Advances in Computational Mathematics (2022) 48:71
https://doi.org/10.1007/510444-022-09988-6

®

Check for
updates

An O(N) algorithm for computing expectation

of N-dimensional truncated multi-variate normal
distribution Il: computing moments and sparse grid
acceleration

Chaowen Zheng' - Zhuochao Tang? - Jingfang Huang?® - Yichao Wu3

Received: 6 March 2022 / Accepted: 29 September 2022
© Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

In a previous paper (Huang et al., Advances in Computational Mathematics
47(5):1-34, 2021), we presented the fundamentals of a new hierarchical algo-
rithm for computing the expectation of a N-dimensional function H(X) where
X satisfies the truncated multi-variate normal (TMVN) distribution. The algo-
rithm assumes that H(X) is low-rank and the covariance matrix £ and precision
matrix A = X! have low-rank blocks with low-dimensional features. Analysis
and numerical results were presented when A is tridiagonal or given by the expo-
nential model. In this paper, we first demonstrate how the hierarchical algorithm
structure allows the simultaneous calculations of all the order M and less moments
EHX) = X’I”I ---X;\'/’N|ai <X, <b,i=1,....,N), Y.m; <M using asymptotically
optimal O(N™) operations when M > 2 and O(N log(N)) operations when M = 1.
These O(NM) moments are often required in the Expectation Maximization (EM)
algorithms. We illustrate the algorithm ideas using the case when A is tridiagonal or
the exponential model where the off-diagonal matrix block has rank K = 1 and num-
ber of effective variables P < 2 for each function associated with a hierarchical tree
node. The smaller K and P values allow the use of existing FFT and Non-uniform
FFT (NuFFT) solvers to accelerate the computation of the compressed features in
the system. To handle cases with higher K and P values, we introduce the sparse grid
technique aimed at problems with K + P = 5 ~ 20. We present numerical results for
computing both the moments and higher K and P values to demonstrate the accuracy
and efficiency of the algorithms. Finally, we summarize our results and discuss the
limitations and generalizations, in particular, our algorithm capability is limited by
the availability of mathematical tools in higher dimensions. When K + P is greater
than 20, as far as we know, there are no practical tools available for problems with
20 truly independent variables.

Communicated by Zydrunas Gimbutas.

Extended author information available on the last page of the article

Published online: 02 November 2022 @ Springer


http://orcid.org/0000-0002-6720-8389
http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-022-09988-6&domain=pdf

71 Page 2 of 20 C.Zhengetal.

Keywords Exponential covariance model - Sparse grids - Hierarchical algorithm -
Low-dimensional structure - Low-rank structure - Truncated multi-variate normal
distribution

Mathematics Subject Classification (2010) 03D20 - 41A30 - 62H10 - 65C60 -
65D30 - 65T40

1 Introduction

Suppose X = (X, ..., Xy) follows a multi-variate normal distribution with mean 0

and positive definite covariance matrix X. We are interested in computing

EHX)|a; <X; <b,i=1,...,N)= f;’ H(x)%dx for a N-dimensional func-
[, px:

tion H(-), where p(x,ZX) denotes the probability density function (pdf) of X, and
% denotes the pdf of a truncated multi-variate normal (TVMN) distribution,
with X; truncated at the lower limit g; and upper limit b,. In this expectation calcula-
tion, the essential part is to compute the integral ¢(a, b;A) = /a Wil x)f nglA)dx where
the matrix A denotes the precision matrix A = ! and f(x|A) = ¢~ 2* **. Without
loss of generality, we focus on evaluating this integral instead of the exact expecta-
tion for the rest of the paper.

In a previous paper [9], we presented the fundamentals of a hierarchical algo-
rithm for computing the integral ¢(a, b;A) under the assumption that H(X) is low-
rank and A has low-rank blocks with low-dimensional features. Numerical results
were presented for cases when A is tridiagonal or when it is given by the exponen-
tial model. The ranks of the off-diagonal blocks for both cases are K = 1 and the
number of effective variables for the function associated with each hierarchical
tree node is bounded by P = 2. The smaller K and P values in [9] simplify the dis-
cussions and allow the use of existing FFT and Non-uniform FFT (NuFFT) solv-
ers. Extremely accurate results (allowed by the problem condition number) were
derived for dimension N as large as 2048 on a personal desktop computer. These
highly accurate results also provide valuable data for validating other high dimen-
sional data analysis tools.

In this paper, we consider the generalization of the algorithm in [9]. Note that the effi-
cient computation of different order moments of TMVN is important in many applica-
tions. One example is the Expectation Maximization (EM) algorithms that require the cal-
culation of all the 07, 1%, and 2" order moments, i.e., E(H(X)|a; < X; < b;,i =1, ...,N)
where H(X) € H = (X' - X", ¥V k; <2, 0 <k <2}. Most existing algorithms
become computationally impossible when the dimension N gets larger or when higher
accuracy is required (due to the slow convergence of the Monte Carlo methods). Our hier-
archical algorithm in [9] has successfully reduced the computational complexity for each
individual moment calculation to asymptotically optimal O(N). However as there are a
total number of O(N?) order< 2 moments, a total amount of O(N>) operations are there-
fore required if each moment is computed individually. One main contribution of this
paper is a novel numerical algorithm utilizing the compressible features in the hierarchi-
cal tree structure [9] to avoid any redundant computations and reduce the computational

@ Springer



An O(N) algorithm for computing expectation of ... Page30of20 71

complexity of evaluating all the 07, 1%, and 2" order moments from O(N?) to asymptoti-
cally optimal O(N?). More precisely, for the N-dimensional truncated normal distribu-
tion, the resulting algorithm can calculate the mean E(X|a; < X; < b;,i =1,...,N) (1*
order moments) using O(N log(/N)) operations, and can evaluate the covariance matrix
Cov(X|a; < X; < b;,i=1,...,N) (2" order moments) using O(N?) operations. We
demonstrate the new algorithm ideas for the cases when A is the tridiagonal or expo-
nential model with rank K = 1 for the off-diagonal blocks and number of effective vari-
ables P < 2 for each function associated with a hierarchical tree node. The smaller K
and P values allow the use of existing FFT and Non-uniform FFT (NuFFT) solvers. For
simplicity, we focus on the zero mean case in this paper but the algorithm can be easily
generalized to non-zero mean cases and we skip the details.

For fixed P and K values, our algorithms are asymptotically optimal O(N) to
compute the expectation of one low rank function, O(N log N) to compute all the 1*
order moments, and O(NY) to compute all the order< M (M > 1) moments. How-
ever, when P and K increase, the prefactor of these asymptotically optimal algo-
rithms, when based on the classical FFT techniques, grows exponentially and one
quickly encounters the “curse of dimensionality.” This is because the FFT requires
uniform discretization in each dimension and the number of total sample points in
this “full-grid” discretization grows exponentially when the dimension increases. In
[9], we studied how to compress and represent the N-dimensional integrand func-
tion in the expectation integral as a hierarchy of functions A, ;(w), where i is the node
level in the hierarchical tree structure, j is the index of the associated node in level
i, and w is the effective variable vector of size no more than P. The second contri-
bution of this paper is the introduction of the sparse grid technique to further take
advantage of any compressible features in each function A, ;(w) on the (compressed)
hierarchical tree structure. The sparse grid technique uses another hierarchical basis
and sparse tensor ideas for each function ; J(W) with P effective variables [15]. For
a function i(w) with reasonable smoothness, when n discretization levels are used in
each dimension and define 4 = 27", compared with the conventional full-grid meth-
ods (i.e., the uniform grids in the FFT discretization) which require O(hlp) grid points
for an accuracy of O(h?), the sparse grid method only requires O(h~" - log(h~")F~1)
grid points for an approximation error of O(h?log(h~')’~!). Our numerical experi-
ments show that when properly implemented, the sparse grid based methods have
the potential to handle problems with K + P ~ 5 ~ 20. However, when K + P is
greater than 20, our numerical experiments also reveal that no current tools can ana-
lytically handle problems with 20+ truly independent variables, therefore new strat-
egies become necessary to utilize the compressible features and hierarchical struc-
tures, e.g., using the Monte Carlo simulations to fight the curse of dimensionality.

We organize this paper as follows. In Section 2, we provide a brief review of the
low-rank properties and key ideas in the original hierarchical algorithm in [9]. In Sec-
tion 3, we describe the generalized algorithm for simultaneously calculating all the 07,
1%, and 2"¢ order moments (a total of O(N?) moments) for the TMVN using asymp-
totically optimal O(N?) operations. The scheme can be further generalized to compute
all the M™ order (M > 1) or less moments using asymptotically optimal O(N*) opera-
tions. In Section 4, we discuss the sparse grid technique and how it can be applied to

@ Springer



71 Page 4 of 20 C.Zhengetal.

handle problems with larger K + P values. In Section 5, we present preliminary numer-
ical results to demonstrate the accuracy, stability and computational efficiency of the
presented algorithms for computing all the moments and for larger K + P values using
the sparse grid technique. Finally in Section 6, we summarize our results and discuss
the limitation of our algorithms and possible future research directions.

2 Review of low-rank structures in the hierarchical algorithm

In [9], by observing the low-rank properties of the off-diagonal blocks in the pre-
cision matrix A and assuming H(X) is also a low-rank function, a fast hierarchical
algorithm is presented to evaluate the N-dimensional integral

bl by .
$(a,bA) = / o [ H®E Xy - dx, )

N

using O(N) operations where the prefactor depends on the rank of the off-diagonal
blocks and dimension of the corresponding subspace of singular vectors. In this sec-
tion, we explain different low-rank and low-dimensional structures and how they are
utilized in the asymptotically optimal hierarchical algorithm.

The first assumption is that the function H(x) has low-tensor-rank, i.e.

Ky Ky N
H(x) = Z U 1 U 2 () -+ 1y (X)) = 2 H U (Xp)» 2
k=1 k=1 n=1

where Kj; is assumed to be a small constant independent of N, and each function u, ,,
is a univariate and not necessarily continuous function. Under this assumption, the
evaluation of Eq. (1) becomes the evaluations of K integrals, each of the form

bl by ]
/ / g (0t 2 () = sy y Cep)e™ 25 ey - . 3)
a ay

We further mention that all the moment functions x]](‘ xl;\;v have low-tensor-rank
(=1), and without such a low-rank assumption, the sampling of an arbitrary function
H(x) with N truly independent variables is computationally impossible for large N
due to the curse of dimensionality.

Our second assumption is that when the variables x,, are properly clustered, the
correlations between different clusters are low-rank. In [9], two specific examples
are studied in detail. In the first example, the precision matrix A is tridiagonal and
the quadratic form is given by

TAe — 2 2 2 2
X' AXx = a1 X, + -+ Ay 1 Xy + Zak,kﬂxkxkﬂ + Qi1 et 1% 41 + -+ ay NXy-
Note that the two sets of variables [x|,...,x;] and [x;,, ..., xy] are only “weakly”
coupled in the integrand through the term

@ Springer



An O(N) algorithm for computing expectation of ... Page50f20 71

(Apges1 F W1 XK1 = 20 g1 XXy 1 -

In matrix language, each off-diagonal matrix block of the tridiagonal matrix A only
contains one non-zero number, either at the lower-left or upper-right corner of the
matrix block, therefore all the off-diagonal matrices have rank 1. In the second
example, the matrix A is defined by the exponential covariance function

AiJ — e_lzi_zjl/ﬁ’ ﬁ >0 (4)

where each variable x; is observed at a location z; (e.g., in temporal or spatial sta-
tistics) and f is a parameter controlling how the correlations between two different
locations decay. Utilizing the separation of variables

el = e, z2y
ete™, z<y,

one can see that all the off-diagonal blocks of the exponential matrix A have rank
1. Similar to the tridiagonal case, the two sets of variables x; =[xy, ...,x,]” and
Xy = [X441, ..., Xy]T are only “weakly” coupled through the term

x/viu'x, + xJuiv’x, = 2x] viu'x,

where A is the (scalar) singular value, and u and v are respectively the left and right
singular vectors of the rank-1 off-diagonal matrix block.

One key idea in the hierarchical algorithm is to introduce one new #-variable to
decouple the weakly coupled x-variables using the formula

(o] (o]
_ a2 ery) —Lip2 Lo 1o
e 5 (y) =/ SHHY) p= 37 dt=/ ooy o3 dy. )
—00 —00

Note that the coupling term xy implicitly shown on the left side becomes decoupled
e™e™ on the right side. We explain some details of this decoupling process in the
hierarchical algorithm for the tridiagonal case. If we apply “completing the square”
to rewrite the coupling term 2a; ;1 X;X; 1 as (ak‘%xk + yx,,,)? in the integral, we get

b
1
¢(a,b;A):/ e_E(al,lx%'*""+ak.kxz+2ak,k+lxl<xk+l+ak+l,k+1xi+|+"'+aN,Nx2N)dX
a

v

b ekt 4
el 2y 2 Tk 2 2),2
/ g_5<m+(ak*k_(T) ARy y 1)+ (i1 7 )xk“_'—m)dx
a

Ry (Dhy 5 (1)de

1 / ®
— e
V2w J -
where we applied Eq. (5) in the last step, and h, () and h, ,(?) are single ¢-variable
functions respectively given by

@ Springer



71 Page 6 of 20 C.Zhengetal.

b by =2 (ay By — (L2 0 Bkt L
hl,l(t) = /ﬂ]l / ke 2( L% ke v k y Ok )dxk “'dxh

3

_ b by -1 20y xp 1 1+ 1 1—}/2))c2 +-~-+aNN)c2
h1,2(f) = /ak+1 faN e 2( + +Lk+ e+l . N)de dxk+1'

In the formulas, y is an “optimized” algorithm parameter so that the children’s matri-
ces representing the quadratic forms of

Qe k+1

al,le + e (g — ( )2)xi and (a1 p41 — yz)x]%H + e 4 aN,lez\,

are also positive definite, respectively. To evaluate f_°; e"ZhL1 (Dhy 5(1)dt, because of
the rapid decay of the weight function ¢, one only needs to accurately approximate
the functions &, ;(¢) and h,(¢) in a finite interval. Similar to [9], a filter function
filter(?) (e.g., “top-hat” or “bell” functions) is introduced such that filter(¢t)h(t) = h(t)
when t € [-7,7] and filter(t)h(f) decays smoothly to zero when |¢| — 14. The Fast
Fourier Transform (FFT) is then applied to derive the Fourier series expansion of
filter(H)h(¢) for t € [—14, 14]. The integral

o0 14
/ e hy 1 (Dhy 5(D)dE & / e~ filter(thy , (HDhy 5 (1)dt
- —14
is then evaluated analytically. The same divide-and-conquer process, filter function,
and integral evaluation strategy can be applied to the case when A is given by the
exponential matrix. We refer interested readers to [9] for the potential theory based
analysis and Fourier series based implementation details.

When the rank of the off-diagonal matrix block is K (K = 1 for the tridiagonal
and exponential cases), a total number of K #-variables are required to decouple the
x-variables in the original system. When this strategy is applied recursively in a hier-
archical divide-and-conquer setting, the number of #-variables grows rapidly when
the number of levels in the hierarchical tree structure increases. To control the num-
ber of “effective variables”, the third assumption in the algorithm is the “low-
dimensional” structure of the subspace formed by all the singular vectors from the
singular value decompositions of the off-diagonal low-rank matrix blocks. For the
two specific examples, the singular vectors are either w; =[1,0,0,... ,01" or
u, =1[0,0,...,0, 1]7 for the tridiagonal case, or are combinations of the discretized
basis functions e* and e~ for the exponential case. Therefore the dimension of the
subspace is bounded by P = 2. More generally, when the off-diagonal covariance
function can be well-approximated by a low degree polynomial expansion using the
separation of variables, the singular vectors are just the discretized versions of these
polynomials, therefore the rank of all the old and new singular vectors (from the
decomposition of the off-diagonal matrix blocks) cannot be higher than the number
of the polynomial basis functions. Note that the z-variables introduced to decouple
the x-variables are always in the form of (Y, l‘iV[»)TX or ( itl-ui)Tx. Using the P
independent basis (D,,, p= lT, -+, P for the subspace of singular vectors, we have

T L . .
( ,-fi"i) X = (z;’:l wp<Dp> X, i.e., instead of considering the f-variables, one can

@ Springer



An O(N) algorithm for computing expectation of ... Page70f20 71

consider the effective w-variables and the number of such variables for each func-
tion associated with a hierarchical tree node is bounded by P.

The hierarchical algorithm in [9] can be applied to general hierarchical matrices
with low-rank off-diagonal structures. Following the Fast Multipole Method termi-
nology, we refer to the coarsest level (with one tree “root” box/node containing all
the x-variables) as level 0, and assume each childless tree “leaf” box/node at the fin-
est level [/ only contains one x-variable. We summarize the algorithm as the follow-
ing two sweeps. In the downward sweep, by utilizing the low-rank structures in the
off-diagonal matrix blocks of the precision matrix A, new t-variables are introduced
to decouple the parent node’s function/integral as the integral of two child nodes’
functions/integrals. The relations between the parent’s effective variables wp, chil-
dren’s effective variables w;, w,, and new f-variables ¢,,,, are computed in the decou-
pling process and stored for each tree node. At the finest level, for each childless
tree node, the single x-variable function is integrated either analytically or numeri-
cally in order to construct the approximating function associated with each child-
less node, each with no more than P effective w-variables. In the upward sweep, an
interpolating function /,(w,) is constructed for each parent tree node using its two
children’s interpolating functions /2, (w,) and s,(w,), by integrating the ¢,,,, variables
and using the relations between the parent’s and children’s effective variables. The
expectation in Eq. (1) is simply the function value at the root node. We leave the
discussions of additional algorithm details for general matrix A with low-rank off-
diagonals and low-dimensional features to Section 4. We demonstrate the algorithm
structure for the specific tridiagonal case with N = 8 in Fig. 1 (also see [9]). We
assume H(x) = 1, all the diagonal entries of the precision matrix A are a;; = 4, and
all the lower/upper off-diagonal entries are given by —2.

For the N-dimensional integration problem in Eq. (1), when the divide-and-con-
quer strategy is applied, the number of levels in the hierarchical tree structure is
approximately O(log(N)) and number of tree nodes is O(N). Under the three low-
rank and low-dimension assumptions, the total amount of work for each tree node is
a constant which depends on the rank K of the off-diagonal matrix block and num-
ber P of the effective variables. Therefore the overall algorithm complexity for com-
puting the N-dimensional integral in Eq. (1) is asymptotically optimal O(N). In the

e has(t2,4) = [ e vs~2wst2adgy
ha,4(t1,2)
T
h3,7(t1,2,t2,4) :f52117(12,4*t1.2)dz7
h1,2(to) e
\ — h36(t2,3,t1,2) = [€ izg(t1,2—12,3) g
/ hg,g(t()’tl'z) —
has(to t2,3) = [ e2®a(t23=t0) g
é(a,b; 4) ‘
hsa(t22,t0) = [e2@ato=t2.2)qg,
\ ha2,2(t1,1,t0) -
h (t ) h3,3(t1,1,t2,2) :fe2“"3(t2v2"‘1-1)dw3
b hap(te,t1,1) = [e?@2(tra—t2)dgy
ha,1(t1,1)
h3,1(t2,1) :fe—rfﬁu,z_lmldm

Fig. 1 A three-level hierarchical decomposition of the 8-dimensional integral

@ Springer



71 Page 8 of 20 C.Zhengetal.

numerical results presented in [9], when the rank K of the off-diagonal blocks is one
and dimension P of the singular vector space is bounded by two, extremely accurate
results (allowed by the problem condition number) were derived for dimension N as
large as 2048 on a personal desktop computer.

Finally, we comment on the generality of the three assumptions. It is interest-
ing to first cite the result in [17] which states that “matrices of (approximate) low
rank are pervasive in data science.” Indeed, one particular purpose of classifica-
tion, categorization, or defining pseudo-location and pseudo-distance is to reveal the
compressible features between different groups, and the low-rank structure is one
of the most well-studied compressible features. In order to be asymptotically opti-
mal O(N), the minimum requirements of the hierarchical algorithm in [9] are (a) the
low-rank off-diagonal blocks in matrix A and (b) low-dimensional properties of the
singular vector space. The discussions in [9] were restricted to the two specific cases
when K = 1 and P = 2 and to the computation of one particular integral of a given
low-rank function H(x). In this paper, we demonstrate how to generalize the hier-
archical algorithm to efficiently compute all the order< M moments, and to cases
when K + P ~ 5 ~ 20. As far as we know, there exist no practical tools to handle
functions with more than 20 truly independent (cannot be further compressed) vari-
ables due to the curse of dimensionality.

3 Computing moments simultaneously

To illustrate how the 0, 1%, and 2" order moments can be computed simultane-
ously, we follow the examples in [9] and consider the cases when A is either tridi-
agonal or has the same form as the exponential covariance matrix. We consider the
computations of the N-dimensional integrals

b1 by L,
$(a.biA) = / o [ H0ETT Xy - dx,. ©)
a ay
for H(x) =1 (0" order), H(x) = x; (1* order), and H(x) = x; ‘X (2" order) for
i,j =1, ,N. Therefore there are a total number of 1+ N 4+ XD | N different
moments. It is always possible to apply the O(N) hierarchical algorithm to each
moment individually, and the total number of operations to compute all the O(N?)
moments becomes O(N3). By avoiding any redundant computations involved in
the hierarchical algorithm framework, in the following, we introduce an algorithm
which computes all the moments using asymptotically optimal O(N?) operations.
Notice that the purpose of the downward pass of the hierarchical algorithm is to
separate the x-variables and derive the relations between the parent node’s A func-
tion and effective variables with those of its two children,

/’lp(Wp) = \/Lz_n. /_oo e_lzhl(Wl)h2(W2)dt, @)

@ Springer



An O(N) algorithm for computing expectation of ... Page90f20 71

where w,,, w;, and w, are the effective variables of the parent, child 1, and child 2,
respectively; and their relations are given by

W, =R,w, + 5t

where the transformation matrices R}, R,, S;, and S, are constructed so that the chil-
dren matrices are still positive definite and the algorithm has good stability prop-
erties. For the tridiagonal and exponential cases, as the rank of each off-diagonal
matrix is 1, only one #-variable is introduced; and as the rank of the singular vectors
are no more than 2, the number of effective variables for each function is therefore
bounded by 2. For more general problems, the number of the required z-variables to
separate the parent’s problem is bounded by the rank of the off-diagonal matrices,
and the number of effective variables for each function is bounded by the dimension
of the subspace formed by all the left (or right) singular vectors. As this downward
decomposition process doesn’t depend on the function H(x) and is the same for all
the moments, therefore the relations in Egs. (7) and (8) only need to be computed
once for all the moment computations.

In the upward pass when computing all the 0, 1%, and 2" order moments, if each
moment is computed separately, there exist many redundant calculations. For example,
consider two moments H,(x) = x;x; and H,(X) = x,x;. Note that only the i-function
in the leaf nodes corresponding to the variable x; and x, and all their ancestors are dif-
ferent in the upward pass, and all the other nodes share the same % functions on the
hierarchical tree structure. Therefore a new strategy for the upward pass is to compute
each required % function only once and store it until its contributions to parent’s func-
tions are all accounted for. The new upward pass for computing all the 0, 1%, and 2"¢
order moments is as follows: As the moment function H(x) is always in the form of
Hx) = xlf‘ xf\jv and the integrand only contains product of the x-variables, for a leaf
node containing x-variable x;, the integrand’s dependency on x; can only take the form
of either 1 (constant function), x; (linear function), or xl.2 (quadratic function). Therefore
instead of forming one single / leaf(wlmf ) function in the original hierarchical algorithm,
3 functions can be formed for 1, x;, and xiz, respectively, as shown in Fig. 2, where a
3-level tree with 8 x-variables are presented. For a parent node containing a number j
of the x-variables, the total number of functions becomes 1 + j + ’(’%1) Note that each
function calculation only requires approximately a constant number of operations using
the 2 child functions. For example, to compute the function h253{x§ }, one takes two
child functions h3’6{x§} and h;5{1}, and evaluate Eq. (7) using approximately a con-
stant number of operations. Similarly, to compute 4, , {xsxg}, one uses the child func-
tions /15 4 {xg } and h, 3 {x5}.

The computational complexity can be easily derived using the recursive relation

NN +1)

T+ 1) =2T()+c(1+N+ >

) ©
where N = 2/*! is the total number of x-variables and T(I + 1) is the total amount

of work for a hierarchical tree with [ + 1 levels. In the formula, 27(/) is the amount
of work for computing all the order< 2 moments for each child box at level 1. Each

@ Springer



71 Page 10 of 20 C.Zhengetal.

e h3g{l,zg,22}

ho 4
{1, 27,28,
ha,2 x2, 22, xras}
Moments of {1, z5,26,x7, — T8 e hy 7{1,z7, 22}
5 L6, TT, T8 T3, T5T6, T5TT,
xy,T5,T5,T 2
1042 L3s Ly, T5T8, LT ~ 1
132 J?Q x x2 548, L6ET, ho. 3 /.h‘376{ ,1'6,1’6}
516 V78 / IGIg,x7I8} {1 ’
5
T1T2,T1X3,T1T4, q 7%‘071'67}
TE,TE, T5T6
T1T5,T1T6, T1T7, 5176 e hg5{1, 25,22}
128, X2T3, T2,
o h3 4{1l,z4 a:2}
TaT5, T2T6, T2T7, ha o __—* h3il, za, 2]
ToT7, T2X8, TIT4, \ L (1,23, 24,
T3T5, TIT6, TITT, 11 x2, 22 x324}
3Ly, L3T4 . . 2
T3T8, T4T5, T4TE, {Lzy, 22,23, — T hg,3{1, 23,23}

3
T4T7, T4TS, THT6, T4 T Ty T3
T5T7, T5T8, TETT, Ty T1X2, T1T3, 9
T6T8, T7TY } T1%4,T2T3, T~ haa _—= h32{1,z2, 23}
T2x4,T324 } (1,21, 22
b b 9

2 2
$17$21$1$2} — h371{1,1‘1,1‘?}

Fig.2 A three-level hierarchical partition (N = 8) to compute all order M = 2 or less moments

child box contains 2 = 2/ x-variables and the corresponding sub-tree only has [ lev-
els. We also assume each evaluation of Eq. (7) takes approximately a constant num-
ber ¢ of operations. Solving the difference equation in Eq. (9), we get the algorithm
complexity O(N?), which is asymptotically optimal to compute the total number of
1+ N + YD moments. Note that the algorithm can be generalized to compute
all the order< M moments in a straightforward way. As there are a total number of
O(NM) moments, the difference equation becomes

T+ 1) = 2T + c(NY). (10)

The algorithm complexity becomes O(N™) when M > 1and O(N log N) when M = 1.

4 Generalization for larger K and P values

In this section, we discuss the generalization of our algorithm for problems with
larger K and P values. We first go over the original algorithm for computing one
expectation to check where the challenges are and then introduce the sparse grid
techniques to address some of these challenges.

4.1 Downward pass and numerical linear algebra tools
The downward pass only involved linear algebra operations which recursively divide

the precision matrix A into two child matrices problems. Following the notations in
[9] and consider a parent’s function

@ Springer



An O(N) algorithm for computing expectation of ... Page110f20 71

h(w)_/ H,(x,)e” TGAN, i) B dx, (11)

where H,(x,) is the parent’s tensor-rank 1 function (at the root level,
H,(x,) = H(x) Hn | Uy(x,)), W, is the compressed vector of effective variables
satlsfylng the relation wTE X, tprXp, t, contains the -variables inherited from
ancestors, Dp describes how t‘,7 interacts with the xp-varlables, the size P of W, is the

same as the rank of Dp, Ap has low-rank off-diagonals

A Ay Ap=VAUTl [
P= A5 =UAVT A, i Y

the first index [ is the current level of the block matrix, and we assume rank(A) =
Completing the squares for the quadratic form

x"Ax =x[(A;, - VBT'ABTTV)x +
XJ (A4 — UB"ABU" )x,+
(BU'x, + B7TVTx )T ABU'x, + B TVTx,),

the first major computation in the downward pass is to find a K X K matrix B
such that both the matrices A, = A;; — VB~'AB~"V” and A, = A,, — UB"ABU” in
the child problems are positive definite. We learned from the tridiagonal and expo-
nential cases that the choice of B is not unique, therefore the optimal B should “bal-
ance” two child problems (i.e., for the exponential A, the midpoint is chosen in the
potential theory based analysis). Next, introducing a new vector t,,,, of dimension K
and applying the vector form of the formula in Eq. (5), the parent’s function can be
decomposed into two child problems as

¢ 3t (1, Yy (ty)dt

=1

hy(t,) =

new?

where
b, —IxTAx, _it"Dx
hl(tl) Z/‘;‘H Hl(Xl)e 271 el ldXI,
b, _ Ly T
hy(ty) = i Hy(xy)e™ eI P%dx,

In the formulas, {a;,b,;} and {a,,b,} are respectively the lower and upper integration
bounds of x, and x,. By separating the x-variables, the term tpTDpx[7 is written as

¢7 T
prxp =t! Dp1x1 tpr’zxz,

p7 new]

child 2,

andt, = [t are respectively the new r-variable sets for child 1 and

p’ new]

@ Springer



71 Page 12 of 20 C.Zhengetal.

1
{ tlTDle = tpTDp,lxl + tnewAEB_TVT "Xy, (12)

1
thzXz = t;Dple + tneWAEBUT N Xz,
and the tensor-rank 1 functions H; and H, satisfy the relation H,(x,) = H,(x,) - Hy(x,)-
The second major computation in the downward pass is to identify the effective
variables of the child problems WITEIXI =t,D;x,and w; E,x, = t,D;X,, and find the

relations between the parent’s and children’s effective variables in the form

{ Wl = lep + Sltnew’

W, = R,w, + 55t 13)

new:*

For both the tridiagonal and exponential cases, the matrix B and relations in Eq. (13)
are derived using analysis tools, e.g., the corresponding Green’s functions and
potential theory based analysis for the exponential case. For more general problems,
numerical linear algebra tools have to be applied to find B and the relations numeri-
cally. When the problem size N is in the range of thousands or tens of thousands,
existing O(N3) SVD based algorithms are sufficient for all the computations. For
extremely large N values, recent low-rank linear algebra tools are available to reduce
the total amount of work to O(N), interested readers are referred to some recent
results in [7, 8, 18, 19]. Notice that the problem itself becomes ill-conditioned for
extremely large N values, we conclude that existing numerical linear algebra tools
are sufficient for the downward pass.

4.2 Upward pass and sparse grid method

The most time-consuming operation in the algorithm is the construction of the par-
ent’s function ,(w),) recursively on the hierarchical tree from its child functions £, (w,)
and h,(w,) in the upward pass using the relation

1 o 147 )
h,(w,) = Vo [ €2t by (W )y (W) )dt,,,

R (14)
e by (RyW, + 818,00 (Ry W, + S)t

dt,,

= \/% /_o; e new new) w*

As all the functions hp, h,, and h, are nonlinear functions, the fundamental build-
ing blocks required are (1) the representations and interpolations (evaluations) of
the functions h,(w,), h;(w;), and h,(W,), each with no more than P effective vari-
ables, and (2) numerical integration quadrature rules to integrate the product func-
tion by (Ryw, + S;t,,, ), (R,w,, + Syt,,,,,) with K + P variables with respect to t,,,,, in
order to get the function £,(w,) with P effective variables. For the tridiagonal and
exponential cases, as K = 1 and P = 2, the “windowed” Fourier series representa-
tions can be utilized and accelerated by uniform FFT algorithm for the tridiagonal
case and by NuFFT for the exponential case [9]. Although higher dimensional (i.e.,
dimension> 4) FFT solvers can be developed, due to its uniform sampling nature,
for a prescribed accuracy requirement, the algorithm complexity increases exponen-

tially as the dimension increases due to the “curse of dimensionality.” Therefore the

@ Springer



An O(N) algorithm for computing expectation of ... Page130f20 71

capability of our hierarchical algorithm is limited by existing numerical tools to han-
dle nonlinear functions with K + P independent variables. We introduce the sparse
grid technique to address this bottleneck. We have tested the packages SG** and
Matlab based Sparse Grids Matlab Kit. In the following discussion, we present the
algorithm details using the modules from the Sparse Grids Matlab Kit. Interested
readers are referred to [1, 11-13, 16] for more references of the sparse grid method
and existing packages.

In the algorithm implementation, one starts from the finest level to first con-
struct the sparse grid representation of the function associated with each childless
node i, by calling the module

adapt = adapt_sparse_grid(@(w)leaf,(w), other parameters)

where the structure adapt stores the compressed adaptive sparse grid representa-
tion of the & function associated with the childless node i, leaf;,(w) is a user pro-
vided function for sampling node i’s & function (an integral with respect to the
x-variable(s)) for the given effective variable(s) w, and other parameters include the
number of effective variables in the function /# and parameters required by the sam-
pling function leaf; and adapt_sparse_grid module. When there is only one x-vari-
able in the childless node, the number of effective variables is one (e.g., see Fig. 1)
and the sparse grid representation can be efficiently constructed either numerically
or analytically by evaluating the childless node’s integral. It is possible to allow
more x-variables for a childless node, which results in a function with larger number
of effective variables but the number of tree levels (and hence the number of tree
nodes) will be reduced.

The most time-consuming operation in the sparse grid accelerated algorithm
is the construction of parent’s function’s sparse grid representation from its chil-
dren’s representations. Assuming two child nodes’ sparse grid representations
adapt, and adapt, of h;(w,) and h,(W,) are available, respectively. To construct
the “compressed” sparse grid representation adapt, of the parent’s function /,(w,)
with P effective variables, the same sparse grid module

adaptp = adapt_sparse _grid(@(wp)hp(wp), other parameters)

is called. In the user provided sampling function ,(w),), one calls the adaptive quad-
rature integration module

y = quadrature_on_sparse_grid(@(t,,, )f (t,,,,. W,), other parameters)

new?

for any sampling point w,,. Note that the sparse grid integration module provides the
weights and nodes to integrate Eq. (14) with respect to t,,,,. The user provided inte-
grand function f'is given by
L7
St W) = \/Le_zt"cwtwhl(lep + 81ty (RyW, + S5t
2n

I’IC‘H/)

where one applies the sparse grid interpolation module to evaluate the sparse grid
representations of the functions 4, (w,) and /,(w,) using

@ Springer



71 Page 14 of 20 C.Zhengetal.

interpolate_on_sparse_grid(adapt,, R, w, + S| t,ew» Other parameters),

interpolate_on_sparse_grid(adapt,, Ryw, + St

news Other parameters)

at the interpolation points w;, = R;w, + St,,,, for h; and w, = R,w,, + S,t,,,,, for h,,
respectively. As there are a total number of K + P variables in the integrand function
f, we say that our algorithm requires numerical tools capable of handling functions
with K + P variables.

The sparse grid method [2, 4, 10, 14] utilizes an “optimal” number of inter-
polation points to sample a multi-variable function. By introducing a new hier-
archy of basis functions, the contribution/importance of each basis function or
corresponding interpolation points at a certain level is measured. For a prescribed
accuracy requirement, the non-important basis (and corresponding interpolation
points) are removed from the hierarchical basis set therefore the “sparse grid”
strategy can significantly reduce the number of grid points in the representation.
For a P—dimensional function A(w) with reasonable smoothness, when n discre-
tization levels are used in each dimension and deﬁne the stepsize h = 27", the
conventional full grid methods normally require 0( ) grid points for an accu-
racy of O(h?). The sparse grid method, by taking advantage of the hierarchical
basis, only requires O(h~! - log(h~")"~1) grid points for an approximation error of
O(h?* log(h~ 1PN,

Note that the number of operations to construct each h,(w,) is independ-
ent of the total number of variables N. Therefore our algorithm is still O(N)
to compute one expectation, and O(N™) to compute all order< M moments.
However, the prefactor depends on the prescribed accuracy requirement, the
K and P values, and existing computational tools for handling multi-varia-
ble functions. When K + P < 5, existing FFT and other “full-grid” algorithm
implementations usually outperform current sparse grid toolboxes for higher
accuracy requirements. When K + P is in the range of 5 ~ 20, as we will
demonstrate in Section 5, the sparse grid technique should have the ability to
handle these problems where higher dimensional FFT solvers are either una-
vailable or too expensive. When K + P > 20 and for high accuracy require-
ment, although the sparse grid based hierarchical algorithm is still asymptot-
ically optimal O(N), the prefactor becomes so large that simulation becomes
impractical on existing computing platforms for reasonable accuracy require-
ments. We are currently studying other possible strategies to overcome some
of these hurdles, e.g., by studying smaller matrix blocks so the K + P can be
lowered, and more promisingly, by coupling the Monte Carlo approach with
the divide-and-conquer strategy [3]. Results along these directions will be
reported later.

@ Springer



An O(N) algorithm for computing expectation of ... Page 150f20 71

5 Preliminary numerical results

We present the accuracy and efficiency results of the moment computation algo-
rithm and sparse grid accelerated expectation computation algorithm for higher rank
and number of effective variable cases in this section.

5.1 Computing all order< M moments

We consider the tridiagonal matrix case with a;; =4 and off-diagonal entries
a;_y; = a;; = —2 to demonstrate the performance of the new moment algorithm.
Similar to the numerical experiments in [9], we set the integration intervals to
[—1, 1] except for b, = 0.5 and b, = 1. To demonstrate the accuracy of the algorithm,
we present the results for N = 4 using different numbers of Fourier expansion terms
2M; for all order M < 2 moments in Table 1. We only show a few selected moment
results for the case N = 8 in Table 2. As analytical solutions are not available, refer-
ence solutions are computed using Mathematica with settings PrecisionGoal — 30
and WorkingPrecision — 60. For the case N =4, the Mathematica computed
reference solutions are —0.2858091904005895, 0.3590755261636870, and
0.1604892154110472 for the moments x|, x%, and x,x,, respectively. There were no
error messages in the computation. For N = 8, the Mathematica computed reference
solutions are —0.8268288904371333, 1.6044375355684, and 0.0294672112998 for
the moments x,, x%, and x,x,, with the estimated errors of 2.49¢ — 7, 9.65¢ — 6, and
0.029, respectively.

For both cases, the moment algorithm results converge as the number of Fou-
rier expansion terms 2M; increases. When N = 4, the converged moment algorithm
results match the Mathematica results to machine precision. When N = 8, the con-
verged moment algorithm results match the Mathematica results in the first 10, 7
and 3 digits, respectively, which agree with the estimated errors. We strongly believe
the errors from our moment algorithm are close to machine precision.

Next we present the CPU times (in seconds) for different M, and N values to
demonstrate the algorithm efficiency. In Table 3, we show the CPU time to compute
all the order 0 and 1 moments. In Table 4, we present the timing results when all
the order< 2 moments are computed. The numerical tests are performed on a lap-
top with Intel i5-8265U CPU @1.8GHz and 8.00GB RAM. The numerical results
approximately agree with the theoretical complexity results in Eq. (9). We believe
the fluctuations are due to the memory/storage hierarchy in the laptop computer
system.

5.2 Sparse grid acceleration for large K + P values

As most existing full-grid algorithm implementations (e.g., FFT) are limited to
dimensions < 4 and the complexity grows exponentially as the dimension (number
of variables) increases, for problems with higher rank and larger number of effec-
tive variables, we adopt the sparse grid (SG) Matlab Kit [1, 11, 13, 16] to handle the

@ Springer



71 Page 16 of 20 C.Zhengetal.
Table 1 Moment algorithm convergence test: N = 4
Moment X X, X3
M; =16 —0.3041533749565543 0.0462052307715464 -0.0141130411535048
M, =32 —0.2858091904148540 —0.0159045800148543 -0.0103271430324009
M, =64 —0.2858091904005896 —0.0159045800045992 -0.0103271430492453
My =128 —0.2858091904005894 —0.0159045800045996 -0.0103271430492452
M, =256 —0.2858091904005894 —0.0159045800045993 -0.0103271430492453
M, =512 —0.2858091904005894 —0.0159045800045993 -0.0103271430492453
Moment Xy x x
M, =16 —-0.0052681407108029 0.3747819132588349 0.7545841147234842
My =32 —0.0038865286568660 0.3590755261680768 0.6470624696800552
M, =64 —0.0038865286629617 0.3590755261636870 0.6470624696728164
M, =128 —0.0038865286629618 0.3590755261636869 0.6470624696728147
M, =256 —0.0038865286629618 0.3590755261636869 0.6470624696728169
M, =512 —0.0038865286629618 0.3590755261636869 0.6470624696728160
Moment x x XXy
M, =16 0.5740966493995562 0.5047959618778686 0.1296632727469494
My =32 0.5560872797206770 0.4957514695322755 0.1604892154356083
M; =64 0.5560872796840923 0.4957514695054667 0.1604892154110471
M, =128 0.5560872796840937 0.4957514695054663 0.1604892154110471
M; =256 0.5560872796840932 0.4957514695054664 0.1604892154110470
M, =512 0.5560872796840937 0.4957514695054664 0.1604892154110471
Moment XXy X X3 X3X4
M; =16 0.0230434527037889 0.2508953622362097 0.2130009249755526
M, =32 0.0240731556685396 0.2581815531307147 0.2066885705421552
M; =64 0.0240731556700224 0.2581815531349327 0.2066885705556584
M, =128 0.0240731556700224 0.2581815531349327 0.2066885705556583
M, =256 0.0240731556700224 0.2581815531349326 0.2066885705556583
M, =512 0.0240731556700224 0.2581815531349327 0.2066885705556583
Table 2 Moment algorithm convergence test: N = 8
Moment X x XXy
M; =16 —0.8807821578989413 1.6332145157428453 0.0206071438781314
M, =32 —0.8268288906575754 1.6044370774787666 0.0212923079285230
M, = 64 —0.8268288905688056 1.6044370772116807 0.0212923079369516
M, =128 —0.8268288905688050 1.6044370772116832 0.0212923079369516
M, =256 —0.8268288905688048 1.6044370772116823 0.0212923079369516
M, =512 —0.8268288905688050 1.6044370772116832 0.0212923079369516

@ Springer



An O(N) algorithm for computing expectation of ...

Page 170f20 71

Table 3 Moment algorithm
efficiency test: order M < 1

Table 4 Moment algorithm
efficiency test: order M < 2

N 4 8 16 32

N 4 8 16 32

M, =32 0.012s 0.096s 0.368s 1.984s
M, =64 0.017s 0.378s 1.681s 5.368s
My =128 0.070s 7.310s 49.783s 203.756s
N 64 128 256 512

M, =32 3.476s 8.341s 22.007s 72.382s
M, =64 23.898s 42.072s 154.072s 342.061s
M, =128 324.646s 786.801s 2518.458s 5259.002s
N 4 8 16 32

M, =32 0.015s 0.212s 0.876s 3.351s

M; =64 0.015s 0.724s 3.653s 17.090s

M; =128 0.106s 12.726s 93.328s 427.916s

N 64 128 256 512

M, =32 14.456s 53.367s 376.201s 4891.492s
M, =64 65.927s 275.311s 1971.194s 27025.872s
M, =128 1374.638s  5670.928s  19130.150s  251696.373s

Table 5 Accuracy test when K = 1 and P = 2 using FFT/NuFFT and sparse grid

N 2 4
Tridiagonal case FFT 1.330383072420054e+00 2.289334215088778e+00
SG 1.330383072420054e+00 2.289334215088776e+00
Exponential case NuFFT 2.943767426876201e+00 9.631287915311061e+00
SG 2.943767426876196e+00 9.631287915313981e+00
8 16 32
6.624246691490003e+00 5.544625397830172e+01 3.884575991340498e+03
6.624246691489994e+00 5.544625397830164e+01 3.884575991340494e+03

1.167505122544801e+02
1.167505122546464e+02

1.759175095515877e+04
1.759175095519246e+-04

5.404567374129064e+08
5.404567374135844e+408

functions associated with each tree node. Other toolboxes are also being tested, i.e.,
the Sparse Grid Toolbox SG** in [12]. We present preliminary results to demon-
strate the SG-based algorithm accuracy and efficiency. The goal is to find the limita-
tions of existing sparse grid toolbox accelerated algorithm on a desktop with 24G
RAM and Intel Xeon CPU.

In the accuracy test, we compare the SG-based algorithm results with those from
the FFT-based algorithms for both the tridiagonal and exponential cases with rank
K = 1. The parameters are chosen to be the same as the settings in the examples of

@ Springer



71 Page 18 of 20 C.Zhengetal.

[9] (See Tables 3 and 5). We use the adaptive SG algorithm with the max number of
sparse grid points M, = 50,000 and error tolerance 10~'°. In Table 5, the SG-based
results agree with the FFT-based results in at least the first 10 digits. We want to
mention that for the low rank and number of effective variables settings K = 1 and
P =2, FFT and NuFFT algorithms are far more efficient than any sparse grid pack-
ages for the same accuracy requirements.

To find the limit of the SG-based algorithm in the efficiency test on today’s com-
monly used desktop computers, we present the CPU time for different K (rank of off-
diagonal submatrices), P (number of effective variables), N (dimension of the integral),
and M, (max number of SG grid points) values. The results are shown in Tables 6, 7,
and 8. We neglect any results (NV/A) when the CPU time exceeds 7 days in the tables.

For problem size N = 32, when P = 16, the hierarchical tree only has two levels,
the root level 0 and level 1 after one division, therefore the module to construct par-
ent’s sparse grid representation from its children’s is only called once; when P = §, the
hierarchical tree contains 3 levels and the module is called 3 times; and when P = 4,
there are 4 levels in the tree structure and the module is called 7 times. The CPU time
results in Table 6 approximately show the linear dependency on the number of such
module calls. When the max number of sparse grid points M, increases, the CPU times
of most existing sparse grid interpolation and integration algorithms increase rapidly.
Our current settings of the M, values only allow very low accuracy results. How to
further improve the efficiency and accuracy of existing sparse grid algorithms is still
an ongoing research topic. When the K and P values increase, the computational com-
plexity also increases. Based on the results from Tables 6, 7, and 8, we conclude that
for reasonable accuracy requirements on our current desktop computer, existing SG-
based algorithm can handle problem sizes of no more than K = P = 16.

Table 6 Efficiency test when M 100 500 1000 1500
K = 4 and P = 4 using sparse ’
grid N=8 68.68s 1956.11s 7764.75s 17970.30s

N=16 370.99s 6170.89s 23358.21s 56564.68s
N =32 931.41s 13876.40s 55285.69s 112808.97s

Table 7 Efficiency test when M 100 500 1000 1500
K = 8 and P = 8 using sparse ’
grid N=16 148.14s 5009.55s 19249.73s 47800.90s

N =32 1275.78s  20284.20s  80097.09s 193414.454s
N=064 463890s  72213.63s  318472.38s N/A

Table 8 Efficiency test when M 100 500 1000 1500

K =16 and P = 16 using sparse ’

grid N =32 252.07s 9510.86s 44462.56s 112095.01s
N=064 10401.89s 196132.82s  N/A N/A
N =128 35701.34s N/A N/A N/A

@ Springer



An O(N) algorithm for computing expectation of ... Page190f20 71

6 Summary

In this paper, we demonstrate how a previously developed hierarchical algorithm can
compute all the order M(> 1) or less moments using asymptotically optimal O(N™)
operations. We also show how the sparse grid technique can be combined with the hier-
archical algorithm to allow the computation of problems with larger rank K and number
of effective variables P. Our algorithm can be generalized to cases when the precision
matrix A belongs to a class of symmetric positive definite hierarchical matrices (H-matri-
ces) [5, 6] with “low-rank” and “low-dimensional” properties, by numerically finding the
relations between the effective variables in the downward pass, and finding the parent’s
function using its children’s in the upward pass. We present preliminary numerical results
to demonstrate the accuracy and efficiency properties of our algorithms. Extremely accu-
rate results (allowed by the problem condition number) were derived for dimension N as
large as 2048 on a personal desktop computer. These high accuracy results will provide
valuable data for validating other high dimensional data analysis tools.

Although our algorithm is asymptotically optimal, its application is still limited by the
capabilities of existing tools for handling high dimensional problems. Most existing tools
are still facing numerical challenges when a function has more than 20 truly independ-
ent variables without any compressible features. We are considering possible strategies to
generalize our algorithms, by considering smaller submatrix blocks and “sibling” interac-
tions to reduce the matrix rank and number of effective variables, and by coupling with
Monte Carlo simulations. Results along these directions will be reported in the future.

Funding The work of J. Huang was supported by the NSF grant DMS-1821093 and DMS-2012451. Y.
‘Wu was partially supported by the NSF grant DMS-1821171.

Data availability Open source software packages and simulation results are available upon request.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Biéck, J., Nobile, F., Tamellini, L., Tempone, R.: Stochastic spectral galerkin and collocation meth-
ods for pdes with random coefficients: a numerical comparison. In: Spectral and high order methods
for partial differential equations, pp. 43—62. Springer (2011)

2. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv.
Comput. Math. 12(4), 273-288 (2000)

3. Genton, M.G., Keyes, D.E., Turkiyyah, G.: Hierarchical decompositions for the computation of
high-dimensional multivariate normal probabilities. J. Comput. Graph. Stat. 27(2), 268-277 (2018)

4. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer Algorithms 18(3), 209—
232 (1998)

5. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part I: introduction to H-matrices.
Computing 62(2), 89-108 (1999)

6. Hackbusch, W., Khoromskij, B.N.: A sparse H-matrix arithmetic. Computing 64(1), 21-47 (2000)

7. Ho, K.L., Greengard, L.: A fast direct solver for structured linear systems by recursive skeletoniza-
tion. SIAM J. Sci. Comput. 34(5), A2507-A2532 (2012)

@ Springer



71

Page 20 of 20 C.Zhengetal.

10.

11.

16.

17.

18.

19.

Ho, K.L., Ying, L.: Hierarchical interpolative factorization for elliptic operators: differential equa-
tions. Commun. Pure Appl. Math. 69(8), 1415-1451 (2016)

Huang, J., Cao, J., Fang, F., Genton, M.G., Keyes, D.E., Turkiyyah, G.: An o(n) algorithm for com-
puting expectation of n-dimensional truncated multi-variate normal distribution i: fundamentals.
Adv. Comput. Math. 47(5), 1-34 (2021)

Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial dif-
ferential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309-2345 (2008)
Pfltiger, D.M.: Spatially adaptive sparse grids for high-dimensional problems. Journal of Complex-
ity 26(5), 505-522 (2010)

Pfliiger, D.M.: Sparse Grid Toolbox SG**. https://sgpp.sparsegrids.org/ (2022). Accessed 24 Oct
2022

Piazzola, C., Tamellini, L.: The Sparse Grids Matlab kit - a Matlab implementation of sparse grids
for high-dimensional function approximation and uncertainty quantification. ArXiv. (2022). https:/
doi.org/10.48550/arXiv.2203.09314

Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high-dimensional elliptic
problems. SIAM J. Sci. Comput. 32(6), 3228-3250 (2010)

Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of func-
tions. In: Doklady Akademii Nauk, vol. 148, pp. 1042-1045. Russian Academy of Sciences (1963)
Tamellini, L., Piazzola, C., Nobile, F., Sprungk, B., Porta, G., Guignard, D., Tesei, F.: Sparse Grid
Matlab Kit. https://sites.google.com/view/sparse-grids-kit (2022). Accessed 24 Oct 2022

Udell, M., Townsend, A.: Why are big data matrices approximately low rank? SIAM J. Math. Data
Sci 1(1), 144-160 (2019)

Xi, Y., Xia, J., Chan, R.: A fast randomized eigensolver with structured 1dl factorization update.
SIAM J. Matrix Anal. Appl. 35(3), 974-996 (2014)

Xia, J., Gu, M.: Robust approximate cholesky factorization of rank-structured symmetric positive
definite matrices. SIAM J. Matrix Anal. Appl. 31(5), 2899-2920 (2010)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Chaowen Zheng' - Zhuochao Tang? - Jingfang Huang?® - Yichao Wu?

P4 Jingfang Huang

huang@email.unc.edu

Chaowen Zheng
czhengb @ncsu.edu

Zhuochao Tang
zctang @email.unc.edu

Yichao Wu

yichaowu@uic.edu

North Carolina State University, Raleigh, USA

University of North Carolina at Chapel Hill, Chapel Hill, USA
University of Illinois at Chicago, Chicago, USA

@ Springer


https://sgpp.sparsegrids.org/
https://doi.org/10.48550/arXiv.2203.09314
https://doi.org/10.48550/arXiv.2203.09314
https://sites.google.com/view/sparse-grids-kit
http://orcid.org/0000-0002-6720-8389

	An O(N) algorithm for computing expectation of N-dimensional truncated multi-variate normal distribution II: computing moments and sparse grid acceleration
	Abstract
	1 Introduction
	2 Review of low-rank structures in the hierarchical algorithm
	3 Computing moments simultaneously
	4 Generalization for larger K and P values
	4.1 Downward pass and numerical linear algebra tools
	4.2 Upward pass and sparse grid method

	5 Preliminary numerical results
	5.1 Computing all order moments
	5.2 Sparse grid acceleration for large  values

	6 Summary
	References


