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ABSTRACT

The scientific community is rapidly generating protein sequence information, but only a

fraction of these proteins can be experimentally characterized. While promising deep

learning approaches for protein prediction tasks have emerged, they have computational

limitations or are designed to solve a specific task. We present a Transformer neural net-

work that pre-trains task-agnostic sequence representations. This model is fine-tuned to

solve two different protein prediction tasks: protein family classification and protein in-

teraction prediction. Our method is comparable to existing state-of-the-art approaches for

protein family classification while being much more general than other architectures.

Further, our method outperforms other approaches for protein interaction prediction for

two out of three different scenarios that we generated. These results offer a promising

framework for fine-tuning the pre-trained sequence representations for other protein pre-

diction tasks.

Keywords: neural networks, protein family classification, protein–protein interaction prediction.

1. INTRODUCTION

The advent of new protein sequencing technologies has accelerated the rate of protein discovery

(Restrepo-Pérez et al., 2018). While protein sequence repositories are growing exponentially, existing

methods for experimental characterization are not able to keep up with the present rate of novel sequence

discovery (Oh et al., 2018; The UniProt Consortium, 2018). Currently, less than 1% of all amino acid

sequences in the UniProtKB database have been experimentally characterized (The UniProt Consortium,

2018). The explosion of uncharacterized proteins presents opportunities in computational approaches for

protein characterization.

Departments of 1Bioengineering, 3Computer Science, and 4Physics, University of Illinois at Urbana-Champaign,
Urbana, Illinois, USA.

2Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Departments of 5Computer Science and 6Biology, Reed College, Portland, Oregon, USA.
*Current Affiliation: Department of Computer Science, Williams College, Williamstown, Massachusetts, USA.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 30, Number 1, 2023

# Mary Ann Liebert, Inc.

Pp. 95–111

DOI: 10.1089/cmb.2022.0132

95

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t 

0
5
/2

6
/2

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



Harnessing protein sequence data to identify functional characteristics is critical to understanding cel-

lular functions and developing potential therapeutic applications (Chen et al., 2019). Sequence-based

methods to computationally infer protein characteristics have been critical for inferring protein function

and other characteristics (Smith et al., 1981). Thus, the development of computational methods to infer

protein characteristics (which we generally describe as ‘‘protein prediction tasks’’) has become paramount

in the field of bioinformatics and computational biology. Here, we adapt a Transformer neural network to

establish task-agnostic representations of protein sequences, and use the Transformer network to solve two

protein prediction tasks.

1.1. Deep learning for natural language processing tasks

In applying deep learning to sequence-based protein characterization tasks, we first consider the field of

natural language processing (NLP), which aims to analyze human language through computational tech-

niques (Manning and Schütze, 1999). Deep learning has recently proven to be a critical tool for NLP,

achieving state-of-the-art performance on benchmarks for named entity recognition, sentiment analysis,

question answering, and text summarization, among others (Young et al., 2017).

Neural networks are functions that map one vector space to another. Thus, to use them for NLP tasks, we

first need to represent words as real-valued vectors. Often referred to as word embeddings, these vector

representations are typically ‘‘pre-trained’’ on an auxiliary task for which we have (or can automatically

generate) a large amount of training data. The goal of this pre-training is to learn generically useful

representations that encode deep semantic and syntactic information (Young et al., 2017). Then, these

representations can be used to train systems for NLP tasks for which we have only a moderate amount of

training data.

Word embeddings can be broadly categorized as either context-free or contextualized. Methods such as

Skip-Gram (as popularized by the seminal software package word2vec) and GloVe generate context-free

word vector representations (Mikolov et al., 2013; Pennington et al., 2014). Once trained, these methods

assign the same embedding to a given word independent of its context. Contextualized embedding models

such as OpenAI-GPT (Radford et al., 2019) and Embedding from Language Model (ELMo) (Peters et al.,

2018) were later developed to generate on-demand contextualized embeddings given a word and its

surrounding sequence. Contextualized word representations have been shown to have superior performance

to context-free representations on a variety of benchmarks (Peters et al., 2018), and have become the new

standard practice in NLP.

Building upon these methods, Devlin et al. (2019) developed a state-of-the-art contextualized word

embedding technique called Bidirectional Encoder Representations from Transformers (BERT), to create

‘‘deeply bidirectional’’ embeddings using transformers. BERT’s architecture includes multiple Transfor-

mer encoder layers (Vaswani et al., 2017), whose architecture we explain in Section 2.2, to construct a

model that generates token representations by simultaneously incorporating the leftward and rightward

context of sentences. Recently, a new procedure called Robustly Optimized BERT Pretraining Approach

(RoBERTa) was developed that improved BERT’s performance on the original masked language task (Liu

et al., 2019).

1.2. From NLP to protein prediction tasks

Because of the unprecedented success in applying deep learning to NLP tasks, one of the recent interest

areas in computational biology has been applying NLP-inspired techniques to amino acid sequence charac-

terization. These techniques typically treat amino acids as analogous to individual characters in a language

alphabet. Following the pre-training regime established in NLP, tools such as seq2vec (Heinzinger et al., 2019)

and ProtVec (Asgari and Mofrad, 2015) have been developed to create amino acid sequence embeddings for

protein prediction tasks. These two representation methods are based on the ELMo and Skip-Gram technique,

respectively, and demonstrate state-of-the-art accuracy when applied to bioinformatics tasks.

Inspired by the success of BERT in NLP, in this article we pre-train a Transformer network on amino

acid sequence representations for protein prediction tasks. Our model first appeared at a conference in 2020

(Nambiar et al., 2020), and similar Transformer neural networks have been proposed for protein prediction

tasks in recent years. In fact, Transformer neural networks have become the workhorse of the protein

representation learning, with multiple publicly available pre-trained models such as ESM-1b (Rives et al.,

2021) and ProtBert (Elnaggar et al., 2021). These models can be distinguished based on several
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characteristics including the size of the neural network, the dataset it was pre-trained on, and how se-

quences were tokenized (Table 1).

The largest model, ESM-1b, was trained on the UniRef50 dataset where 250 million sequences were

clustered at 50% sequence identity and a representative sequence from each cluster was used (Rives et al.,

2021). Using UniRef50 could be advantageous because the clustering of sequences decreases the redun-

dancy of sequences seen by the model. The disadvantage of using UniRef50 is that this dataset might not

allow the model to learn evolutionary information as easily, which has been addressed in other work by

clustering using 90% sequence identity (Meier et al., 2021). ProtBert, on the other hand was trained on the

Big Fat Database (BFD) that is made up of over 2 billion proteins. This increase in number of proteins was

due to the inclusion of metagenomic data in the dataset, allowing the model to be trained on a wider range

of sequences (Elnaggar et al., 2021).

However, the fact that a large fraction of the dataset is made up of sequences obtained from metage-

nomic data could also be a source of bias in the data. Finally, we use the SwissProt dataset that contains

only 450,000 reviewed sequences for Protein RoBERTa (PRoBERTa) (Nambiar et al., 2020). The benefit

of using SwissProt is that since all of the sequences are reviewed it is less likely that the dataset contains

low quality sequences. This was especially important for us since one of the goals of our work was to pre-

train a model with a small number of sequences, to be cost efficient.

This need for cost efficiency also led to our use of byte-pair encoding (BPE) for sequence tokenization, a

characteristic that is not shared by other transformer-based protein language models. The differences

between models allow researchers to use the model that best fits their downstream tasks and computational

budget. These and similar models have been used for various tasks including protein localization predic-

tion, variant effect prediction, and protein contact prediction, among others (Bhattacharya et al., 2020;

Elnaggar et al., 2021; Meier et al., 2021; Stärk et al., 2021). In this article, we focus on using our pre-trained

models for two tasks: protein family prediction and protein interaction prediction.

1.2.1. Task: Protein family classification. Protein families are groups of evolutionarily-related

proteins that typically share similar sequence, structural, and functional characteristics. By taking advan-

tage of the evolutionary conservation of amino acid sequence and structure, resources such as CATH-

Gene3D, PANTHER, Pfam, and SUPERFAMILY cluster amino acid sequences that share an inferred

origin into hierarchical groups known as protein superfamilies, families, and subfamilies (Gough et al.,

2001; Punta et al., 2011; Mi et al., 2015; Dawson et al., 2017). Traditionally, family classification has

required the comparison of experimentally identified characteristics. However, methods have also been

developed to computationally classify proteins based solely on sequence similarity. This approach enables

us to infer functional and structural characteristics of proteins in a high-throughput manner.

Current computational approaches for protein family classification include methods such as BLASTp

and profile hidden Markov models (pHMMs) that compare sequences to a large database of pre-annotated

sequences. However, inference using these alignment-based methods is computationally inefficient, as they

require repeated comparison of sequences to an exponentially growing database of labeled family profiles

and are limited by expensive, manually tuned processing pipelines (Das and Orengo, 2016). With the

exponential growth of protein discovery, the development of more scalable approaches is required to

overcome traditional bottlenecks (Bileschi et al., 2022).

Guided by a deep learning framework, recent models based on convolutional neural network (CNN) and

recurrent neural network (RNN) architectures have been successful in achieving state-of-the-art accuracy

on the protein family classification task (Heinzinger et al., 2019; Bileschi et al., 2022). However, these

Table 1. Characteristics of Three Different Bidirectional Encoder Representations

from Transformers-Inspired Protein Language Models

Params Dataset Tokenization

ESM-1b (Rives et al., 2021) 650 million UniRef50 Single amino acid

ProtBert (Elnaggar et al., 2021) 420 million BFD Single amino acid

PRoBERTa (Nambiar et al., 2020) 44 million UniProt Byte-pair encoding

PRoBERTa is the model used in this work.

BFD, Big Fat Database.
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methods still produce task-specific models that are unable to generalize toward a broader range of protein

prediction tasks. One recent model, UDSMProt, used an RNN architecture in a similar pre-training and

fine-tuning framework to predict whether a given protein is contained in the same superfamily or fold of a

reference protein (Strodthoff et al., 2020). Such an approach requires pairwise comparison of sequences

against multiple reference proteins, which may not be entirely representative of a protein family.

1.2.2. Task: Protein–protein interaction prediction. The next protein prediction task we highlight

is protein–protein interaction (PPI) prediction. Defined as physical contacts involving molecular docking

between proteins in a specific context, PPIs are fundamental to most cellular processes (De Las Rivas and

Fontanillo, 2010). Research has shown that proteins, which comprise the functional machinery of cells, do

not act on their own in most cases. Instead, through PPIs, proteins form physical complexes that, acting as

molecular machines, are responsible for processes such as cell–cell signaling, immune response, gene

expression, and cellular structure formation (Sevimoglu and Arga, 2014).

Identifying PPIs and creating PPI networks, or interactome networks, has thus become central to the

study of biological systems (De Las Rivas and Fontanillo, 2010). By mapping these relationships, we can

understand the complex interactions between individual components in a living system with a holistic

approach. For instance, through the comparative analysis of PPIs in both healthy and diseased states, we

can study disease mechanisms as a whole and identify potential therapeutic targets (Kuzmanov and Emili,

2013; Petta et al., 2016). However, experimental identification of PPIs has proven to be a complex and

time-consuming process, thus creating the need for an efficient and reliable method of computationally

predicting PPIs.

Traditionally, computational identification of PPIs has relied on genomic, structural, or domain infor-

mation of the interacting proteins (Guo et al., 2008). However, such knowledge is not readily available for

most proteins. Instead, sequence-based identification currently relies on domain-based methods such as

support vector machines and random forest classifiers that extract features such as amino acid distributions

and domain compositions. These current approaches have limited information extraction capability and

demonstrate low prediction accuracy (Chen and Liu, 2005; Zhang et al., 2014; Alonso-López et al., 2019).

More recent work has leveraged deep learning-based architectures such as stacked autoencoders, RNNs,

and recurrent convolutional neural networks (RCNNs) (Sun et al., 2017; Chen et al., 2019; Guo and Chen,

2019). These models have achieved state-of-the-art accuracy in the binary PPI classification task, and the

ability to generalize to similar PPI characterization tasks such as interaction type prediction and binding

affinity estimation (Chen et al., 2019; Guo and Chen, 2019).

1.3. Contributions

We apply a Transformer neural network, which we call PRoBERTa, to pre-train task-agnostic vector

representations of amino acid sequences. PRoBERTa modifies the RoBERTa procedure by reducing the

number of transformer layers, using the Layerwise Adaptive Moments optimizer for Batch training

(LAMB), and training the model on amino acid sequences tokenized using BPE (You et al., 2019). We then

fine-tune these representations toward two protein prediction tasks: protein family classification and PPI

prediction.

We present two variants for the protein family classification task: (1) a multi-class classification problem

of predicting a family label for a given sequence and (2) a binary classification problem of predicting

whether a sequence is a member of a chosen family label. We show that the embeddings produced by

PRoBERTa can be used to produce models for family classification that contain more information about

protein family membership than the pre-trained embeddings, and have comparable performance to current

methods that use specialized task-specific architectures. We define PPI prediction as a binary classification

task to predict whether two proteins will interact given their amino acid sequences. We present three

experimental settings for binary PPI prediction based on how negative examples (non-interacting proteins)

are chosen. PRoBERTa outperforms other methods in two out of the three settings.

PRoBERTa is also much more computationally efficient than past work that applies Transformer networks

to encode protein sequences to predict protein secondary structure. Using a BERT-based model, Rives et al.

(2021) pre-trained their model on 128 NVIDIA V100 GPUs for 4 days. In comparison, we pre-train PRo-

BERTa on four NVIDIAV100 GPUs in 18 hours using (1) a modified architecture, (2) the RoBERTa training

procedure (Liu et al., 2019), and (3) the LAMB optimizer (You et al., 2019). By using this framework, we can
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use a smaller pre-training corpus while obtaining state-of-the-art accuracies, increasing the computational

efficiency for pre-training by a factor of 170 compared to the most recently published model.

2. METHODS

We treat proteins as a ‘‘language’’ and draw ideas from the state-of-the-art techniques in NLP to obtain a

vector representation for proteins. For a sequence of amino acids to be treated as a sentence, the alphabet of

the language is defined such that S=Samino [ Saux, where:

Samino = fA‚ R‚ N‚ D‚ C‚ E‚ Q‚ G‚ H‚ I‚ L‚ K‚ M‚ F‚ P‚ O‚ S‚ U‚ T‚ W‚ Y‚ Vg

Saux = fX‚ B‚ Zg

Each symbol r 2 Samino represents 1 of 22 amino acids, while Saux contains three auxiliary symbols

used for unknown amino acids (X) and for when it is not possible to differentiate between asparagine/

aspartic acid (B) and glutamine/glutamic acid (Z).

2.1. Tokenization with BPE

Before amino acid sequences can be interpreted as a language, we must first define what a word is. This

is more challenging for proteins than most natural languages because unlike the space character in lan-

guages like English, there is no single character (or amino acid) that is used to divide parts of an amino acid

sequence into meaningful chunks. In the past, deep learning models have either used individual amino acids

as input (Hashemifar et al., 2018; Chen et al., 2019) or have chosen to group every three amino acids as a

‘‘word’’ (Asgari and Mofrad, 2015). However, there has been recent interest (Asgari et al., 2019) in

statistically determining segments of amino acids to be used as inputs for downstream machine learning

algorithms using a method called BPE (Gage, 1994). BPE was originally developed as a compression

algorithm although it has been adapted more recently as an NLP method for identifying subword units

(Sennrich et al., 2016).

In our application, given an amino acid sequence s = Ær1‚ . . . ‚ rmæ such that ri 2 S, a tokenization

function is a mapping s such that s(s) = Æt1‚ t2‚ . . . ‚ tnæ and each ti is a nonempty substring of s such that

s = t1 � . . . � tn. The BPE algorithm iteratively merges the most frequent pair of tokens to form a new token

until a set maximum number of tokens are obtained (Gage, 1994; Kudo and Richardson, 2018).

2.2. Transformer network architecture

Inspired by the BERT language representation model architecture, PRoBERTa consists of (1) an em-

bedding layer, followed by (2) T = 5 stacked Transformer encoder layers, and (3) a final layer that con-

structs a task-specific output (Fig. 1). By stacking multiple Transformer encoder layers, the aim is to

capture complex higher-level information and relationships from the amino acid sequence. In total, our

model has *44 million trainable parameters.

2.2.1. Model input. A tokenized amino acid sequence Æu1‚ u2‚ . . . ‚ unæ is either truncated or padded

to a fixed-length sequence of 512 tokens. Concretely, the model input t = Æt1‚ t2‚ . . . ‚ t512æ is defined:

ti =

ui - 1 if 2 � i � n + 1

[CLS] if i = 1

[EOS] if i = min (n + 2512)

[PAD] if n + 2 < i

8

>

>

<

>

>

:

‚

where [CLS], [EOS], and [PAD] are reserved symbols.

2.2.2. Embedding layer. To prepare an input sequence t = Æt1‚ t2‚ . . . ‚ tnæ for the Transformer en-

coder layers, we train an embedding layer that independently converts each token ti into a vector with

dimension d = 768. The choice of 768 was made after empirically testing d 2 f192‚ 384‚ 768g. Because
the model does not contain any convolution or recurrence, we incorporate sequence order information by

adding positional encodings to the input embedding vectors (Vaswani et al., 2017).
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2.2.3. Transformer encoder layer. Each Transformer encoder layer contains two sub-layers—a

multi-head self-attention mechanism and a fully-connected feed-forward network—with residual connec-

tions around each sub-layer followed by a layer normalization operation (Ba et al., 2016). Each sub-layer,

and thus the entire encoder layer, takes as input and produces a list of n vectors, each of dimension d = 768.

Given an input list of vectors x = Æx1‚ x2‚ . . . ‚ xnæ, each vector xi first travels through the multi-head self-

attention mechanism. This mechanism is composed of a = 12 separate randomly initialized attention heads,

which are trained to identify and then focus on certain subsets of positions in x based on their computed

context relevance to xi. Using this mechanism, the sub-layer encodes context information from each vector

xj in x, weighted by its relevance to xi, into an output vector yi.

The initial input vector xi is then added to the output vector yi, after which yi undergoes a layer-

normalization step and passes through a fully connected feed-forward network that has a single hidden

layer of size h = 3072 and uses a GeLU activation (Hendrycks and Gimpel, 2016). The choice of 3072

comes from multiplying 768 by 4 as suggested in the original BERT publication (Devlin et al., 2019). Each

vector yi passes independently through the same feed-forward network to generate the output vector zi. The

vector yi is then added to zi, after which zi undergoes another layer-normalization step. The output for the

entire Transformer layer is the list of vectors Æz1‚ z2‚ . . . ‚ znæ (Vaswani et al., 2017).

2.2.4. Model output. Without adding any task-specific heads to the architecture, the model output is

a list of l = 512 vectors, each with length d = 768. The first vector, which corresponds to the special [CLS]

token, acts as an aggregate sequence representation that we use for sequence classification tasks. We refer

to the entire output as the deep representation of the amino acid sequence.

2.3. Model pre-training

Following the BERT framework, we train PRoBERTa in two stages: pre-training and fine-tuning (Devlin

et al., 2019). In the pre-training stage, our objective is to train the model to learn task-agnostic deep

representations that capture the high-level structure of amino acid sequences.

Based on the RoBERTa procedure, we pre-train PRoBERTa using only the unsupervised masked lan-

guage modeling (MLM) task, which adds a Language Modeling head to the network architecture. MLM

randomly masks certain tokens and then trains the network to predict their original value (Liu et al., 2019).

A B

C

FIG. 1. PRoBERTa architecture for pre-training and fine-tuning. (A) Overview of the architecture that is pre-trained

on the MLM task and fine-tuned on the protein prediction tasks. (B) The encoder block contains an embedding layer

and five transformer encoder layers. (C) Each encoder layer includes a multi-head self-attention mechanism and a fully-

connected feed-forward network. MLM, masked language modeling; PRoBERTa, protein RoBERTa.
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We expect MLM to be a useful task because it will train the neural network to predict groups of amino

acids in a sequence based on the other amino acids and their order in the sequence. This should impart some

general-purpose, biologically relevant information regarding the sequences to the network. Specific training

hyperparameters and optimization are detailed in Section 2.5.

Given a tokenized input sequence Æt1‚ t2‚ . . . ‚ tnæ, we select a random sample of tokens in the sequence to

be replaced with a special token [MASK]. Then we train the network to predict the masked tokens. Unlike

the original BERT procedure, following the RoBERTa procedure, we generate a new masking pattern every

time we feed a sequence to the model (Liu et al., 2019). The original BERT procedure also included a Next

Sentence Prediction (NSP) task. However, given that proteins are not made up of multiple sentences, as we

have defined them, NSP is not an appropriate pre-training task. In addition, removing the NSP task has been

shown to improve downstream performance in NLP (Liu et al., 2019).

2.3.1. Pre-training data. We use UniProtKB/Swiss-Prot (450K unique sequences with a mean to-

kenized length of 129.6 tokens), a collection of experimentally reviewed amino acid sequences (The

UniProt Consortium, 2018). Sequences are tokenized with the BPE algorithm described in Section 2.1. In

our experiments, the maximum vocabulary size was set to 10,000 because we empirically observed that the

mean token length increased very little beyond 10,000 tokens, indicating that most of the longer tokens

were detected in the first 10,000 iterations.

2.4. Model fine-tuning

The pre-trained model can then be specialized for downstream protein prediction tasks. In the fine-tuning

stage, we initialize the model with the pre-trained parameters. We then modify the pre-trained architecture by

replacing the output layer with a task-specific layer with dimensions tailored to the specific task. Parameters

are fine-tuned using labeled data from the prediction tasks. Here, we fine-tune the pre-trained model for our

two specific prediction tasks: family classification and PPI prediction. For our selected tasks, we feed the

aggregate sequence representation corresponding to the special [CLS] token, as described in Section 2.2, into

an output layer, which consists of a single-layer feed-forward neural network and softmax classifier.

2.4.1. Task: Protein family classification. For this task, we perform two modes of classification:

binary family classification and multi-class family classification. In binary family classification, we train a

separate classifier for each protein family to identify which sequences belongs to a given family. This

classifier performs logistic regression on the trained sequence representations from the pre-trained model.

We create a balanced training dataset for each classifier consisting of all the positive examples and the same

number of negative examples drawn uniformly at random without replacement from outside the family. In

multi-class family classification, we train a single classifier that outputs a probability distribution over the

set of all protein families. In both classification modes, we require amino acid sequences to have mem-

bership in only one protein family for ease of classification.

2.4.1.1. Fine-tuning data. For the Family Classification tasks, we use 313,214 unique protein se-

quences from UniProtKB/Swiss-Prot whose manually curated annotations include protein family infor-

mation and are not associated with multiple families or hierarchical family classifications (The UniProt

Consortium, 2018).

2.4.2. Task: PPI prediction. Given a pair of tokenized amino acid sequences

Æt(1)1 ‚ t
(1)
2 ‚ . . . ‚ t(1)n æ and Æt(2)1 ‚ t

(2)
2 ‚ . . . ‚ t(2)n æ‚

we pack them together into a single input sequence separated by a special token [SEP], which in the

RoBERTa procedure is composed of two [EOS] tokens. The input representation becomes

Æ[CLS]‚ t
(1)
1 ‚ t

(1)
2 ‚ . . . ‚ t(1)n ‚ [SEP]‚ t

(2)
1 ‚ t

(2)
2 ‚ . . . ‚ t(2)n ‚ [EOS]æ:

We truncate each tokenized amino acid sequence to 254 tokens before concatenation so the maximum

combined length of the input sequence after the addition of the special tokens is l = 512 tokens. For this problem,

we use the fine-tuning procedure to add a binary classifier layer to the existing pre-training architecture.
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2.4.2.1. Fine-tuning data. For the PPI prediction task, we use experimentally identified human PPIs

from the Human Integrated Protein-Protein Interaction rEference (HIPPIE) database that are confidence

scored and functionally annotated (Alanis-Lobato et al., 2016). Because HIPPIE only reports interacting

protein pairs, we generated three sets of putative non-interacting protein pairs to serve as negative ex-

amples. In the ‘‘conservative’’ scenario, we generated 275,401 pairs using randomly selected human

proteins from UniProt (Hamp and Rost, 2015) that are not reported to interact in HIPPIE, resulting in a PPI

dataset of 536,545 pairs. This random generation of negative examples is possible because of the as-

sumption that PPI networks are sparse, although we note the possibility that these negative examples may

include interacting protein pairs not reported in HIPPIE.

In the ‘‘aggressive’’ scenario, we generated 275,401 pairs using randomly selected proteins from HIPPIE

that are not reported to interact with each other, also resulting in a PPI dataset of 536,545 pairs. Finally, in

the ‘‘ultra-aggressive’’ scenario, the negative examples are generated by performing a weighted sampling

of pairs of proteins from HIPPIE that do not interact with each other. Here the weights used are the average

degree of the proteins in the HIPPIE network. Therefore, the ultra-aggressive negative space will have pairs

FIG. 2. Average degree of negative interacting proteins for the aggressive and ultra-aggressive scenarios. The

average degree of the negative protein pairs are shown on the x-axis. Negative pairs in the ultra-aggressive scenario are

chosen by weighted sampling based on these average degrees.

Table 2. Model Hyperparameters for Training

Hyperparameter Pre-training value Fine-tuning search space

LAMB b1 0.9 0.9

LAMB b2 0.999 0.999

LAMB e 1 · 10-8 1 · 10-8

LAMB weight decay (k) 0.01 [0, 0.001, 0.01, 0.1]

Minibatch size 8192 [1024, 2048, 4096, 8192]

Peak LR 0.0025 5=(2[0‚ 0:5‚ 1‚ 1:5‚ 2‚ 2:5‚ 3] · 1000)

Warmup updates 3125 [156, 312, 625, 1250, 2500]

Total updates 125,000 12,500

Linear dropout 0 [0, 0.1, 0.2, 0.3, 0.4, 0.5]

Attention dropout 0.1 [0, 0.1, 0.2, 0.3, 0.4, 0.5]
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of proteins that are highly likely to interact with other proteins but not with each other (Fig. 2). However, it

is important to note that the ultra-aggressive scenario is most likely to include negative examples that may

be positives that have not been experimentally tested.

2.5. Hyperparameters and optimization

We use the fairseq toolkit to train and evaluate our model (Ott et al., 2019). For pre-training, we select

hyperparameters using heuristics from literature (Devlin et al., 2019; Liu et al., 2019; You et al., 2019). For each

fine-tuning task, we perform a randomized search with 50 samples from the described hyperparameter space

(Table 2).

We train our model on the cross-entropy loss with the LAMB optimizer (You et al., 2019), which is a

layerwise adaptive large batch optimization technique developed to increase performance and reduce

training time for attention-based models. The learning rate is warmed up linearly over to the peak value.

Afterward, it is adjusted using a polynomial decay policy. For pre-training, we selected the learning rate

and warmup period using the square root learning rate (LR) scaling heuristic and linear-epoch warmup

scheduling because of their success when applied to BERT-based models (You et al., 2019).

To avoid overfitting and balance model performance with computational efficiency, we use early

stopping with a patience value of 3 (training stops after 3 consecutive epochs with no improvement in either

MLM validation loss during pre-training or task-specific validation accuracy during fine-tuning).

2.6. Evaluation metrics

For both protein prediction tasks, we use the following metrics to evaluate a model’s prediction. Ac-

curacy is the proportion of predictions made by the model that are correct. Precision is the proportion of

positive predictions made by the model that are correct. Recall is the proportion of correct positives that are

identified by the model. Finally, the adjusted mutual information (AMI) is an entropy-based metric that

measures the agreement between two sets of labels (Pedregosa et al., 2011). AMI adjusts mutual infor-

mation to account for chance: For two labels U, V, we compute the AMI as

AMI(U‚V) =
MI(U‚V) -E MI(U‚V)½ �

avg H(U)‚H(V)ð Þ -E MI(U‚V)½ �
‚

where H(U) is the entropy of U and MI(U‚V) is the mutual information between U and V.

3. RESULTS

We first describe the sequence features learned from the pre-trained model. We then show PRoBERTa’s

performance when the model is fine-tuned for the Protein Family Classification and PPI Prediction tasks.

Finally, we perform a robustness analysis by limiting the amount of labeled input data during fine-tuning.

3.1. Protein embeddings from the pre-trained model

We pre-trained the PRoBERTa model as described in Section 2.3 on 4 NVIDIA V100 GPUs in 18 hours.

We first explored whether the pre-trained model captured any biological meaning from the amino acid

sequences. We created protein embeddings by concatenating the vectors of each protein’s first 128 tokens.

We concatenated the vectors because the concatenated vectors appeared to provide better visualization

results than the just the [CLS] (described in Section 2.2.1) token. The pre-trained model is already able to

distinguish between protein families; Figure 3 shows the first two principal components of thirty randomly

selected proteins from seven related protein families.

To systematically evaluate how well the pre-trained protein embeddings distinguish protein families, we

clustered 9151 protein embeddings from the manually annotated human proteins in UniProt that belong in

families with more than one protein and compared the clusters to the 1761 annotated protein families using

AMI. To cluster embeddings, we summed the representations for each token and reduced these embeddings to

twenty dimensions using PCA and applied k-means clustering using Euclidean distance, setting k= 1800 to

approximate the number of annotated families. The mean AMI of the k-means clusters, averaged over 20 runs,

is 0.328, which is significantly higher than the expected AMI of 0 for randomly assigned clusters (Fig. 4).
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3.2. Protein family classification

Given the promise of the protein embeddings, we then evaluated the performance of the PRoBERTa

model on the protein family classification task (Section 2.4.1). Clustering the embeddings after fine-tuning

on the protein family classification task shows a higher AMI than clustering after pre-training (Fig. 4),

suggesting that the fine-tuned embeddings capture more protein family information.

For the binary classification task, we trained a separate logistic regression classifier for each protein family

withmore than 50 proteins andmeasured the weighted mean accuracy as 0.98. The classifier corresponding to

the lowest scoring family, made up of 57 proteins, had an accuracy of 0.77. To train these classifiers, we

FIG. 4. Accuracy of unsupervised clustering of three different versions of PRoBERTa embeddings with the true

protein families given by UniProt. AMI values are shown for the pretrained embeddings and the fine-tuned embeddings

for the protein prediction tasks. AMI, adjusted mutual information.
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FIG. 3. The first two principal components of pre-trained embeddings for 189 amino acid sequences from seven

representative protein families.
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randomly withheld 30% of the proteins from each family to be used as the test set. We compared

PRoBERTa+logistic to three other NLP based embedding methods: ProtVec, which is a protein embedding

method inspired by Word2Vec; ProtDocVec, which modifies ProtVec to use Doc2Vec; and ProtFreqVec,

which uses the frequency of triplets of amino acids to form embedding vectors (Asgari and Mofrad, 2015).

PRoBERTa+logistic performs better than ProtVec+logistic and similarly to ProtDocVec+logistic and

ProtFreqVec+logistic (Table 3).

This result supports the idea that contextual embeddings do not significantly help binary family clas-

sification. In Figure 3a, all the families but the importin beta family were chosen from families that have

accuracies that are representative of the overall accuracy (ranging from 0.96 to 1.0) while the importin beta

protein family has a substantially lower accuracy of 0.77. The PCA plots in Figure 3 show that the proteins

in this less accurately classified family are co-located with proteins from the FormylGlycinAMidine ri-

bonucleotide Synthetase (FGAMS) family and transfer ribonucleic acid (tRNA) pseudouridine synthase

TruA family.

In the multi-class family classification task, we used fine-tuning to add an output layer that maps to

protein family labels to the PRoBERTa model. This was done using the dataset of 313,214 UniProt proteins

with only one associated family. These proteins were split into train/validation/test sets (0.8/0.1/0.1), and

our fine-tuned classifier achieved an accuracy of 0.93 on the test set. We then compared this to two other

multi-class family classifiers including a simple CNN made up of four convolution layers as a baseline and

DeepFam, a CNN method that is the current state-of-the-art method for protein family classification. In

particular, DeepFam is made up of a convolution layer with eight different kernel sizes and 250 convolution

units for each kernel size (Oh et al., 2018). PRoBERTa with a classification layer performed better than the

baseline method and had comparable accuracy to DeepFam (Table 3).

3.3. PPI prediction

We next assessed PRoBERTa on the PPI task using the conservative, aggressive, and ultra-aggressive

scenarios for sampling non-interacting protein pairs (Section 2.4.2).

3.3.1. Conservative scenario. We first evaluated how well the fine-tuned model’s embeddings

capture protein family information compared to the pre-trained embeddings. In the conservative scenario,

the fine-tuned model produces embeddings that cluster with a lower AMI with protein families compared

Table 3. Comparison of Binary (Left) and Multi-Class (Right) Family Classification

Method Accuracy Method Accuracy

ProtVec+logistic 0.89 DeepFam 0.95

ProtFreqVec+logistic 0.98 Simple CNN 0.72

ProtDocVec+logistic 0.98 PRoBERTa 0.93

PRoBERTa+logistic 0.98

CNN, convolutional neural network.

Table 4. PPI Prediction Results with 20% of Training Data (Top) and 100% of Training Data (Bottom)

Conservative Aggressive Ultra-aggressive

Method Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

DeepFam+DI 0.79 0.79 0.66 0.75 0.76 0.73 0.63 0.66 0.54

PIPR 0.81 0.75 0.77 0.77 0.77 0.77 0.61 0.60 0.64

ProtVec+DI 0.80 0.78 0.70 0.73 0.72 0.76 0.58 0.57 0.70

PRoBERTa 0.95 0.95 0.95 0.79 0.86 0.68 0.62 0.59 0.71

PRoBERTa (100% training) 0.98 0.98 0.99 0.85 0.84 0.85 0.72 0.71 0.72

Bold = best performing method according to each metric.

DI, deep interact.
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to the pre-trained embeddings (Fig. 4), indicating that the parameters of the model fine-tuned on pre-

dicting interactions are not as tuned to protein family classification. Evaluated on the test set, the fine-

tuned PRoBERTa PPI classifier had an accuracy of 0.95 with a precision and recall of 0.95 and 0.95,

respectively (Table 4) and a receiver operating characteristic (ROC) area under the curve (AUC) of 0.99

when ranking the predictions by the softmax probability (Fig. 5A). In these runs, we only used 20% of the

available training and validation data from the train/validation/test (0.8/0.1/0.1) split. This was done

because some of the methods we compare against were not able to scale up to using 80% of the data for

training and thus would not be able to make a fair comparison to the PRoBERTa model trained with the

entire train set.

We compare our results to PIPR, which is one of the top PPI prediction neural networks currently

available, using a similar number of interactions from our dataset (Chen et al., 2019). PIPR uses a residual

convolutional neural network (RCNN) architecture to extract both sequential information and local features

relevant for PPI prediction. We also compare our embeddings to the ProtVec embeddings combined with a

feed-forward neural network with three hidden layers (which we call DeepInteract) that predicts PPI.

Finally, we try a biologically motivated transfer learning approach by first training a DeepFam network

on protein family classification and then using one of the hidden layers as the vector representations of the

proteins to be used by DeepInteract. As seen in Figure 5A, PRoBERTa with a classification layer out-

performs all of these methods by a large margin. Further, when using the complete dataset, the accuracy

reaches 0.98 (Table 4 and Fig. 6).

A B

C D

FIG. 5. (A–C) ROC curves for PPI prediction in the (A) conservative scenario, (B) aggressive scenario, and (C) ultra-

aggressive scenario. (D) Comparing the accuracies of the PPI prediction scenarios with PRoBERTa models that were

pre-trained and not pre-trained. PPI, protein–protein interaction; ROC, receiver operating characteristic.
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3.3.2. Aggressive scenario. Similar to the conservative scenario, the model fine-tuned on the ag-

gressive PPI dataset produces embeddings with a lower AMI with protein families than the pre-trained

embeddings (Fig. 4). For this scenario, PRoBERTa had an accuracy of 0.79 with a precision and recall of

0.86 and 0.68, respectively (Table 4) and a ROC AUC of 0.88 (Fig. 5B). Similar to above, we only use 20%

of the available training and validation data. As seen in Figure 5B, PRoBERTa with a classification layer

still performs better than PIPR, which performs better than the other two methods. Moreover, when the full

training dataset is used, the accuracy of our model improves to 0.85 (Table 4 and Fig. 6).

3.3.3. Ultra-aggressive scenario. Finally, in the ultra-aggressive scenario, the ultra-aggressive PPI

model shows a lower AMI with protein families than the pre-trained embeddings, as expected based on the

previous two PPI models (Fig. 4). For the ultra-aggressive dataset, PRoBERTa has an accuracy of 0.62 with

a precision of 0.59, a recall of 0.71 and a ROC AUC of 0.67, showing that even in this challenging scenario,

PRoBERTa is still able to make non-random predictions. However, as seen in Table 4 and Figure 5C,

PRoBERTa is no longer the best performing method, with the fine-tuned DeepFam model obtaining a

slightly higher accuracy of 0.63.

3.3.4. Pretraining improves performance in PPI prediction. To test how the pre-training step of

PRoBERTa helps to improve its predictive power, we also trained Transformer models to predict PPI in all

three scenarios without any pre-training. These models are otherwise identical to PRoBERTa. As shown on

Figure 5D, pre-training improves the prediction accuracy in all three scenarios. This is another indication

that the MLM task extracts biologically relevant information from unannotated protein sequences.

3.4. PRoBERTa scalability and robustness

We also investigated the robustness of the models by varying the amount of training data for both fine-

tuning tasks. For the PPI prediction task in Section 3.3, we used 20% of the training data to compare to

existing methods; here, we can use all of the training data, improving the performance in both the con-

servative and aggressive scenarios (Table 4).

To assess the robustness of PRoBERTa on the protein prediction tasks, we used fractions of the 0.8 and

0.1 split that made up the fine-tuning train and validation set, respectively, for task training. For example, if

90% of the train and validation set was used, this meant that 90% · 0.9 or 81% of the entire dataset was

seen during training. Figure 6 shows the change in accuracy with different fractions of the train set used.

This shows that all three models were somewhat robust to different amounts of training data. The PPI

FIG. 6. Accuracy on test data when using varying amounts of training data for fine-tuning on pre-trained models.
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models appear to be more robust (they have smaller slopes) than the Protein Family model. However, it

should be noted that the complete dataset for the Protein Family model contained 313,214 proteins, while

the PPI dataset had 536,545 interactions in all three scenarios. The difference in robustness could be due to

the absolute difference in the number of training data points.

4. DISCUSSION

In this article, we propose a Transformer based neural network architecture, called PRoBERTa, for

protein characterization tasks. This neural network is based on the BERT architecture and the RoBERTa

training procedure with a reduced number of Transformer layers and using the LAMB optimizer. We found

that the pre-trained embeddings contain general yet biologically relevant information regarding the proteins

and fine-tuning pushes the embeddings to have more specific information at the cost of generality. While

there are notable differences between protein sequences and natural language corpuses (Luo et al., 2020;

Strodthoff et al., 2020), leveraging the architecture from BERT tuning can capture this biologically relevant

information. Altering the architecture to include prior knowledge unique to biological sequences could

further improve the embedding space.

We found that using the embeddings for Protein Family Classification produced results that were

comparable to the current best methods. In particular, we performed two different forms of classification; a

binary classification that classified a protein as ‘‘in the family’’ or ‘‘not in the family’’ and a multi-class

family classification. The multi-class family classification was based on the simplification that there is only

one class per protein. Proteins that belong to more than one family were excluded from this classifier but

not the binary classifiers.

Furthermore, we used embeddings from PRoBERTa for a fundamentally different problem, PPI pre-

diction, using three different datasets generated from the HIPPIE database and found that with sufficient

data, it substantially outperforms the current state-of-the-art method in the conservative scenario and still

performs better than the other methods in the aggressive scenario. When evaluated on the aggressive

dataset, the model trained on the conservative dataset scores an overall accuracy of 0.55, with a precision

and recall of 0.52 and 0.99, respectively. This suggests that the model in the conservative scenario performs

something closer to a protein classification task to identify which proteins are present in HIPPIE and are

thus more likely to correspond to positive examples. The further drop in accuracy with the ultra-aggressive

scenario may indicate that PRoBERTa’s predictive power in the other scenarios is in part due to correctly

predicting proteins that interact with many other proteins. Therefore, we are currently working on adapting

PRoBERTa to predict protein promiscuity.

A concern that one might have in evaluating a model on these tasks is that there may have been very

similar sequences in the train and test sets. To verify that this was not the case, we clustered the proteins in

the HIPPIE dataset using Cluster Database at High Identity with Tolerance (CD-HIT) at a 90% sequence

similarity threshold and found that very few proteins in the dataset were similar to each other (Huang et al.,

2010). In particular, only 643 out of 16,215 proteins had sequence similarity of greater than 90% to another

protein in the dataset and the average size of a cluster was 1.025.

The efficiency of PRoBERTa over existing methods [a speedup in pre-training time by a factor of 170

compared to the similar BERT-based model by Rives et al. (2021)] provides unprecedented opportunities

for using the growing amount of sequence data in protein prediction tasks. Further, PRoBERTa’s success in

these two different protein prediction tasks alludes to the generality of the embeddings and the potential of

smaller and more cost efficient transformer neural networks for a variety of protein prediction tasks.

Finally, our use of BPE for sequence tokenization makes PRoBERTa particularly suitable for downstream

tasks that involve long sequences.

5. AVAILABILITY

Scripts for pre-training, fine-tuning, and evaluating models, along with links to datasets and trained

weights can be found at: https://github.com/annambiar/PRoBERTa
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Restrepo-Pérez, L., Joo, C., and Dekker, C. 2018. Paving the way to single-molecule protein sequencing. Nat. Na-

notechnol. 13, 786–796.

Rives, A., Meier, J., Sercu, T., et al. 2021. Biological structure and function emerge from scaling unsupervised learning

to 250 million protein sequences. Proc. Natl. Acad. Sci. 118, e2016239118.

Sennrich, R., Haddow, B., and Birch, A. 2016. Neural machine translation of rare words with subword units, 1715–

1725. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). Association for Computational Linguistics, Berlin, Germany.

Sevimoglu, T., and Arga, K.Y. 2014. The role of protein interaction networks in systems biomedicine. Comput. Struct.

Biotechnol. J. 11, 22–27.

Smith, T.F., Waterman, M.S., et al. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

Stärk, H., Dallago, C., Heinzinger, M., et al. 2021. Light attention predicts protein location from the language of life.

Bioinform. Adv. 1, 11.

Strodthoff, N., Wagner, P., Wenzel, M., et al. 2020. UDSMProt: Universal deep sequence models for protein classi-

fication. Bioinformatics 36, 2401–2409.

110 NAMBIAR ET AL.

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t 

0
5
/2

6
/2

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 



Sun, T., Zhou, B., Lai, L., et al. 2017. Sequence-based prediction of protein protein interaction using a deep-learning

algorithm. BMC Bioinformatics 18, 277.

The UniProt Consortium. 2018. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515.

Vaswani, A., Shazeer, N., Parmar, N., et al. 2017. Attention is all you need, 6000–6010. In Proceedings of the 31st

International Conference on Neural Information Processing Systems, NIPS?17. Curran Associates, Inc., Red Hook,

NY, USA.

You, Y., Li, J., Hseu, J., et al. 2019. Reducing BERT pre-training time from 3 days to 76 minutes. CoRR. abs/

1904.00962, preprint.

Young, T., Hazarika, D., Poria, S., et al. 2017. Recent trends in deep learning based natural language processing. IEEE

Computational Intelligence Magazine 13(3), 55–75.

Zhang, S.-W., Hao, L.-Y., and Zhang, T.-H. 2014. Prediction of protein-protein interaction with pairwise kernel support

vector machine. Int. J. Mol. Sci. 15, 3220–3233.

Address correspondence to:

Ananthan Nambiar, PhD Student

Department of Bioengineering

University of Illinois at Urbana-Champaign

Urbana, 61801 IL

USA

E-mail: nambiar4@illinois.edu

Dr. Anna Ritz

Department of Biology

Reed College

Portland, 97202 OR

USA

E-mail: aritz@reed.edu

TRANSFORMERS FOR PROTEIN PREDICTION TASKS 111

D
o
w

n
lo

ad
ed

 b
y
 R

E
E

D
 C

O
L

L
E

G
E

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.l
ie

b
er

tp
u
b
.c

o
m

 a
t 

0
5
/2

6
/2

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

. 


