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Abstract—The CP decomposition for high dimensional non-
orthogonal spiked tensors is an important problem with broad
applications across many disciplines. However, previous works
with theoretical guarantee typically assume restrictive incoher-
ence conditions on the basis vectors for the CP components. In
this paper, we propose new computationally efficient composite
PCA and concurrent orthogonalization algorithms for tensor
CP decomposition with theoretical guarantees under mild in-
coherence conditions. The composite PCA applies the principal
component or singular value decompositions twice, first to a
matrix unfolding of the tensor data to obtain singular vectors
and then to the matrix folding of the singular vectors obtained
in the first step. It can be used as an initialization for any
iterative optimization schemes for the tensor CP decomposition.
The concurrent orthogonalization algorithm iteratively estimates
the basis vector in each mode of the tensor by simultaneously
applying projections to the orthogonal complements of the spaces
generated by other CP components in other modes. It is designed
to improve the alternating least squares estimator and other
forms of the high order orthogonal iteration for tensors with
low or moderately high CP ranks, and it is guaranteed to have
second or higher order convergence when the error of any given
initial estimator is bounded by a small constant. Our theoretical
investigation provides estimation accuracy and convergence rates
for the two proposed algorithms. Both proposed algorithms are
applicable to deterministic tensor, its noisy version, and the order-
2K covariance tensor of order-K tensor data in a factor model
with uncorrelated factors. Simulation experiments demonstrate
significant practical superiority of our approach over existing
methods.

Index Terms—Tensor Principal Component Analysis, PCA,
CP Decomposition, Spiked Covariance, Dimension Reduction,
Unfolding, Orthogonal Projection.

I. INTRODUCTION

OTIVATED by modern scientific research, analysis of
tensors, or high-order arrays, has emerged as one of the
most important and active areas in machine learning, electrical
engineering, and statistics. Tensors arise in numerous appli-
cations involving genomics [1, 2], multi-relational learning
[3], neuroimaging analysis [4, 5], recommender systems [6],
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computer vision [7], longitudinal data analysis [8], economic
indicators [9, 10], finance data [11] and more. In addition,
tensor based methods have been applied to many statistics
and machine learning problems where the observations are
not necessarily tensors, such as community detection [12],
topic and latent variable models [13], graphical models [14],
and high-order interaction pursuit [15]. In many of these
settings, the tensor of interest is high-dimensional, e.g. the
ambient dimension is substantially larger than the sample
size in the factor model in (1) below. However, in practice,
the tensor parameter often has intrinsic dimension-reduced
structure, such as low-rankness and sparsity [16, 17], which
motivates research in tensor estimation and in the recovery of
the underlying structure.

Low rank tensor decomposition is one of the most impor-
tant tools for recovering and estimating the intrinsic tensor
structure based on noisy data. It plays a similar role to matrix
singular value decomposition (SVD) and eigendecomposition
which are of fundamental importance throughout a wide range
of fields including computer science, applied mathematics,
machine leaning, statistics, signal processing, etc. Despite
the well-established theory for low-rank decomposition of
matrices, tensors present unique challenges. There are sev-
eral notions of low-rankness in tensors, including the most
popular CANDECOMP/PARAFAC (CP) low-rankness and
multilinear/Tucker low-rankness. While CP models are more
parsimonious and easier to interpret in many applications,
compared with Tucker models, the computation of the best
low-rank CP approximation of a given tensor is NP hard in
general [16, 18, 19].

In this paper, we develop a new framework of tensor
principal component analysis (tensor PCA) applicable to deter-
ministic tensors, their noisy version, and factor models with
uncorrelated factors. To be specific, let us first consider the
factor model. Suppose we have i.i.d. matrix or tensor valued
observations (such as 2-D or 3-D images) X;, 1 <7 < n, of
the following form

Xi=2_jwifijaji ®ap® - ®ajr +&, (1)

where ® denotes tensor product, f;; are i.i.d N(0,1), w; >0
represent certain weights, a;; € R% are basis vectors with
lajelle = 1 foralll < j <7, 1<k <K,Z¢& are iid.
noise tensors each with i.i.d N(0,0?) entries. Tensor factor
models like (1), where the data is written as the sum of a
low-rank factor and noise, have been studied extensively in
the literature. While both the Tucker and CP decompositions
can be used to model such data, the Tucker model has been
the focus of the literature in the consistent estimation of



tensor structure in the presence noise, largely due to the
direct expression of the Tucker decomposition with matrix
SVD. However, in many applications, CP decomposition is
a more attractive modeling option. To estimate the structural
parameters in model (1), we construct the covariance tensor
of the data X;, T =n~' " | X; ® X;, which can be written
as

T =37 N @ a + 9, )

where \j = w?, aj ik = aj for 1 < j < K, and ¥ is
a noise tensor. We treat (2) as a general CP model in which
¥ is allowed to have an identity component E[¥]ocId, e.g.
E[W¥] = 021d under (1), as the estimated basis vectors do not
depend on the identity component in our approach. Here 1Id is
the identity tensor given by max|(Id) = 4. Our main goal
is to estimate the basis vectors a;, which can be also called
loading vectors, from the noisy tensor 7. We call (2) spiked
covariance tensor model as it is analogous to the so called
“spiked covariance model” in the study of matrix PCA in high
dimensions [20]. Here, a;;, 1 < j < r, are not necessarily
orthogonal to each other in each mode k.

When K = 2, our model (1) is closely related to (2D)32-
PCA in the community of image signal processing, which
has been extensively studied [21, 22, 23, 24, 25, 26, 27, 28].
This literature has been mainly focused on the algorithmic
properties. However, statistical guarantees such as consistency
of estimators and risk analysis, in high demand in many ap-
plications, are much less understood in the CP model. Among
notable exceptions is [29]. In Tucker factor models, statistical
analysis has been carried out by [9, 30, 31, 32, 33, 34] under a
very different setting from (1), and by [10, 35, 36] with matrix
and tensor time series.

In view of (2), a natural approach to the estimation of ay,
is minimizing the empirical loss,

2
argmin _min |7 - 37_ A (@00, G)
lajnlla=1¥3,k A3V HS

where ||Allgs, defined as ||vec(A)|2, is the Hilbert Schmidt
norm of tensor A. However, due to the non-convexity of (3),
a straightforward implementation of local search algorithms,
such as gradient descent and alternating minimization, may
get trapped into local optimums and result in sub-optimal
statistical performance. Still, if one starts from an initialization
not too far from the true basis vectors, local search is likely
to perform well.

In addition to the order 2K tensor 7" in (2) with paired CP
basis vectors a;;, we study in this paper the following more
general low-rank CP model,

T =37 A @iy aje + 7, 4)

where A\; > 0 and ¥ is a noise tensor, including the noiseless
version with U = 0. While a;;, can be all different in (4),
aj1 = --- = a;n for the empirical N-th moment tensor in
certain latent-variable models [13].

A. Our contributions

We propose a new method for the estimation of the ba-
sis/loading vectors a;, € R% in the spiked covariance tensor

model (2) or the low-rank CP model (4), both can be viewed as
spiked CP models. The new method is composed of two steps:
(i) a composite PCA (CPCA) as a warm-start initialization;
(i1) an iterative concurrent orthogonalization (ICO) scheme to
refine the estimator. The intuition is that the CP components
in higher order tensors are closer to orthogonal and tend to
have higher order coherence in a multiplicative form, and the
proposed method is designed to take advantage of this feature
of the CP model to achieve higher statistical and computational
efficiency. To the best of our knowledge, this proposal is
the first to explicitly aim to benefit from this multiplicative
higher order coherence in CP decomposition. Existing initial-
ization procedures require random projections and may need
to generate many copies to yield a reasonably good choice,
while the CPCA produces definitive initial estimates of the
CP basis vectors via tensor unfolding/refolding and spectral
decomposition. The ICO scheme aims to achieve higher order
of numerical convergence than the alternating least squares
and other forms of the high order orthogonal iteration (HOOI)
[36, 37, 38, 39] after the warm-start, again by taking benefits
of the multiplicative coherence.

The CPCA and ICO algorithms are developed in Section II
along with some sharp tensor perturbation bounds to motivate
them. These tensor perturbation bounds, new or not readily
available and potentially useful elsewhere, heuristically justify
our ideas and the individual elements of the proposed algo-
rithms. Statistical guarantees for the CPCA and ICO estimators
are provided in Section III. Our perturbation and risk bounds
explicitly exhibit the benefits of the multiplicative nature of
the coherence of the tensor bases and the rapid growth of
such benefits as the order of the tensor increases.

Our analyses of the proposed methods focus on the cases
where the tensor dimensions dj are typically much larger
than the CP rank r but r can be also large. Theoretical
studies of existing proposals of tensor de-noising in CP models
typically imposes very restrictive incoherence conditions on
the CP components; For example, the incoherence condition
Omax = Maxy j, 4, |0 paj,k| < ploylog(di)/v/dy in [29].
In contrast, we prove that the CPCA yields useful estimates
when 729X is small and the ICO provides fast convergence
rates when /29K is small, demonstrating the advantage of
our approach in terms of model assumption. Computationally,
the errors in the ICO propagate in the quadratic or higher
order. Similar to Nesterov’s acceleration in gradient descent,
the high-order of error propagation guarantees e numerical
precision within loglog(1/¢) iterations. To the best of our
knowledge, this is the first provable log log(1/¢) iteration guar-
antee in non-orthogonal CP models. Numerical comparisons
with existing methods demonstrate advantages of the proposed
approach.

B. Related work

There is a large literature on tensor decomposition. As it is
beyond the scope of this paper to give a comprehensive survey,
we only review the most related papers.

The most commonly used algorithm for CP decomposi-
tion is alternating least squares [40], which has no general



convergence guarantee. Theoretical studies of alternating least
squares have focused on the estimation of tensors with or-
thogonal CP decomposition from randomized initialization.
Noticeably, [13] developed a robust tensor power method for
orthogonal CP decomposition. [41] proposed a tensor unfold-
ing approach for rank-one tensors and compared it with tensor
power iteration with random initialization. [42] improved the
initialization procedure for orthogonal CP decomposition by
projecting the observed tensor down to a matrix and then
applying the matrix power method. [43] developed a two-mode
higher-order SVD algorithm for higher order tensors. For the
non-orthogonal tensors, one may first convert the tensor into an
orthogonal form known as whitening, but the procedure is ill-
conditioned in high dimensions [44, 45] and computationally
expensive [46].

Recently, another line of research has been developed
on non-orthogonal tensor CP decomposition, still focused
on randomized initialization. [29] studied non-orthogonal CP
decomposition and established convergence guarantees for a
modification of the alternating least squares. In addition to
their incoherence conditions on deterministic CP bases as dis-
cussed in the previous subsection, they considered independent
random basis vectors uniformly distributed in the unit sphere,
essentially imposing a soft orthogonality constraint. [47] fur-
ther extended their work to the case where the CP basis vectors
are sparse. In the noiseless case (U = 0), [48] introduced
orthogonalized alternating least squares algorithm and studied
its performance under the soft orthogonality constraint or
small 729 pax. [49] developed a minimum distance algorithm
for non-orthogonal CP decomposition which uses random
projections to reduce the problem to simultaneous matrix
diagonalization, but the applicability of their theoretical results
to diverging dy, is unclear. [50] developed an iterative Gauss-
Newton algorithm for joint matrix diagonalization. However,
[48] claimed that the simultaneous diagonalization algorithm
is not computationally efficient.

C. Notation and tensor preliminaries

Let [n] denote the set {1,2,...,n}. For a vector with entries
mj or a set of real numbers {m;}, we denote by m; + =
min, ., |m; — ;| A |m;| the gap from 7, to {0, 7,4 # j} and
set Tmin = min; |7;| and Tmax = max; |7;|. For convenience,
we call \; + the j-th eigengap in models (2) and (4). For a
matrix B = (b;;) € RP*™, we denote its singular values by
01(B) = 02(B) = -+ = Oin{p,n}(B) = 0, its Frobenius
norm by Bl = (3,;63)2 = (700" 62(B))1/2, and
its spectral norm by |Blls = o1(B).

For any two vectors u and @ of unit length, we measure
the distance between the spaces they generate by the absolute
sine of the angle 6(u,u) between the two vectors,

|sin0(@,u)| = Jaa" —uu'|g = (1 — (u'0)*)Y?

=JJaa" — uu'||p/v2. (5)
We note that ming |4 + ul, = (1 — |[u'a)V/? =
| sin 0(@,w)|/(1 + luT )2,

For any two tensors A €
Rr1*r2xXTN - denote the tensor product ® as A ® B €

lemeX---XmK7B c

RMaXXME XTLXXTN Cgych that (A ® B)ih...,ix,jh...,jz\f =
(A)iy ik (B)jy....jn- For two vectors a and b, a ® b is
equivalent to the outer product ab’. Given A g R™1 XXMk
and m = ]_[]K:l m;, let vec(A) € R™ be vectorization of the
matrix/tensor A, mat(A) € R™**("m/m&) the mode-k matrix
unfolding of A, and mat (vec(A)) = maty(.A). For example,
for K =3

(maty (A))s,(+ma(k—1)) = (Mata(A))j (k+ms(i-1))
= (mat3(A)) g, (i+m, (j—1)) = Aijk-

Similarly, for nonempty J < [K], mat;(.A) is the mode J ma-
trix unfolding which maps A to m ; x m_ ; matrix with mj; =
[Tjc;mj and m_; = m/my, e.g. matg 5y(A) = matg (A)
for K = 3. The mode-k product of A € R™M1*m2xxmx
with a matrix U € R™+*" is an order K-tensor of size
mi X - mp_1 X rp X mga1 X mg and will be denoted as
A x;, U, so that

— mk . . . . .
(“4 Xk U)il,m,ik—l,J}ik+17~~~,ix = Zik=1-’4l1,lz,m,lKUlk~,J'

The Hilbert Schmidt norm for a tensor A € R™1*Mm2XXmk
is defined as | A|us = [vec(A)|2. An order K tensor T €
RmMaxmex-XmK g gaid to have rank one if it can be written
as

T:'IU'CL1®"'®CLK7

where w € R and a; € R™* are unit vectors for identifiability.
A tensor T' € R™M1*m2X XMk jq qaid to have a CPrank r > 1
if it can be written as a sum of r rank-1 tensors,

T = Zgzle a1 @ Qaik-

II. ESTIMATION PROCEDURES
A. Spiked covariance tensor model

In this section, we focus on the spiked covariance tensor
model (2). We introduce the composite PCA (CPCA) as
Algorithm 1, and the iterative concurrent orthogonalization
(ICO) as Algorithm 2.

As mentioned in the introduction, our main idea is to take
advantage of the multiplicative higher-order coherence of the
CP components for faster convergence. We begin with an ex-
plicit description of this phenomenon. Let Xy, = (05 k) rxr =
A Aj, with the mode-k basis matrix Ay = (a1x,...,amk) €
R4%*T in (2). As 01 = |lajk|3 = 1, the correlation among
columns of Ay can be measured by

U = MaXi<i<j<r|0ijkl, Ok = |k — Ir|s,
= (Zie[r]\{j}afj,k)m- (6)

However, the CP components are much less correlated. By (2),
the matrix unfolding of T,

Nk

mat ) (T) = n~ "Y1 vee(X;)vee(X;) T
= Z;le/\jajajT + matpy () e R4, (7)

has basis matrix A = (a1,...,a,) € R¥" with a; =
vec(®K_a;i) and correlation measures

§=[ATA-1I]s, (8)

i HlaX1<i<j<r|aiTaj|a



where d = ]_[jil dj. As a] a; = HkK=1 afajr = ]_[kK L Tijiks
the coherence is bounded by ¥ < ]_[,il ¥, < UK, .. The
spectrum norm § is also bounded by the products of quantities
in (6). We summarize these elementary relationships in the
following proposition.

Proposition 1. For any set S of tensor modes, define

ajs = vec(®pesajr), As = (a1s,...,arg), Vs =

maxi<i<j<r |a,sa;s| and 6s = |ALAs — I,||s. Define
/ls = max min max n Toig kel /nik-

Pk kaeS
I kuke€S ATk kit keS

as the (leave-two-out) mutual coherence of {A;, j € S}. Then,
ps € [1,r15121],

(55<I]§1€1§15k, ds < (r—1)9 (r—1) Hﬁk, 9)
kesS
ds < /Ls?”l_‘slﬂmaxjg,« H Njk < usrl_ls‘ﬂ H O0r. (10)
kesS kesS
When S = [K], the above inequalities hold with {0g,Vs}

replaced by the {3,9} in (8).

We note that (10) implies § < maxj<, [ [1_, njx <
]_[5:1 0 due to /UL*TliK/2 < 1. When (most of) the quantities
in (6) are small, the products in (10) would be much smaller,
so that a; are nearly orthogonal in (7). This motivates the use
of the PCA of (7) to estimate \; and a;,

( ) Z )\cpca/\ AT (11)

The following proposition gives explicit justifications of (11)
with sharp perturbation bounds.

Proposition 2. Let d > r and A € R™" with [ATA—1,|s <
0. Let A = U1D1U2 be the SVD of A, and U = U1U2
Then, —~UAU T |s < 6||A|s for all nonnegative-definite
matrices A in R™*".

mat

By Proposition 2, ; in (11) can be viewed as an estimate
of u;, 1 < j < r, satisfying

uju, |s = [ A(eje] JAT = Uleje] U ||s < 6. (12)

Ha’jaj
Because maty(a;) = ajrvec(®ge[k]\(k}aj¢) » the natural
estimate of a;j, based on the @; in (11) is

~cpca

ayy, = the top left singular vector of maty(;). (13)

The following proposition explicitly justifies (13) with a sharp
perturbation bound.

Proposition 3. Let M € R¥"*% be a matrix with |M|p = 1
and a and b be unit vectors respectively in R% and R%. Let
a be the top left singular vector of M. Then,

(laa” (1/2)

<|vec(M)vec(M)T — vec(ab" )vec(ab ) T||2.

~aaT[3) A
(14)

Proposition 3 is sharp in the sense that equality is attainable
in (14) when the right-hand side is less than 1/2, and that for
any c € [1/2,1] the maximal distance |aa’ —aa'|s = 1 is
attainable for some {M, a, b} with the right-hand side of (14)
being exactly c.

The CPCA is the two-step procedure given by the PCA
in (11) and SVD in (13). With vec(M) = 4;, a = aj) and
b = ®exraj¢, Proposition 3 asserts that the second step of the
CPCA is a contraction once the first step yields an estimate
of a; = @ra;, within 45 degrees. As the correlations among
a; is much smaller than those among a;;, in each mode, this
condition is much more explicit and of a much weaker form
than those in the literature for the estimation of ajj after
random projection [29, 48]. By the perturbation bounds in
Propositions 2 and 3 and Wedin’s perturbation theorem, in the
noiseless case (o = 0 and n — o0) with ¥ = 0 in (2)

e =
~cpcan~cpcaT
(lagr=asx

< 0,
A (1/2) <

so that the CPCA takes advantage of the multiplicative co-
herence of ®f=1ajk in view of the product bounds for ¢ in
Proposition 1. We state the CPCA as Algorithm 1 as follows.

15)

— ajraji/) (1+2M1/0;,4)%6%,

Algorithm 1 Composite PCA (CPCA) for pairwise symmetric
tensors
Input: noisy tensor 7' = n -1 ZZ 1 X ® &;, CP rank r

1: Formulate T' to be a d x d matrix matjx)(7) as in (7)

with d = []r_, d

2: Compute the 7 top )\Cpca and 4 in the eigenvalue decom-
position of matx ](T) as in (11)

3: Compute a» " as the top left singular vector of
maty, (i) € Rd“(d/d’») as in (13)

Output: a3, )\Cp“ =1,..,r k=1,..K

After obtaining a warm start through the CPCA (Algorithm
1), we propose to use the ICO (Algorithm 2 below) to refine
the solution. The ICO can be viewed as an extension of
HOOI [37, 39] and the iterative projection algorithm in [36] to
undercomplete (r < dpyi,) and non-orthogonal CP decompo-
sitions. However, ICO differentiates from these methods and
the alternating least squares in the following important way:
In updating the model-k basis vector a;, the ICO projects the
observed tensor 7T’ to the orthogonal complements of the span
of {aie,i # j,i < r}in R% for all £ # k simultaneously from
2(K — 1) sides. Here the word “concurrent” in ICO refers to
the feature that the projections take place in all modes ¢ # k
at the same time point/step in the computational iterations.
In contexts where “time” has special meaning such as time
series, iterative simultaneous orthggonalization can be used
instead of ICO. Given estimates Ay = (Gyy, ..., ar¢) for the
mode-¢ basis matrix Ay = (ayy,...,a,¢) € R¥*" this is done
by projecting T to the nonnegative-definite

Tjk =T Xje[2K\{k, K +k} Z;‘I—l ~ )\jajkaka + \T’jk (16)
with ég (bu, ) AZ(ATAp) and gj7K+g = Ejl, as

AeTég ~ I,. when Ag ~ Ay. Thus, it is natural to update a;
using the top eigenvector of T}. This is the ICO in Algorithm
2 below.

Proposition 4. Ler T =
Given Ag = (61g, e ,67,@),

E[T] with the tensor T in (2).
€ [K]\{k}, let 5;% be the top



Algorithm 2 Iterative Concurrent Orthogonalization (ICO) for
pairwise symmetric tensors

Input: noisy tensor T’ = n~t Z?:l X, ®X;, CP rank r, warm-
start a((,? € R¥% j e [r],k € [K], tolerance parameter
€ > 0, maximum nupber of iterations M

o ..,bﬁ)) € R%" as the right inverse of

1: Compute (A(U3
(A(O)...A0 [K]; Set m =0

3 Setm=m+1

4: for k=1to K

5 for j=1tor R

6 Compute Tj(;cn) =T XK\ (k, K +k} (bﬁ-T))T
in R as in (16), b\, = b7

7: Compute a(k) as the top eigenvector of Tj(;n)
8: end for
Compute (b(ly,?), e bq(qzl)) as the right inverse
of (@™, ..., almT
10: Set (b7, Bty = i) Bl
11: end for
12: until max; Ha o ay,?)T &ﬁ%l)aﬁflﬁﬂs <e
orm = M
Output: @i = aﬂ“, Ao =T x7K, (bg.f))T,
]—1 ST k—l,...,K

eigenvector of Tj?“k = T* Xie[2k]\{k, K +k} E;Fl e R4k ypith
the bj; in (16). Then,

H%‘k%‘Tk - a3‘kls-5g'lcT||s

<2(1+6)/N) ] Ge/(1—d04)%

te[K\{k}

e/ (v (L= 80) (1= 1/(4r)) = /riby) , with ¢ =

max;<r Hagéaje - ajla;erS'

where quSg =

The perturbation bound in Proposition 4 explicitly proves
the power of concurrent orthogonalization: In terms of the
angle between the one-dimensional spaces generated by &;Cko
and a;; and up to some scaling constants, the error in the
estimation of a;, in each step is bounded by a product of
2(K — 1) carryover errors in all other modes in the noiseless
case ¥ = 0 in model (2), i.e. ¢ = 0 and n — o0 in model
(1). In this sense, the ICO error propagates in the order of
2(K — 1) > 1, which implies high order contraction. See
Subsection II-C for a more detailed discussion in a comparison
between the ICO and the alternating least squares in closely
related model (4). As in the analysis of accelerated gradient
descent in which the error propagates in the second order,
the ICO is expected to achieve € accuracy within loglog(1/¢)
iterations in the noiseless case in model (2). This property of
the ICO is confirmed in Theorem 1 and extended to the noisy
case in Theorem 3 below in Section III.

B. General high order tensors

In Section II-A, we focus on 2K -th order tensors which can
be unfolded as a symmetric matrix. In this section, we extend
the CPCA and ICO algorithms to general N-th order tensors.

In model (4), we present the following proposition as an
extension of Proposition 2. It also covers the study of the
CPCA of spiked covariance tensors developed in Section II-A.
Similar to Section II-A, Proposition 1, Proposition 5 and
Proposition 3 together provide heuristic justifications for the
CPCA in Algorithm 3 below and a road map to study it in
model (4).

Proposition 5. Let A€ R“*" and B € R™*" with [AT A —
L-HS \Y HBTB—L-”S <9 and d1 Ady = . Let A= U1D1U2

be the SVD OJ: 4’ U = U1U2 , B = V1D2V2 the SVD of
B, and V = ViV, . Then, —UAUT|s < §|A|s for
all nonnegative-definite matrices A in R™", and |AQBT —
UQVT|s < /26|Q|ls for all v x r matrices Q.

We note that in Proposition 5, U is a function of A and V'
is the same function of B.

Algorithm 3 Composite PCA (CPCA) for general N-th order
tensors
Input: noisy tensor 7' = 37
CP rank r, S c [N]
1. If S = &, pick S to maximize min(dg, d/dg) with dg =
[ Thes di and d = HkN
2: Unfold T' to be adg x (d/ds) matrix matg(T")
3: Compute /\ Pe% U;,0; as the top components in the SVD

matg(T) = Zg /\CpcaAJ ol
4: Compute aj;" as the top left singular vector of maty, (@;),
ke S, or maty(v;), k € S¢

Output: a5, )\Cpc“ j=1,..,

L ATOR 4+ T € Ry,

r,k=1,.,.N

In practice, a sensible way to unfold 7" is to form a matrix
as square as possible with input S = ¢J in Algorithm 3. As
in Algorithm 2 we propose to use Zij(,? = aj;, " as warm-start
of the ICO in Algorithm 4 below.

Remark 1. For order 3 tensors, either |[S| =1 or |[S¢| =1 in
Step 1 of Algorithm 3. Assume d; > da v ds for definiteness
so that we choose S = {1}. The CPCA exhibits advantage in
terms of coherence by Proposition 1 if and only if §; < d2 v d3,
e.g when 6 | dj.

Similar to Proposition 4, we present a fresh Proposition 6
to describe the high order of error propagation in the ICO
iterations in model (4).

Proposition 6. Let T* =
Given 4@ = (aug, .-, are), 0
Ag(ATAg)_l, T* = T*

k/HT]*kHQ and )\*

]E[ | with the tensor T in (4).

€ [NI\{k}, let (b1€7~- b'rﬁ) =
XlE[N]\{k} b]l € R k, CLk =
T* X1e[N] b; b . Then,

A H 513 >2
A ze[N\{k}l %

N
Db+ (r=1)(M/A)) H br,
=1 =1

2~ olallait,| < 20r — 1)(1+5,) (
X5/ 1] <

where (b/

2l j,ajel)

Do/ (VI =8¢ —/riy) , with

1/2

= max;<, (2 -



Algorithm 4 Iterative Concurrent Orthogonalization (ICO) for
general N-th order tensors

i ®{€V lajk—i—\ll € Rdlx'“XdN,

CP rank r, warm-start a( k), j € [r],k € [N], tolerance

parameter € > 0, maximum number of iterations M

Input: noisy tensor 7' = Zr

1: Compute (811@ . bf,}c) as the right inverse of
@9,...,aYT ke [N]; Set m =0
2: repeat
3: Setm =m+1
4: for k=1to N
5: for j=1tor R
6: Compute T(m) =T Xle[N]\{k} (b;;n))‘r e R
7: Compute a(m = (m)/H s
8: end for
9: Compute (bgm) ,bg;n)) as the right inverse of
(a(zz)7 o (krl?) T
10: Set (BB DY = (4B
11 end for
12: until max; Ha(m ET)T Agm Vg (m DTs < e
orm = M R
Output: a“jf = agzl), Ao — T 5, (by,?))T ,

e [r].ke [N]

We note that 2 — 2|a'b| = ming ||a & b|3 and that each
aj, is identifiable only up to a + sign. Again, by Proposition
6, the ICO is expected to have a super-linear computational
convergence under the loss (5) in the noiseless case ¥ = 0 in
model (4). This is confirmed in Theorem 4 and extended to
the noisy case in Theorem 6 below in Section III.

C. Error propagation in ICO and alternating LSE

The merit of the ICO can be more directly seen from
a comparison with alternating least squares in model (4),
T = T* + U with target tensor T* = Y7 | Nj @, a;p,
and noise W. Given estimates 6;7,?),16 > 1, the LSE of
AN = (Mar, ..., Arapr) S

~

maty (T) B

R 2
=arg min y; g4, «~ [maty (T') — M(AS?))T‘)HS

—A A + A A (A — A"D)BYS 4 mat, (0) B,

where BLS is the right inverse of A"} = (agj"_)l, e ,aff’i)l) €

R with @™ = vee( @), a'1) and d_y = d/d,.
Because ﬁ(m) — A_; is an (N — 1)-degree polynomial of
the carryover errors a( m g, j& and the polynomial has
a nonvanishing linear term the leading term of the bias
mat; (T"‘)BLS A1 A of the LSE is linear in the carryover

error. In comparison, in the ICO, the right inverse is taken in
Algorithm 4 in individual modes before tensor multiplication,

A‘gm-‘rl)ﬁ(m+171) = mat; (T)é(jrf)
= mat; (T)B"}) + mat, (#) B},

where B = (0™, BM)) e R with B =
VeC( ®f€V 9 g(m)) A(mH+LD) g g diagonal matrix to normalize

(m“)HQ = 1. The noise terms

the estimated basis vectors to Ha
mat; () BL$ and matl(\II)B(jf)

two methods. However, as

are comparable between the

mat; (T*)E(m)

(011>\1 1_[ alkbgzl) g arl)\ H arkb(m))
N

(Z a1Aj H af by Z ap; | | %-1352’))
J=1 k=2

with a, L) = 1{j1 = ja} + (aj— a7 T the leading
term in the bias of the ICO, as the second term above, is
a homogeneous polynomial of degree N — 1 in terms of
the carryover error. We note that the errors in the diagonal
Hk 9 ]kag k) is linear in terms of the carryover error but

they are absorbed into A(m+1:1), R

In summary, the alternating least squares operator B}ls is
the inverse of tensor product, while the ICO operator é(_wf)
is the tensor product of inverses in /N — 1 individual modes.
Consequently, the bias of an alternating least squares step is
proportional to the norm of the carryover error and the bias
of an ICO step is proportional to the (N — 1)-th power of the
norm of the carryover error. Meanwhile, the noise terms of
the two methods are comparable.

D. Algorithm complexity

Assume the input tensor is T'. Algorithm 1 (CPCA) costs
O(d?r) floating-point operations (flops) for r-truncated eigen
decomposition of mat[x(T) and O(d) flops for 1-truncated
SVD of mat(%;), so that the total cost of CPCA is O(d?r).
In each iteration of Algorithm 2 (ICO), the calculation of By
costs O(dyr?) flops, the matrix manipulation in step 6 costs
O(d?) flops, and the 1-truncated eigen decomposition of T](;")
in step 7 costs O(dz) flops. Hence, the total cost per iteration
in Algorithm 2 is also O(d?r). Snmlarly, in Section II-B, the
total cost of Algorithm 3 is O(r Hk 1 dk) and the cost of each
iteration in Algorithm 4 is also O(r ]_[k 1 di). In summary,
the cost of CPCA and each iteration of ICO is of the order
of the product of the CP rank and the number of entries in
tensor 7T'.

In a spiked covariance tensor model (1), the top r eigenvalue
decomposition of the unfolded covariance tensor matyx(7') is
equivalent to the top r SVD of the n'/?-normalized unfolded
data matrix (vec(X), ..., vec(&,))/+/n € R¥™ 1In this sense,
Algorithms 1 and 2 can be modified accordingly to adopt
matrix SVD. The total cost of the first SVD in Algorithm
1 becomes O(dnr), so that the total cost of Algorithm 1 is
O(dnr). Similarly, the total cost per iteration in Algorithm 2
is O(dnr). As the cost to construct covariance tensor 7' is
O(d?n), it can be computationally more efficient to perform
the SVD directly.

While the topic is beyond the scope of this paper, we note
that random projection and other remedies can be used to



reduce the cost of computing low-rank PCA and SVD when
the signal to noise ratio is high.

E. Identification and estimation of CP component groups

In principle, the top r singular space (1, ..., u,) in CPCA
(Algorithms 1 and 3) might not be uniquely determined; for
example, this occurs in the presence of ties in A;. In such
cases, CPCA and ICO may still be used to identify and
estimate CP component groups with tied singular values. To
avoid redundancy, we describe the procedures below only for
the symmetric tensors in (2).

Suppose there are g groups of singular values with distinct
representative values A\;y > -+ > A,y > 0 and respective

group sizes 7y, ...,7g, 71 + -+ + 1, = 7. Suppose (2) can be
written as
T= Zigle(Z) + \Ija
Ty = Zjeai Rl ajn i) Ljea R wji,
where {Gla"'ng} is a partition of [7“] with |G1| = 7.

By Proposition 2, it is reasonable to consider the case where
{u;r,j € Gii=1,...,g} are orthonormal for each k € [K]
and

*

max lajkajy, — ujnujls < 6%,

JANAT = 330 Xy S st [ < Ayo*

with u; = vec(@iil ujk.) and a certain 0* &~ J. Suppose fur-
ther that 2(5*)\ 1 < minz<g()\( ) _>\(z+1)) with )‘(g+1) =0.1It
would then be reasonable to consider clustering of the outputs
of CPCA and ICO to identify the groups G;, e.g. using )\Cpm
by Proposition 2. Given G, a group ICO could be used to
estimate the individual T{;) and then a Tucker decomposition
would give the column space of Ag,x = (ajx,j € G;) for
each (i,k).

Once a good estimate of the group tensor T(;) becomes
available, the identification of individual components ); ®if 1
a;x,j € Gj, in the group would be feasible if a rank-one
component can be identified in the linear span of the group
components. This feasibility can be seen from Proposition 7
below. Since the identifiability issue does not require paired
CP bases as in (2), Proposition 7 is stated under model (4).
Kruskal’s Theorem [51] also provides the uniqueness of tensor
CP decomposition.

Proposition 7. Let SP := span{ai,...,a,}, where a; =
vec(®Y_ a;i) € RY The elements of SP can be viewed as
either length d vectors or di X --- X dy tensors. Suppose
N > 2 and 6, <1 for every k =1,...,N in (6), then every
rank-1 tensor in SP is one of a;’s up to a scalar.

The above discussions, written in response to an interesting
question raised by referees, seem to deserve further investi-
gation. However, a more comprehensive discussion or further
development in this direction is beyond the scope of this paper.

III. THEORETICAL PROPERTIES

A. Spiked covariance tensor models

In this section, we investigate theoretical guarantees of the
proposed algorithms for the estimation of the CP basis vectors

a;, for the spiked covariance tensor (2) with data in (1). As
in (5) we use [[a;a; — ajpafils = (1 - (@fa;)*)"? =
SUP. L q;,,|2]a=1 |2T@;x| to measure the distance between @,
and a .

We do not impose the orthogonality condition on the mode-
k CP basis vectors {a;x,j < r} or even global incoherence
condition on Umax 1= maxy maxi<;<j<r |a,,a;jx| as in the
literature [13, 15, 29, 47, 48]. However, we require the vector-
ized basis tensors a; = vec(®X  a;;) to satisfy the isometry
condition § = ||[ATA—~I,|s <1, A = (ay,...,a,), or more
conveniently the incoherence condition ¥ = max;.; |a, a;| <
1/r. We recall that by Proposition 1, § and v} are bounded by
the respective products of their mode-k counterparts defined in
(6), so that we impose much weaker conditions compared with
the existing ones on ¥y,,x. In fact, the higher the tensor order
K, the faster the convergence rate we offer given {r, d, ¥}, and
the smaller § and 6 given r and ¥,,x. Our analysis is based on
the perturbation bounds in Propositions 2, 3 and 4 in Section
Il and proper concentration inequalities. For simplicity, we
assume A\; > Ag > -+ > A, with \; = w in (1) and (2).

Theorem 1. Suppose Algorithm 1 (CPCA) is applied to the
noiseless T* = Z] LA @ 1 @ik with a; k11, = a;i. Then,

(15) holds for the resulting )\ P and a ACpca Let Amin+ =
minigj<r Aj + be the mzmmum eigengap. Suppose further that

2 max {5max, (VT + 1)1/)0} <1
B3/ TP < p <1,

a7)

where Omax = Mmaxg<k O with the o in (6) and g = (1 +
2)\1/)\min,4_r)5 with the § in (8). Let vk € (3—3/K, 3) be the
solution of vE 37§_1 +2=0eg 73 =2.732 v4 = 2919
If the resulting a3, are used as the initialization of Algorithm
2 (ICO) with the same data T*, then

(m—1)K+k—1

~(m)~(m)T wm L= 1/10va

max”a i Qs ik

— ajkaT
J<r

ils <

and mMaxi<k<k Ym,k < € within m iterations, where m =
[K~H{1 + (log vx) ™" log(log(to/€)/log(1/p))}]-

Remark 2 (Condition on the initial estimator). The constant
factors 2 and 3 in (17) are not sharp. In fact, condition (17)
is simplified from the following,

2(1 + Gumax) A1 /A a2
(v/(1— (Vr+ 1)%)

with ¢, = 1 — 1/(4r). Condition (18) is slightly sharper and
actually used in the proof. Here v is an error bound for the
initial estimator. The essence of our analysis of the ICO is
that under (18), ¥, < C’m/)QK 2 for the error bound v, =
maxXy<K ¥m,k in the m-th iteration.

2K—o X pr < wOa (18)

max)cr

Remark 3 (Incoherence condition). When the minimum
eigenvalue gap satisfies Apin,+ = A1/7, condition (17) asserts
that the CPCA needs no stronger incoherence condition than
Imax = O(r~%/K)) in view of Proposition 1. In comparison,
conditions of stronger form are imposed in the literature; For
example the initial estimator in [29] requires the incoherence
condition Ypax < polylog(dmin)/+v/dmin for 3-way tensors.



Compared with the previous work, (17) implies a weaker

(K/5)n1
incoherence condition when r < dmu{ )

Theorem 1 explicitly guarantees the high-order convergence
of the ICO algorithm with the CPCA initialization in the
noiseless case. To the best of our knowledge, the proposed
ICO is the first algorithm known to achieve e-accuracy guar-
antee within loglog(1/€) number of iteration passes in non-
orthogonal CP models.

We proceed to present the statistical properties of the
proposed estimator in the presence of noise, with input data
T in (2). Define

E|X_ w;fi; ®, aijf{S
E|& s

SNR =

as the signal-to-noise ratio (SNR) in the covariance tensor CP
model (1). As \; = wjz and E[ 12]] =1,

SNR — trace (maty, (T%)) _ PP _ TeiA1
o2d o2d o2d

with the signal tensor 7% = 37_, \; ®;%, a1, where 7o =

> =1 N Aj/A1, no greater than the CP rank r, can be viewed as
the effective rank of 7.

19)

Theorem 2. Consider spiked covariance tensor model (2) with
data in (1), \; = w?- and § = |ATA — I,|s as in (8). In an
event with probability at least 1 — e, Algorithm 1 (CPCA)
gives the following error bound for the estimation of the CP
basis vectors a;y,

[asheasn™" — ajnajyls

<(1+ 201 /A1) + C(A/Xj ) (RO + /t/n)

Jor all 1 < j < r, 1 <k < Kand 0 < t < d,
where C' is a numeric constant, \; + is the j-th eigengap,
and R®) = \/(reg/n)(1 + 1/SNR)(1 + (res/d)/SNR) <
\/(r+02d//\1)(1+02/>\1)/n.

The CPCA error bound (20) consists of two parts. The first
part involving § is induced by the non-orthogonality of the
vectors a;z, which can be viewed as bias; The second part
comes from a concentration bound for the centered random
noise tensor ¥ —E[¥], which can be viewed as stochastic error.
When the minimum eigengap satisfies Amin,+ = A1/7, The-
orem 2 asserts that the CPCA needs no stronger incoherence
condition than ¥y = O(r —2/K ), in view of Proposition 1.
As long as r < df;/n, this incoherence condition is weaker
than those in the existing literature for tensor denoising in CP
models [29]. The error bound (20) is dominated by the bias
when § = R(©, and by the stochastic error when R(®) > §.
The stochastic error R(®) can be further divided into two
components: the impact of the fluctuation of the signal factor
fi; represented by the parametric rate y/7g/n, and the impact
of the noise &; in (1) represented by +/(res/n)/SNR. The
noise component dominates the stochastic error iff SNR > 1.
Still, the consistency of the CPCA in Theorem 2 requires
a SNR condition SNR > r3/n, parallel to the condition

A/ Ar/02 = Cra/d/n in the scenario considered in [39].

(20)

Next, we consider the theoretical properties of the ICO. We

assume below for simplicity that d; < --- < dg. Let
RUE = (o) + o/N*)\dy/n. 1)
and for ¢ > 0 define
deal (ideal) (ideal)
R = RE 4 (0 A DY emp B @)
For constants ¢y € (0,1) and Cy > 1, define
@ = A/1—=0max — (rY% + 1)apo/A/1 — 1/(4r),
p = Coa(A/A)Yg 2K i
p1 = C'0 aV (A1/A; T/nw A (23)
do = 2r/(1—1/(4r)) RS,

with dpax = maxye(x 6 and Co o = Coa® 2K, Let P be
the class of all r x r diagonal matrices 11, with 112 = I,..

Theorem 3. Suppose that with a proper numeric constant C

and the quantities defined in (21), (22) and (23),
ldeal) <o < 1.

p<1 Coa rK,1

a>0, p1 < (24)

-
Let Qy = {max; Ha(% AS? —ajka; T ls < v} for any initial

estimates Q' k) Then, Algorithm 2 (ICO) provides

HA\iCOH _AkHF
P{ max min <
IS, (4r/3) (e v O
~iconicoT
> Haﬂk L aﬂkagk”s <1
€k V€
= P{Qo}—mrKe’2(dl“/ﬁ) (25)
within m > m¢ + 3 iterations, where €;;, = Cy o ;’er(ﬂ)

= [log(log(e/10)/log p)/log 2] for (€2 Vv €9) A €3 < € <
o and m. = [log(e/1g)/log p] for €ra < € < €y A €3, With
€0 = Co oT/n. Moreover, (25) holds within m_, +4 iterations
for € = €4 v \[€x€q where €, = Co,a()\l/Ar)HkK=2 €2
In particular, if Algorithm 1 (CPCA) is used to initialize
Algorithm 2 and g is taken as the maximum of the right-
hand side of (20), then (25) holds with P{Qq} > 1 —e~".

In Theorem 3, €;; can be viewed as statistical error and e
as computational error. It asserts that by iteratively projecting
data (and thus the noise) to the direction bj, in mode-¢
for all £ # k, (big,...,bre) = Ae(A] Ag)~1, Algorithm 2
(ICO) effectively strengthens SNR from (19) to r\;/(0%dy)
in the estimation of a;, while quickly reduces the bias to
below the level of stochastic error. As expected from the
loglog(1/e) convergence in Theorems 1 and 3, the algorithm
typically converges within very few steps in our practical
implementations.

Theorem 3 indicates that Algorithm 2 converges linearly in
its last phase with €2 < € < €g A €,3. However, if we treat the
covariance tensor 7" in model (2) as a general order 2K tensor
and apply Algorithm 4, high-order convergence can be also
achieved in this last phase. The constant log 2 in the definition
of m. is conservative. In fact, by the proof of Theorem 3,
Algorithm 2 converges in multiple phases beginning from
order 2K — 2 convergence in its first phase.



The right-hand side of (2) can be improved to P{Q} —
rKe2(diAvn) if the constants in (23) are raised by a factor
of at most order K if we apply the probability calculation
in the proof of Theorem 6. The Gaussian assumption can be
replaced by sub-Gaussian in our analysis.

In Theorem 3, 1) is the required accuracy of the initial
estimator. Given {Cy, 7, dmax, A\1/Ar}, the first two conditions
in (24) hold when v is sufficiently small, so that the third
condition in (24) is a signal strength condition in terms of

R,(ff(e?l) R%Z’:ﬂ). In view of the definition of « in

(23), condition (24) requires r/%¢)y be small, with an extra
factor /2 on the initial error in the estimation of individual
basis vectors. This is a technical issue due to the need to
invert the estimated >, = AZTAg in our analysis to construct
the mode-¢ projection in the ICO. In practice, if this issue is
of concern, one may consider regularized inverse such as by
adding a small constant to 3, before computing the inverse
or shrinking the singular values of X, as [29] suggested. If
the right-hand side of (20) is taken as ¢y for the CPCA
initialization, condition (24) can be reduced to an incoherence
condition 7%/2§ < 1 when A\; = A, = r); 4 and ¢ and 1/n
are sufficiently small. )

When \/F(Rfffal))Q < Rg.l,?eal), the statistical error €5 <
R%eal). In the literature of tensor factor models with a Tucker
structure [9, 36], the estimation of a;; may achieve faster
convergence rate than Op(n~/2) when \; = w? is sufficiently
large. Similarly, (25) may also converge faster than O]p(n’l/ ).

= max;g

Remark 4 (Statistical Optimality). The performance bound
in (25) is free of rank r. The rate Ry deal) atches the
statistical lower bound of [52] and [36] under specific rank
one spiked covariance models respectively for matrix and
tensor data. Therefore, under proper conditions, the proposed
method (Algorithm 2) achieves the minimax optimal rate of
convergence in the estimation of a.

B. General high order tensors

In the noiseless case with ¥ = 0 in (4), the extension
of Theorem 1 to Algorithms 3 and 4 is straightforward,
which explicitly guarantees the high-order convergence of
ICO with CPCA initialization. As in Proposition 1 let a;5 =
vec(Q@resajk), As = (a1s,...,ars), Bs = AjAg and 6g =
|25 — I,|s for any nonempty subset S of [N] = {1,...,N}.
Theorem 4. Suppose Algorithm 3 (CPCA) is applied to the
noiseless data T* = Z;Zl N; @Y | aji, through the SVD of
matg(T*) for some nontrivial subset S < [N]. Let 1)y =
(V2 + 4X1/Amin,+ )8 with § = 6 v 85, where S¢ = [N]\S.
Then,

AP — \j] < V20,
A~ (1/2) < 95/2,

Suppose further that for

(Hacpca/\cpcaT

ik Qi ajrajil3) (26)

Acpca

for the resulting N and @

Omax = MaAXE<N Ok,

3maX {5maX7 f+ 1) O} < 1’

Ar =T/l 2 <p < 1. 27)

Let yy € (2—2/N, 2) be the solution of YN —2vN *+1 =0,
e.g. 3 = 1.618, vy = 1.839. If the resulting a5y " is used as
the initialization of Algorithm 4 (ICO), then

(m—1)N+k—1

< Yk = Yop'N ;

N
< Zk=1wm,k + p¥m,N,

~ 2 _
max (2 - 2|aj,a;;”)

max‘)\ / ;=1

J<r
and maxi<k<N Vm,k < € within m iterations, where m =
[N~H1 + (log vn) " log(log(vo/€)/log(1/p))}].

Remark 5. Condition (27) specifies the required incoherence
condition via 0. Again, the constant factors 3 and 4 in the
condition is not sharp, as (27) is simplified from the following
condition actually used in the proof,

\/2(T — 1)1 + max)(A1/Ar) 571
N—1

((1 - 6max)1/2 - (\/F + 1)¢0)+
As we have discussed in Remark 2, such conditions guaran-

tee the high-order contraction of the ICO and the resulting
loglog(1/e) rate.

(28)

< pyo < YPo.

Now consider statistical properties of Algorithms 3 and 4
for general (asymmetric) tensors 1 = Z;=1 Aj ®,[f:1ajk+\ll in
model (4), where aj, € R% are basis vectors with |ax|2 = 1,
and W is the noise tensor. Similar to the analysis of the spiked
covariance tensor model given by (1) and (2), we assume for
notational simplicity Ay > Ao > -+ > A\, > 0.

Theorem 5. Let T = 37, ), N, ajk + ¥ as in (4).

Suppose W € R4U**N has jjd N(0,0%) entries. Then, in

an event with probability at least 1 —e =235 =2(d/ds) Algorithm

3 (CPCA) gives the following bound in the estimation of the
CP basis vectors aj, , 1 < j<r, 1<k<N,

HAcpcaAcpcaT

ik Yk
<(1+2v2X\1 /A 4)8 + 60 ( d/ds)/\j+

where § = |AlAs —I|s v |AL.Ase — I,.|s as in Theorem 4
and A\j + = min(A\;_1 —Aj, \j — Aj41) are the eigengaps with
)\0 = 2)\1 and )\r+1 = 0.

- ajka]TkHs

ds + (29)

The second term in (29), representing the stochastic error,
describes the required SNR for the CPCA. It is comparable to
the SNR for tensor unfolding method in rank one symmetric
case [41], which is proved in [53] to match an optimal
computational lower bound under certain conditions. More-
over, the SNR condition here is weaker than the perturbation
condition of the initialization in [29] when A,/Apmin+ =
0(v/dmax/log(r)), which is typically satisfied for large d.

For simplicity, we assume below d; < < dy. Let
REND = oy /di /N, (30)
and for ¢ > 0 define
R;}gi’j)eal) _ R;}gideal ( )Ze 1 *(1deal). (31)

For constants 1 € (0,1), define

Qy = 1- 5max - (Tl/Q + 1)1/)0,



p¥ = 6ol TNV — 1\ /A0 2, (32)
o5 = (N-1ag VRIS,

Theorem 6. Let data T be as in Theorem 5 and Qg =
{max; (2 — 2|aﬂka§(,)€)|)1/2 < o} for any initial estimates
(O . Let P4 be as in (25). Suppose

* (ideal)

ay >0, p* <1, 6ay VRIZTY <o <1, (33)

with the quantities defined in (30), (31) and (32). Then, in an

event with probability at least P{)y} — e~V — Ziv=1 e,
Algorithm 4 (ICO) provides

Aleo/n; — 1] < €y Ve, (34)

la5ease™ = amajils < €y v e, (35)

Hmln JAIOTT, — Ag|p < 72 (%, v e), (36)

j<rand 1l < k < N, within
6 N 1R*(lieal) and
me = [log(log(e/vo)/log p*)/log2] for €, < € < o-
Moreover, (34), (35) and (36) hold in the same event within
Me,, + 4 iterations for € = 60k N v/r — 1(A1/\,) H;LQ €.
If Algorithm 3 (CPCA) is used as initialization, then P{Qo} >

1= e™2 for g = 6[M6+0(v/ds +/d/ds)]/Amin +-

We briefly discuss the conditions and conclusions of Theo-
rem 6 as the details are parallel to the discussions below Theo-
rem 3. In Theorem 6, €* 7 can be viewed as statistical error and
( *(1deal)) R #(ideal)

~ jk ’

simultaneously for all 1 <
m = me + 3 iterations, where e;’.‘k

€ as computational error. When /7

the statistical error €7, < R%,Eldeal) is rate minimax. Condition

(33) specifies the required strength of the signal and accuracy
of the initialization. It guarantees that the ICO has a high-
order error contraction effect in the iteration. Ignoring the
perturbation error and assuming Ay = A, it can be reduced
to an incoherence condition 7326 < 1 when CPCA is used
as initialization. In addition, the performance bound in (35) is
free of CP rank r and matches the statistical lower bound of
[39] for rank one noisy tensor model. It shows the optimality
of the convergence rate of the proposed ICO (Algorithm 4).

C. Comparison with existing theoretical results

In this subsection, we compare the proposed Algorithms 3
and 4 with existing theories of tensor decomposition methods.
Several important implications are provided, and comparisons
in incoherence condition, iteration complexity, and statistical
error bounds are summarized in Table I. For simplicity, the
following discussion assumes model (4) with Ay = A\,
Amin,+ = A,/r and Gaussian noise V.

Super-linear convergence. In the absence of noise, the
proposed algorithm attains € accuracy within O(loglog(1/¢))
iterations. In the noisy setting, the algorithm reaches an ideal
statistical accuracy within an iterated logarithmic number of
iterations. The perturbation bounds in Propositions 4 and 6
explicitly give the order of convergence for ICO: Up to some
scaling constants, the error in the estimation of aj; in each
step is bounded by the product of the up-to-date errors in all
other modes. As in the analysis of Nesterov’s acceleration of

gradient descent, this multiplicative nature of error propagation
leads to a loglog(1/e) convergence rate. In alternating least
squares [29] and HOOI, the error propagation is linear due to
tensor unfolding so that the convergence rate is of the order
log(1/e). Still, in certain problems where computationally
feasible initialization leads to very high signal-to-noise ratio,
one-step least squares or HOOI update would reduce the error
to the level of statistical efficiency [36, 39, 55].

Statistical accuracy. While our theoretical analysis is fo-
cused on the estimation of individual basis vectors a;, our
results have direct implications on the estimation under differ-
ent loss functions or of related functions beyond the explicite
statements of Theorems 6. For example, for the estimation of
the entire tensor 7% = E[T] in model (4), Theorems 6 directly
yields the Frobenius error bound

|7 = T*, < KXr'2(efg v o).

Compared with [29], Theorems 6 provide comparable or
sharper error bounds under their conditions. The error bound
of the CP decomposition algorithms in [29] is |AgIL. —
Aklr < Cy/r||Y|4/Ar, where ||¥], is the tensor spectrum
norm, with | W[, = o+/di + -+ dy in the Gaussian case.
In comparison, Theorem 6 prov1des HA‘COH — Ailr <
Co/dyr /N, for ICO with CPCA initialization, matching the
statistical lower bound of [39].

Incoherence condition for initialization. Existing initializa-
tion approaches [29, 54, 56] focus on randomized projection
in each tensor mode simultaneously to reduce the original
data tensor to matrices of effective rank near 1, followed by
matrix SVD to obtain rough estimates of CP basis a;, one
from each “good” projection selected by clustering or some
other methods. When the basis vectors a;,j < r, are nearly
orthogonal to each other, the leading singular vector of the
selected projected matrix is expected to be reasonably close
to one of the CP components, approximating a;, for the same
7 in all mode k. As the possible directions of randomized
projection increase rapidly with dimension dy, the incoherence
condition must decrease with d;. to allow a moderate restart
number (i.e. required number of randomized projections) to
capture a single CP component. Therefore, the existing inco-
herence condition in individual tensor modes is hard to avoid
in such approaches. Our approach is fundamentally different.
As discussed in Section II, the CPCA is designed to take
advantage of the multiplicative nature of the higher order
coherence.

Tucker models. There exists a large body of work that han-
dles low-rank tensor Tucker decomposition, including [7, 39,
57, 58, 59, 60]. For example, [39] studied HOOI and provides
rate optimal statistical bound under Gaussian noise tensor. In
the rank-1 case where the CP and Tucker representations are
identical, our performance bound in Theorem 6 is equivalent
to theirs. Our results and theirs are also in agreement for
the estimation of the projection to the column space of CP
basis Ay = (a;i,j < ). The theoretical tool for the analyses
of HOOI and our ICO share a similar spirit as both involve
projections in the iteration. However, there are several major
differences between the statistical analyses in the Tucker and
CP models. Moreover, the projection in ICO is very different



Algorithms Incoherence Iteration complexity Error (Gaussian Noise)
robust tenso;lg(])wer method 0 log(r) + log log(1/e) ov/di/Ar
Two-mo[(iez]HOSVD 0 w/a N
randomized prfjgc]t)io[r;g—li power update Do < 1/v/d1 log(1/e) on/di/Ar
spectral meth(Eg;]- (vanilla) GD Frmax < 1/ N7 log(1/e) o/dr e
e apory 5 A (r20N,,) < 1/r%2 | loglog(1/e) ENCVES

TABLE T

COMPARISON WITH PREVIOUS THEORIES FOR EXISTING CP DECOMPOSITION METHODS WHEN dj = ...

= dn = dYN, A1 = A\ (NEGLECTING

LOGARITHMIC FACTORS). HERE CD AND GD ARE COORDINATE DESCENT AND GRADIENT DESCENT, RESPECTIVELY.

from previous proposals as discussed in Subsection II-C, thus
requiring much more sophisticated analysis. In addition, we
develop sharp and useful tensor perturbation bounds in our
analysis.

IV. NUMERICAL EXPERIMENTS

In this section, we provide some synthetic experiments to
compare the performance of the proposed methods, CPCA
initialization followed by ICO iterations as in Algorithms 1-
4 (Algl+Alg2 for covariance tensor, Alg3+Alg4 otherwise),
with the modified rank one alternating least squares (ALS)
[29], orthogonalized alternating least squares (OALS) [48],
and higher order SVD (HOSVD). In our simulations, both
ALS and OALS use the initialization method proposed in
[29] and used in [47] and [15], which applies power and
clustering methods to random basis vectors and uses the
resulting centroids as initialization. HOSVD, widely used in
CP decomposition and tensor completion [54, 56, 61], can be
viewed as a baseline initialization method. To better under-
stand CPCA, we also present the results of the method (Algl
or Alg3) without further improvements and its performance
as the initialization of ALS and OALS updates (Algl-ALS,
Alg3-ALS, Algl-OALS, Alg3-OALS). The estimation error
is given by max; x [@;xa ), — a;raj,[s. The CP basis vectors
ajy, are first generated independently and uniformly at random
from the d;, dimensional unit spherical shell, and then linearly
adjusted to satisfy max;; |a),a;x] = 10712 for order 4
tensors in models (2) and (4).
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Fig. 1. Boxplots of the logarithm of the estimation error over 100 replications
under the spiked covariance tensor setting with X' = 2 and A\; = w%. The two
panels correspond to sample sizes n = 400, 800 respectively. The proposed
algorithms are labeled as Algl (CPCA) and Alg2 (ICO).

We first study the finite sample performance with spiked
covariance tensors (1). We set Wiax/Wmin = 1.25,d; = do =

20,7 = 3,n = 400,800, K = 2, wnax = 3,5,8,10, so that
the covariance tensor is of the order 4 = 2K. Figure 1 depicts
the boxplots of the logarithm of the estimation errors over
100 replicates. In the plot, Algl+1Alg2 is the one-step ICO
estimator after the CPCA initialization. Overall, our method
Algl+Alg2 outperforms all the other methods in all cases.
The ICO (Alg2) converges in very few steps, although the
number of steps is not reported here. Besides, the one step
estimator Algl+1Alg2 significantly improves over the CPCA
initialization (Algl), and is very close to the final estimator
Algl+Alg2. HOSVD performs much worse than the CPCA
initialization (Algl), probably due to the benefit of multiplica-
tive higher order coherence of the CPCA. The comparisons
of ALS against the hybrid Algl+ALS and OALS against the
hybrid Agl+OALS demonstrate the CPCA as a better method
than clustering or other randomized screening methods for
initialization, although the CPCA initialization (Algl) standing
alone may perform worse than iterative methods (slightly so
compared with ALS and more clearly so with OALS). In fact
the hybrid methods with the CPCA initialization improve the
original randomized initialized ALS and OALS significantly,
especially when the signal strength wy,,x is large.
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Fig. 2. Boxplots of the logarithm of the estimation error over 100 replications
under the low-rank tensor de-noising setting with N = 4. The proposed
algorithms are labeled as Alg3 (CPCA) and Alg4 (ICO).

We also explore our methods under the low-rank tensor
de-noising setting (4). We consider a 4-way tensor with
dl = dg = d3 = d4 = 20, /\max//\min = 1.25,7“ = 3,
and A\p.x = 50,100,200,400,800. Figure 2 quantifies the
performance of different algorithms in terms of the logarithm
of the estimation errors. Except for Apnax = 50, Alg3+Alg4
is superior to all the other algorithms. When A, .x = 50,
ALS and Alg3+ALS are slightly better than Alg3+Alg4 and
Alg3+0OALS. Again, HOSVD underperforms the CPCA ini-
tialization (Alg3). Figure 2 also shows the benefits of one



step estimator Alg3+1Alg4. Although Alg3+ALS has similar
behavior as ALS in this setting, we do not need to generate
a large number of random initialization in the hybrid method
Alg3+ALS.
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Fig. 3. Boxplots of the logarithm of the estimation error over 100 replications
under the spiked covariance tensor setting with X' = 3 and A\; = wf.
Two panels correspond to two sample sizes n = 400, 800. The proposed
algorithms are labeled as Algl (CPCA) and Alg2 (ICO).
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Fig. 4. Boxplots of the logarithm of the estimation error over 100 replications
under the low-rank tensor denoising setting with N = 6. The proposed
algorithms are labeled as Alg3 (CPCA) and Alg4 (ICO).

Next, we consider two additional cases of order 6 ten-
sors in models (2) and (4) with basis vectors satisfying
max;.; |a).a;i|> = 0.1. In a spiked covariance tensor setting
(1), we set wmax/wmin = 1.25,r = 3,d; = dy = d3 =
20,n = 400,800,K = 3, and wmax = 5,6,8,10,14.
In the low-rank tensor denoising setting (4), we set d =
20,1 < k < 6, \nax/Amin = 1.25,7 = 3, and M\jax =
225,450,900, 1800, 3600. We omit HOSVD as it is always
much worse than the CPCA initialization. The results are
similar to order 4 tensors. From Figure 3, Algl+Alg2 are the
best one in all cases. The advantages are more obvious when
Whax 18 large. OALS with randomized initialization has a
great deal of variabilities, which can be significantly improved
by the CPCA initialization (Algl1+OALS). Though ALS and
Algl+ALS have almost the same performance, Algl+ALS
does not require a large number of random initialization. The
results in the tensor denoise setting, reported in Figure 4, are
similar to those in the spiked covariance tensor model setting
in Figure 3, except the case Apax = 225,450. Alg3+ALS
fares better than the other approaches for A\, = 225, while
Alg3+0ALS is the best for A\pnax = 450. Although the pro-
posed algorithms do not always outperform ALS and OALS,
they underperform only slightly and in very few simulation
configurations and they are faster and easier to implement.
Moreover, the simulation results demonstrate that the CPCA
initialization is superior to the randomized initialization with
ALS and OALS.

To evaluate the computational cost of different initialization
methods, we also report the run time of the CPCA initial-
ization, HOSVD, and the randomized initialization in [29]
(ALS-init) under a spiked covariance tensor setting (1). We
set Wmax/Wmin = 1.25,7 = 3,n = 800, K = 2, wyax = 10,
and vary d; = dy = 20, 30,40, 50, 60. From Table II, it can
be seen that ALS-init requires much longer run time for each
simulation than the other methods. The reason may be that
ALS-init needs a large number of restarts to recover all the
CP basis. Meanwhile, HOSVD has significantly shorter run
time than the CPCA, and the ratio of the costs seems stable as
the dimension increases. Thus, the far superior performance of
the CPCA justifies its (still manageable) computational costs
compared with HOSVD.

In summary, the proposed Algorithms 1-4 are more accurate
than existing methods in the simulation experiments in general.
Algorithms 1 and 3 can also be a superior initialization to
plug in existing algorithms, and is faster and much simpler to
implement than randomized initializations. It is worth noting
that in the case of order 6 tensors where the incoherence
max;.; |ajajx| = 1073 is larger, both ALS and OALS
perform poorly, while the proposed methods still work well.

V. FINAL REMARK

In this paper, we propose new initialization (CPCA) and
refinement (ICO) algorithms for tensor CP decomposition of
high dimensional non-orthogonal spike tensors. Our methods
tolerate a higher level of coherence among the basis vectors
(ajx), and achieve faster computational convergence rate and
sharper statistical error bounds, compared with existing meth-
ods. The proposed methods are applicable to a broad class
of structured tensors, including the spiked covariance tensors
(2) and general noisy high order tensors (4). In particular,
our proposed algorithms show stable convergence and exhibit
pronounced advantage especially as the order of the tensor
increases. Numerical studies display empirically favorable
performance of the proposed methods.

APPENDIX A
ANALYSIS IN THE NOISELESS CASE: MATRIX AND TENSOR
PERTURBATION BOUNDS

This section provides the analysis of the CPCA and ICO
algorithms in the noiseless case with W = 0 in models (2) and
(4). The results in this section are dimension free in the sense
that their conditions and conclusions depend only on the angles
among the basis vectors and their estimates and the principle
angles among spaces, not on d. We first present the proofs
of Propositions 1, 2, 3 and 4. These propositions provide a
road map of the proof of Theorem 1, which is to follow, and
some general techniques to study model (2). Then, we present
the proofs of Propositions 5 and 6. Propositions 1, 5, 3 and
6 provide a road map of the proof of Theorem 4 at the end
of this section and some general techniques to study model
(4). For readers’ convenience, we restate the propositions and
theorems before their proofs.



Algorithms | d; =dz =20 | di =d2 =30 | di =d2 =40 | di =d2 =50 | di =dz = 60
HOSVD 0.12(0.02) 1189 28) 4.62(0.89) 12.58(5.07) 27.98(5.37)
ALS-init 6.97(1.93) 38.95(301) | 13320(05.78) | 332.68(s1.74) | 726.75(177.53)

Algl (CPCA) | 0.19(0.02) 2.07(0.28) 10.10(;, 13) 33.71(2.90) 94.55(9.41)
TABLE 1T

RUN TIME FOR DIFFERENT INITIALIZATION METHODS OVER 100 REPLICATIONS UNDER THE SPIKED COVARIANCE TENSOR SETTING WITH K = 2. HERE
RUN TIME IS THE MEAN AND STANDARD DEVIATIONS OF THE RUN TIME IN SECONDS. ALS-INIT USES 30 RESTART NUMBERS.

Proposition 1. For any set S of tensor modes, define
ajs = vec(®resajr), As = (a1s,...,ar5), Vs =
maxi<i<j<r |a)ga;s| and 65 = ||AL Ag — I,.|s. Define

1_[ NGl

k#ky k#ko keS

Ms = Mmax min max
J  ki,ka€S i#j

as the (leave-two-out) mutual coherence of {A;,j € S}. Then,
s € [1’T\S|/271]’

0s < <m€1§16k, ds <(r—1dg < (r—1) Hﬁk, 9
keS
ds < MsTli‘Sl/zmangr H Nik < ,Ltsrlils‘/z H O0r. (10)

keS

When S = [K]|, the above inequalities hold with {§g,¥s}
replaced by the {6,9} in (8).

keS

Proof of Proposition 1. For notational simplicity, we only
prove the case S = [K], as the extension to general S is
straightforward. Recall that 6 = |ATA — I.||s and 6, =
|Af Ax — I,|s. Because ATA = (A] A1) o+ 0 (ALAK)
is the Hadamard product of correlation matrices, the spectrum
of AT A is contained inside the spectrum limits of A] Aj, for
each k, so that

0 < min 0dg.

1<k<K
Because AT A—1, is symmetric, its spectrum norm is bounded
by its ¢; norm,

lal a;] < (r = 1)9

i

K
(r—1) H

due to |a] a;] = [Tr—, lajajx] = [Tr—, |oij.x|. Moreover, for
any j <7 and 1 <k < ko < K,

> ﬁ |o7ij k|

i#j k=1

<D 1oijm oijes | max [
17

i#j k#k1,k#ka

<(MTime)r= 2 max - [T

T kot ks

0 < max)y,
Jsr

as ik = (2;,,0%x)"/?. The proof is complete as k1 and ko
are arbitrary. O

Proposition 2. Let d > r and A € R with [ATA—1,|s <

0. Let A = U1D1U2 be the SVD of A, and U = U1U2
Then, —~UAU T |s < 8| A||s for all nonnegative-definite
matrices A in R™".

Proof of Proposition 2. An extension of Proposition 2,
Proposition 5, is proved later. O

Proposition 3. Let M € R**% be a matrix with |M|r = 1
and a and b be unit vectors respectively in R% and R%. Let
a be the top left singular vector of M. Then,

(laa" —aa"[g) A (1/2)

<|vec(M)vec(M)" — vec(ab" )vec(ab ) ||3. (14)

Proof of Proposition 3.. Let >}’_, oju;v] be the SVD of M
with singular values o1 > ... > o, where r is the rank of M.
Because vec(u;v, ) are orthonormal in R%%2,
vec(M)Tvec(ab") = a" Mb = Z o (ujT )(v;b)
j=1

with Z 71‘7 = M| =1, 23 1 (u ;r ) < Jal3 = 1 and
S (v Tb < |b||2 = 1. Because 0y = --- = o,
r 1/2 r 1/2
la" Mb| < 0y ( Z (u;ra)Q) ( 2 (v;rb)2> =0y
j=1 j=1
Similarly, by Cauchy-Schwarz,
laT Mo Z
<a%(u1Ta) (1 — 01) (1 — (ul a)z) (37)

When (u{a)? > 1/2, the maximum on the right-hand side
above is achieved at 07 = 1, so that |aTMb}2 < (ufa)?;
Otherw1se the right- hand side of (37) is maximized at ai =
la , so that |aTMb‘ 1— |aTMb|2.

1/2 implies |aTMb| < (uf a)?

. By (5), this is equivalent to

(14). O
Proposition 4. Let T* = E[T] with the tensor T in (2).
Given Ay = (514, coyapg), b€ [K\{k}, let @%, be the top

elgenvector of T”< = T Xie[2k]\{k, K +k} b € deXdk with
the b]l in (16). Then,

H%‘k%Tk Nﬂﬁﬁrﬂs
<2(1+0)(A/N) [ G/ =042,

Le[K\{k}

Do/ (V=80T — L) — /7)., with T =

maX;<r Hajga,ﬂ QjpQ

where gi)g
il

Jels:

Proof of Proposition 4. For any diagonal matrix II, with
H% =1, AZHT((AzHT)TAzHT)_l = Ag(A;Ag)_lﬂr. Thus,
because 77 does not depend on the signs of bje = bje+ k.,
we assume without loss of generality that @},a;; > 0 for all
iand (. Let &, = A A,. Assume without loss of generality



that rp2/(1 — 1/(4r)) < 1, so that 2(1 — (1 — ¥2)'/2) <

$2/(1 —1/(4r)). Consequently,

| A — Al < rmax |aje — aﬂHQ =2r(1— (1 —43)"?)
< 7‘1/14/(1 —1/(4r))
As b = Ae(ATAz) ej. |bjell = {e] (A] A))~te;}V? <

maxj,,~1 |Aeul; . so that
max [Gie — ael, [Byel

<(We//1=1/(4r)) /(W1 =00 = 7'/ /1= 1/(4r))
= e

Let w;; ¢ =

ai—;bje/a;’rébjé’ Vijk = ( /)‘ ) Hle KN\{k} wv] £
v € R" be the vector with elements v; i, and /\ =
)\j HZE[K]\{k} (ajTebjg)Q. As 6;@/ = I{i:j}7 for i # 7,

Ly N\TD. Y
(@i — die) bje | < (Y,

1+ (aje —je) Tojel ~ 1— ¢

el <oun( T %)

celK\ky 1 — P

lwijel =

As T i /Aj = S| airalv i, and eigenvectors do not depend
in scahng,
T ~* ~xT T
lajraj, — aGasy, |s <225 amaikvijxls
2
<2|Ax|s maxv; ji
1]

by Wedin’s theorem [62]. The conclusion follows. ]

Theorem 1. Suppose Algorithm 1 (CPCA) is applied to the
noiseless T* = Z 1A ®k 4 ajr with a; k11 = aji. Then,

(15) holds for the resultlng )\Cpca and anca Let Amin,+ =
minigj<r Aj + be the mmtmum eigengap. Suppose further that

2max {Omax, (V7 + oo} <1
3/ AR < p < 1,

a7

where dmax = Mmaxg<x O with the o in (6) and Yy = (1 +
2)\1/)\mm,i)6 with the 0 in (8). Let vk € (3 —3/K,3) be the
solution of vE -3k BE=119-0, eg 73 = 2.732, 74 = 2.919.
If the resulting a3} are used as the initialization of Algorithm

2 (ICO) with the same data T*, then

~(m)~(m)T
max " a5

(m—1)K+k—1

Ymg = Yop K

aJkaJkHS

and maxi<k<k Ym,k < € within m iterations, where m =
[K=H{1 + (log vk )~ log(log(vo/€)/log(1/p))}].

Proof of Theorem 1. Let U = (uy,...,u,) be the orthonor-
mal matrix corresponding to A = (aq,...,a,) as in Propo-
sition 2 where a; = vec(®;_,a;). Let matg(T*) =
pI 1)\°p°“ 4] be the eigenvalue decomposition as in (11).
By Proposmon 2 and Wedin’s perturbation theorem,

4,0 AT

la;a] —aja; s <|uju; —aja; s + | —ujufls

<6+ 2(M 5)/>‘J,i < g

and |3\;p°a—)\j| < d)\1. Thus, (15) follows from Proposition 3.
Moreover, under (18) we have ¢y < 1/(y/r + 1) < 1/2,

~cpeancpeaT
so that (15) yields max;<, Ha;}?ca ;‘gza )T— ajfaJTZ“s < 1.
m

N((());Jv define ¢/, , = max;<, Hajk s
ag, = a5 By Proposition 4 and (18), 1} ; < ptbo and this
would contrlbute the extra factor p twice in the application
of Proposition 4 to 1] ,, resulting in ¢] 5 < pty, so on
and so forth. In general, w;n’k < plm-DE+Eq)y with ny = 1,

— ajkaTkHS with

ng =3,...,ng = 351 and npy = 1+ 225;11 Nh1—¢
for k > K. As 2(1 — v ™) = 9k — 1, by induction for
k> K,

p 21—t
min > 20yi e i) = ke =k

The function f(y) = v —3v%~1 +2 is decreasing in (1,3 —
3/K) and increasing (3 — 3/K, ). Because f(1) = 0 and
f(3)=2>0, we have 3 — 3/K < vk < 3. O

Proposition 5. Let A€ R"*" and B € R™*" with [ATA —

I, Hs \Y HBTB I, ”S <é and d1 Ady = . Let A= U1D1U2
be the SVD of 4’ U = U1U2 , B = V1D2V2 the SVD of
B, and V- = ViV,'. Then, |[ANAT — UAU"||s < §|A|s for

all nonnegative-definite matrices A in R™", and |AQBT —
UQVT|s < V26|Qlls for all v x r matrices Q.

lzro~0f~0f Proposition 5. Let A = U;D,U; and B =

V1D2V2 be respectivelz the SVD of A and B with D; =

dlag(ou,.. alr) and Dy = dlag(0'217.. Oar). Let U =

U,U7 and V = V; V. We have [ D2—1I,|s = |[ATA—1I,.|s <
§and |D2 — I,||s = |BTB — I,.|s < 8. Moreover,

|AQBT —UQVT(3
N~~~ ~r o~ 2
=Xy, |, =uzfo=1[t] (D105 QVaDa — Uy QVa)us|

~ ~ 2
<2/ Q|E maxjy, |,- sl = 1HD2“2U1TD1—“2U1T||F

=2/|Q u? u? 01 09 — 1
H HS s o= Hu2|\2 1;]21 1:%25 Y27 )
with u, = (Ugl,...,ug,.) s (1 —5)+ < 5'5]' < V149,

¢ = 1,2. The maximum on the right-hand side above is
attained at Gej = 4/(1—08)4 or v/1+4 by convexity. As
(VA =68)4vV1+6 —1)2 < 6* A 1, we have |[AQBT —
UQVTHS < 2||Q[|§0®. For nonnegative-definite A and B = A,

HAAAT UAUTHS = HDlUQTAUQDl U2 AUQHS and
2
’UT (Elﬁ;/\ﬁgﬁl U2 AU2 U| Z U U2 AUQ’U]
S As(nl v iml), nim <0,
IAls(Im2 +72[),  mm2 20,

where Z? lTijva is the eigenvalue decomposition of
DluuTDl —uu! . Similar to the general case, (|71 v |m2])? <
2+ 72 = HDluqu)l — uuTH2 < 8% and |1 + | =
|tr(f)1uqu)1 —wu')| < |DiDy — I]s < 6. Hence,
[AAAT —UAUT s < [[A]s0. O
E[T] with the tensor T' in (4).
[N\{k}, let (biey. .., bre) =

Proposition 6. Let T* =
Given Ay = (Q1g,...,000),L €



EK(ATAZ)_l, T* = T*
T3 /| T3 |2 and A*

<ie[N)\ky by € R, @ =
T* %[N bJTl Then,

A1 (EZ >2
A fe[N\{k}l o6

N
‘X;k/)\j—l‘<2$e+(r—l 1/)\ H
{=1 l=1

2 = 2|aji @k <2(r — 1)(1+ o) <

/w/(ﬂ— —\/riy) , with 1, =
)12

where (bg max;<r (2 —

2}aﬂa]g|

Proof of Proposition 6. By the argument in the beginning of
the proof of Proposition 4, the conclusion of Proposition 6
does not depend on the signs of @;. Thus, we assume without
loss of generality that a, ,alg > 0 for all 7 and ¢. Instead of
max;<, || — aﬂH2 2/(1—1/(4r)) in the proof of Propo-
sition 4, we have the simpler max;<, |d;¢ — a;¢|, < ¥ here.
Modifying the proof there accordingly, we have max; <, ||d;¢—
aie|bjella < 1/14/( V1—16 — 7"1/21/14)+ = ¢¢. Again let
wije = albefalbie vige = (/N ) Teern gy wises
v € R" be the vector with elements v; i, and /\ =
Aj Hée[N]\{k}(a;’erjZ)' As a;bﬂ = I{i:j}’ for ¢ # 7,

i, o] = |(aie — Gie) Thyel e
T U (age = @50) Thil 1 - é
vk < 0wy [ (d’;)
0

Ce[N]\{k}

As T" k/)\ =D aipvi gk and v =1,
2
|75/ = agnl,

_Zile[r]\{j}Zize[r]\{j}aili%kvil»jkviz,jk

<r=1(1+0)M/A)? ] @/ =)

Le[N\{k}

Let 26 be the angle between a;j, and @, = Tj*k/HfJ*ng We

have 2(1 — a}ka;k) = |ajr — a;.‘kug = (251119)2 = 2(1 N
c0s(26)) < 2(1—cos?(26)) = 2sin?(26 QH k/)\ aj;gHQ.
Similarly, as X¥ — ); = (Hee albje — 1) +
Dictrhir i e aj,bje, we have
A =1 < Y e+ (=D /N ] e
Le[N]

Le[N]

O

Theorem 4. Suppose Algorithm 3 (CPCA) is applied to the

noiseless data T* = Z; LA ®N_ | ajy through the SVD of

matg(T*) for some nontrzvzal subset S — [N]. Let ¢y =
(V2 + 4X1/Amin,+ )8 with § = 6 v 85, where S¢ = [N]\S.
Then,

‘chca - |

>\] < \/§5A17
~ (1/2)

(Jaszasy" <vo/2 @0

- ajka}kH%)

for the resulting \;°*" and aj;"™.

6max = MaXp< N 5k:

3Inax{(smaxa \fJF ) O} < 17

Suppose further that for

AWr =T /M)y 2 <p< 1. (27)
Let yy € (2—2/N, 2) be the solution of YN —2vN *+1 =0,
e.g. v3 = 1.618, 74 = 1.839. If the resulting a Ajpm is used as

the initialization of Algorithm 4 (ICO), then
max‘)\( )/)\ -1 <

J<r

(m—1)N+k—1

wova )

N
Zk:ﬁ/)m,k + Pwm,Na

max (2- 2|aJkA§ZL)

and maxi<k<N Ym,k < € Within m iterations, where m =
[N=H{1 + (log yn) " log(log(vo/e)/log(1/p))}].

Proof of Theorem 4. By definition matg(7*) = AsAAl. =
pI 1)\?’0& 40, so that for the U = (u1,...,u,) and V =
(v1,...,v,)in Proposmon 5 we have Hajga]TSfujuJTHs < dg,

lajsealse —vsol s < bse, 1 < j < 7, and [mats(T*) —
UAV T |s < +/2\18. These and Proposition 3 yield (26) as in
the proof of Theorem 1. Moreover, under (28) we have ¢0 <1,

~ A~ A T
so that 2(1 — |a eaj‘;“ 2” S jifmz - aﬂaﬂ”s < 9.
Define ¢, , = max;<, (2— 2| T m)|) 2 with a(k) = ajgca'

By Propos1t10n 6 and (28), wl 1 < p¢0 and similar to the proof
of Theorem 1, we have v/ moke S P ONERYg with ng = 1,

ng=2,...,ny =281 and ng4 = 1+ Zé\’:_ll Ngo1_¢ for
k > N. By induction, for k = N, N + 1,.

1 — N
mep 2N N N =N ﬁ =N

The function f(v) = v~ —29V~1 +1 is decreasing in (1,2 —
2/N) and increasing (2 — 2/N, ). Because f(1) = 0 and
f(2) =1 >0, we have 2 — 2/N < vy < 2. By Proposition
6, (28) and the upper bound for d);n’ x> we have the desired
upper bound for max;<, !X;m)//\j —1J. O

Proposition 7. Ler SP := span{ai,...,a,}, where a; =
vec(®N_,a;i) € RL The elements of SP can be viewed as
either length d vectors or di X --- X dy tensors. Suppose
N > 2 and 0y, <1 for every k =1,...,N in (6), then every
rank-1 tensor in SP is one of a;’s up to a scalar.

Proof of Proposition 7. Suppose M is a rank-1 tensor in
SP= span{ay, ..., a, }, where a; = vec(®}_,a;x). Thus, there
exist coefficients 3, j < 7, such that

M = 61vec(®kN:1a1k) + et ﬁwec(@,ivzlark).
In matrix form, it follows that
mat; (M)

=Bra11vec(®h_nair)’ + -+ Brasvee(@h_oarr) ",

where {a;1,j < r} is a set of linearly independent vectors, and
{vec(®}_5a;x),j < r} is also a set of linearly independent
vectors. Note that the matrix on the left hand side has rank 1
while the matrix on the right hand side has rank |j € [r] : §; #
0|. Since the rank of a matrix is unambiguously determined,
we must have |j € [r] : §; # 0| = 1. Hence, M = ;,a;,
holds for some j, € [r]. O



APPENDIX B
ANALYSIS OF CPCA AND ICO FOR NOISY TENSORS

This section provides the analysis of the CPCA and ICO
algorithms in the noisy case of models (2) and (4). In addition
to the propositions provided before, we use concentration
inequalities to derive the statistical error bounds.

Theorem 2. Consider spiked covariance tensor model (2) with
data in (1), A\; = w?- and § = |[ATA - I,|s as in (8). In an
event with probability at least 1 — e, Algorithm 1 (CPCA)
gives the following error bound for the estimation of the CP
basis vectors a;y,

~cpcan~cpcaTl

[ase™ay ™ — ajrajils

<1+ 2XM1/0j, )8 + Ci/Nj2) (RO ++/t/n)

Jor all 1 < j < r, 1 <k < Kand 0 < t < d,
where C'is a numeric constant, \; 1+ Is the j-th eigengap,
and R = \/(reg/n)(1+ 1/SNR)(1 + (res/d)/SNR) <
N (r+02d/A) (1 + 02 /A1) /n.
Proof of Theorem 2. Recall that \; = w with Ay = -+ >

Ar >0, A= (Ay,...,A;) with a; = Vec(a]1 ®Rajp® @
ajK), T=n"! Z?:l X; ®X; and d = dyds...dg. Write

(20)

T

mat[K] Z

:AAAT + 021, + U*,

2
(vee(®p— 1a]k))® + 0%y + U*

(38)

where A = diag(Ay, ..., A\,) and U* = matx(T — E[T]) =
matx1(¥) — 0?I4. Let U = (u1,...,u,) be the orthonormal
matrix corresponding to A as in Proposition 2. We have
|[AAT —UUT|s < and |[AAAT —UAUT|s < A\16 by two
applications of the error bound in Proposition 2 with A = I,
the first time. Let the top r eigenvectors of mat;x(7) be
U = (Uy,...,1,) € R¥". By Wedin’s perturbation theorem
[62] forany 1 < j <

JAAAT —UAUT + U5/ +

285 —ujujls <2
< (206 + 2] 0¥ [s) /A +-

(39)

Combining (39) and the inequality || AAT —
have

UUT|s <6, we

|0 — aja; s <6+ (2M6 + 2[U*|s) /A e (40)

We formulate each @; € R? to be a K-way tensor U €
Rv<xdic Let Uy = matk(Uj), which is viewed as an
estimate of aj,vec(®F. a;)" € R%*(4/dv) Then agp” is
the top left singular vector of ﬁjk. By Proposition 3,

HAcpcaAcpcaT

~ AT
ik ik I,

—ajraj)§ A (1/2) < —ajaf[3. @)

Substituting (40) and Lemma 1 into the above equation, based
on the definition of SNR and R(©), we have the desired results.
We note that (20) holds automatically when the right-hand side
is greater than 1, e.g. 6 > 1. O

Lemma 1. Suppose the assumptions in Theorem 2 hold and
§ < 1. Let U* = matyx(T — E[T]) and \j = w? in (2). In
an event with probability at least 1 — ¢!, we have

LA (12%]s/A1)
<C'max (V(reﬂs/n)a + 1/SNR)(1 + (ret/d)/SNR), v/t /n)
forall 0 <t

Proof. Let T* = E[T]. As U* = mat{x (T — T*), it follows
from Theorem 2 of [63] that with probability at most ¢,

[ 2% ]s > Cllmatie) (T*) s (v/(r* v )/ v (7 v £)/n))

where r* = trace(mat[g1(T™))/|/mat; g (T*)[s is the effec-
tive rank of mat[K] (T*) and C is a numeric constant Be-
cause mat[K]( *) = E[mat[K]( )] = Z 1A aja + 021y,
|matp ) (T*)]s < 2A1+0? and trace(mat[ ](T ) = Airet +
0%d = M7 (1 4+ 1/SNR) with 7o < 7 < d, so that

Il{|rnaqkq<7*>ns<\/<r*\«t>/n\«<<r*\«t>/n>> 1}

31 ’

< d, where C is a numerical constant.

<mm@mw+ﬁwxmm+ﬂmhwm

(2/3+ 0*/(3A))VH/n)
< max (x/(reff/n)(l + 1/SNR)(1 + (refr/d)/SNR), M)

Note the component of the maximum with 4/t/n is smaller
when \; < o2 and 0 <t <d.

Theorem 3. Suppose that with a proper numeric constant C
and the quantities defined in (21), (22) and (23),

a>0, p1<p<l, CoaRUp) <oy <1. 4)

Let Qy = {max; \|a§k)A§k) ajka;-rkHS < o} for any initial

estimates Q' k) Then, Algorithm 2 (ICO) provides

]P’{ max min HECOH _AkHF s }
Gk ey (4r/3)12(ep, v e)
by il

J.k €k V€

> P{Q} - mr K e~ 2(diAvn) (25)

Cg . deal
within m > m. + 3 iterations, where €, = Cp o 522?0)

me = [log(log(e/10)/log p)/log 2] for (€2 v €9) A €r3 < € <
o and m. = [log(e/1bg)/log p] for €r2 < € < €y A €3, With
€0 = Co,ar/n. Moreover, (25) holds within m.,, +4 iterations
for € = €4 v \[ex€q where €, = C’O,a()q//\r)Hli{:2 €2
In particular, if Algorithm 1 (CPCA) is used to initialize
Algorithm 2 and g is taken as the maximum of the right-
hand side of (20), then (25) holds with P{Qq} > 1 —e™%.

Proof of Theorem 3. We divide the proof into three steps.
Step 1 (Error bound for a single update). Consider given
(j, k) in this step. Recall that (b, ..., by) = Ak(A] Ap)~!
with Ay, = (aig,...,ark). Let z, ~ N(0,I,). For g =
{91,.-.,92k} With gx = gy ix € R%, define Ti(g) as

T Xpeper ik} 9¢ = Xi(9) " Xi(g)/n € R




with Xy (9) = (Xi Xee[)\(k} 92,7 € [n]) T € R™* % Write
Xk(9) = Mjk(g) + Mji(9) + Ex(g)
where Ej(9) = (& Xe[x)\(k} 9¢ -7 € [n])T e R* e,
Mji(9) = (fijsi€ [n]) (wi T Toerxe

as a rank-one n x di random matrix with signal, and

51:(9) = Znepg iy Mun(g) € R

(k) 4509 @,

As Ti(9) = T Xgefar]\{kk+K} 9¢ - it follows that
Ti(g) = Nj(9)ajea,y, + 0 Ia, + Aji(g), (42)
where Aji,(9) = 317, A% (9),
S‘j(g) = )\j{nle[K]\{k}(a;'régf)2}2?:1f1‘2j/nv
Ag) = M (9)MS(9)/n,
2
A,§-§> (9) EL(9)Eji(9)/n — 0*I4,,
AD(g) = EJ(9)M5(9)/n + M5 (9)Ejnlg)/n,
AD(g) = El(9)Mu(9)/n + M(9)Ejilg)/n,
AD(g) = MJ(9)M(g)/n + M (9)Mju(g)/n.

We bound \;(g) and |Ajx(g)|s over g¢ € G, with

Gie={90€S™* " : g —bje/bjell2]l2 < b, |ajoge] =
maxpjlangel < vy = ve/v/1—1/(4r)} (43)

for ¢ # k. In addition, we set Gy = S“~1 and G5, = Gy.

By the Gaussian concentration of (3., )1/ 2,
< Ao
inf Aj
9e€G e, Le[ K]\ {k} i(9) 2 (1 —=1/4/m—+/2t/n)~

with at least probability 1 — e™¢.
t

Similarly, in an event with at least probability 1 — e™",
HZ?:lFiFiT/n”s <(1+
with Fi = (fila N afiT)Ta
1
sup HAg.k)(
9¢€G e te[K]\{k}
SUPg,eG, ¢, le[ K] Zh;ej Ah Hee[K] (a;zgé)Z
r/n + +/2t/n)72
T 1\2
H Zhe[r N} Ahahkahk“ (Hee K] \{k} W)
(14 +/r/n+ 2t/n
A1+ 5k)(Hee Kk} W)
(14 /r/n+/2t/n)=2

r/n 4 +/2t/n)?

and in the same event

g Hs

Let ¢’ = ¢ A 1. For the noise component, the Sudakov-
Fernique and Gaussian concentration inequalities provide

sup 1Ex(9)]s
9e€G o Le[ K\ {k}

< oE[|zn]2] + oV2t + E

- o

sup

K
& Xo—1 ge]
g;gGG]’gVZE[K]

[l2nl2] + V2t + E[llza, 2] + ¢’ Y, Ell2a, Iz])

L#k

with at least probability 1—e~t. Similarly, the smallest singular
value o1 (F%(g)) is bounded from below by

inf o1 (E
00C e[ K\ (k) 1(Ei(9))
> o(Bllsala] - V2 - Ellza o] - ¢ ¥ Ellzala])
£k
with at least probability 1 — e~¢. Thus,
2
sup —|Af (g)]s
9e€G o Le[ K\ {k} )
< AR D)
-0

with at least probability 1 — 2e~*.

For each of the three cross-product terms, the two matrix
factors are independent. Thus, an application of the above
calculation in the proof of Lemma G.2 of [36] yields

sup AT ()]s
geEng,fe[K]\{k}
< 2 sup |EL (9) M5 (9)ls/n
9e€Gjp,le[K]\{k}
< 20«/A1(1+5k.)( I wé)
te[K] {k}
VR
X NG + ¢ Z
e¢k
2t 2t + 2
+£ 1+ £ + i
n n n
with at least probability 1 — 2e~¢,
sup [ AF ()]
9e€G 0, Le[K]\{k}
< 2 sup | By (9)Mk(9)]s/n

90€Gjo e[ K]\{k}

1++/2t
< 20)3/2{(1+ >< +¢' ] >
! Vin £k
1 2+ 3V2t
vn n
with at least probability 1 — 2¢~*, and
5
sup AT (9)]
90€G e Le[K\{k} .
< 2 sup 1M1, (9) M3, (9)|ls/m
90€G e, be[ K]\{k}
< 202/ 5k)( 11 wz)
Le[K]\{k}
1 2t 1 2t 2t
X 1 + + \/7 ﬁ + — + L\/i
N O RN D n

with at least probability 1 — 2e™¢
Putting the above inequalities together, we find that for r <

n and with at least probability 1 — e~ 2(d1Av7)

P Te)

Ai(g) = (44)

inf
9e€G g, le[ K\ {k}



and with ¢_j, = [ ;e

sup
9e€G g, e[ K\ {k}

< COMYR, + Coo? (/5 /m'? + dig/n)
OO ad)/? 2 4 Ch (AT /n) i,
where dj 4 = (d,lj2 (A D) Xerrp iy d§/2)2 and C} is a

numeric constant. Here the upper bound for Aﬁ) is absorbed

into those for Aﬁ) and Aﬁ) by Cauchy-Schwarz.
Let G;x(g) be the top eigenvector of Ty(g) in (42). As
lajklz = [@;r(g)l2 = 1, (42), (44) and (45) imply

l@jx(9)a;x(9) —

K\ (k) Ve

[Asx(9)]s (@3)

sup (46)

90€G 0 Le[K]\{k}

< Co,amax{( /A0 s

ajrajills

1deal
Jk ¢

/A (/)i |

with at least probability 1 — e 2(d1AvVn) \where G j¢ are as in

(43), Rﬁﬁ?l) as in (22) and Cy o, = Coa® 2K with a numeric

constant Cy. Here we assume C( can be taken as the constant

in (23) and (24). R

Step 2 (Error bound sequences) Recall that AEm) =

A(g’" A(””L)) Reexr, S = AT A and B =
m) (m) (b(m), ’/l;re )) c Rdgxr Let

~(m)T

Qe = {f}?aX Hahe g’ — anpanls < 2/Jm,e} 47)

with constants v, , < 19 to be specified later sequentially. As
the PCA of T'(g) in (42) does not depend on the signs of gpe,
we may assume without loss of generality a;,gag’;;) > 0 for
all (h,?¢). Thus, in €, , the proof of Proposition 4 provides

< Ume/v/1-1/(4),  (@48)
L < 1B < (Vimh- s )

- A@(AZAK)_lé% and P} = Iiig — P As ﬁ(g’m -
— A Bt — By (A — a,)TB™,

~(m)
maxpgr ”ahZ anel2

Let P,
By = P+(AM™

B~ bl

< A7 — Adg(IBE™ 18 + 1BeI) (1837”15 ~ 1bmell3)
< {rin, /(1= 1/(n)}/a®) (15713 A [buel3)

by the algebraic symmetry between the estimator and esti-

mand, where o is as in (23). Let §,($) B /1B, As

[bnell2 = 1,

1955 — brel, < [B57) — bnell, for o3|z =

(Ym.e/a)\/2r/(1 = 1/(4r))

by scale invariance. Moreover, (48) provides
< Yo/ = 1/(r), a4 ] = o, (50)

as &;:Z)Tﬁj(?) =1I{h = ]}/Hb (™), Thus, in the event ©,, .

= b(m)/HbM |2 € G, for £ # k in (43) with g = )y, o,
the « in (23) and any upper bound ¢ for (49).
Let

thz — bne/|bnel2 H2 (49)

max fag, 95" |

.
Qg = {15785 T — ajealy s

< wm,j,k}-

Let 99 ;1 = o,k = Yo and sequentially update them by
K-1 deal
Ymar = Coal (/ML Vi) v Biar

v (VI M TTES i) |
wm,k = wm,r,lw (51)
k=1,...,K, m=1,2,..., with the Cj o in (46) and

Gmik =1A (makaK(d)m,k,Z/a) 2r/(1 — 1/(47’))).

Here and in the sequel, we take the convention (m, {) = (m—
1, K +/¢) with the subscript (m, £). We note that 1),,, ,, depends
on Y, k—1,--->%m k—Kk+1 only as an increasing function of
their product and maximum. Thus, as 11 < Yo = ¥ by
(24), Yk < Ym—1 forall k € [K] and m > 1 by induction.
By (46), (43), (49) and (50), the events §2,,, ¢ in (47) satisfy
P{( g5 Qunpme) 050} S e72@VR 0 (52)

with (W;:lQ gk S Qm,k‘
Let ¢o = (¢*/a)y/2r/(1 —1/(4r)) be as in (23) with
RrUdeab 5 simple way of dealing with the dy-

w* CO atblrK1
namics of (51) is to compare ¥y, ;1 With
R(ldeal)

Uhn = Coaf (/A Temtile ) v RIS

: v (\/%\/ Al/)\jne;ék?/)m—u) }7

m,k m,r,k>

with initialization 1/)6"7].7,C = 1. Compared with (51), (53)
is easier to analyze due to the use of static ¢ and the
monotonicity of 1/);’;,,6 in k. While (51) uses inputs with
indices (m,k — [K — 1]), (53) uses inputs with indices
(m — 1, [K\{k}). Thus, as max; s CoaRM < g,
Ymp < Yp ) before ¥ o first hits (O,w*ﬁ at a certain
(m*, k*). As z/)**k < ¢ for k € [K], Y < Y* for
k e [K], so that ¢, x < ¢o for m > m*. It follows that

v(m, j, k). (54)

Step 3 (Contraction of error bounds). Recall that €;, =
Co.a RS, - By (52) and (54), (25) follows from

k.o
;kn,j,k Vj,k‘7

wm-k—l,j,k < 77[}:;,]',]@ < w::m,k’

S €V €k

for €0 < € < g and m = m¢ + 2. Let €, k41 = ¥o. By
induction, it suffices to prove that for €,1, < € < € ky+1

*

gk Vm = me + 2,5, k

<evey (55)

where €, = 1) for k > ko, efjk = ¢, for j <7 or k < ko,
with each fixed ko > 2. This is done by comparing (53) with

w;n,j,k = (CO,a()‘l/)‘j)Hz;&kwﬁfl,e) Vv 5;'1@
Vv (Co,a\/%\/ )\1/)‘jnz¢k¢;n71,z),

Yk = Urrko (56)

with 1, ; ;. = 1o. Because ;i < €,
Ui < Vmgr Vs Js ke (57)
Let my = min{m : ¢, ;< e}. For m < mu, ¥;, =¥, 10

for k < kg and wm,k =1 for kg < k < K, so that
Coa(Al/)\r)w/Q(ko—l) wQ(K ko)

my—1,ko )



Co,an/r/m/ A /Ao Y | g <e,

which implies z/;m Jk S €V e;k Vi, k, due to A; = A, and
;n*,l’ko < p. Consequently, (55) holds by (57). We note

that when 9}, 5 = €2, w;knﬂ,j,k < €4 V \/€4€Q V €.
It remains to prove m, < m. + 2. For ¢ = Cj ar/n,

Pop't
with the p < 1 in (24) for m < my, so that
— 2 < [log(log(e/40)/ log p)/ log(2ke — 2)] < m

Let m; = min{m : ¢/, o < Co, ar/nyandng ={l1+...+
(2ko — 2)™ =2} I{my > 2}. For € < Cy o7 /n, we have

E<w;n7k.0 2k0 2)+ +(2k)0 2)

!
€ < wm,ko
Tt (ko—1)™"™1 ) (g—1)m—m1+1
= Yop; o pkemt
Tt (ko—1)™"
< '(/JOP ( 0 )

for m1 < m < my, so that

My — 2
[log(log(€/100)/ log p)/log(ko — 1)], ko > 2,
[log(e/4p0)/log p)], ko = 2.
Again my < m. + 2. O

Theorem 5. Let T = >7_ | \j &L, ajr + ¥ as in (4).
Suppose W € RU> >IN has jid N(0,0%) entries. Then, in
an event with probability at least 1 —e~2%s=2(4/ds)  Algorithm
3 (CPCA) gives the following bound in the estimation of the

CP basis vectors aji, , 1 < j<r, 1<k<N,

Jasherashee — ajraj s

<(1 4 2v2X\1 /1) + 60 ( d/ds)/\j+

where § = |ALAs —I|s v |AL.Ase — I..|s as in Theorem 4
and \j + = min(\;j_1 —\;, \j —Aj+1) are the eigengaps with
)\0 = 2)\1 and )\7«_;,_1 =0.

ds + (29)

Proof of Theorem 5. Let a; s = vec(®kesajx) and ajsc =
vec(®pe[ny\s @jk). Let U = (ui,...,u,) and V =
(v1,.. vr) be the orthonormal matrices in Proposition 5 with
A and B there replaced respectively by Ag and Ag.. By
Proposition 5,

lajsa) s —ujuj s v |ajsea; gc —vjv] s <6
|matg(T*) — UAV T < V26X, (58)
where T = 37 | N @1, ajp. Let ¥* = matg(¥) =

matg (T — T*). We have

|mats(T) — UAVT | < V200 + [T%s.
As Ay > Ao > ... > A\ > A1 = 0, Wedin’s perturbation
theorem [62] provides
max {[@;,50; 5 — ujuj s, [a;,5:a; gc — vjv] s}
24/2X16 + 2| T*
\.\F1+H ls (59)
mln{>\j_1 — )\j, /\j - )\j+1}

Combining (58) and (59), we have

max {[a; 54, ¢ — a;,50; glls, |d;,5¢8; ge — aj,s°a; gells}
2¢/2016 + 2| ¥ g
AjsAj = Ajr1}

By Theorem II.13 in [64], for any x > 0,

P(I1w*ls/o> [[Tdi+ | [] du+a]<e ™
kes ke[N]\S

It implies that, choosing © = 24/dg + 24/dge, in an event with
probability at least 1 — e~2ds—2dse

304/dg + 30/ dge.

We formulate each @; € R? to be a K-way tensor U; €
RA>xdr et Uk = matk(Uv), which is viewed as an
estimate of a;rvec(®jes\ (k) aj)’ € € Rdxx(ds/dx) Then ajica

<0+ (60)

min{)\j_l -

s < (61)

is the top left singular vector of ﬁjk. By Proposition 3, for
any ke S

~ ~ T ~ A
laRai™ — anajild A (1/2) < laj.sa] s — ajsa; s3.
Similar bound can be obtained for HﬁcgcaajicaT — ajrajls

for k € S°. Substituting (60) and (61) into the above equation,
we have the desired results. O]

Theorem 6. Let data T be as in Theorem 5 and Qy =
{max; 1 (2 — 2|0ija(0)|)1/2 < o} for any initial estimates

A(O) . Let & be as in (25). Suppose

*(ideal)

ax >0, p* <1, 6oy VRV <o <1, (33)

with the quantities defined in (30), (31) and (32). Then, in an

event with probability at least P{Qy} — e~V — Zszl e,
Algorithm 4 (ICO) provides

\)\lco/)\ —1 <€y ve, (34)

\aﬁfaﬁgﬁ ajka]kHs <€ Ve (35)

D | AICTL, — Agllr < 7V2(e¥, v e), (36)

simultaneously for all 1 < j < r and 1 < k < N, within

m = me + 3 iterations, where e;‘?k 6 N 1R*(l‘;eal) and

0

me = [log(log(e/1o)/log p*)/log2] for €f, < € < .
Moreover, (34), (35) and (36) hold in the same event within
Me,, + 4 iterations for € = 60k N v/r — 1(A1/\,) H,ICVZZ €.
If Algorithm 3 (CPCA) is used as initialization, then P{Qy} >
1= e72 for g = 6[A16+0(v/ds +/d/ds)]/Amin +-

Proof of Theorem 6. Let 1)y, = 1y and define sequentially

%
= 2 m, 5
P k1 (N ) 'Var 1m£a>§\[1/) —t
I TRy TCYAV)) y ey
1— N p*(ideal)
v(6ad VRIS ), (62)
k=1,...,N,m=1,2,... By induction, (33) gives ¥, 1 <
Ym—1,k < 9. Here and in the sequel, we take the convention



that (m, E) (m—1, N + {) with the subscript gm ,0), and
that ><g9 = ><N+¢9J N+Z) for any estimator 9 Let

O 1= ey Qe (63)
with Q.0 = {maxhq (2 — 2|ahf(m)|)1/2 ’(/Jm[} Let

A(m) _ b(m)/Hb(m

2, and gj; = bje/|bje|2- By (48), (49)
and (50) in the proof of Theorem 3,

I)Z)mf/a*)V |(l][g( 7 = Oy,

in ,, o with the oy in (32).
Given {a]k »J € [r],t € [N

HA(m)

50" — g5, < (64)

— 1]}, the m-th iteration
for tensor mode k produces estimates ag,’,?)

as the normalized
. k—N+1 7(m)T _ N . QN
version of T x,; ;"' b))’ . Because T = 37, \j ®p,

aji + U, the “noiseless” version of this update is given by

T X ge[N\{k} b;ré = )\jajk. + v X ge[N1\{k} b;r[ € R, (65)

Similarly, for any 1 < j < r,

T x b= N4t =

.
Y k—N+17(m)T d
kN th,jahﬁxpx/klb e R%,

h=1

where )\hj = A 1_[@ 1 ah k— ebﬁ’Z) ¢

¢ml—'¢)mZ/(\/ max fwmi)

By the definition of ay in (32) and the condition %), ¢ < %y,
Gm.e/(1 — dm ) < Y e/0. Thus, by the arguments in the
proof of Proposition 6,

(2 -2y (66)
\/7H\Il Xlg I?Hil ’\(m)TH2 \/ 1 + 5k 1_[ 'wm k—¢
~(m) ]/, /ﬁ —

)\H41%k4gkz

Let

in QF L As WV Z]](TZ)T is linear in each 9](2 ),
k—N+1 A( al
| =<2es Jjn( .
A~ TYL
< (V- Dmax g7, — gpilblA]
¥ < et el
where |A| = maxwesdz e (¥ x2¥ v)). As we also have

[ <y ﬁj(? |, < A, (64) yields

o < gl

< min {|A], 0% k1 IA]+ [ < eepnpny 95l

in Q:z,kfl’ in view of the definition of (b:z,k—l in (62). By the
Sudakov-Fernique and Gaussian concentration inequalities,

N
P <A|/a > Z Vde + x) <e @2
=1

(67)

—x2/2

and P{”\I’ XZE[N]\{IC} ng@HQ > \/dk + .73} <e . ThllS,

[A| < O'ZZ 1Vde +04/2dy,
|9 et ey e, < (1+ V2)o/dy

20

di —dn

in an event ); with at least probability 1 —Zi\;l e
Consequently, by (67), in 1 n Q*

—e
m,k—1°
~(m)T N-—1 ~
H‘I’ Xlg iivtl gj(sz) H SIS aka ng(ylr:) 0)
dv? Jv?
< 1+ V2)o(d + (601 A DTGPl N/,
< \/g 1— NR (1dea1) (68)

d)nz k—1

Substituting (68) into (66), we have, in the event Q1 Ny, g1,

(2 20a @D < s (69)

with
* (ideal)

Jk¢mk1 Hw
’ m,k—~C
O(*N 1 )\ N 1

Consequently, Q,, < 21 N Q* k1 and the upper bound for
required number of iterations follows from the same (but much
simpler) argument in Steps 2 and 3 of the proof of Theorem 3.

As for the estimation of A;, similar to (66), we can obtain

6R*

Ym,j,k = Max

A =)

N N
MO+ =DM [ [ bme+ D) S (T0)

=1 (=1

< xaeg

Then, employing similar procedures as above, we can prove
the bound (34). ]
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