using randomly selected human
proteins from UniProt (Hamp and Rost, 2015) that are not reported to interact in HIPPIE, resulting in a PPI
dataset of 536,545 pairs. This random generation of negative examples is possible because of the as-
sumption that PPI networks are sparse, although we note the possibility that these negative examples may
include interacting protein pairs not reported in HIPPIE.

In the “‘aggressive’ scenario, we generated 275,401 pairs using randomly selected proteins from HIPPIE
that are not reported to interact with each other, also resulting in a PPI dataset of 536,545 pairs. Finally, in
the “‘ultra-aggressive’” scenario, the negative examples are generated by performing a weighted sampling
of pairs of proteins from HIPPIE that do not interact with each other. Here the weights used are the average
degree of the proteins in the HIPPIE network. Therefore, the ultra-aggressive negative space will have pairs

TABLE 2. MODEL HYPERPARAMETERS FOR TRAINING

Hyperparameter Pre-training value Fine-tuning search space
LAMB f, 0.9 0.9

LAMB f, 0.999 0.999

LAMB ¢ 1x1078 1x1078

LAMB weight decay (1) 0.01 [0, 0.001, 0.01, 0.1]
Minibatch size 8192 [1024, 2048, 4096, 8192]
Peak LR 0.0025 5/(2[0*0‘5’1’1'5'2'2'5’3] x 1000)
Warmup updates 3125 [156, 312, 625, 1250, 2500]
Total updates 125,000 12,500

Linear dropout 0 [0, 0.1, 0.2, 0.3, 0.4, 0.5]

Attention dropout 0.1 [0, 0.1, 0.2, 0.3, 0.4, 0.5]
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of proteins that are highly likely to interact with other proteins but not with each other (Fig. 2). However, it
is important to note that the ultra-aggressive scenario is most likely to include negative examples that may
be positives that have not been experimentally tested.

2.5. Hyperparameters and optimization

We use the fairseq toolkit to train and evaluate our model (Ott et al., 2019). For pre-training, we select
hyperparameters using heuristics from literature (Devlin et al., 2019; Liu et al., 2019; You et al., 2019). For each
fine-tuning task, we perform a randomized search with 50 samples from the described hyperparameter space
(Table 2).

We train our model on the cross-entropy loss with the LAMB optimizer (You et al., 2019), which is a
layerwise adaptive large batch optimization technique developed to increase performance and reduce
training time for attention-based models. The learning rate is warmed up linearly over to the peak value.
Afterward, it is adjusted using a polynomial decay policy. For pre-training, we selected the learning rate
and warmup period using the square root learning rate (LR) scaling heuristic and linear-epoch warmup
scheduling because of their success when applied to BERT-based models (You et al., 2019).

To avoid overfitting and balance model performance with computational efficiency, we use early
stopping with a patience value of 3 (training stops after 3 consecutive epochs with no improvement in either
MLM validation loss during pre-training or task-specific validation accuracy during fine-tuning).

2.6. Evaluation metrics

For both protein prediction tasks, we use the following metrics to evaluate a model’s prediction. Ac-
curacy is the proportion of predictions made by the model that are correct. Precision is the proportion of
positive predictions made by the model that are correct. Recall is the proportion of correct positives that are
identified by the model. Finally, the adjusted mutual information (AMI) is an entropy-based metric that
measures the agreement between two sets of labels (Pedregosa et al., 2011). AMI adjusts mutual infor-
mation to account for chance: For two labels U, V, we compute the AMI as

MI(U, V)-E[MIU, V)|
avg(H(U), HV))—EMI(U, V)]’

AMI(U, V)=

where H(U) is the entropy of U and MI(U, V) is the mutual information between U and V.

3. RESULTS

We first describe the sequence features learned from the pre-trained model. We then show PRoBERTa’s
performance when the model is fine-tuned for the Protein Family Classification and PPI Prediction tasks.
Finally, we perform a robustness analysis by limiting the amount of labeled input data during fine-tuning.

3.1. Protein embeddings from the pre-trained model

We pre-trained the PROBERTa model as described in Section 2.3 on 4 NVIDIA V100 GPUs in 18 hours.
We first explored whether the pre-trained model captured any biological meaning from the amino acid
sequences. We created protein embeddings by concatenating the vectors of each protein’s first 128 tokens.
We concatenated the vectors because the concatenated vectors appeared to provide better visualization
results than the just the [CLS] (described in Section 2.2.1) token. The pre-trained model is already able to
distinguish between protein families; Figure 3 shows the first two principal components of thirty randomly
selected proteins from seven related protein families.

To systematically evaluate how well the pre-trained protein embeddings distinguish protein families, we
clustered 9151 protein embeddings from the manually annotated human proteins in UniProt that belong in
families with more than one protein and compared the clusters to the 1761 annotated protein families using
AML. To cluster embeddings, we summed the representations for each token and reduced these embeddings to
twenty dimensions using PCA and applied k-means clustering using Euclidean distance, setting k= 1800 to
approximate the number of annotated families. The mean AMI of the k-means clusters, averaged over 20 runs,
is 0.328, which is significantly higher than the expected AMI of O for randomly assigned clusters (Fig. 4).
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FIG. 3. The first two principal components of pre-trained embeddings for 189 amino acid sequences from seven
representative protein families.

3.2. Protein family classification

Given the promise of the protein embeddings, we then evaluated the performance of the PRoBERTa
model on the protein family classification task (Section 2.4.1). Clustering the embeddings after fine-tuning
on the protein family classification task shows a higher AMI than clustering after pre-training (Fig. 4),
suggesting that the fine-tuned embeddings capture more protein family information.

For the binary classification task, we trained a separate logistic regression classifier for each protein family
with more than 50 proteins and measured the weighted mean accuracy as 0.98. The classifier corresponding to
the lowest scoring family, made up of 57 proteins, had an accuracy of 0.77. To train these classifiers, we

Protein Embedding Accuracy

==
0.45 1 — 1

0.40 1

0.35 1

0.30 1

AMI

0.25

0.20

0.15 - —_

Family PPI PPI PPI
Classification Conservative Aggressive Ultra-aggressive

Pretrained

FIG. 4. Accuracy of unsupervised clustering of three different versions of PROBERTa embeddings with the true
protein families given by UniProt. AMI values are shown for the pretrained embeddings and the fine-tuned embeddings
for the protein prediction tasks. AMI, adjusted mutual information.
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TABLE 3. COMPARISON OF BINARY (LEFT) AND MULTI-CLASS (RIGHT) FAMILY CLASSIFICATION

Method Accuracy Method Accuracy
ProtVec+logistic 0.89 DeepFam 0.95
ProtFreqVec+logistic 0.98 Simple CNN 0.72
ProtDocVec+logistic 0.98 PRoBERTa 0.93
PRoBERTa+logistic 0.98

CNN, convolutional neural network.

randomly withheld 30% of the proteins from each family to be used as the test set. We compared
PRoBERTa+logistic to three other NLP based embedding methods: ProtVec, which is a protein embedding
method inspired by Word2Vec; ProtDocVec, which modifies ProtVec to use Doc2Vec; and ProtFreqVec,
which uses the frequency of triplets of amino acids to form embedding vectors (Asgari and Mofrad, 2015).
PRoBERTa+logistic performs better than ProtVec+logistic and similarly to ProtDocVec+logistic and
ProtFreqVec+logistic (Table 3).

This result supports the idea that contextual embeddings do not significantly help binary family clas-
sification. In Figure 3a, all the families but the importin beta family were chosen from families that have
accuracies that are representative of the overall accuracy (ranging from 0.96 to 1.0) while the importin beta
protein family has a substantially lower accuracy of 0.77. The PCA plots in Figure 3 show that the proteins
in this less accurately classified family are co-located with proteins from the FormylGlycinAMidine ri-
bonucleotide Synthetase (FGAMS) family and transfer ribonucleic acid (tRNA) pseudouridine synthase
TruA family.

In the multi-class family classification task, we used fine-tuning to add an output layer that maps to
protein family labels to the PROBERTa model. This was done using the dataset of 313,214 UniProt proteins
with only one associated family. These proteins were split into train/validation/test sets (0.8/0.1/0.1), and
our fine-tuned classifier achieved an accuracy of 0.93 on the test set. We then compared this to two other
multi-class family classifiers including a simple CNN made up of four convolution layers as a baseline and
DeepFam, a CNN method that is the current state-of-the-art method for protein family classification. In
particular, DeepFam is made up of a convolution layer with eight different kernel sizes and 250 convolution
units for each kernel size (Oh et al., 2018). PRoBERTa with a classification layer performed better than the
baseline method and had comparable accuracy to DeepFam (Table 3).

3.3. PPI prediction
We next assessed PROBERTa on the PPI task using the conservative, aggressive, and ultra-aggressive

scenarios for sampling non-interacting protein pairs (Section 2.4.2).

3.3.1. Conservative scenario. We first evaluated how well the fine-tuned model’s embeddings
capture protein family information compared to the pre-trained embeddings. In the conservative scenario,
the fine-tuned model produces embeddings that cluster with a lower AMI with protein families compared

TABLE 4. PPI PREDICTION RESULTS WITH 20% OF TRAINING DATA (ToP) AND 100% OF TRAINING DATA (BOTTOM)

Conservative Aggressive Ultra-aggressive
Method Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall
DeepFam+DI 0.79 0.79 0.66 0.75 0.76 0.73 0.63 0.66 0.54
PIPR 0.81 0.75 0.77 0.77 0.77 0.77 0.61 0.60 0.64
ProtVec+DI 0.80 0.78 0.70 0.73 0.72 0.76 0.58 0.57 0.70
PRoBERTa 0.95 0.95 0.95 0.79 0.86 0.68 0.62 0.59 0.71

PRoBERTa (100% training)  0.98 0.98 0.99 0.85 0.84 0.85 0.72 0.71 0.72

Bold =best performing method according to each metric.
DI, deep interact.
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to the pre-trained embeddings (Fig. 4), indicating that the parameters of the model fine-tuned on pre-
dicting interactions are not as tuned to protein family classification. Evaluated on the test set, the fine-
tuned PRoBERTa PPI classifier had an accuracy of 0.95 with a precision and recall of 0.95 and 0.95,
respectively (Table 4) and a receiver operating characteristic (ROC) area under the curve (AUC) of 0.99
when ranking the predictions by the softmax probability (Fig. SA). In these runs, we only used 20% of the
available training and validation data from the train/validation/test (0.8/0.1/0.1) split. This was done
because some of the methods we compare against were not able to scale up to using 80% of the data for
training and thus would not be able to make a fair comparison to the PROBERTa model trained with the
entire train set.

We compare our results to PIPR, which is one of the top PPI prediction neural networks currently
available, using a similar number of interactions from our dataset (Chen et al., 2019). PIPR uses a residual
convolutional neural network (RCNN) architecture to extract both sequential information and local features
relevant for PPI prediction. We also compare our embeddings to the ProtVec embeddings combined with a
feed-forward neural network with three hidden layers (which we call Deeplnteract) that predicts PPI.

Finally, we try a biologically motivated transfer learning approach by first training a DeepFam network
on protein family classification and then using one of the hidden layers as the vector representations of the
proteins to be used by Deeplnteract. As seen in Figure 5A, PRoBERTa with a classification layer out-
performs all of these methods by a large margin. Further, when using the complete dataset, the accuracy
reaches 0.98 (Table 4 and Fig. 6).
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FIG.5. (A-C)ROC curves for PPI prediction in the (A) conservative scenario, (B) aggressive scenario, and (C) ultra-
aggressive scenario. (D) Comparing the accuracies of the PPI prediction scenarios with PROBERTa models that were
pre-trained and not pre-trained. PPI, protein—protein interaction; ROC, receiver operating characteristic.
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PROBERTa's Robustness by Scenario
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FIG. 6. Accuracy on test data when using varying amounts of training data for fine-tuning on pre-trained models.

3.3.2. Aggressive scenario. Similar to the conservative scenario, the model fine-tuned on the ag-
gressive PPI dataset produces embeddings with a lower AMI with protein families than the pre-trained
embeddings (Fig. 4). For this scenario, PROBERTa had an accuracy of 0.79 with a precision and recall of
0.86 and 0.68, respectively (Table 4) and a ROC AUC of 0.88 (Fig. 5B). Similar to above, we only use 20%
of the available training and validation data. As seen in Figure 5B, PROBERTa with a classification layer
still performs better than PIPR, which performs better than the other two methods. Moreover, when the full
training dataset is used, the accuracy of our model improves to 0.85 (Table 4 and Fig. 6).

3.3.3. Ultra-aggressive scenario. Finally, in the ultra-aggressive scenario, the ultra-aggressive PPI
model shows a lower AMI with protein families than the pre-trained embeddings, as expected based on the
previous two PPI models (Fig. 4). For the ultra-aggressive dataset, PROBERTa has an accuracy of 0.62 with
a precision of 0.59, a recall of 0.71 and a ROC AUC of 0.67, showing that even in this challenging scenario,
PRoBERTa is still able to make non-random predictions. However, as seen in Table 4 and Figure 5C,
PRoBERTa is no longer the best performing method, with the fine-tuned DeepFam model obtaining a
slightly higher accuracy of 0.63.

3.3.4. Pretraining improves performance in PPI prediction. To test how the pre-training step of
PRoBERTa helps to improve its predictive power, we also trained Transformer models to predict PPI in all
three scenarios without any pre-training. These models are otherwise identical to PROBERTa. As shown on
Figure 5D, pre-training improves the prediction accuracy in all three scenarios. This is another indication
that the MLM task extracts biologically relevant information from unannotated protein sequences.

3.4. PRoBERTa scalability and robustness

We also investigated the robustness of the models by varying the amount of training data for both fine-
tuning tasks. For the PPI prediction task in Section 3.3, we used 20% of the training data to compare to
existing methods; here, we can use all of the training data, improving the performance in both the con-
servative and aggressive scenarios (Table 4).

To assess the robustness of PROBERTa on the protein prediction tasks, we used fractions of the 0.8 and
0.1 split that made up the fine-tuning train and validation set, respectively, for task training. For example, if
90% of the train and validation set was used, this meant that 90% x 0.9 or 81% of the entire dataset was
seen during training. Figure 6 shows the change in accuracy with different fractions of the train set used.
This shows that all three models were somewhat robust to different amounts of training data. The PPI
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models appear to be more robust (they have smaller slopes) than the Protein Family model. However, it
should be noted that the complete dataset for the Protein Family model contained 313,214 proteins, while
the PPI dataset had 536,545 interactions in all three scenarios. The difference in robustness could be due to
the absolute difference in the number of training data points.

4. DISCUSSION

In this article, we propose a Transformer based neural network architecture, called PRoBERTa, for
protein characterization tasks. This neural network is based on the BERT architecture and the ROBERTa
training procedure with a reduced number of Transformer layers and using the LAMB optimizer. We found
that the pre-trained embeddings contain general yet biologically relevant information regarding the proteins
and fine-tuning pushes the embeddings to have more specific information at the cost of generality. While
there are notable differences between protein sequences and natural language corpuses (Luo et al., 2020;
Strodthoff et al., 2020), leveraging the architecture from BERT tuning can capture this biologically relevant
information. Altering the architecture to include prior knowledge unique to biological sequences could
further improve the embedding space.

We found that using the embeddings for Protein Family Classification produced results that were
comparable to the current best methods. In particular, we performed two different forms of classification; a
binary classification that classified a protein as “‘in the family” or “‘not in the family”’ and a multi-class
family classification. The multi-class family classification was based on the simplification that there is only
one class per protein. Proteins that belong to more than one family were excluded from this classifier but
not the binary classifiers.

Furthermore, we used embeddings from PRoBERTa for a fundamentally different problem, PPI pre-
diction, using three different datasets generated from the HIPPIE database and found that with sufficient
data, it substantially outperforms the current state-of-the-art method in the conservative scenario and still
performs better than the other methods in the aggressive scenario. When evaluated on the aggressive
dataset, the model trained on the conservative dataset scores an overall accuracy of 0.55, with a precision
and recall of 0.52 and 0.99, respectively. This suggests that the model in the conservative scenario performs
something closer to a protein classification task to identify which proteins are present in HIPPIE and are
thus more likely to correspond to positive examples. The further drop in accuracy with the ultra-aggressive
scenario may indicate that PRoBERTa’s predictive power in the other scenarios is in part due to correctly
predicting proteins that interact with many other proteins. Therefore, we are currently working on adapting
PRoBERTa to predict protein promiscuity.

A concern that one might have in evaluating a model on these tasks is that there may have been very
similar sequences in the train and test sets. To verify that this was not the case, we clustered the proteins in
the HIPPIE dataset using Cluster Database at High Identity with Tolerance (CD-HIT) at a 90% sequence
similarity threshold and found that very few proteins in the dataset were similar to each other (Huang et al.,
2010). In particular, only 643 out of 16,215 proteins had sequence similarity of greater than 90% to another
protein in the dataset and the average size of a cluster was 1.025.

The efficiency of PRoOBERTa over existing methods [a speedup in pre-training time by a factor of 170
compared to the similar BERT-based model by Rives et al. (2021)] provides unprecedented opportunities
for using the growing amount of sequence data in protein prediction tasks. Further, PROBERTa’s success in
these two different protein prediction tasks alludes to the generality of the embeddings and the potential of
smaller and more cost efficient transformer neural networks for a variety of protein prediction tasks.
Finally, our use of BPE for sequence tokenization makes PRoBERTa particularly suitable for downstream
tasks that involve long sequences.

S. AVAILABILITY

Scripts for pre-training, fine-tuning, and evaluating models, along with links to datasets and trained
weights can be found at: https://github.com/annambiar/PRoBERTa
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