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Abstract—Most DNA sequencing technologies are based on
the shotgun paradigm: many short reads are obtained from
random unknown locations in the DNA sequence. A fundamental
question, studied in [1], is what read length and coverage depth
(i.e., the total number of reads) are needed to guarantee reliable
sequence reconstruction. Motivated by DNA-based storage, we
study the coded version of this problem; i.e., the scenario in
which the DNA molecule being sequenced is a codeword from a
predefined codebook. Our main result is an exact characterization
of the capacity of the resulting shotgun sequencing channel as
a function of the read length and coverage depth. In particular,
our results imply that while in the uncoded case, O(n) reads of
length greater than 2 log n are needed for reliable reconstruction
of a length-n binary sequence, in the coded case, only O(n/logn)
reads of length greater than logn are needed for the capacity to
be arbitrarily close to 1.

Index Terms—DNA shotgun sequencing, DNA-based storage,
channel capacity

I. INTRODUCTION

At the heart of the DNA sequencing revolution was the
development of high-throughput shotgun sequencing plat-
forms. These platforms extract a large number of short reads
from random locations of the target DNA sequence (e.g.,
the genome of an organism), in a massively parallel fashion.
Sequencing must then be followed by an assembly step, where
the reads are merged together based on regions of overlap with
the intention of reconstructing the original DNA sequence.

A natural question thus arises: When is it possible, from
an information-theoretic standpoint, to reconstruct a sequence
from a random set of its substrings? Formalizing this question,
suppose we observe K random reads (i.e., substrings) of length
L from an unknown length-n sequence x™. What conditions on
z", K and L guarantee that " can be reliably reconstructed
from the observed reads? This problem was first studied from
an information-theoretic point of view in [1]. The authors
considered the asymptotic regime where n — oo and the
read length L scales as L = Llogn, for a constant L. They
also defined ¢ = KL/n to be the coverage depth; i.e., the
average number of times each symbol in z™ is sequenced.
This appropriate scaling of the read length allowed the authors
of [1] to show a surprising critical phenomenon: if z” is
an i.i.d. Ber(1/2) sequence, when L < 2, reconstruction is
impossible for any coverage depth ¢, but if L > 2, recon-
struction is possible as long as the coverage depth is at least
cow = In(n/e), which is the Lander-Waterman coverage
[2], i.e. the minimum coverage needed to guarantee that all
symbols in 2™ are sequenced at least once with probability
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1 — €. The result in [1] established a feasibility region for the
shotgun sequencing problem, illustrated in blue in Figure 1(a).

One key aspect about the framework studied in [1] is that
the sequence ™ is chosen “by nature” [1, 3, 4]). However, in
recent years, significant advances in DNA synthesis technolo-
gies have enabled the idea of storing data in DNA, and several
groups demonstrated working DNA-based storage systems [5—
11]. In these systems, information was encoded into DNA
molecules via state-of-the-art synthesis techniques, and later
retrieved via sequencing. This emerging technology motivates
the following question: How do the fundamental limits of
shotgun sequencing from [1] change in the coded setting where
z" is chosen from a codebook?

Motivated by this question, in this paper we introduce
the Shotgun Sequencing Channel (SSC). As illustrated in
Figure 1(b), the channel input is a (binary) length-n sequence
2™, and the channel output are K random reads of length L
from z”. Each read is assumed to be drawn independently and
uniformly at random from ™ and we consider the read length
scaling as L = Llogn. Notice that this is essentially the same
setup as in [1], except that the “genome” z™ is chosen from
a codebook rather than decided by nature. In this paper, we
characterize the capacity of this channel, provide an achievable
scheme that achieves this capacity and a converse that matches
the achievable rates. Some details are deferred to a longer
version of the paper [13].

In order to build intuition it is worth considering the related
setting of the shuffling-sampling channel [12], illustrated in
Figure 1(c). In this case the input are M strings of length L,
and the output are K strings, each chosen uniformly at random
from the set of input strings. If we define the coverage depth
for this setting as ¢ = % = K/M, the result in [12] implies
that, for L > 1, the capacity of this channel is

Cont = (1 —¢7) (1-1/L), (1

and Cypyr = 0 for L < 1. The term (1 — e~¢) captures the
loss due to unseen input strings and (1 — 1/L) captures the
loss due to the unordered nature of the output strings (which
becomes more severe the shorter the strings are).

Intuitively, the capacity of the SSC should depend on ¢ and
L in a similar way as in (1). The expected fraction of symbols
in =" that are read at least once can be shown to be 1 —e™¢,
which provides an upper bound to the capacity of the SSC. But
it is not clear a priori which of the channels in Figure 1(b,c)
should have the larger capacity. Our main result establishes
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(a) The feasibility region for reconstruction of a string under the uncoded setting (blue) and the coded setting (red) (b) The Shotgun Sequencing

Channel (SSC) and the (c) Shuffling-Sampling channel from [12]. The input to the SSC is a single (binary) string ™ and the output are K random substrings
of length L. In the Shuffling-Sampling channel, the input are M strings of length L, which are sampled with replacement to produce the channel output.
Both capacity expressions can be written in terms of the expected coverage depth ¢ and the normalized read length L.

that, for L > 1, the capacity of the SSC is given by

1

Csgc=1-— e_c(l_f).

2)

Notice that the dependence on L appears as the term (1—1/L)
in the exponent and, as ¢ — oo, Cggc — 1 for any L > 1.
This is in contrast to the shuffling-sampling channel, where
Cout — 1 -1 /E as we increase the coverage depth c to
infinity. Therefore, even in the high coverage depth regime,
if L = 1, Cyqr ~ 0. Furthermore, it can be verified that
Cshut < Cssc for any c and L, establishing the advantage
(from a capacity standpoint) of storing data on a long molecule
of DNA as opposed to on many short molecules.

The above result also allows for an interesting comparison
with the uncoded setting (i.e., the genome sequencing prob-
lem) of [1]. When we allow coding over the string, the critical

threshold on the read length reduces to L > 1, compared
to L > 2 for the uncoded setting. Moreover, in the SSC it
is possible to achieve a capacity close to 1 by having the
coverage depth be a large constant, while in the uncoded case
the coverage ¢ needs to grow as logn.

Background and Related Work: The idea of coding over
a set of strings that are shuffled and sampled was studied
in several settings [12, 14-19]. Many works have focused
on developing explicit codes tailored to specific aspects of
DNA storage. These include DNA synthesis constraints such
as sequence composition [8, 9, 20], the asymmetric nature of
the DNA sequencing error channel [21], the need for codes
that correct insertion errors [22], and the need for techniques
to allow random access [8].

Several works studied the problem of genome sequencing
and assembly from an information-theoretic standpoint [1, 3,
4, 23]. The trace reconstruction problem is another related
setting where one observes (non-contiguous) subsequences of
the input sequence and attempt to reconstruct it [24-26].

A very relevant related setting is the problem of reconstruct-
ing a string from its substring spectrum [27, 28]. We discuss
the differences between the methods used in this setting and
the setting considered in this paper in Section V.

II. PROBLEM SETTING

We consider the Shotgun Sequencing Channel (SSC), shown
in Figure 1(b). The transmitter sends a length-n binary string
X™ € {0,1}", corresponding to a message W € [1 : 2"F].
The channel output is a set of length-L binary strings ).
The channel chooses K starting points uniformly at random,
represented by the random vector TX € [1 : n]¥. The vector
TX is assumed to be sorted in a non-decreasing order. Length-
L reads are then sampled with T3, ¢« = 1,..., K as their
starting points. We allow the reads to “wrap around” X™;
i.e., if for any ¢, T; + L > n, we concatenate bits from the
start of X" to form length-L reads. The unordered multi-set
Y = {Y1,Ys,..., Yk} of reads resulting from this sampling
process is the channel output. The expected number of times a
given symbol from X is sequenced is defined as the coverage
depth c. This is given by the expression ¢ := K L/n.

We focus on the regime where the length of the reads
sampled is much smaller than the block length n. In particular,
as shown in previous works [12, 29-33], the regime L =
O(logn) is of interest from a capacity standpoint. Hence, as
in [1], we fix a normalized length L and define L := Llogn.

Notice that, in this regime, the total number of reads is
K = en/(Llogn) = © (n/logn), which is a logn factor
smaller than what is needed in the uncoded setting from [1].
We define achievable rates and capacity in the usual way [34].

Notation: log(-) represents the logarithm in base 2. For func-
tions a(n) and b(n), we say a(n) = o(b(n)) if a(n)/b(n) — 0
asmn — oo and a(n) = O(b(n)) if a(n)/b(n) < oo asn — oo.
Further, we say that a function a(n) = ©(f(n)) if there exist
ng € N, k1, ko € (0,00), such that k1 f(n) < a(n) < kaf(n)
Vn > ng. For an event A, we let 14 be the binary indicator
of A. For a set B, | B| indicates the cardinality of that set. For
any a, a™ = max (a,0).

III. MAIN RESULTS

The DNA storage problem considered here has two im-
portant properties: (i) the reads in general overlap with each
other and (ii) the set of reads is unordered. Property (i) was

Authorized licensed use limited to: University of lllinois. Downloaded on May 27,2023 at 00:41:49 UTC from IEEE Xplore. Restrictions apply.

211



2022 IEEE International Symposium on Information Theory (ISIT)

explored in the context of genome sequencing [1]. Intuitively,
the overlaps between the reads allow them to be merged in
order to reconstruct longer substrings of X ™. Property (ii) has
been analyzed before in the context of several works on DNA
storage. In particular, in the context of the shuffling-sampling
channel from [12], illustrated in Figure 1(c), the input to the
channel is a set of strings of length L, and the capacity is
given by Cypur = (1 —e7¢)(1 — 1/L).

Notice that, in the case of the shuffling-sampling channel,
the output strings have no overlaps (they can only be non-
overlapping or identical). In the context of the SSC, on the
other hand, the overlaps can provide useful information to
fight the lack of ordering of the output strings. Our main
result captures the capacity gains that can be achieved by
optimally exploiting the overlaps, for any coverage depth c
and normalized read length L.

Theorem 1. For any ¢ > 0 and L > 0, the capacity of the
Shotgun Sequencing Channel is

C = (1 - e*C(H/E))+ . 3)

Notice that the capacity of the SSC given in Theorem 1 is
zero when L < 1. An intuitive reason for this is that when
L < 1, the number of possible distinct length-L sequences is
just 2E18™ — nl = o(n/logn) = o(K), and many reads
must be identical. This can be used to show that the decoder
cannot discern any meaningful information from ). The longer
version of this paper further discusses this issue [13].

In order to interpret the capacity expression in (3) notice that
the probability that a given symbol in X" is not sequenced by
any of the K reads is (1 — L/n)* = (1 — L/n)** = e,
as n — oo. Hence the expected fraction of symbols in X"
covered by at least one read is asymptotically close to 1 —e™°.

If instead of reads of length L = Llogn we had reads
of length (L — 1)logn, the new coverage depth would be
¢ = K(L—1)logn/n = c¢(1—1/L), and the expected fraction
of symbols in X™ that would be sequenced would be 1 —
e=¢ = 1 — e “=1/L) Hence, the capacity expression in
Theorem 1 suggests that, on average, logn bits from each
read are used for ordering information, while the remaining

(L — 1) logn bits provide new data information.
We prove the achievability of Theorem 1 in the next section.

IV. ACHIEVABILITY

We use a random coding argument to prove the achievability
of Theorem 1. We generate a codebook with 2™ codewords of
length n, independently picking each letter Ber(1/2). Let the
codebook be C = {x1,X2,...,Xgnr}. The encoder chooses
the codeword corresponding to the message W € [1 : 27%],
and sends xy across the Shotgun Sequencing Channel. The
output, Y, is presented to the decoder. For the analysis and
without loss of generality, we assume W = 1.

The optimal decoder looks for a codeword that contains
all the reads in ). Analyzing the error probability of this
optimal decoder, however, is hard. We therefore develop a
decoding rule that is simple enough to analyze. It turns out

that it is critical to consider the overlaps between reads to
do this. Unfortunately, merging reads is not a straightforward
process because reads Y; and §7J may have an overlap even
if they do not correspond to overlapping segments of X”. In
general, the merging process will be prone to errors and we
need to develop a decoding algorithm that considers merges
in a careful way.

In Section II, we defined the unknown vector 7% to be
the ordered starting positions of the reads in ). Thus, without
loss of generality we assume that Y; starts at T;. We define
the successor of }_’; as }7”1. We assume Y7 is the successor of
Y. Now we need a consistent definition to characterize how
large the overlap of a given read is.

Definition 1. (Overlap size) The overlap size of a read is
defined as the number of bits the suffix of the read shares with
its successor. It has an overlap size of 0 if no bits are shared
(i.e., if a read and its successor have no overlap).

The above definition implies that the overlap size of Y,
is (L — (T341 — T3))™. Notice that some reads might share
some of their prefix bits with a predecessor read, but we do
not consider this a contribution to the overlap size of that
read. Intuitively speaking, since each bit of the string X™ was
generated independently as a Ber(1/2) random variable, we
would expect larger overlap sizes to be easily discerned as
compared to smaller ones. Therefore, we would need to know:
(a) how many pieces exist of particular overlap sizes, and (b)
given an overlap size, how ‘“easy” it is to merge a read with
its successor.

To handle (a), we define G(v) as a random variable that
counts the number of reads with an overlap size of logn,

where vy € T := [ L2 ,f/} . Thus, ~ is chosen from a

logn’ logn’"
finite set that depends on n. We can say G(v) := Zfil G(v)i,
where G(’Y)l = 1{)71 has an overlap size of vlogn}*

To capture (b), given a binary string Z, we define the random
variable Mz as the number of times Z’ appears as the prefix of
a read in ). Note that the length of Zis in [1 : Llogn]. Let
Z be the set of all binary strings with lengths in [1 : Llogn].

First let’s define a quantity that captures the fraction of
total bits that are actually sequenced. We say that the ith bit
of X™ is covered if there is a read with starting position in
{i—L+1,i—L+2,...,i}, where the indices wrap around
X™. We then define the coverage as the random variable
¢ = % Z?:l l{ith bit is covered} -

Lemma 1. (Coverage) For any € > 0, the coverage ® satisfies
Pr(|o—(1-e)|>e(l—e°)) =0, @)
as n — oo.

The proof of this lemma is available in the longer verison of
this paper [13]. If we can identify the merges correctly, we are
left with a set of variable-length strings called islands, which
we formally define next.

Definition 2. (Islands) The set of non-overlapping substrings
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that are obtained after merging all the reads to their succes-
sors based on positive overlap sizes are called islands.

Let K’ be the number of islands. Then, we have the
following concentration result for K’.

Lemma 2. (Number of islands) For any € > 0, as n — 0o,
the number of islands K' satisfies

Pr(|K'— Ke™¢|> eKe ) — 0. (5)

The proof of this lemma is available in the longer verison
of this paper [13]. Similar to the previous lemma, Lemma 2
guarantees that the number of islands K’ is concentrated
around its expectation Ke~¢. However, to use these results,
the decoder would first need to obtain the non-overlapping
islands (the decoder only has the reads, not their locations).
The following lemmas give the decoder some guidelines on
how to construct these islands from the reads.

Lemma 3. (Number of potential overlaps) For any € > 0,

(U

z€Z:y(Z)<1l—e

{‘Mg—Kn*'Y(z) > eKn”Y(E)} — 0,

Pr U {Mz=n}| -0, 6)
z€Zy(Z)>1—€
as n — oo, where we define v(2) :=|z|/logn.

Lemma 3 considers two separate cases for binary strings
based on their length. For strings Z with length at most
(1 — €)logn, Lemma 3 states that Mz is close to its mean
Kn—®) = cn1*7(5)/ilogn. For strings Z with length
greater than (1 — €) logn, Lemma 3 states that Mz < n® with
high probability.

Lemma 4. (Number of reads of a given overlap size) For all
€>0,

Pr| | J{IGH) -G =G} ]| =0, @

yel’
as n — oo, where G(v) := E[G(7)].

Lemma 4 give us a handle on the expected number of
overlaps of each size, which will be used by the decoder when
trying to construct the islands from the reads. Lemmas 3 and
4 are proved in the longer version of this paper [13].

The decoding procedure starts with a brute-force search over
ways to merge the reads into islands, which we refer to as
the Partition and Merge (PM) algorithm. First, the decoder
considers all possible partitions of the reads into L groups,
by assigning potential overlap sizes to each read. This can be
done by looking at all ways of assigning a number in [0 : L]
to each of the reads. To make this precise, we can look at all
possible vectors of the form p':= (py,pa,...,pr) € [0: L]E
and call them partition vectors. Each element p; of the vector
corresponds to an assigned overlap size of read ?a(i) for some
permutation o of the elements of ). Thus, each partition vector

along with a permutation ¢ can be viewed as assigning an
overlap size to each read. It is easy to see the total number of
such partition vectors (and hence the total possible partitions)
will be P := (L + 1)¥.

Rather than considering all P partitions, we will only con-
sider partitions that satisfy the bounds implied by Lemmas 1-
4. To make this requirement precise, we define for a partition
vector 7, G(p, ) to be the number of reads in ) that would
have an overlap size of ylogn according to partition vector
P, which can be written as G(p,~y) = |[{i : p; = ylogn}|.

Note that since the number of potential islands is exactly
equal to the number of reads with overlap size zero, the total
number of islands according to 7 is G(p,0). Moreover we
define ®(p) as the total coverage of the reads according to p,
which is given by () := KL — Y% | p;.

We then define the set P as the set of all p’ such that (for a
fixed € > 0): |2(p) — (1 —e°)| < e(1—e~°) (i.e., coverage is
close to expected coverage), |G(p,0) — Ke™¢| < eKe™© (i.e.,
number of islands is close to expected number of islands) and
|G(p,v) — G(7)| < €G(y) for all v € T (i.e., number of reads
with overlap size ylogn is close to the expected number).
Therefore, P restricts the total number of partition vectors to
a smaller set of partition vectors that are admissible according
to Lemmas 1, 2 and 4.

Now, for each partition vector p’ € P, we take all possible
K! permutations o of the reads. For each permutation, all of
the reads are compared to their successors. If every read can
be successfully merged with its successor with the assigned
overlap size, we retain the set of substrings formed after these
merges as a Candidate Island set, and add it to the set CI.
Notice that CI is a set of sets of variable-length strings. This
procedure is summarized in Figure 2 and Algorithm 1. After
completion of Algorithm 1, the decoder checks, for each set
of candidate islands in CI, whether there exists a codeword
that contains all the candidate islands as substrings. If only
one such codeword is found, the decoder outputs its index.
Otherwise, an error is declared.

Algorithm 1: Partition and Merge

for each partition vector p € P do
for each permutation o of [1 : K| do
check if suffix of length p; of ?U(i) matches
prefix of 1_/:,@“), fori=1,...,K
if prefix and suffix match for i = 1,..., K then
Merge reads according to overlaps
Add set of resulting islands to CI
return CI

Let the event that the decoder makes an error be £. An
error occurs if more than one codeword contains any of the
CI sets as substrings. We define By := (14 ¢)Ke ¢, By :=
(1—e)(1—e°), B3(y) == (1 +e)nt=7 for vy < 1 — ¢,
Bs(y) = n for v > 1 —€ and By(y) := (1+¢€)G(7), and we
define the corresponding undesired events as: By = {K' >

B1},By = {® < B}, By = Uzez{Mz > B3(v(2))},Bs =
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Fig. 2. The decoder receives the shotgun sequenced reads ) and performs
the Partition and Merge procedure. For each partition 5 € [0 : L] of the K
reads according to overlap size, and each ordering of the reads o, the decoder
attempts to merge the reads into islands based on o and p. The figure shows
this procedure for three choices of ' (out of (1 + L)¥) and three choices of
o (out of K!). If the merging of all reads is successful for some p and o, the
set of resulting islands is added to the set CI.

U, er{G(7) > Ba(v)}-
From Lemmas 1, 2, 3 and 4, we let B = B; U B, U_Bg UBy,

and we have Pr(B) — 0. Note that conditioned on B, we are
guaranteed that the CI set outputs the true island set. This
is because exactly one partition and one arrangement given
that partition correspond to the true order in which the reads
were sampled. Before we use this to bound the probability of
error, notice that the error event depends on the total number
of CI sets output by the PM algorithm. In general, this is not
a deterministic value. We will define CT,, as an upper bound
on the number of CI sets conditioned on B. We claim that
conditioned on B, after the PM algorithm, the resulting CI
(which is a set of sets of binary strings) satisfies

c1 < Px [ Baty)™@ [ n0 =
vy

v<1l—e€ >1—¢

CI,. (8

To see this, first we notice that |P| < P. According to a given
partition vector p € P, there are at most By(y) reads with
overlap size vylogn. Given a read }7; with assigned overlap
size ylogn, when v < 1 — ¢, there are at most Bs(y) reads
whose prefix matches the (ylogn)-suffix of 1_/; and, therefore,
at most B3 (v) potential valid merges. Therefore, for a given
overlap size ylogn, v < 1, there at most Bs(y)?+(") merge
possibilities. However, when v > 1 — ¢, we know that for the
given read, there at most n¢ potential valid merges. Therefore
there are at most n<%4(") merge possibilities. We thus bound
the probability of error averaged over all codebooks as

Pr(€) = Pr(E|W = 1) < Pr(E|W = 1, B) + Pr(B)

1
2’!7.32

(a) _
< "B 5 CT, x nP x +0(1)
_ 2nR+10gW"+Bl logn—nBs + 0(1)
_ 2nR+logﬁn+(1+e)Ke_clognfn(lfe)(lfe_c) + 0(1) 9)
This follows because an error occurs if any of the 277 — 1
codewords (W # 1) contain any of the sets of candidate is-

lands in CI (which is upper bounded by C'I,, when conditioned
on B). Each of the sets in CI contains at most B; islands and a
total island length of at least n By bits. Hence, there are at most
nB1 ways to arrange the islands on a codeword and, given one
such arrangement, an erroneous codeword must match these
islands on at least nBy bits.

In order to have Pr(€) — 0 in (9), we require

ce ¢

1 __
<(1- —e ) — — lim — .
R<(1—-e(1—e ) —(1+¢) nlgrolonlogCIn
The following lemma, proved in the longer version of the paper
[13], evaluates the last term in the above expression.

Lemma 5. The upper bound C1,, on |Cl| satisfies

1 — 1 c
im — <eel-7) _ (< —c
lim —logCl, <e (L—l—l)e + f(e),

n—o00 N

where f(€) — 0 as € — 0.

From Lemma 3, if we let € — 0T, we have that any rate
R<1- e_c(l_%),

is achievable. This completes the proof of achievability. The
converse is considered in the longer version of this paper [13].

V. DISCUSSION

We presented a closed form capacity expression for the SSC.
We provide an achievability argument based on merging reads
in an intricate way, which allowed us to achieve capacity.

A relevant related setting is the problem of reconstructing a
string from its substring spectrum [27, 28]. In that setting, the
goal is to provide explicit code constructions that allow the
reconstruction of any codeword from a noisy version of the
set of its length-L substrings. The reconstruction guarantees
are in terms of the maximum number of errors and missing
substrings. This is in contrast to the probabilistic setting we
consider, for which one can characterize the capacity.

Many of the explicit code constructions that have been
proposed are related to the class of repeat-free codes [35, 36].
The absence of repeats of length ¢ > logn in the codewords
allows one to confidently merge reads with overlaps greater
than log n. However, these codes provide no guarantees for
the merging of substrings with overlaps smaller than /. Notice
that the capacity-achieving code discussed in Section IV needs
to carefully deal with the merging of small overlaps, which is
needed in order to achieve capacity. To use repeat-free codes
on the SSC, one would need to guarantee that successive
reads overlap by at least logn. To guarantee this with high
probability, it can be shown that we need K = O(n). On the
other hand we showed a coding scheme that provably requires
only Q(n/logn) reads to achieve the channel capacity.
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