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Tensor Principal Component Analysis in High
Dimensional CP Models

Yuefeng Han and Cun-Hui Zhang

Abstract—The CP decomposition for high dimensional non-
orthogonal spiked tensors is an important problem with broad
applications across many disciplines. However, previous works
with theoretical guarantee typically assume restrictive incoher-
ence conditions on the basis vectors for the CP components. In
this paper, we propose new computationally efficient composite
PCA and concurrent orthogonalization algorithms for tensor
CP decomposition with theoretical guarantees under mild in-
coherence conditions. The composite PCA applies the principal
component or singular value decompositions twice, first to a
matrix unfolding of the tensor data to obtain singular vectors
and then to the matrix folding of the singular vectors obtained
in the first step. It can be used as an initialization for any
iterative optimization schemes for the tensor CP decomposition.
The concurrent orthogonalization algorithm iteratively estimates
the basis vector in each mode of the tensor by simultaneously
applying projections to the orthogonal complements of the spaces
generated by other CP components in other modes. It is designed
to improve the alternating least squares estimator and other
forms of the high order orthogonal iteration for tensors with
low or moderately high CP ranks, and it is guaranteed to have
second or higher order convergence when the error of any given
initial estimator is bounded by a small constant. Our theoretical
investigation provides estimation accuracy and convergence rates
for the two proposed algorithms. Both proposed algorithms are
applicable to deterministic tensor, its noisy version, and the order-
2K covariance tensor of order-K tensor data in a factor model
with uncorrelated factors. Simulation experiments demonstrate
significant practical superiority of our approach over existing
methods.

Index Terms—Tensor Principal Component Analysis, PCA,
CP Decomposition, Spiked Covariance, Dimension Reduction,
Unfolding, Orthogonal Projection.

I. INTRODUCTION

MOTIVATED by modern scientific research, analysis of
tensors, or high-order arrays, has emerged as one of the

most important and active areas in machine learning, electrical
engineering, and statistics. Tensors arise in numerous appli-
cations involving genomics [1, 2], multi-relational learning
[3], neuroimaging analysis [4, 5], recommender systems [6],
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computer vision [7], longitudinal data analysis [8], economic
indicators [9, 10], finance data [11] and more. In addition,
tensor based methods have been applied to many statistics
and machine learning problems where the observations are
not necessarily tensors, such as community detection [12],
topic and latent variable models [13], graphical models [14],
and high-order interaction pursuit [15]. In many of these
settings, the tensor of interest is high-dimensional, e.g. the
ambient dimension is substantially larger than the sample
size in the factor model in (1) below. However, in practice,
the tensor parameter often has intrinsic dimension-reduced
structure, such as low-rankness and sparsity [16, 17], which
motivates research in tensor estimation and in the recovery of
the underlying structure.

Low rank tensor decomposition is one of the most impor-
tant tools for recovering and estimating the intrinsic tensor
structure based on noisy data. It plays a similar role to matrix
singular value decomposition (SVD) and eigendecomposition
which are of fundamental importance throughout a wide range
of fields including computer science, applied mathematics,
machine leaning, statistics, signal processing, etc. Despite
the well-established theory for low-rank decomposition of
matrices, tensors present unique challenges. There are sev-
eral notions of low-rankness in tensors, including the most
popular CANDECOMP/PARAFAC (CP) low-rankness and
multilinear/Tucker low-rankness. While CP models are more
parsimonious and easier to interpret in many applications,
compared with Tucker models, the computation of the best
low-rank CP approximation of a given tensor is NP hard in
general [16, 18, 19].

In this paper, we develop a new framework of tensor
principal component analysis (tensor PCA) applicable to deter-
ministic tensors, their noisy version, and factor models with
uncorrelated factors. To be specific, let us first consider the
factor model. Suppose we have i.i.d. matrix or tensor valued
observations (such as 2-D or 3-D images) Xi, 1 ď i ď n, of
the following form

Xi “
řr
j“1wjfijaj1 b aj2 b ¨ ¨ ¨ b ajK ` Ei, (1)

where b denotes tensor product, fij are i.i.d Np0, 1q, wj ą 0
represent certain weights, ajk P Rdk are basis vectors with
}ajk}2 “ 1 for all 1 ď j ď r, 1 ď k ď K, Ei are i.i.d.
noise tensors each with i.i.d Np0, σ2q entries. Tensor factor
models like (1), where the data is written as the sum of a
low-rank factor and noise, have been studied extensively in
the literature. While both the Tucker and CP decompositions
can be used to model such data, the Tucker model has been
the focus of the literature in the consistent estimation of
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tensor structure in the presence noise, largely due to the
direct expression of the Tucker decomposition with matrix
SVD. However, in many applications, CP decomposition is
a more attractive modeling option. To estimate the structural
parameters in model (1), we construct the covariance tensor
of the data Xi, T “ n´1

řn
i“1 Xi bXi, which can be written

as

T “
řr
j“1λj b

2K
k“1 ajk `Ψ, (2)

where λj “ w2
j , aj,K`k “ ajk for 1 ď j ď K, and Ψ is

a noise tensor. We treat (2) as a general CP model in which
Ψ is allowed to have an identity component ErΨs9 Id, e.g.
ErΨs “ σ2Id under (1), as the estimated basis vectors do not
depend on the identity component in our approach. Here Id is
the identity tensor given by maxrKspIdq “ Id. Our main goal
is to estimate the basis vectors ajk, which can be also called
loading vectors, from the noisy tensor T . We call (2) spiked
covariance tensor model as it is analogous to the so called
“spiked covariance model” in the study of matrix PCA in high
dimensions [20]. Here, ajk, 1 ď j ď r, are not necessarily
orthogonal to each other in each mode k.

When K “ 2, our model (1) is closely related to p2Dq2-
PCA in the community of image signal processing, which
has been extensively studied [21, 22, 23, 24, 25, 26, 27, 28].
This literature has been mainly focused on the algorithmic
properties. However, statistical guarantees such as consistency
of estimators and risk analysis, in high demand in many ap-
plications, are much less understood in the CP model. Among
notable exceptions is [29]. In Tucker factor models, statistical
analysis has been carried out by [9, 30, 31, 32, 33, 34] under a
very different setting from (1), and by [10, 35, 36] with matrix
and tensor time series.

In view of (2), a natural approach to the estimation of ajk
is minimizing the empirical loss,

arg min
}ajk}2“1@j,k

min
λj@j

›

›

›
T ´

řr
j“1λjpb

K
k“1ajkq

b2
›

›

›

2

HS
, (3)

where }A}HS, defined as }vecpAq}2, is the Hilbert Schmidt
norm of tensor A. However, due to the non-convexity of (3),
a straightforward implementation of local search algorithms,
such as gradient descent and alternating minimization, may
get trapped into local optimums and result in sub-optimal
statistical performance. Still, if one starts from an initialization
not too far from the true basis vectors, local search is likely
to perform well.

In addition to the order 2K tensor T in (2) with paired CP
basis vectors ajk, we study in this paper the following more
general low-rank CP model,

T “
řr
j“1λj b

N
k“1 ajk `Ψ, (4)

where λj ą 0 and Ψ is a noise tensor, including the noiseless
version with Ψ “ 0. While ajk can be all different in (4),
aj1 “ ¨ ¨ ¨ “ ajN for the empirical N -th moment tensor in
certain latent-variable models [13].

A. Our contributions
We propose a new method for the estimation of the ba-

sis/loading vectors ajk P Rdk in the spiked covariance tensor

model (2) or the low-rank CP model (4), both can be viewed as
spiked CP models. The new method is composed of two steps:
(i) a composite PCA (CPCA) as a warm-start initialization;
(ii) an iterative concurrent orthogonalization (ICO) scheme to
refine the estimator. The intuition is that the CP components
in higher order tensors are closer to orthogonal and tend to
have higher order coherence in a multiplicative form, and the
proposed method is designed to take advantage of this feature
of the CP model to achieve higher statistical and computational
efficiency. To the best of our knowledge, this proposal is
the first to explicitly aim to benefit from this multiplicative
higher order coherence in CP decomposition. Existing initial-
ization procedures require random projections and may need
to generate many copies to yield a reasonably good choice,
while the CPCA produces definitive initial estimates of the
CP basis vectors via tensor unfolding/refolding and spectral
decomposition. The ICO scheme aims to achieve higher order
of numerical convergence than the alternating least squares
and other forms of the high order orthogonal iteration (HOOI)
[36, 37, 38, 39] after the warm-start, again by taking benefits
of the multiplicative coherence.

The CPCA and ICO algorithms are developed in Section II
along with some sharp tensor perturbation bounds to motivate
them. These tensor perturbation bounds, new or not readily
available and potentially useful elsewhere, heuristically justify
our ideas and the individual elements of the proposed algo-
rithms. Statistical guarantees for the CPCA and ICO estimators
are provided in Section III. Our perturbation and risk bounds
explicitly exhibit the benefits of the multiplicative nature of
the coherence of the tensor bases and the rapid growth of
such benefits as the order of the tensor increases.

Our analyses of the proposed methods focus on the cases
where the tensor dimensions dk are typically much larger
than the CP rank r but r can be also large. Theoretical
studies of existing proposals of tensor de-noising in CP models
typically imposes very restrictive incoherence conditions on
the CP components; For example, the incoherence condition
ϑmax “ maxk,j1‰j2 |a

J
j1k
aj2k| À ploylogpdkq{

?
dk in [29].

In contrast, we prove that the CPCA yields useful estimates
when r2ϑKmax is small and the ICO provides fast convergence
rates when r5{2ϑKmax is small, demonstrating the advantage of
our approach in terms of model assumption. Computationally,
the errors in the ICO propagate in the quadratic or higher
order. Similar to Nesterov’s acceleration in gradient descent,
the high-order of error propagation guarantees ε numerical
precision within log logp1{εq iterations. To the best of our
knowledge, this is the first provable log logp1{εq iteration guar-
antee in non-orthogonal CP models. Numerical comparisons
with existing methods demonstrate advantages of the proposed
approach.

B. Related work

There is a large literature on tensor decomposition. As it is
beyond the scope of this paper to give a comprehensive survey,
we only review the most related papers.

The most commonly used algorithm for CP decomposi-
tion is alternating least squares [40], which has no general
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convergence guarantee. Theoretical studies of alternating least
squares have focused on the estimation of tensors with or-
thogonal CP decomposition from randomized initialization.
Noticeably, [13] developed a robust tensor power method for
orthogonal CP decomposition. [41] proposed a tensor unfold-
ing approach for rank-one tensors and compared it with tensor
power iteration with random initialization. [42] improved the
initialization procedure for orthogonal CP decomposition by
projecting the observed tensor down to a matrix and then
applying the matrix power method. [43] developed a two-mode
higher-order SVD algorithm for higher order tensors. For the
non-orthogonal tensors, one may first convert the tensor into an
orthogonal form known as whitening, but the procedure is ill-
conditioned in high dimensions [44, 45] and computationally
expensive [46].

Recently, another line of research has been developed
on non-orthogonal tensor CP decomposition, still focused
on randomized initialization. [29] studied non-orthogonal CP
decomposition and established convergence guarantees for a
modification of the alternating least squares. In addition to
their incoherence conditions on deterministic CP bases as dis-
cussed in the previous subsection, they considered independent
random basis vectors uniformly distributed in the unit sphere,
essentially imposing a soft orthogonality constraint. [47] fur-
ther extended their work to the case where the CP basis vectors
are sparse. In the noiseless case (Ψ “ 0), [48] introduced
orthogonalized alternating least squares algorithm and studied
its performance under the soft orthogonality constraint or
small r2ϑmax. [49] developed a minimum distance algorithm
for non-orthogonal CP decomposition which uses random
projections to reduce the problem to simultaneous matrix
diagonalization, but the applicability of their theoretical results
to diverging dk is unclear. [50] developed an iterative Gauss-
Newton algorithm for joint matrix diagonalization. However,
[48] claimed that the simultaneous diagonalization algorithm
is not computationally efficient.

C. Notation and tensor preliminaries

Let rns denote the set t1, 2, . . . , nu. For a vector with entries
πj or a set of real numbers tπju, we denote by πj,˘ “

mini‰j |πi ´ πj | ^ |πj | the gap from πj to t0, πi, i ‰ ju and
set πmin “ minj |πj | and πmax “ maxj |πj |. For convenience,
we call λj,˘ the j-th eigengap in models (2) and (4). For a
matrix B “ pbijq P Rpˆn, we denote its singular values by
σ1pBq ě σ2pBq ě ¨ ¨ ¨ ě σmintp,nupBq ě 0, its Frobenius
norm by }B}F “ p

ř

ij b
2
ijq

1{2 “ p
řmintp,nu
j“1 σ2

i pBqq
1{2, and

its spectral norm by }B}S “ σ1pBq.
For any two vectors u and pu of unit length, we measure

the distance between the spaces they generate by the absolute
sine of the angle θppu, uq between the two vectors,

ˇ

ˇ sin θppu, uq
ˇ

ˇ “ }pupuJ ´ uuJ}S “ p1´ pu
J
puq2q1{2

“ }pupuJ ´ uuJ}F{
?

2. (5)

We note that min˘ }pu ˘ u}2 “ p1 ´ |uJpu|q1{2 “
ˇ

ˇ sin θppu, uq
ˇ

ˇ{p1` |uJpu|q1{2.
For any two tensors A P Rm1ˆm2ˆ¨¨¨ˆmK ,B P

Rr1ˆr2ˆ¨¨¨ˆrN , denote the tensor product b as A b B P

Rm1ˆ¨¨¨ˆmKˆr1ˆ¨¨¨ˆrN , such that pA b Bqi1,...,iK ,j1,...,jN “

pAqi1,...,iK pBqj1,...,jN . For two vectors a and b, a b b is
equivalent to the outer product abJ. Given A P Rm1ˆ¨¨¨ˆmK

and m “
śK
j“1mj , let vecpAq P Rm be vectorization of the

matrix/tensor A, matkpAq P Rmkˆpm{mkq the mode-k matrix
unfolding of A, and matkpvecpAqq “ matkpAq. For example,
for K “ 3

pmat1pAqqi,pj`m2pk´1qq “ pmat2pAqqj,pk`m3pi´1qq

“ pmat3pAqqk,pi`m1pj´1qq “ Aijk.

Similarly, for nonempty J Ď rKs, matJpAq is the mode J ma-
trix unfolding which maps A to mJˆm´J matrix with mJ “
ś

jPJ mj and m´J “ m{mJ , e.g. matt1,2upAq “ matJ3 pAq
for K “ 3. The mode-k product of A P Rm1ˆm2ˆ¨¨¨ˆmK

with a matrix U P Rmkˆrk is an order K-tensor of size
m1 ˆ ¨ ¨ ¨mk´1 ˆ rk ˆ mk`1 ˆ mK and will be denoted as
Aˆk U , so that

pAˆk Uqi1,...,ik´1,j,ik`1,...,iK “
řmk

ik“1Ai1,i2,...,iKUik,j .

The Hilbert Schmidt norm for a tensor A P Rm1ˆm2ˆ¨¨¨ˆmK

is defined as }A}HS “ }vecpAq}2. An order K tensor T P

Rm1ˆm2ˆ¨¨¨ˆmK is said to have rank one if it can be written
as

T “ w ¨ a1 b ¨ ¨ ¨ b aK ,

where w P R and ak P Rmk are unit vectors for identifiability.
A tensor T P Rm1ˆm2ˆ¨¨¨ˆmK is said to have a CP rank r ě 1
if it can be written as a sum of r rank-1 tensors,

T “
řr
j“1wj ¨ ai1 b ¨ ¨ ¨ b aiK .

II. ESTIMATION PROCEDURES

A. Spiked covariance tensor model

In this section, we focus on the spiked covariance tensor
model (2). We introduce the composite PCA (CPCA) as
Algorithm 1, and the iterative concurrent orthogonalization
(ICO) as Algorithm 2.

As mentioned in the introduction, our main idea is to take
advantage of the multiplicative higher-order coherence of the
CP components for faster convergence. We begin with an ex-
plicit description of this phenomenon. Let Σk “ pσij,kqrˆr “
AJkAk with the mode-k basis matrix Ak “ pa1k, . . . , arkq P
Rdkˆr in (2). As σjj,k “ }ajk}22 “ 1, the correlation among
columns of Ak can be measured by

ϑk “ max1ďiăjďr|σij,k|, δk “ }Σk ´ Ir}S,

ηjk “ p
ř

iPrrsztjuσ
2
ij,kq

1{2. (6)

However, the CP components are much less correlated. By (2),
the matrix unfolding of T ,

matrKspT q “ n´1řn
i“1vecpXiqvecpXiqJ

“
řr
j“1λjaja

J
j `matrKspΨq P Rdˆd, (7)

has basis matrix A “ pa1, . . . , arq P Rdˆr with aj “

vecpbKk“1ajkq and correlation measures

ϑ “ max1ďiăjďr|a
J
i aj |, δ “ }AJA´ Ir}S, (8)
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where d “
śK
j“1 dj . As aJi aj “

śK
k“1 a

J
ikajk “

śK
k“1 σij,k,

the coherence is bounded by ϑ ď
śK
k“1 ϑk ď ϑKmax. The

spectrum norm δ is also bounded by the products of quantities
in (6). We summarize these elementary relationships in the
following proposition.

Proposition 1. For any set S of tensor modes, define
ajS “ vecpbkPSajkq, AS “ pa1S , . . . , arSq, ϑS “

max1ďiăjďr |a
J
iSajS | and δS “ }AJSAS ´ Ir}S. Define

µS “ max
j

min
k1,k2PS

max
i‰j

ź

k‰k1,k‰k2,kPS

?
r|σij,k|{ηjk.

as the (leave-two-out) mutual coherence of tAj , j P Su. Then,
µS P r1, r

|S|{2´1s,

δS ď min
kPS

δk, δS ď pr ´ 1qϑS ď pr ´ 1q
ź

kPS

ϑk, (9)

δS ď µSr
1´|S|{2maxjďr

ź

kPS

ηjk ď µSr
1´|S|{2

ź

kPS

δk. (10)

When S “ rKs, the above inequalities hold with tδS , ϑSu
replaced by the tδ, ϑu in (8).

We note that (10) implies δ ď maxjďr
śK
k“1 ηjk ď

śK
k“1 δk due to µ˚r1´K{2 ď 1. When (most of) the quantities

in (6) are small, the products in (10) would be much smaller,
so that aj are nearly orthogonal in (7). This motivates the use
of the PCA of (7) to estimate λj and aj ,

matrKspT q “
ř

j
pλcpca
j pujpu

J
j . (11)

The following proposition gives explicit justifications of (11)
with sharp perturbation bounds.

Proposition 2. Let d ě r and A P Rdˆr with }AJA´Ir}S ď
δ. Let A “ rU1

rD1
rUJ2 be the SVD of A, and U “ rU1

rUJ2 .
Then, }AΛAJ´UΛUJ}S ď δ}Λ}S for all nonnegative-definite
matrices Λ in Rrˆr.

By Proposition 2, puj in (11) can be viewed as an estimate
of uj , 1 ď j ď r, satisfying

}aja
J
j ´ uju

J
j }S “ }Apeje

J
j qA

J ´ Upeje
J
j qU

J}S ď δ. (12)

Because matkpajq “ ajkvecpb`PrKsztkuaj`qJ, the natural
estimate of ajk based on the puj in (11) is

pacpca
jk “ the top left singular vector of matkppujq. (13)

The following proposition explicitly justifies (13) with a sharp
perturbation bound.

Proposition 3. Let M P Rd1ˆd2 be a matrix with }M}F “ 1
and a and b be unit vectors respectively in Rd1 and Rd2 . Let
pa be the top left singular vector of M . Then,

`

}papaJ ´ aaJ}2S
˘

^ p1{2q

ď}vecpMqvecpMqJ ´ vecpabJqvecpabJqJ}2S. (14)

Proposition 3 is sharp in the sense that equality is attainable
in (14) when the right-hand side is less than 1{2, and that for
any c P r1{2, 1s the maximal distance }papaJ ´ aaJ}S “ 1 is
attainable for some tM,a, bu with the right-hand side of (14)
being exactly c.

The CPCA is the two-step procedure given by the PCA
in (11) and SVD in (13). With vecpMq “ puj , a “ ajk and
b “ b`‰kaj`, Proposition 3 asserts that the second step of the
CPCA is a contraction once the first step yields an estimate
of aj “ bkajk within 45 degrees. As the correlations among
aj is much smaller than those among ajk in each mode, this
condition is much more explicit and of a much weaker form
than those in the literature for the estimation of ajk after
random projection [29, 48]. By the perturbation bounds in
Propositions 2 and 3 and Wedin’s perturbation theorem, in the
noiseless case (σ “ 0 and nÑ8) with Ψ “ 0 in (2)

|pλcpca
j ´ λj | ď δλ1, (15)

`

}pacpca
jk pacpcaJ

jk ´ ajka
J
jk}

2
S

˘

^ p1{2q ď p1` 2λ1{λj,˘q
2δ2,

so that the CPCA takes advantage of the multiplicative co-
herence of bKk“1ajk in view of the product bounds for δ in
Proposition 1. We state the CPCA as Algorithm 1 as follows.

Algorithm 1 Composite PCA (CPCA) for pairwise symmetric
tensors
Input: noisy tensor T “ n´1

řn
i“1 Xi b Xi, CP rank r

1: Formulate T to be a d ˆ d matrix matrKspT q as in (7)
with d “

śK
k“1 dk

2: Compute the r top pλcpca
j and puj in the eigenvalue decom-

position of matrKspT q as in (11)
3: Compute pacpca

jk as the top left singular vector of
matkppujq P Rdkˆpd{dkq as in (13)

Output: pacpca
jk , pλcpca

j , j “ 1, ..., r, k “ 1, ...,K

After obtaining a warm start through the CPCA (Algorithm
1), we propose to use the ICO (Algorithm 2 below) to refine
the solution. The ICO can be viewed as an extension of
HOOI [37, 39] and the iterative projection algorithm in [36] to
undercomplete (r ă dmin) and non-orthogonal CP decompo-
sitions. However, ICO differentiates from these methods and
the alternating least squares in the following important way:
In updating the model-k basis vector ajk, the ICO projects the
observed tensor T to the orthogonal complements of the span
of tai`, i ‰ j, i ď ru in Rd` for all ` ‰ k simultaneously from
2pK ´ 1q sides. Here the word “concurrent” in ICO refers to
the feature that the projections take place in all modes ` ‰ k
at the same time point/step in the computational iterations.
In contexts where “time” has special meaning such as time
series, iterative simultaneous orthogonalization can be used
instead of ICO. Given estimates rA` “ pra1`, . . . ,rar`q for the
mode-` basis matrix A` “ pa1`, . . . , ar`q P Rd`ˆr, this is done
by projecting T to the nonnegative-definite

rTjk “ T ˆlPr2Ksztk,K`ku rb
J
jl « λjajka

J
jk `

rΨjk (16)

with rB` “ prb1`, ...,rbr`q “ rA`p rA
J
`
rA`q

´1 and rbj,K`` “ rbjl, as
AJ`

rB` « Ir when rA` « A`. Thus, it is natural to update ajk
using the top eigenvector of rTjk. This is the ICO in Algorithm
2 below.

Proposition 4. Let T˚ “ ErT s with the tensor T in (2).
Given rA` “ pra1`, . . . ,rar`q, ` P rKsztku, let ra˚jk be the top
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Algorithm 2 Iterative Concurrent Orthogonalization (ICO) for
pairwise symmetric tensors
Input: noisy tensor T “ n´1

řn
i“1 XibXi, CP rank r, warm-

start pa
p0q
jk P Rdk , j P rrs, k P rKs, tolerance parameter

ε ą 0, maximum number of iterations M
1: Compute ppbp1q1k , . . . ,

pb
p1q
rk q P Rdkˆr as the right inverse of

ppa
p0q
1k , . . . ,pa

p0q
rk q

J, k P rKs; Set m “ 0
2: repeat
3: Set m “ m` 1
4: for k “ 1 to K
5: for j “ 1 to r
6: Compute T pmqjk “ T ˆlPr2Ksztk,K`ku ppb

pmq
jl q

J

in Rdkˆdk as in (16), bpmqj,K`l “ b
pmq
jl

7: Compute pa
pmq
jk as the top eigenvector of T pmqjk

8: end for
9: Compute ppbpmq1k , . . . ,pb

pmq
rk q as the right inverse

of ppapmq1k , . . . ,pa
pmq
rk q

J

10: Set ppbpm`1q
1k , . . . ,pb

pm`1q
rk q “ ppb

pmq
1k , . . . ,pb

pmq
rk q

11: end for
12: until maxj,k }pa

pmq
jk pa

pmqJ
jk ´ pa

pm´1q
jk pa

pm´1qJ
jk }S ď ε

or m “M
Output: paico

jk “ pa
pmq
jk , pλico

j “ T ˆ2K
k“1 p

pb
pmq
jk q

J,
j “ 1, ..., r, k “ 1, ...,K

eigenvector of rT˚jk “ T˚ ˆlPr2Ksztk,K`ku rb
J
jl P Rdkˆdk with

the rbjl in (16). Then,
›

›ajka
J
jk ´ ra˚jkra

˚J
jk

›

›

S

ď2
`

1` δk
˘

pλ1{λjq
ź

`PrKsztku

prφ`{p1´ rφ`q`q
2,

where rφ` “ rψ`{
`
a

p1´ δ`qp1´ 1{p4rqq´
?
r rψ`

˘

`
with rψ` “

maxjďr
›

›

raj`ra
J
j` ´ aj`a

J
j`

›

›

S
.

The perturbation bound in Proposition 4 explicitly proves
the power of concurrent orthogonalization: In terms of the
angle between the one-dimensional spaces generated by paico

jk

and ajk and up to some scaling constants, the error in the
estimation of ajk in each step is bounded by a product of
2pK ´ 1q carryover errors in all other modes in the noiseless
case Ψ “ 0 in model (2), i.e. σ “ 0 and n Ñ 8 in model
(1). In this sense, the ICO error propagates in the order of
2pK ´ 1q ą 1, which implies high order contraction. See
Subsection II-C for a more detailed discussion in a comparison
between the ICO and the alternating least squares in closely
related model (4). As in the analysis of accelerated gradient
descent in which the error propagates in the second order,
the ICO is expected to achieve ε accuracy within log logp1{εq
iterations in the noiseless case in model (2). This property of
the ICO is confirmed in Theorem 1 and extended to the noisy
case in Theorem 3 below in Section III.

B. General high order tensors

In Section II-A, we focus on 2K-th order tensors which can
be unfolded as a symmetric matrix. In this section, we extend
the CPCA and ICO algorithms to general N -th order tensors.

In model (4), we present the following proposition as an
extension of Proposition 2. It also covers the study of the
CPCA of spiked covariance tensors developed in Section II-A.
Similar to Section II-A, Proposition 1, Proposition 5 and
Proposition 3 together provide heuristic justifications for the
CPCA in Algorithm 3 below and a road map to study it in
model (4).

Proposition 5. Let A P Rd1ˆr and B P Rd2ˆr with }AJA´
Ir}S_}B

JB´ Ir}S ď δ and d1^d2 ě r. Let A “ rU1
rD1

rUJ2
be the SVD of A, U “ rU1

rUJ2 , B “ rV1
rD2

rV J2 the SVD of
B, and V “ rV1

rV J2 . Then, }AΛAJ ´ UΛUJ}S ď δ}Λ}S for
all nonnegative-definite matrices Λ in Rrˆr, and }AQBJ ´
UQV J}S ď

?
2δ}Q}S for all r ˆ r matrices Q.

We note that in Proposition 5, U is a function of A and V
is the same function of B.

Algorithm 3 Composite PCA (CPCA) for general N -th order
tensors
Input: noisy tensor T “

řr
j“1 λjb

N
k“1ajk`Ψ P Rd1ˆ¨¨¨ˆdN ,

CP rank r, S Ă rN s
1: If S “ H, pick S to maximize minpdS , d{dSq with dS “

ś

kPS dk and d “
śN
k“1 dk

2: Unfold T to be a dS ˆ pd{dSq matrix matSpT q
3: Compute pλcpca

j , puj , pvj as the top components in the SVD
matSpT q “

ř

j
pλcpca
j pujpv

J
j

4: Compute pacpca
jk as the top left singular vector of matkppujq,

k P S, or matkppvjq, k P Sc

Output: pacpca
jk , pλcpca

j , j “ 1, ..., r, k “ 1, ..., N

In practice, a sensible way to unfold T is to form a matrix
as square as possible with input S “ H in Algorithm 3. As
in Algorithm 2 we propose to use pa

p0q
jk “ pacpca

jk as warm-start
of the ICO in Algorithm 4 below.

Remark 1. For order 3 tensors, either |S| “ 1 or |Sc| “ 1 in
Step 1 of Algorithm 3. Assume d1 ě d2 _ d3 for definiteness
so that we choose S “ t1u. The CPCA exhibits advantage in
terms of coherence by Proposition 1 if and only if δ1 ă δ2_δ3,
e.g when δk Ó dk.

Similar to Proposition 4, we present a fresh Proposition 6
to describe the high order of error propagation in the ICO
iterations in model (4).

Proposition 6. Let T˚ “ ErT s with the tensor T in (4).
Given rA` “ pra1`, . . . ,rar`q, ` P rN sztku, let prb1`, . . . ,rbr`q “
rA`p rA

J
`
rA`q

´1, rT˚jk “ T˚ ˆlPrNsztku rb
J
jl P Rdk , ra˚jk “

rT˚jk{}
rT˚jk}2 and rλ˚j “ T˚ ˆlPrNs rb

J
jl. Then,

2´ 2
ˇ

ˇaJjkra
˚
jk

ˇ

ˇ ď 2pr ´ 1q
`

1` δk
˘

ˆ

λ1

λj

ź

`PrNsztku

rφ`

1´ rφ`

˙2

,

ˇ

ˇrλ˚j {λj ´ 1
ˇ

ˇ ď

N
ÿ

`“1

rφ` ` pr ´ 1qpλ1{λjq
N
ź

`“1

rφ`,

where rφ` “ rψ`{
`?

1´ δ` ´
?
r rψ`

˘

`
with rψ` “ maxjďr

`

2´

2
ˇ

ˇ

raJj`aj`
ˇ

ˇ

˘1{2
.
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Algorithm 4 Iterative Concurrent Orthogonalization (ICO) for
general N -th order tensors
Input: noisy tensor T “

řr
j“1 λjb

N
k“1ajk`Ψ P Rd1ˆ¨¨¨ˆdN ,

CP rank r, warm-start pa
p0q
jk , j P rrs, k P rN s, tolerance

parameter ε ą 0, maximum number of iterations M
1: Compute ppb

p1q
1k , ...,

pb
p1q
rk q as the right inverse of

ppa
p0q
1k , . . . ,pa

p0q
rk q

J, k P rN s; Set m “ 0
2: repeat
3: Set m “ m` 1
4: for k “ 1 to N
5: for j “ 1 to r
6: Compute T pmqjk “ T ˆlPrNsztku ppb

pmq
jl q

J P Rdk

7: Compute pa
pmq
jk “ T

pmq
jk {}T

pmq
jk }2

8: end for
9: Compute ppbpmq1k , ...,pb

pmq
rk q as the right inverse of

ppa
pmq
1k , . . . ,pa

pmq
rk q

J

10: Set ppbpm`1q
1k , ...,pb

pm`1q
rk q “ ppb

pmq
1k , ...,pb

pmq
rk q

11: end for
12: until maxj,k }pa

pmq
jk pa

pmqJ
jk ´ pa

pm´1q
jk pa

pm´1qJ
jk }S ď ε

or m “M
Output: paico

jk “ pa
pmq
jk , pλico

j “
ˇ

ˇT ˆNk“1 p
pb
pmq
jk q

J
ˇ

ˇ,
j P rrs, k P rN s

We note that 2 ´ 2|aJb| “ min˘ }a ˘ b}22 and that each
ajk is identifiable only up to a ˘ sign. Again, by Proposition
6, the ICO is expected to have a super-linear computational
convergence under the loss (5) in the noiseless case Ψ “ 0 in
model (4). This is confirmed in Theorem 4 and extended to
the noisy case in Theorem 6 below in Section III.

C. Error propagation in ICO and alternating LSE

The merit of the ICO can be more directly seen from
a comparison with alternating least squares in model (4),
T “ T˚ ` Ψ with target tensor T˚ “

řr
j“1 λj b

N
k“1 ajk

and noise Ψ. Given estimates pa
pmq
jk , k ą 1, the LSE of

A1Λ “ pλ1a11, . . . , λrar1q is

mat1pT q pB LS
´1

“arg minMPRd1ˆr

›

›

›
mat1pT q ´M

`

pA
pmq
´1

˘J
›

›

›

2

HS

“A1Λ`A1Λ
`

A´1 ´ pA
pmq
´1

˘

pB LS
´1 `mat1pΨq pB LS

´1 ,

where pB LS
´1 is the right inverse of pA

pmq
´1 “ ppa

pmq
1,´1, . . . ,pa

pmq
r,´1

˘

P

Rd´1ˆr with pa
pmq
j,´1 “ vec

`

bNk“2 pa
pmq
jk

˘

and d´1 “ d{d1.
Because pA

pmq
´1 ´ A´1 is an pN ´ 1q-degree polynomial of

the carryover errors pa
pmq
jk ´ ajk and the polynomial has

a nonvanishing linear term, the leading term of the bias
mat1pT˚q pB LS

´1 ´ A1Λ of the LSE is linear in the carryover
error. In comparison, in the ICO, the right inverse is taken in
Algorithm 4 in individual modes before tensor multiplication,

pA
pm`1q
1

pΛpm`1,1q “ mat1pT q pB
pmq
´1

“ mat1pT˚q pB
pmq
´1 `mat1pΨq pB

pmq
´1 ,

where pB
pmq
´1 “ ppb

pmq
1,´1, . . . ,

pb
pmq
r,´1

˘

P Rd´1ˆr with pb
pmq
j,´1 “

vec
`

bNk“2
pb
pmq
jk

˘

, pΛpm`1,1q is a diagonal matrix to normalize
the estimated basis vectors to

›

›

pa
pm`1q
j1

›

›

2
“ 1. The noise terms

mat1pΨq pB LS
´1 and mat1pΨq pB

pmq
´1 are comparable between the

two methods. However, as

mat1pT˚q pB
pmq
´1

“

ˆ

a11λ1

N
ź

k“2

aJ1k
pb
pmq
1k , . . . , ar1λr

N
ź

k“2

aJrk
pb
pmq
rk

˙

`

ˆ r
ÿ

j“2

aj1λj

N
ź

k“2

aJjk
pb
pmq
1k , . . . ,

r´1
ÿ

j“1

aj1λj

N
ź

k“2

aJjk
pb
pmq
rk

˙

with aJj1kb
pmq
j2k

“ Itj1 “ j2u`paj1k´a
pmq
j1k
qJb

pmq
j2k

, the leading
term in the bias of the ICO, as the second term above, is
a homogeneous polynomial of degree N ´ 1 in terms of
the carryover error. We note that the errors in the diagonal
śN
k“2 a

J
jk
pb
pmq
jk is linear in terms of the carryover error but

they are absorbed into pΛpm`1,1q.
In summary, the alternating least squares operator pB LS

´1 is
the inverse of tensor product, while the ICO operator pB

pmq
´1

is the tensor product of inverses in N ´ 1 individual modes.
Consequently, the bias of an alternating least squares step is
proportional to the norm of the carryover error and the bias
of an ICO step is proportional to the pN ´ 1q-th power of the
norm of the carryover error. Meanwhile, the noise terms of
the two methods are comparable.

D. Algorithm complexity

Assume the input tensor is T . Algorithm 1 (CPCA) costs
Opd2rq floating-point operations (flops) for r-truncated eigen
decomposition of matrKspT q and Opdq flops for 1-truncated
SVD of matkppuiq, so that the total cost of CPCA is Opd2rq.
In each iteration of Algorithm 2 (ICO), the calculation of pBk
costs Opdkr2q flops, the matrix manipulation in step 6 costs
Opd2q flops, and the 1-truncated eigen decomposition of T pmqjk

in step 7 costs Opd2
kq flops. Hence, the total cost per iteration

in Algorithm 2 is also Opd2rq. Similarly, in Section II-B, the
total cost of Algorithm 3 is Opr

śN
k“1 dkq, and the cost of each

iteration in Algorithm 4 is also Opr
śN
k“1 dkq. In summary,

the cost of CPCA and each iteration of ICO is of the order
of the product of the CP rank and the number of entries in
tensor T .

In a spiked covariance tensor model (1), the top r eigenvalue
decomposition of the unfolded covariance tensor matrKspT q is
equivalent to the top r SVD of the n1{2-normalized unfolded
data matrix pvecpX1q, ..., vecpXnqq{

?
n P Rdˆn. In this sense,

Algorithms 1 and 2 can be modified accordingly to adopt
matrix SVD. The total cost of the first SVD in Algorithm
1 becomes Opdnrq, so that the total cost of Algorithm 1 is
Opdnrq. Similarly, the total cost per iteration in Algorithm 2
is Opdnrq. As the cost to construct covariance tensor T is
Opd2nq, it can be computationally more efficient to perform
the SVD directly.

While the topic is beyond the scope of this paper, we note
that random projection and other remedies can be used to
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reduce the cost of computing low-rank PCA and SVD when
the signal to noise ratio is high.

E. Identification and estimation of CP component groups
In principle, the top r singular space ppu1, ..., purq in CPCA

(Algorithms 1 and 3) might not be uniquely determined; for
example, this occurs in the presence of ties in λj . In such
cases, CPCA and ICO may still be used to identify and
estimate CP component groups with tied singular values. To
avoid redundancy, we describe the procedures below only for
the symmetric tensors in (2).

Suppose there are g groups of singular values with distinct
representative values λp1q ą ¨ ¨ ¨ ą λpgq ą 0 and respective
group sizes r1, ..., rg , r1 ` ¨ ¨ ¨ ` rg “ r. Suppose (2) can be
written as

T “
řg
i“1Tpiq `Ψ,

Tpiq “
ř

jPGi
λj b

2K
k“1 ajk « λpiq

ř

jPGi
b2K
k“1 ujk,

where tG1, . . . , Ggu is a partition of rrs with |Gi| “ ri.
By Proposition 2, it is reasonable to consider the case where
tujk, j P Gi, i “ 1, . . . , gu are orthonormal for each k P rKs
and

max
jďr

}ajka
J
jk ´ ujku

J
jk}S ď δ˚,

}AΛAJ ´
řg
i“1λpiq

ř

jPGi
uju

J
j

›

›

S
ď λp1qδ

˚

with uj “ vec
`

bKk“1 ujk
˘

and a certain δ˚ « δ. Suppose fur-
ther that 2δ˚λp1q ă miniďgpλpiq´λpi`1qq with λpg`1q “ 0. It
would then be reasonable to consider clustering of the outputs
of CPCA and ICO to identify the groups Gi, e.g. using pλcpca

j

by Proposition 2. Given Gj , a group ICO could be used to
estimate the individual Tpiq and then a Tucker decomposition
would give the column space of AGik “ pajk, j P Giq for
each pi, kq.

Once a good estimate of the group tensor Tpiq becomes
available, the identification of individual components λjb2K

k“1

ajk, j P Gi, in the group would be feasible if a rank-one
component can be identified in the linear span of the group
components. This feasibility can be seen from Proposition 7
below. Since the identifiability issue does not require paired
CP bases as in (2), Proposition 7 is stated under model (4).
Kruskal’s Theorem [51] also provides the uniqueness of tensor
CP decomposition.

Proposition 7. Let SP :“ spanta1, ..., aru, where aj “

vecpbNk“1ajkq P Rd. The elements of SP can be viewed as
either length d vectors or d1 ˆ ¨ ¨ ¨ ˆ dN tensors. Suppose
N ą 2 and δk ă 1 for every k “ 1, . . . , N in (6), then every
rank-1 tensor in SP is one of aj’s up to a scalar.

The above discussions, written in response to an interesting
question raised by referees, seem to deserve further investi-
gation. However, a more comprehensive discussion or further
development in this direction is beyond the scope of this paper.

III. THEORETICAL PROPERTIES

A. Spiked covariance tensor models
In this section, we investigate theoretical guarantees of the

proposed algorithms for the estimation of the CP basis vectors

ajk for the spiked covariance tensor (2) with data in (1). As
in (5) we use }pajkpaJjk ´ ajka

J
jk}S “ p1 ´ ppaJjkajkq

2q1{2 “

supzKajk,}z}2“1 |z
J
pajk| to measure the distance between pajk

and ajk.
We do not impose the orthogonality condition on the mode-

k CP basis vectors tajk, j ď ru or even global incoherence
condition on ϑmax :“ maxk max1ďiăjďr |a

J
ikajk| as in the

literature [13, 15, 29, 47, 48]. However, we require the vector-
ized basis tensors aj “ vecpbKk“1ajkq to satisfy the isometry
condition δ “ }AJA ´ Ir}S ă 1, A “ pa1, . . . , arq, or more
conveniently the incoherence condition ϑ “ maxi‰j |a

J
i aj | ă

1{r. We recall that by Proposition 1, δ and ϑ are bounded by
the respective products of their mode-k counterparts defined in
(6), so that we impose much weaker conditions compared with
the existing ones on ϑmax. In fact, the higher the tensor order
K, the faster the convergence rate we offer given tr, δ, ϑu, and
the smaller δ and θ given r and ϑmax. Our analysis is based on
the perturbation bounds in Propositions 2, 3 and 4 in Section
II and proper concentration inequalities. For simplicity, we
assume λ1 ą λ2 ą ¨ ¨ ¨ ą λr with λj “ w2

j in (1) and (2).

Theorem 1. Suppose Algorithm 1 (CPCA) is applied to the
noiseless T˚ “

řr
j“1 λj b

2K
k“1 ajk with aj,K`k “ ajk. Then,

(15) holds for the resulting pλcpca
j and pacpca

jk . Let λmin,˘ “

min1ďjďr λj,˘ be the minimum eigengap. Suppose further that

2 max
 

δmax, p
?
r ` 1qψ0

(

ď 1, (17)

3pλ1{λrqψ
2K´3
0 ď ρ ă 1,

where δmax “ maxkďK δk with the δk in (6) and ψ0 “ p1 `
2λ1{λmin,˘qδ with the δ in (8). Let γK P p3´ 3{K, 3q be the
solution of γKK ´3γK´1

K `2 “ 0, e.g. γ3 “ 2.732, γ4 “ 2.919.
If the resulting pacpca

jk are used as the initialization of Algorithm
2 (ICO) with the same data T˚, then

max
jďr

›

›

pa
pmq
jk pa

pmqJ
jk ´ ajka

J
jk

›

›

S
ď ψm,k “ ψ0ρ

γ
pm´1qK`k´1
K

and max1ďkďK ψm,k ď ε within m iterations, where m “

rK´1t1` plog γKq
´1 logplogpψ0{εq{ logp1{ρqqus.

Remark 2 (Condition on the initial estimator). The constant
factors 2 and 3 in (17) are not sharp. In fact, condition (17)
is simplified from the following,

2p1` δmaxqpλ1{λrqψ
2K´2
0

`
a

p1´ δmaxqcr ´ p
?
r ` 1qψ0

˘2K´2

`

ď ρψ0 ă ψ0, (18)

with cr “ 1 ´ 1{p4rq. Condition (18) is slightly sharper and
actually used in the proof. Here ψ0 is an error bound for the
initial estimator. The essence of our analysis of the ICO is
that under (18), ψm ď C0ψ

2K´2
m´1 for the error bound ψm “

maxkďK ψm,k in the m-th iteration.

Remark 3 (Incoherence condition). When the minimum
eigenvalue gap satisfies λmin,˘ Á λ1{r, condition (17) asserts
that the CPCA needs no stronger incoherence condition than
ϑmax “ Opr´5{p2Kqq, in view of Proposition 1. In comparison,
conditions of stronger form are imposed in the literature; For
example the initial estimator in [29] requires the incoherence
condition ϑmax ď polylogpdminq{

?
dmin for 3-way tensors.
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Compared with the previous work, (17) implies a weaker
incoherence condition when r À d

pK{5q^1
min .

Theorem 1 explicitly guarantees the high-order convergence
of the ICO algorithm with the CPCA initialization in the
noiseless case. To the best of our knowledge, the proposed
ICO is the first algorithm known to achieve ε-accuracy guar-
antee within log logp1{εq number of iteration passes in non-
orthogonal CP models.

We proceed to present the statistical properties of the
proposed estimator in the presence of noise, with input data
T in (2). Define

SNR “
E
›

›

řr
j“1wjfij b

K
k“1 ajk

›

›

2

HS

E}Ei}2HS

as the signal-to-noise ratio (SNR) in the covariance tensor CP
model (1). As λj “ w2

j and Erf2
ijs “ 1,

SNR “
trace

`

matkpT˚q
˘

σ2d
“

řr
j“1λj

σ2d
“
reffλ1

σ2d
(19)

with the signal tensor T˚ “
řr
j“1 λj b

2K
k“1 ajk, where reff “

řr
j“1 λj{λ1, no greater than the CP rank r, can be viewed as

the effective rank of T˚.

Theorem 2. Consider spiked covariance tensor model (2) with
data in (1), λj “ ω2

j and δ “ }AJA ´ Ir}S as in (8). In an
event with probability at least 1 ´ e´t, Algorithm 1 (CPCA)
gives the following error bound for the estimation of the CP
basis vectors ajk,

}pacpca
jk pacpcaJ

jk ´ ajka
J
jk}S

ďp1` 2λ1{λj,˘qδ ` Cpλ1{λj,˘q
`

Rp0q `
a

t{n
˘

(20)

for all 1 ď j ď r, 1 ď k ď K and 0 ď t ď d,
where C is a numeric constant, λj,˘ is the j-th eigengap,
and Rp0q “

a

preff{nqp1` 1{SNRqp1` preff{dq{SNRq ď
a

pr ` σ2d{λ1qp1` σ2{λ1q{n.

The CPCA error bound (20) consists of two parts. The first
part involving δ is induced by the non-orthogonality of the
vectors ajk, which can be viewed as bias; The second part
comes from a concentration bound for the centered random
noise tensor Ψ´ErΨs, which can be viewed as stochastic error.
When the minimum eigengap satisfies λmin,˘ Á λ1{r, The-
orem 2 asserts that the CPCA needs no stronger incoherence
condition than ϑmax “ Opr´2{Kq, in view of Proposition 1.
As long as r À d

K{4
min , this incoherence condition is weaker

than those in the existing literature for tensor denoising in CP
models [29]. The error bound (20) is dominated by the bias
when δ Á Rp0q, and by the stochastic error when Rp0q Á δ.
The stochastic error Rp0q can be further divided into two
components: the impact of the fluctuation of the signal factor
fij represented by the parametric rate

a

reff{n, and the impact
of the noise Ei in (1) represented by

a

preff{nq{SNR. The
noise component dominates the stochastic error iff SNRą 1.
Still, the consistency of the CPCA in Theorem 2 requires
a SNR condition SNR Á r3{n, parallel to the condition
a

λr{σ2 ě Cr
a

d{n in the scenario considered in [39].

Next, we consider the theoretical properties of the ICO. We
assume below for simplicity that d1 ď ¨ ¨ ¨ ď dK . Let

R
pidealq
jk “

`

σ2{λj ` σ{λ
1{2
j

˘

a

dk{n. (21)

and for φ ě 0 define

R
pidealq
jk,φ “ R

pidealq
jk ` pφ^ 1q

ř

`PrKsztkuR
pidealq
j` . (22)

For constants ψ0 P p0, 1q and C0 ě 1, define

α “
a

1´ δmax ´ pr
1{2 ` 1qψ0{

a

1´ 1{p4rq,
ρ “ C0,αpλ1{λrqψ

2K´3
0 ,

ρ1 “ C0,α

a

pλ1{λrqr{nψ
K´2
0 , (23)

φ0 “ C0,α

a

2r{p1´ 1{p4rqqR
pidealq
rK,1 ,

with δmax “ maxkPrKs δk and C0,α “ C0α
2´2K . Let P˘ be

the class of all r ˆ r diagonal matrices Πr with Π2
r “ Ir.

Theorem 3. Suppose that with a proper numeric constant C0

and the quantities defined in (21), (22) and (23),

α ą 0, ρ1 ď ρ ă 1, C0,αR
pidealq
rK,1 ď ψ0 ă 1. (24)

Let Ω0 “ tmaxj,k }pa
p0q
jk pa

p0qJ

jk ´ajka
J
jk}S ď ψ0u for any initial

estimates pa
p0q
jk . Then, Algorithm 2 (ICO) provides

P
"

max
j,k

min
ΠrPP˘

›

› pAico
k Πr ´Ak

›

›

F

p4r{3q1{2pεrk _ εq
ď 1

*

ě P
"

max
j,k

›

›

paico
jk pa

icoJ
jk ´ ajka

J
jk

›

›

S

εjk _ ε
ď 1

*

ě P
 

Ω0

(

´mrKe´2pd1^
?
nq (25)

within m ě mε ` 3 iterations, where εjk “ C0,αR
pidealq
jk,φ0

,
mε “ rlogplogpε{ψ0q{ log ρq{ log 2s for pεr2_ ε0q^ εr3 ď ε ă
ψ0 and mε “ rlogpε{ψ0q{ log ρs for εr2 ď ε ă ε0 ^ εr3, with
ε0 “ C0,αr{n. Moreover, (25) holds within mεr2`4 iterations
for ε “ ε˚ _

?
ε˚ε0 where ε˚ “ C0,αpλ1{λrq

śK
k“2 ε

2
rk.

In particular, if Algorithm 1 (CPCA) is used to initialize
Algorithm 2 and ψ0 is taken as the maximum of the right-
hand side of (20), then (25) holds with PtΩ0u ě 1´ e´t.

In Theorem 3, εjk can be viewed as statistical error and ε
as computational error. It asserts that by iteratively projecting
data (and thus the noise) to the direction bj` in mode-`
for all ` ‰ k, pb1`, . . . , br`q “ A`pA

J
` A`q

´1, Algorithm 2
(ICO) effectively strengthens SNR from (19) to rλ1{pσ

2dkq
in the estimation of ajk while quickly reduces the bias to
below the level of stochastic error. As expected from the
log logp1{εq convergence in Theorems 1 and 3, the algorithm
typically converges within very few steps in our practical
implementations.

Theorem 3 indicates that Algorithm 2 converges linearly in
its last phase with εr2 ď ε ă ε0^εr3. However, if we treat the
covariance tensor T in model (2) as a general order 2K tensor
and apply Algorithm 4, high-order convergence can be also
achieved in this last phase. The constant log 2 in the definition
of mε is conservative. In fact, by the proof of Theorem 3,
Algorithm 2 converges in multiple phases beginning from
order 2K ´ 2 convergence in its first phase.



9

The right-hand side of (2) can be improved to PtΩ0u ´

rKe´2pd1^
?
nq if the constants in (23) are raised by a factor

of at most order K if we apply the probability calculation
in the proof of Theorem 6. The Gaussian assumption can be
replaced by sub-Gaussian in our analysis.

In Theorem 3, ψ0 is the required accuracy of the initial
estimator. Given tC0, r, δmax, λ1{λru, the first two conditions
in (24) hold when ψ0 is sufficiently small, so that the third
condition in (24) is a signal strength condition in terms of
R
pidealq
rK,1 “ maxj,φR

pidealq
jk,φ . In view of the definition of α in

(23), condition (24) requires r1{2ψ0 be small, with an extra
factor r1{2 on the initial error in the estimation of individual
basis vectors. This is a technical issue due to the need to
invert the estimated Σ` “ AJ` A` in our analysis to construct
the mode-` projection in the ICO. In practice, if this issue is
of concern, one may consider regularized inverse such as by
adding a small constant to pΣ` before computing the inverse
or shrinking the singular values of pΣ` as [29] suggested. If
the right-hand side of (20) is taken as ψ0 for the CPCA
initialization, condition (24) can be reduced to an incoherence
condition r3{2δ À 1 when λ1 — λr — rλj,˘ and σ2 and 1{n
are sufficiently small.

When
?
rpR

pidealq
rK q2 À R

pidealq
jk , the statistical error εjk À

R
pidealq
jk . In the literature of tensor factor models with a Tucker

structure [9, 36], the estimation of ajk may achieve faster
convergence rate than OPpn

´1{2q when λj “ w2
j is sufficiently

large. Similarly, (25) may also converge faster than OPpn
´1{2q.

Remark 4 (Statistical Optimality). The performance bound
in (25) is free of rank r. The rate R

pidealq
jk matches the

statistical lower bound of [52] and [36] under specific rank
one spiked covariance models respectively for matrix and
tensor data. Therefore, under proper conditions, the proposed
method (Algorithm 2) achieves the minimax optimal rate of
convergence in the estimation of ajk.

B. General high order tensors

In the noiseless case with Ψ “ 0 in (4), the extension
of Theorem 1 to Algorithms 3 and 4 is straightforward,
which explicitly guarantees the high-order convergence of
ICO with CPCA initialization. As in Proposition 1 let ajS “
vecpbkPSajkq, AS “ pa1S , . . . , arSq, ΣS “ AJSAS and δS “
}ΣS ´ Ir}S for any nonempty subset S of rN s “ t1, . . . , Nu.

Theorem 4. Suppose Algorithm 3 (CPCA) is applied to the
noiseless data T˚ “

řr
j“1 λj b

N
k“1 ajk through the SVD of

matSpT˚q for some nontrivial subset S Ă rN s. Let ψ0 “

p
?

2` 4λ1{λmin,˘qδ with δ “ δS _ δSc , where Sc “ rN szS.
Then,

|pλcpca
j ´ λj | ď

?
2δλ1,

`

}pacpca
jk pacpcaJ

jk ´ ajka
J
jk}

2
S

˘

^ p1{2q ď ψ2
0{2, (26)

for the resulting pλcpca
j and pacpca

jk . Suppose further that for
δmax “ maxkďN δk,

3 max
 

δmax, p
?
r ` 1qψ0

(

ď 1,

4
?
r ´ 1pλ1{λrqψ

N´2
0 ď ρ ă 1. (27)

Let γN P p2´2{N, 2q be the solution of γNN ´2γN´1
N `1 “ 0,

e.g. γ3 “ 1.618, γ4 “ 1.839. If the resulting pacpca
jk is used as

the initialization of Algorithm 4 (ICO), then

max
jďr

`

2´ 2
ˇ

ˇaJjkpa
pmq
jk

ˇ

ˇ

˘1{2
ď ψm,k “ ψ0ρ

γ
pm´1qN`k´1
N ,

max
jďr

ˇ

ˇpλ
pmq
j {λj ´ 1

ˇ

ˇ ď
řN
k“1ψm,k ` ρψm,N ,

and max1ďkďN ψm,k ď ε within m iterations, where m “

rN´1t1` plog γN q
´1 logplogpψ0{εq{ logp1{ρqqus.

Remark 5. Condition (27) specifies the required incoherence
condition via δ. Again, the constant factors 3 and 4 in the
condition is not sharp, as (27) is simplified from the following
condition actually used in the proof,

a

2pr ´ 1qp1` δmaxqpλ1{λrqψ
N´1
0

`

p1´ δmaxq
1{2 ´ p

?
r ` 1qψ0

˘N´1

`

ď ρψ0 ă ψ0. (28)

As we have discussed in Remark 2, such conditions guaran-
tee the high-order contraction of the ICO and the resulting
log logp1{εq rate.

Now consider statistical properties of Algorithms 3 and 4
for general (asymmetric) tensors T “

řr
j“1 λjb

N
k“1ajk`Ψ in

model (4), where ajk P Rdk are basis vectors with }ajk}2 “ 1,
and Ψ is the noise tensor. Similar to the analysis of the spiked
covariance tensor model given by (1) and (2), we assume for
notational simplicity λ1 ą λ2 ą ¨ ¨ ¨ ą λr ą 0.

Theorem 5. Let T “
řr
j“1 λj b

N
k“1 ajk ` Ψ as in (4).

Suppose Ψ P Rd1ˆ¨¨¨ˆdN has i.i.d Np0, σ2q entries. Then, in
an event with probability at least 1´e´2dS´2pd{dSq, Algorithm
3 (CPCA) gives the following bound in the estimation of the
CP basis vectors ajk , 1 ď j ď r, 1 ď k ď N ,

}pacpca
jk pacpcaJ

jk ´ ajka
J
jk}S

ďp1` 2
?

2λ1{λj,˘qδ ` 6σp
a

dS `
a

d{dSq{λj,˘ (29)

where δ “ }AJSAS ´ I}S _ }A
J
ScASc ´ Ir}S as in Theorem 4

and λj,˘ “ minpλj´1´λj , λj´λj`1q are the eigengaps with
λ0 “ 2λ1 and λr`1 “ 0.

The second term in (29), representing the stochastic error,
describes the required SNR for the CPCA. It is comparable to
the SNR for tensor unfolding method in rank one symmetric
case [41], which is proved in [53] to match an optimal
computational lower bound under certain conditions. More-
over, the SNR condition here is weaker than the perturbation
condition of the initialization in [29] when λr{λmin,˘ “

op
a

dmax{ logprqq, which is typically satisfied for large dk.
For simplicity, we assume below d1 ď ¨ ¨ ¨ ď dN . Let

R
˚pidealq
jk “ σ

a

dk{λj . (30)

and for φ ě 0 define

R
˚pidealq
jk,φ “ R

˚pidealq
jk ` pφ^ 1q

řN
`“1R

˚pidealq
j` . (31)

For constants ψ0 P p0, 1q, define

α˚ “
a

1´ δmax ´ pr
1{2 ` 1qψ0,
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ρ˚ “ 6α1´N
˚

?
r ´ 1pλ1{λrqψ

N´2
0 , (32)

φ˚0 “ pN ´ 1qα´1
˚

?
2rR

˚pidealq
rN,1 .

Theorem 6. Let data T be as in Theorem 5 and Ω0 “

tmaxj,kp2 ´ 2|aJjkpa
p0q
jk |q

1{2 ď ψ0u for any initial estimates
pa
p0q
jk . Let P˘ be as in (25). Suppose

α˚ ą 0, ρ˚ ă 1, 6α1´N
˚ R

˚pidealq
rK,1 ď ψ0 ă 1, (33)

with the quantities defined in (30), (31) and (32). Then, in an
event with probability at least PtΩ0u ´ e´dN ´

řN
k“1 e

´dk ,
Algorithm 4 (ICO) provides

|pλico
j {λj ´ 1| ď ε˚jN _ ε, (34)

}paico
jk pa

icoJ
jk ´ ajka

J
jk}S ď ε˚jk _ ε, (35)

min
ΠrPP˘

} pAico
k Πr ´Ak}F ď r1{2pε˚rk _ εq, (36)

simultaneously for all 1 ď j ď r and 1 ď k ď N , within
m ě mε ` 3 iterations, where ε˚jk “ 6αN´1

˚ R
˚pidealq
jk,φ˚0

and
mε “ rlogplogpε{ψ0q{ log ρ˚q{ log 2s for ε˚r2 ď ε ă ψ0.
Moreover, (34), (35) and (36) hold in the same event within
mεr2 ` 4 iterations for ε “ 6α1´N

˚

?
r ´ 1pλ1{λrq

śN
k“2 ε

˚
rk.

If Algorithm 3 (CPCA) is used as initialization, then PtΩ0u ě

1´
řN
k“1 e

´2dk for ψ0 “ 6rλ1δ`σp
?
dS`

a

d{dSqs{λmin,˘.

We briefly discuss the conditions and conclusions of Theo-
rem 6 as the details are parallel to the discussions below Theo-
rem 3. In Theorem 6, ε˚jk can be viewed as statistical error and
ε as computational error. When

?
rpR

˚pidealq
rN q2 À R

˚pidealq
jk ,

the statistical error ε˚jk À R
˚pidealq
jk is rate minimax. Condition

(33) specifies the required strength of the signal and accuracy
of the initialization. It guarantees that the ICO has a high-
order error contraction effect in the iteration. Ignoring the
perturbation error and assuming λ1 — λr, it can be reduced
to an incoherence condition r3{2δ À 1 when CPCA is used
as initialization. In addition, the performance bound in (35) is
free of CP rank r and matches the statistical lower bound of
[39] for rank one noisy tensor model. It shows the optimality
of the convergence rate of the proposed ICO (Algorithm 4).

C. Comparison with existing theoretical results

In this subsection, we compare the proposed Algorithms 3
and 4 with existing theories of tensor decomposition methods.
Several important implications are provided, and comparisons
in incoherence condition, iteration complexity, and statistical
error bounds are summarized in Table I. For simplicity, the
following discussion assumes model (4) with λ1 — λr,
λmin,˘ — λr{r and Gaussian noise Ψ.

Super-linear convergence. In the absence of noise, the
proposed algorithm attains ε accuracy within Oplog logp1{εqq
iterations. In the noisy setting, the algorithm reaches an ideal
statistical accuracy within an iterated logarithmic number of
iterations. The perturbation bounds in Propositions 4 and 6
explicitly give the order of convergence for ICO: Up to some
scaling constants, the error in the estimation of ajk in each
step is bounded by the product of the up-to-date errors in all
other modes. As in the analysis of Nesterov’s acceleration of

gradient descent, this multiplicative nature of error propagation
leads to a log logp1{εq convergence rate. In alternating least
squares [29] and HOOI, the error propagation is linear due to
tensor unfolding so that the convergence rate is of the order
logp1{εq. Still, in certain problems where computationally
feasible initialization leads to very high signal-to-noise ratio,
one-step least squares or HOOI update would reduce the error
to the level of statistical efficiency [36, 39, 55].

Statistical accuracy. While our theoretical analysis is fo-
cused on the estimation of individual basis vectors ajk, our
results have direct implications on the estimation under differ-
ent loss functions or of related functions beyond the explicite
statements of Theorems 6. For example, for the estimation of
the entire tensor T˚ “ ErT s in model (4), Theorems 6 directly
yields the Frobenius error bound

›

› pT ´ T˚
›

›

F
À Kλ1r

1{2pε˚rK _ εq.

Compared with [29], Theorems 6 provide comparable or
sharper error bounds under their conditions. The error bound
of the CP decomposition algorithms in [29] is } pAkΠr ´

Ak}F ď C
?
r}Ψ}˚{λr, where }Ψ}˚ is the tensor spectrum

norm, with }Ψ}˚ — σ
?
d1 ` ¨ ¨ ¨ ` dN in the Gaussian case.

In comparison, Theorem 6 provides } pAico
k Πr ´ Ak}F ď

Cσ
?
dkr{λr for ICO with CPCA initialization, matching the

statistical lower bound of [39].
Incoherence condition for initialization. Existing initializa-

tion approaches [29, 54, 56] focus on randomized projection
in each tensor mode simultaneously to reduce the original
data tensor to matrices of effective rank near 1, followed by
matrix SVD to obtain rough estimates of CP basis ajk, one
from each “good” projection selected by clustering or some
other methods. When the basis vectors ajk, j ď r, are nearly
orthogonal to each other, the leading singular vector of the
selected projected matrix is expected to be reasonably close
to one of the CP components, approximating ajk for the same
j in all mode k. As the possible directions of randomized
projection increase rapidly with dimension dk, the incoherence
condition must decrease with dk to allow a moderate restart
number (i.e. required number of randomized projections) to
capture a single CP component. Therefore, the existing inco-
herence condition in individual tensor modes is hard to avoid
in such approaches. Our approach is fundamentally different.
As discussed in Section II, the CPCA is designed to take
advantage of the multiplicative nature of the higher order
coherence.

Tucker models. There exists a large body of work that han-
dles low-rank tensor Tucker decomposition, including [7, 39,
57, 58, 59, 60]. For example, [39] studied HOOI and provides
rate optimal statistical bound under Gaussian noise tensor. In
the rank-1 case where the CP and Tucker representations are
identical, our performance bound in Theorem 6 is equivalent
to theirs. Our results and theirs are also in agreement for
the estimation of the projection to the column space of CP
basis Ak “ pajk, j ď rq. The theoretical tool for the analyses
of HOOI and our ICO share a similar spirit as both involve
projections in the iteration. However, there are several major
differences between the statistical analyses in the Tucker and
CP models. Moreover, the projection in ICO is very different
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Algorithms Incoherence Iteration complexity Error (Gaussian Noise)
robust tensor power method

0 logprq ` log logp1{εq σ
?
d1{λr[13]

Two-mode HOSVD
0 n/a σ

?
d1{λr[42]

randomized projection + power update
ϑmax À 1{

?
d1 logp1{εq σ

?
d1{λr+ CD [29]

spectral method + (vanilla) GD
ϑmax À 1{

?
d1 logp1{εq σ

?
d1{λr[54]

CPCA + ICO
δ ^ pr1{2ϑNmaxq À 1{r3{2 log logp1{εq σ

?
d1{λr(this paper)

TABLE I
COMPARISON WITH PREVIOUS THEORIES FOR EXISTING CP DECOMPOSITION METHODS WHEN d1 — ... — dN — d1{N , λ1 — λr (NEGLECTING

LOGARITHMIC FACTORS). HERE CD AND GD ARE COORDINATE DESCENT AND GRADIENT DESCENT, RESPECTIVELY.

from previous proposals as discussed in Subsection II-C, thus
requiring much more sophisticated analysis. In addition, we
develop sharp and useful tensor perturbation bounds in our
analysis.

IV. NUMERICAL EXPERIMENTS

In this section, we provide some synthetic experiments to
compare the performance of the proposed methods, CPCA
initialization followed by ICO iterations as in Algorithms 1-
4 (Alg1+Alg2 for covariance tensor, Alg3+Alg4 otherwise),
with the modified rank one alternating least squares (ALS)
[29], orthogonalized alternating least squares (OALS) [48],
and higher order SVD (HOSVD). In our simulations, both
ALS and OALS use the initialization method proposed in
[29] and used in [47] and [15], which applies power and
clustering methods to random basis vectors and uses the
resulting centroids as initialization. HOSVD, widely used in
CP decomposition and tensor completion [54, 56, 61], can be
viewed as a baseline initialization method. To better under-
stand CPCA, we also present the results of the method (Alg1
or Alg3) without further improvements and its performance
as the initialization of ALS and OALS updates (Alg1-ALS,
Alg3-ALS, Alg1-OALS, Alg3-OALS). The estimation error
is given by maxj,k }pajkpa

J
jk ´ ajka

J
jk}S. The CP basis vectors

ajk are first generated independently and uniformly at random
from the dk dimensional unit spherical shell, and then linearly
adjusted to satisfy maxi‰j |a

J
ikajk| “ 10´1{2 for order 4

tensors in models (2) and (4).
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Fig. 1. Boxplots of the logarithm of the estimation error over 100 replications
under the spiked covariance tensor setting with K “ 2 and λ1 “ w2

1 . The two
panels correspond to sample sizes n “ 400, 800 respectively. The proposed
algorithms are labeled as Alg1 (CPCA) and Alg2 (ICO).

We first study the finite sample performance with spiked
covariance tensors (1). We set wmax{wmin “ 1.25, d1 “ d2 “

20, r “ 3, n “ 400, 800, K “ 2, wmax “ 3, 5, 8, 10, so that
the covariance tensor is of the order 4 “ 2K. Figure 1 depicts
the boxplots of the logarithm of the estimation errors over
100 replicates. In the plot, Alg1+1Alg2 is the one-step ICO
estimator after the CPCA initialization. Overall, our method
Alg1+Alg2 outperforms all the other methods in all cases.
The ICO (Alg2) converges in very few steps, although the
number of steps is not reported here. Besides, the one step
estimator Alg1+1Alg2 significantly improves over the CPCA
initialization (Alg1), and is very close to the final estimator
Alg1+Alg2. HOSVD performs much worse than the CPCA
initialization (Alg1), probably due to the benefit of multiplica-
tive higher order coherence of the CPCA. The comparisons
of ALS against the hybrid Alg1+ALS and OALS against the
hybrid Ag1+OALS demonstrate the CPCA as a better method
than clustering or other randomized screening methods for
initialization, although the CPCA initialization (Alg1) standing
alone may perform worse than iterative methods (slightly so
compared with ALS and more clearly so with OALS). In fact
the hybrid methods with the CPCA initialization improve the
original randomized initialized ALS and OALS significantly,
especially when the signal strength wmax is large.
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Fig. 2. Boxplots of the logarithm of the estimation error over 100 replications
under the low-rank tensor de-noising setting with N “ 4. The proposed
algorithms are labeled as Alg3 (CPCA) and Alg4 (ICO).

We also explore our methods under the low-rank tensor
de-noising setting (4). We consider a 4-way tensor with
d1 “ d2 “ d3 “ d4 “ 20, λmax{λmin “ 1.25, r “ 3,
and λmax “ 50, 100, 200, 400, 800. Figure 2 quantifies the
performance of different algorithms in terms of the logarithm
of the estimation errors. Except for λmax “ 50, Alg3+Alg4
is superior to all the other algorithms. When λmax “ 50,
ALS and Alg3+ALS are slightly better than Alg3+Alg4 and
Alg3+OALS. Again, HOSVD underperforms the CPCA ini-
tialization (Alg3). Figure 2 also shows the benefits of one
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step estimator Alg3+1Alg4. Although Alg3+ALS has similar
behavior as ALS in this setting, we do not need to generate
a large number of random initialization in the hybrid method
Alg3+ALS.
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Fig. 3. Boxplots of the logarithm of the estimation error over 100 replications
under the spiked covariance tensor setting with K “ 3 and λ1 “ w2

1 .
Two panels correspond to two sample sizes n “ 400, 800. The proposed
algorithms are labeled as Alg1 (CPCA) and Alg2 (ICO).
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Fig. 4. Boxplots of the logarithm of the estimation error over 100 replications
under the low-rank tensor denoising setting with N “ 6. The proposed
algorithms are labeled as Alg3 (CPCA) and Alg4 (ICO).

Next, we consider two additional cases of order 6 ten-
sors in models (2) and (4) with basis vectors satisfying
maxi‰j |a

J
ikajk|

3 “ 0.1. In a spiked covariance tensor setting
(1), we set wmax{wmin “ 1.25, r “ 3, d1 “ d2 “ d3 “

20, n “ 400, 800,K “ 3, and wmax “ 5, 6, 8, 10, 14.
In the low-rank tensor denoising setting (4), we set dk “
20, 1 ď k ď 6, λmax{λmin “ 1.25, r “ 3, and λmax “

225, 450, 900, 1800, 3600. We omit HOSVD as it is always
much worse than the CPCA initialization. The results are
similar to order 4 tensors. From Figure 3, Alg1+Alg2 are the
best one in all cases. The advantages are more obvious when
wmax is large. OALS with randomized initialization has a
great deal of variabilities, which can be significantly improved
by the CPCA initialization (Alg1+OALS). Though ALS and
Alg1+ALS have almost the same performance, Alg1+ALS
does not require a large number of random initialization. The
results in the tensor denoise setting, reported in Figure 4, are
similar to those in the spiked covariance tensor model setting
in Figure 3, except the case λmax “ 225, 450. Alg3+ALS
fares better than the other approaches for λmax “ 225, while
Alg3+OALS is the best for λmax “ 450. Although the pro-
posed algorithms do not always outperform ALS and OALS,
they underperform only slightly and in very few simulation
configurations and they are faster and easier to implement.
Moreover, the simulation results demonstrate that the CPCA
initialization is superior to the randomized initialization with
ALS and OALS.

To evaluate the computational cost of different initialization
methods, we also report the run time of the CPCA initial-
ization, HOSVD, and the randomized initialization in [29]
(ALS-init) under a spiked covariance tensor setting (1). We
set wmax{wmin “ 1.25, r “ 3, n “ 800, K “ 2, wmax “ 10,
and vary d1 “ d2 “ 20, 30, 40, 50, 60. From Table II, it can
be seen that ALS-init requires much longer run time for each
simulation than the other methods. The reason may be that
ALS-init needs a large number of restarts to recover all the
CP basis. Meanwhile, HOSVD has significantly shorter run
time than the CPCA, and the ratio of the costs seems stable as
the dimension increases. Thus, the far superior performance of
the CPCA justifies its (still manageable) computational costs
compared with HOSVD.

In summary, the proposed Algorithms 1-4 are more accurate
than existing methods in the simulation experiments in general.
Algorithms 1 and 3 can also be a superior initialization to
plug in existing algorithms, and is faster and much simpler to
implement than randomized initializations. It is worth noting
that in the case of order 6 tensors where the incoherence
maxi‰j |a

J
ikajk| “ 10´1{3 is larger, both ALS and OALS

perform poorly, while the proposed methods still work well.

V. FINAL REMARK

In this paper, we propose new initialization (CPCA) and
refinement (ICO) algorithms for tensor CP decomposition of
high dimensional non-orthogonal spike tensors. Our methods
tolerate a higher level of coherence among the basis vectors
(ajk), and achieve faster computational convergence rate and
sharper statistical error bounds, compared with existing meth-
ods. The proposed methods are applicable to a broad class
of structured tensors, including the spiked covariance tensors
(2) and general noisy high order tensors (4). In particular,
our proposed algorithms show stable convergence and exhibit
pronounced advantage especially as the order of the tensor
increases. Numerical studies display empirically favorable
performance of the proposed methods.

APPENDIX A
ANALYSIS IN THE NOISELESS CASE: MATRIX AND TENSOR

PERTURBATION BOUNDS

This section provides the analysis of the CPCA and ICO
algorithms in the noiseless case with Ψ “ 0 in models (2) and
(4). The results in this section are dimension free in the sense
that their conditions and conclusions depend only on the angles
among the basis vectors and their estimates and the principle
angles among spaces, not on dk. We first present the proofs
of Propositions 1, 2, 3 and 4. These propositions provide a
road map of the proof of Theorem 1, which is to follow, and
some general techniques to study model (2). Then, we present
the proofs of Propositions 5 and 6. Propositions 1, 5, 3 and
6 provide a road map of the proof of Theorem 4 at the end
of this section and some general techniques to study model
(4). For readers’ convenience, we restate the propositions and
theorems before their proofs.
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Algorithms d1 “ d2 “ 20 d1 “ d2 “ 30 d1 “ d2 “ 40 d1 “ d2 “ 50 d1 “ d2 “ 60
HOSVD 0.12p0.02q 1.18p0.28q 4.62p0.89q 12.58p2.27q 27.98p5.37q

ALS-init 6.97p1.93q 38.95p8.21q 133.20p25.78q 332.68p81.74q 726.75p177.53q

Alg1 (CPCA) 0.19p0.02q 2.07p0.28q 10.10p1.13q 33.71p2.96q 94.55p9.41q

TABLE II
RUN TIME FOR DIFFERENT INITIALIZATION METHODS OVER 100 REPLICATIONS UNDER THE SPIKED COVARIANCE TENSOR SETTING WITH K “ 2. HERE

RUN TIME IS THE MEAN AND STANDARD DEVIATIONS OF THE RUN TIME IN SECONDS. ALS-INIT USES 30 RESTART NUMBERS.

Proposition 1. For any set S of tensor modes, define
ajS “ vecpbkPSajkq, AS “ pa1S , . . . , arSq, ϑS “

max1ďiăjďr |a
J
iSajS | and δS “ }AJSAS ´ Ir}S. Define

µS “ max
j

min
k1,k2PS

max
i‰j

ź

k‰k1,k‰k2,kPS

?
r|σij,k|{ηjk.

as the (leave-two-out) mutual coherence of tAj , j P Su. Then,
µS P r1, r

|S|{2´1s,

δS ď min
kPS

δk, δS ď pr ´ 1qϑS ď pr ´ 1q
ź

kPS

ϑk, (9)

δS ď µSr
1´|S|{2maxjďr

ź

kPS

ηjk ď µSr
1´|S|{2

ź

kPS

δk. (10)

When S “ rKs, the above inequalities hold with tδS , ϑSu
replaced by the tδ, ϑu in (8).

Proof of Proposition 1. For notational simplicity, we only
prove the case S “ rKs, as the extension to general S is
straightforward. Recall that δ “ }AJA ´ Ir}S and δk “

}AJkAk ´ Ir}S. Because AJA “ pAJ1 A1q ˝ ¨ ¨ ¨ ˝ pA
J
KAKq

is the Hadamard product of correlation matrices, the spectrum
of AJA is contained inside the spectrum limits of AJkAk for
each k, so that

δ ď min
1ďkďK

δk.

Because AJA´Ir is symmetric, its spectrum norm is bounded
by its `1 norm,

δ ď max
jďr

ř

i‰j |a
J
i aj | ď pr ´ 1qϑ ď pr ´ 1q

K
ź

k“1

ϑk

due to |aJi aj | “
śK
k“1 |a

J
ikajk| “

śK
k“1 |σij,k|. Moreover, for

any j ď r and 1 ď k1 ă k2 ď K,

ÿ

i‰j

K
ź

k“1

|σij,k|

ď
ÿ

i‰j

|σij,k1σij,k2 | max
i‰j

ź

k‰k1,k‰k2

|σij,k|

ď

´

śK
k“1ηjk

¯

r´pK´2q{2 max
i‰j

ź

k‰k1,k‰k2

?
r|σij,k|{ηjk,

as ηjk “ p
ř

i‰jσ
2
ij,kq

1{2. The proof is complete as k1 and k2

are arbitrary.

Proposition 2. Let d ě r and A P Rdˆr with }AJA´Ir}S ď
δ. Let A “ rU1

rD1
rUJ2 be the SVD of A, and U “ rU1

rUJ2 .
Then, }AΛAJ´UΛUJ}S ď δ}Λ}S for all nonnegative-definite
matrices Λ in Rrˆr.

Proof of Proposition 2. An extension of Proposition 2,
Proposition 5, is proved later.

Proposition 3. Let M P Rd1ˆd2 be a matrix with }M}F “ 1
and a and b be unit vectors respectively in Rd1 and Rd2 . Let
pa be the top left singular vector of M . Then,

`

}papaJ ´ aaJ}2S
˘

^ p1{2q

ď}vecpMqvecpMqJ ´ vecpabJqvecpabJqJ}2S. (14)

Proof of Proposition 3.. Let
řr
j“1 σjujv

J
j be the SVD of M

with singular values σ1 ě . . . ě σr where r is the rank of M .
Because vecpujvJj q are orthonormal in Rd1d2 ,

vecpMqJvecpabJq “ aJMb “
r
ÿ

j“1

σjpu
J
j aqpv

J
j bq

with
řr
j“1 σ

2
j “ }M}2F “ 1,

řr
j“1pu

J
j aq

2 ď }a}22 “ 1 and
řr
j“1pv

J
j bq

2 ď }b}22 “ 1. Because σ1 ě ¨ ¨ ¨ ě σr,

ˇ

ˇaJMb
ˇ

ˇ ď σ1

ˆ r
ÿ

j“1

puJj aq
2

˙1{2ˆ r
ÿ

j“1

pvJj bq
2

˙1{2

“ σ1

Similarly, by Cauchy-Schwarz,

ˇ

ˇaJMb
ˇ

ˇ

2
ď

r
ÿ

j“1

σ2
j pu

J
j aq

2

ďσ2
1pu

J
1 aq

2 `
`

1´ σ2
1

˘`

1´ puJ1 aq
2
˘

. (37)

When puJ1 aq
2 ě 1{2, the maximum on the right-hand side

above is achieved at σ2
1 “ 1, so that

ˇ

ˇaJMb
ˇ

ˇ

2
ď puJ1 aq

2;
Otherwise, the right-hand side of (37) is maximized at σ2

1 “
ˇ

ˇaJMb
ˇ

ˇ

2
, so that

ˇ

ˇaJMb
ˇ

ˇ

2
ď 1´

ˇ

ˇaJMb
ˇ

ˇ

2
. Thus,

ˇ

ˇaJMb
ˇ

ˇ

2
ą

1{2 implies
ˇ

ˇaJMb
ˇ

ˇ

2
ď puJ1 aq

2. By (5), this is equivalent to
(14).

Proposition 4. Let T˚ “ ErT s with the tensor T in (2).
Given rA` “ pra1`, . . . ,rar`q, ` P rKsztku, let ra˚jk be the top
eigenvector of rT˚jk “ T˚ ˆlPr2Ksztk,K`ku rb

J
jl P Rdkˆdk with

the rbjl in (16). Then,
›

›ajka
J
jk ´ ra˚jkra

˚J
jk

›

›

S

ď2
`

1` δk
˘

pλ1{λjq
ź

`PrKsztku

prφ`{p1´ rφ`q`q
2,

where rφ` “ rψ`{
`
a

p1´ δ`qp1´ 1{p4rqq´
?
r rψ`

˘

`
with rψ` “

maxjďr
›

›

raj`ra
J
j` ´ aj`a

J
j`

›

›

S
.

Proof of Proposition 4. For any diagonal matrix Πr with
Π2
r “ Ir, rA`Πrpp rA`Πrq

J
rA`Πrq

´1 “ rA`p rA
J
`
rA`q

´1Πr. Thus,
because rT˚jk does not depend on the signs of rbj` “ rbj,``K ,
we assume without loss of generality that raJi`ai` ě 0 for all
i and `. Let rΣ` “ rAJ`

rA`. Assume without loss of generality
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that r rψ2
` {p1 ´ 1{p4rqq ď 1, so that 2p1 ´ p1 ´ rψ2

` q
1{2q ď

rψ2
` {p1´ 1{p4rqq. Consequently,

} rA` ´A`}
2
S ď rmax

jďr

›

›

raj` ´ aj`
›

›

2

2
“ 2rp1´ p1´ rψ2

` q
1{2q

ď r rψ2
` {p1´ 1{p4rqq

As rbj` “ rA`p rA
J
`
rA`q

´1ej , }rbj`}2 “ teJj p
rAJ`

rA`q
´1eju

1{2 ď

max}u}2“1 }
rA`u}

´1
2 , so that

max
iďr

›

›

rai` ´ ai`
›

›

2
}rbj`}2

ď
`

rψ`{
a

1´ 1{p4rq
˘L`

a

1´ δ` ´ r
1{2

rψ`{
a

1´ 1{p4rq
˘

`

“rφ`.

Let wij,` “ aJi`
rbj`{a

J
j`
rbj`, vi,jk “ pλi{λjq

ś

`PrKsztku w
2
ij,`,

vjk P Rr be the vector with elements vi,jk, and rλj “

λj
ś

`PrKsztkupa
J
j`
rbj`q

2. As raJi`
rbj` “ Iti“ju, for i ‰ j,

|wij,`| “
|pai` ´ rai`q

J
rbj`|

|1` paj` ´ raj`qJrbj`|
ď

rφ`

1´ rφ`
,

ˇ

ˇvi,jk
ˇ

ˇ ď pλ1{λjq

ˆ

ź

`PrKsztku

rφ`

1´ rφ`

˙2

.

As rT˚jk{
rλj “

řr
i“1 aika

J
ikvi,jk and eigenvectors do not depend

in scaling,

}ajka
J
jk ´ ra˚jkra

˚J
jk }S ď2}

řr
i‰jaikaikvi,jk}S

ď2}Ak}
2
S max
i‰j

vi,jk

by Wedin’s theorem [62]. The conclusion follows.

Theorem 1. Suppose Algorithm 1 (CPCA) is applied to the
noiseless T˚ “

řr
j“1 λj b

2K
k“1 ajk with aj,K`k “ ajk. Then,

(15) holds for the resulting pλcpca
j and pacpca

jk . Let λmin,˘ “

min1ďjďr λj,˘ be the minimum eigengap. Suppose further that

2 max
 

δmax, p
?
r ` 1qψ0

(

ď 1, (17)

3pλ1{λrqψ
2K´3
0 ď ρ ă 1,

where δmax “ maxkďK δk with the δk in (6) and ψ0 “ p1 `
2λ1{λmin,˘qδ with the δ in (8). Let γK P p3´ 3{K, 3q be the
solution of γKK ´3γK´1

K `2 “ 0, e.g. γ3 “ 2.732, γ4 “ 2.919.
If the resulting pacpca

jk are used as the initialization of Algorithm
2 (ICO) with the same data T˚, then

max
jďr

›

›

pa
pmq
jk pa

pmqJ
jk ´ ajka

J
jk

›

›

S
ď ψm,k “ ψ0ρ

γ
pm´1qK`k´1
K

and max1ďkďK ψm,k ď ε within m iterations, where m “

rK´1t1` plog γKq
´1 logplogpψ0{εq{ logp1{ρqqus.

Proof of Theorem 1. Let U “ pu1, . . . , urq be the orthonor-
mal matrix corresponding to A “ pa1, . . . , arq as in Propo-
sition 2 where aj “ vecpbKk“1ajkq. Let matrKspT˚q “
řr
j“1

pλcpca
j pujpu

J
j be the eigenvalue decomposition as in (11).

By Proposition 2 and Wedin’s perturbation theorem,

}pujpu
J
j ´ aja

J
j }S ď}uju

J
j ´ aja

J
j }S ` }pujpu

J
j ´ uju

J
j }S

ďδ ` 2pλ1δq{λj,˘ ď ψ0

and |pλcpca
j ´λj | ď δλ1. Thus, (15) follows from Proposition 3.

Moreover, under (18) we have ψ0 ă 1{p
?
r ` 1q ď 1{2,

so that (15) yields maxjďr
›

›

pacpca
j` pacpcaJ

j` ´ aj`a
J
j`

›

›

S
ď ψ0.

Now define ψ1m,k “ maxjďr
›

›

pa
pmq
jk pa

pmqJ
jk ´ ajka

J
jk

›

›

S
with

pa
p0q
jk “ pacpca

jk . By Proposition 4 and (18), ψ11,1 ď ρψ0 and this
would contribute the extra factor ρ twice in the application
of Proposition 4 to ψ11,2, resulting in ψ11,2 ď ρ3ψ0, so on
and so forth. In general, ψ1m,k ď ρnpm´1qK`kψ0 with n1 “ 1,
n2 “ 3, . . . , nK “ 3K´1, and nk`1 “ 1 ` 2

řK´1
`“1 nk`1´`

for k ą K. As 2p1 ´ γ´K`1
K q “ γK ´ 1, by induction for

k ě K,

nk`1 ě 2
`

γk´1
K ` ¨ ¨ ¨ ` γk´K`1

K

˘

“ γkK
2p1´ γ´K`1

K q

γK ´ 1
“ γkK .

The function fpγq “ γK´3γK´1`2 is decreasing in p1, 3´
3{Kq and increasing p3 ´ 3{K,8q. Because fp1q “ 0 and
fp3q “ 2 ą 0, we have 3´ 3{K ă γK ă 3.

Proposition 5. Let A P Rd1ˆr and B P Rd2ˆr with }AJA´
Ir}S_}B

JB´ Ir}S ď δ and d1^d2 ě r. Let A “ rU1
rD1

rUJ2
be the SVD of A, U “ rU1

rUJ2 , B “ rV1
rD2

rV J2 the SVD of
B, and V “ rV1

rV J2 . Then, }AΛAJ ´ UΛUJ}S ď δ}Λ}S for
all nonnegative-definite matrices Λ in Rrˆr, and }AQBJ ´
UQV J}S ď

?
2δ}Q}S for all r ˆ r matrices Q.

Proof of Proposition 5. Let A “ rU1
rD1

rUJ2 and B “
rV1

rD2
rV J2 be respectively the SVD of A and B with rD1 “

diagprσ11, ..., rσ1rq and rD2 “ diagprσ21, ..., rσ2rq. Let U “
rU1

rUJ2 and V “ rV1
rV J2 . We have } rD2

1´Ir}S “ }A
JA´Ir}S ď

δ and } rD2
2 ´ Ir}S “ }B

JB ´ Ir}S ď δ. Moreover,

}AQBJ ´ UQV J}2S

“max}u1}2“}u2}2“1

ˇ

ˇuJ1
`

rD1
rUJ2 Q

rV2
rD2 ´ rUJ2 Q

rV2

˘

u2

ˇ

ˇ

2

ď2}Q}2S max}u1}2“}u2}2“1

›

› rD2u2u
J
1
rD1 ´ u2u

J
1

›

›

2

F

“2}Q}2S max
}u1}2“}u2}2“1

r
ÿ

i“1

r
ÿ

j“1

u2
1iu

2
2j

`

rσ1irσ2j ´ 1
˘2

with u` “ pu`1, ..., u`rq
J,

a

p1´ δq` ď rσ`j ď
?

1` δ,
` “ 1, 2. The maximum on the right-hand side above is
attained at rσ`j “

a

p1´ δq` or
?

1` δ by convexity. As
p
a

p1´ δq`
?

1` δ ´ 1q2 ď δ4 ^ 1, we have }AQBJ ´
UQV J}2S ď 2}Q}2Sδ

2. For nonnegative-definite Λ and B “ A,
}AΛAJ ´ UΛUJ}S “ } rD1

rUJ2 ΛrU2
rD1 ´ rUJ2 ΛrU2}S and

ˇ

ˇuJ
`

rD1
rUJ2 ΛrU2

rD1 ´ rUJ2 ΛrU2

˘

u
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

2
ÿ

j“1

τjv
J
j
rUJ2 ΛrU2vj

ˇ

ˇ

ˇ

ˇ

ď

#

}Λ}Sp|τ1| _ |τ2|q, τ1τ2 ă 0,

}Λ}Sp|τ1 ` τ2|q, τ1τ2 ě 0,

where
ř2
j“1 τjvjv

J
j is the eigenvalue decomposition of

rD1uu
J
rD1´uu

J. Similar to the general case, p|τ1|_ |τ2|q2 ď
τ2
1 ` τ2

2 “
›

› rD1uu
J
rD1 ´ uuJ

›

›

2

F
ď δ2 and |τ1 ` τ2| “

|trp rD1uu
J
rD1 ´ uuJq| ď } rD1

rD1 ´ Ir}S ď δ. Hence,
}AΛAJ ´ UΛUJ}S ď }Λ}Sδ.

Proposition 6. Let T˚ “ ErT s with the tensor T in (4).
Given rA` “ pra1`, . . . ,rar`q, ` P rN sztku, let prb1`, . . . ,rbr`q “
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rA`p rA
J
`
rA`q

´1, rT˚jk “ T˚ ˆlPrNsztku rb
J
jl P Rdk , ra˚jk “

rT˚jk{}
rT˚jk}2 and rλ˚j “ T˚ ˆlPrNs rb

J
jl. Then,

2´ 2
ˇ

ˇaJjkra
˚
jk

ˇ

ˇ ď 2pr ´ 1q
`

1` δk
˘

ˆ

λ1

λj

ź

`PrNsztku

rφ`

1´ rφ`

˙2

,

ˇ

ˇrλ˚j {λj ´ 1
ˇ

ˇ ď

N
ÿ

`“1

rφ` ` pr ´ 1qpλ1{λjq
N
ź

`“1

rφ`,

where rφ` “ rψ`{
`?

1´ δ` ´
?
r rψ`

˘

`
with rψ` “ maxjďr

`

2´

2
ˇ

ˇ

raJj`aj`
ˇ

ˇ

˘1{2
.

Proof of Proposition 6. By the argument in the beginning of
the proof of Proposition 4, the conclusion of Proposition 6
does not depend on the signs of raj`. Thus, we assume without
loss of generality that raJi`ai` ě 0 for all i and `. Instead of
maxjďr

›

›

raj`´aj`
›

›

2

2
ď rψ2

` {p1´1{p4rqq in the proof of Propo-
sition 4, we have the simpler maxjďr

›

›

raj`´ aj`
›

›

2
ď rψ` here.

Modifying the proof there accordingly, we have maxiďr
›

›

rai`´

ai`
›

›

2
}rbj`}2 ď rψ`

L`?
1´ δ` ´ r1{2

rψ`
˘

`
“ rφ`. Again let

wij,` “ aJi`
rbj`{a

J
j`
rbj`, vi,jk “ pλi{λjq

ś

`PrNsztku wij,`,
vjk P Rr be the vector with elements vi,jk, and rλj “

λj
ś

`PrNsztkupa
J
j`
rbj`q. As raJi`

rbj` “ Iti“ju, for i ‰ j,

|wij,`| “
|pai` ´ rai`q

J
rbj`|

|1` paj` ´ raj`qJrbj`|
ď

rφ`

1´ rφ`
,

ˇ

ˇvi,jk
ˇ

ˇ ď pλ1{λjq
ź

`PrNsztku

ˆ

rφ`

1´ rφ`

˙

.

As rT˚jk{
rλj “

řr
i“1 aikvi,jk and vj,jk “ 1,

›

› rT˚jk{
rλj ´ ajk

›

›

2

2

“
ř

i1Prrsztju

ř

i2Prrsztju
σi1i2,kvi1,jkvi2,jk

ďpr ´ 1q
`

1` δk
˘

pλ1{λjq
2

ź

`PrNsztku

prφ`{p1´ rφ`qq
2.

Let 2θ be the angle between ajk and ra˚jk “
rT˚jk{}

rT˚jk}2. We
have 2

`

1 ´ aJjkra
˚
jk

˘

“ }ajk ´ ra˚jk}
2
2 “ p2 sin θq2 “ 2p1 ´

cosp2θqq ď 2p1´cos2p2θqq “ 2 sin2
p2θq ď 2

›

› rT˚jk{
rλj´ajk

›

›

2

2
.

Similarly, as rλ˚j ´ λj “ λjp
ś

`PrNsa
J
j`
rbj` ´ 1q `

ř

iPrrsztjuλi
ś

`PrNs a
J
i`
rbj`, we have

ˇ

ˇrλ˚j {λj ´ 1| ď
ÿ

`PrNs

rφ` ` pr ´ 1qpλ1{λjq
ź

`PrNs

rφ`.

Theorem 4. Suppose Algorithm 3 (CPCA) is applied to the
noiseless data T˚ “

řr
j“1 λj b

N
k“1 ajk through the SVD of

matSpT˚q for some nontrivial subset S Ă rN s. Let ψ0 “

p
?

2` 4λ1{λmin,˘qδ with δ “ δS _ δSc , where Sc “ rN szS.
Then,

|pλcpca
j ´ λj | ď

?
2δλ1,

`

}pacpca
jk pacpcaJ

jk ´ ajka
J
jk}

2
S

˘

^ p1{2q ď ψ2
0{2, (26)

for the resulting pλcpca
j and pacpca

jk . Suppose further that for
δmax “ maxkďN δk,

3 max
 

δmax, p
?
r ` 1qψ0

(

ď 1,

4
?
r ´ 1pλ1{λrqψ

N´2
0 ď ρ ă 1. (27)

Let γN P p2´2{N, 2q be the solution of γNN ´2γN´1
N `1 “ 0,

e.g. γ3 “ 1.618, γ4 “ 1.839. If the resulting pacpca
jk is used as

the initialization of Algorithm 4 (ICO), then

max
jďr

`

2´ 2
ˇ

ˇaJjkpa
pmq
jk

ˇ

ˇ

˘1{2
ď ψm,k “ ψ0ρ

γ
pm´1qN`k´1
N ,

max
jďr

ˇ

ˇpλ
pmq
j {λj ´ 1

ˇ

ˇ ď
řN
k“1ψm,k ` ρψm,N ,

and max1ďkďN ψm,k ď ε within m iterations, where m “

rN´1t1` plog γN q
´1 logplogpψ0{εq{ logp1{ρqqus.

Proof of Theorem 4. By definition matSpT˚q “ ASΛAJSc “
řr
j“1

pλcpca
j pujpv

J
j , so that for the U “ pu1, . . . , urq and V “

pv1, . . . , vrq in Proposition 5 we have }ajSaJjS´uju
J
j }S ď δS ,

}ajScaJjSc ´ vjv
J
j }S ď δSc , 1 ď j ď r, and }matSpT˚q ´

UΛV J}S ď
?

2λ1δ. These and Proposition 3 yield (26) as in
the proof of Theorem 1. Moreover, under (28) we have ψ2

0 ă 1,
so that 2p1 ´ |aJj`pa

cpca
j` |q ď 2

›

›

pacpca
j` pacpcaJ

j` ´ aj`a
J
j`

›

›

2

S
ď ψ2

0 .

Define ψ1m,k “ maxjďr
`

2´2
ˇ

ˇaJjkpa
pmq
jk

ˇ

ˇ

˘1{2
with pa

p0q
jk “ pacpca

jk .
By Proposition 6 and (28), ψ11,1 ď ρψ0 and similar to the proof
of Theorem 1, we have ψ1m,k ď ρnpm´1qN`kψ0 with n1 “ 1,
n2 “ 2, . . . , nN “ 2N´1, and nk`1 “ 1`

řN´1
`“1 nk`1´` for

k ą N . By induction, for k “ N,N ` 1, . . ..

nk`1 ě γk´1
N ` ¨ ¨ ¨ ` γk´N`1

N “ γkN
1´ γ´N`1

N

γN ´ 1
“ γkN .

The function fpγq “ γN ´2γN´1`1 is decreasing in p1, 2´
2{Nq and increasing p2 ´ 2{N,8q. Because fp1q “ 0 and
fp2q “ 1 ą 0, we have 2 ´ 2{N ă γN ă 2. By Proposition
6, (28) and the upper bound for ψ1m,k, we have the desired
upper bound for maxjďr

ˇ

ˇpλ
pmq
j {λj ´ 1

ˇ

ˇ.

Proposition 7. Let SP :“ spanta1, ..., aru, where aj “

vecpbNk“1ajkq P Rd. The elements of SP can be viewed as
either length d vectors or d1 ˆ ¨ ¨ ¨ ˆ dN tensors. Suppose
N ą 2 and δk ă 1 for every k “ 1, . . . , N in (6), then every
rank-1 tensor in SP is one of aj’s up to a scalar.

Proof of Proposition 7. Suppose M is a rank-1 tensor in
SP“ spanta1, ..., aru, where aj “ vecpbNk“1ajkq. Thus, there
exist coefficients βj , j ď r, such that

M “ β1vecpbNk“1a1kq ` ¨ ¨ ¨ ` βrvecpbNk“1arkq.

In matrix form, it follows that

mat1pMq

“β1a11vecpbNk“2a1kq
J ` ¨ ¨ ¨ ` βrar1vecpbNk“2arkq

J,

where taj1, j ď ru is a set of linearly independent vectors, and
tvecpbNk“2ajkq, j ď ru is also a set of linearly independent
vectors. Note that the matrix on the left hand side has rank 1
while the matrix on the right hand side has rank |j P rrs : βj ‰
0|. Since the rank of a matrix is unambiguously determined,
we must have |j P rrs : βj ‰ 0| “ 1. Hence, M “ βj˚aj˚
holds for some j˚ P rrs.
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APPENDIX B
ANALYSIS OF CPCA AND ICO FOR NOISY TENSORS

This section provides the analysis of the CPCA and ICO
algorithms in the noisy case of models (2) and (4). In addition
to the propositions provided before, we use concentration
inequalities to derive the statistical error bounds.

Theorem 2. Consider spiked covariance tensor model (2) with
data in (1), λj “ ω2

j and δ “ }AJA ´ Ir}S as in (8). In an
event with probability at least 1 ´ e´t, Algorithm 1 (CPCA)
gives the following error bound for the estimation of the CP
basis vectors ajk,

}pacpca
jk pacpcaJ

jk ´ ajka
J
jk}S

ďp1` 2λ1{λj,˘qδ ` Cpλ1{λj,˘q
`

Rp0q `
a

t{n
˘

(20)

for all 1 ď j ď r, 1 ď k ď K and 0 ď t ď d,
where C is a numeric constant, λj,˘ is the j-th eigengap,
and Rp0q “

a

preff{nqp1` 1{SNRqp1` preff{dq{SNRq ď
a

pr ` σ2d{λ1qp1` σ2{λ1q{n.

Proof of Theorem 2. Recall that λj “ w2
j with λ1 ě ¨ ¨ ¨ ě

λr ą 0, A “ pA1, . . . , Arq with aj “ vecpaj1 b aj2 b ¨ ¨ ¨ b
ajKq, T “ n´1

řn
i“1 Xi b Xi and d “ d1d2...dK . Write

matrKspT q “
r
ÿ

j“1

λj
`

vecpbKk“1ajkq
˘b2

` σ2Id `Ψ˚

“AΛAJ ` σ2Id `Ψ˚, (38)

where Λ “ diagpλ1, ..., λrq and Ψ˚ “ matrKspT ´ ErT sq “
matrKspΨq ´ σ2Id. Let U “ pu1, . . . , urq be the orthonormal
matrix corresponding to A as in Proposition 2. We have
}AAJ ´ UUJ}S ď δ and }AΛAJ ´ UΛUJ}S ď λ1δ by two
applications of the error bound in Proposition 2 with Λ “ Ir
the first time. Let the top r eigenvectors of matrKspT q be
pU “ ppu1, ..., purq P Rdˆr. By Wedin’s perturbation theorem
[62] for any 1 ď j ď r,

}pujpu
J
j ´ uju

J
j }S ď 2}AΛAJ ´ UΛUJ `Ψ˚}S{λj,˘

ď
`

2λ1δ ` 2}Ψ˚}S
˘L

λj,˘. (39)

Combining (39) and the inequality }AAJ ´ UUJ}S ď δ, we
have

}pujpu
J
j ´ aja

J
j }S ď δ `

`

2λ1δ ` 2}Ψ˚}S
˘

{λj,˘ (40)

We formulate each puj P Rd to be a K-way tensor pUj P

Rd1ˆ¨¨¨ˆdK . Let pUjk “ matkppUjq, which is viewed as an
estimate of ajkvecpbKl‰kajlq

J P Rdkˆpd{dkq. Then pacpca
jk is

the top left singular vector of pUjk. By Proposition 3,

}pacpca
jk pacpcaJ

jk ´ ajka
J
jk}

2
S ^ p1{2q ď }pujpu

J
j ´ aja

J
j }

2
S. (41)

Substituting (40) and Lemma 1 into the above equation, based
on the definition of SNR and Rp0q, we have the desired results.
We note that (20) holds automatically when the right-hand side
is greater than 1, e.g. δ ě 1.

Lemma 1. Suppose the assumptions in Theorem 2 hold and
δ ă 1. Let Ψ˚ “ matrKspT ´ ErT sq and λj “ w2

j in (2). In
an event with probability at least 1´ e´t, we have

1^
`

}Ψ˚}S{λ1

˘

ďC max
´

a

preff{nqp1` 1{SNRqp1` preff{dq{SNRq,
a

t{n
¯

for all 0 ď t ď d, where C is a numerical constant.

Proof. Let T˚ “ ErT s. As Ψ˚ “ matrKspT ´ T˚q, it follows
from Theorem 2 of [63] that with probability at most e´t,

}Ψ˚}S ě C}matrKspT˚q}S
`

a

pr˚ _ tq{n_ ppr˚ _ tq{nq
˘

where r˚ “ tracepmatrKspT˚qq{}matrKspT˚q}S is the effec-
tive rank of matrKspT˚q and C is a numeric constant. Be-
cause matrKspT˚q “ ErmatrKspT qs “

řr
j“1 λjaja

J
j ` σ2Id,

}matrKspT˚q}S ď 2λ1`σ
2 and tracepmatrKspT˚qq “ λ1reff`

σ2d “ λ1reffp1` 1{SNRq with reff ď r ď d, so that

min

#

}matrKspT˚q}S
`
a

pr˚ _ tq{n_ ppr˚ _ tq{nq
˘

3λ1
, 1

+

ď max
´

a

preff ` σ2d{λ1qp2{3` σ2{p3λ1qq{n,

p2{3` σ2{p3λ1qq
a

t{n
¯

ď max
´

a

preff{nqp1` 1{SNRqp1` preff{dq{SNRq,
a

t{n
¯

.

Note the component of the maximum with
a

t{n is smaller
when λ1 ď σ2 and 0 ď t ď d.

Theorem 3. Suppose that with a proper numeric constant C0

and the quantities defined in (21), (22) and (23),

α ą 0, ρ1 ď ρ ă 1, C0,αR
pidealq
rK,1 ď ψ0 ă 1. (24)

Let Ω0 “ tmaxj,k }pa
p0q
jk pa

p0qJ

jk ´ajka
J
jk}S ď ψ0u for any initial

estimates pa
p0q
jk . Then, Algorithm 2 (ICO) provides

P
"

max
j,k

min
ΠrPP˘

›

› pAico
k Πr ´Ak

›

›

F

p4r{3q1{2pεrk _ εq
ď 1

*

ě P
"

max
j,k

›

›

paico
jk pa

icoJ
jk ´ ajka

J
jk

›

›

S

εjk _ ε
ď 1

*

ě P
 

Ω0

(

´mrKe´2pd1^
?
nq (25)

within m ě mε ` 3 iterations, where εjk “ C0,αR
pidealq
jk,φ0

,
mε “ rlogplogpε{ψ0q{ log ρq{ log 2s for pεr2_ ε0q^ εr3 ď ε ă
ψ0 and mε “ rlogpε{ψ0q{ log ρs for εr2 ď ε ă ε0 ^ εr3, with
ε0 “ C0,αr{n. Moreover, (25) holds within mεr2`4 iterations
for ε “ ε˚ _

?
ε˚ε0 where ε˚ “ C0,αpλ1{λrq

śK
k“2 ε

2
rk.

In particular, if Algorithm 1 (CPCA) is used to initialize
Algorithm 2 and ψ0 is taken as the maximum of the right-
hand side of (20), then (25) holds with PtΩ0u ě 1´ e´t.

Proof of Theorem 3. We divide the proof into three steps.
Step 1 (Error bound for a single update). Consider given
pj, kq in this step. Recall that pb1k, . . . , brkq “ AkpA

J
kAkq

´1

with Ak “ pa1k, . . . , arkq. Let zn „ Np0, Inq. For g “
tg1, . . . , g2Ku with gk “ gk`K P Rdk , define Tkpgq as

T ˆ`Pr2Ksztk,k`Ku g
J
` “ Xkpgq

JXkpgq{n P Rdkˆdk
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with Xkpgq “ pXi ˆ`PrKsztku g`, i P rnsqJ P Rnˆdk . Write

Xkpgq “Mjkpgq `M
c
jkpgq ` Ekpgq

where Ekpgq “
`

Ei ˆ`PrKsztku gJ` , i P rns
˘J
P Rnˆdk ,

Mjkpgq “
`

fij , i P rns
˘J`

wj
ś

`PrKsztkua
J
j`g`

˘

aJjk

as a rank-one nˆ dk random matrix with signal, and

M c
jkpgq “

ř

hPrrsztjuMhkpgq P Rnˆdk .

As Tkpgq “ T ˆ`Pr2Ksztk,k`Ku g
J
` , it follows that

Tkpgq “ sλjpgqajka
J
jk ` σ

2Idk `∆jkpgq, (42)

where ∆jkpgq “
ř5
i“1 ∆

piq
jk pgq,

sλjpgq “ λj
 
ś

`PrKsztkupa
J
j`g`q

2
(
řn
i“1f

2
ij{n,

∆
p1q
jk pgq “ M cJ

jk pgqM
c
jkpgq{n,

∆
p2q
jk pgq “ EJjkpgqEjkpgq{n´ σ

2Idk ,

∆
p3q
jk pgq “ EJjkpgqM

c
jkpgq{n`M

cJ
jk pgqEjkpgq{n,

∆
p4q
jk pgq “ EJjkpgqMjkpgq{n`M

J
jkpgqEjkpgq{n,

∆
p5q
jk pgq “ MJ

jkpgqM
c
jkpgq{n`M

cJ
jk pgqMjkpgq{n.

We bound sλjpgq and }∆jkpgq}S over g` P Gj` with

Gj` “ tg` P Sd`´1 : }g` ´ bj`{}bj`}2}2 ď φ, |aJj`g`| ě α,

maxh‰j |a
J
h`g`| ď ψ1` “ ψ`{

a

1´ 1{p4rqu (43)

for ` ‰ k. In addition, we set G` “ Sd`´1 and Gjk “ Gk.
By the Gaussian concentration of p

řn
i“1 f

2
ijq

1{2,

inf
g`PGj`,`PrKsztku

sλjpgq ě
λjα

2K´2

p1´ 1{
?
n´

a

2t{nq´2

with at least probability 1´ e´t.
Similarly, in an event with at least probability 1´ e´t,

›

›

řn
i“1FiF

J
i {n

›

›

S
ď p1`

a

r{n`
a

2t{nq2

with Fi “ pfi1, . . . , firqJ, and in the same event

sup
g`PGj`,`PrKsztku

›

›∆
p1q
jk pgq

›

›

S

ď
supg`PGj`,`PrKs

ř

h‰j λh
ś

`PrKspa
J
h`g`q

2

p1`
a

r{n`
a

2t{nq´2

“

›

›

ř

hPrrsztju λhahka
J
hk

›

›

S

`
ś

`PrKsztku ψ
1
`

˘2

p1`
a

r{n`
a

2t{nq´2

ď
λ1p1` δkq

`
ś

`PrKsztku ψ
1
`

˘2

p1`
a

r{n`
a

2t{nq´2
.

Let φ1 “ φ ^ 1. For the noise component, the Sudakov-
Fernique and Gaussian concentration inequalities provide

sup
g`PGj`,`PrKsztku

}Ekpgq}S

ď σEr}zn}2s ` σ
?

2t` E
„

sup
g`PGj`@`PrKs

E1 ˆ
K
`“1 g`



“ σ

ˆ

Er}zn}2s `
?

2t` Er}zdk}2s ` φ1
ÿ

`‰k

Er}zd`}2s
˙

with at least probability 1´e´t. Similarly, the smallest singular
value σ1pEkpgqq is bounded from below by

inf
g`PGj`,`PrKsztku

σ1

`

Ekpgq
˘

ě σ

ˆ

Er}zn}2s ´
?

2t´ Er}zdk}2s ´ φ1
ÿ

`‰k

Er}zd`}2s
˙

with at least probability 1´ e´t. Thus,

sup
g`PGj`,`PrKsztku

›

›∆
p2q
jk pgq

›

›

S

ď σ2

"ˆ

1`

?
2t`

?
dk

?
n

` φ1
ÿ

`‰k

?
d`
?
n

˙2

´ 1

*

with at least probability 1´ 2e´t.
For each of the three cross-product terms, the two matrix

factors are independent. Thus, an application of the above
calculation in the proof of Lemma G.2 of [36] yields

sup
g`PGj`,`PrKsztku

›

›∆
p3q
jk pgq

›

›

S

ď 2 sup
g`PGj`,`PrKsztku

}EJk pgqM
c
jkpgq}S{n

ď 2σ
a

λ1p1` δkq

ˆ

ź

`PrKsztku

ψ1`

˙

ˆ

"ˆ

1`

?
r `

?
2t

?
n

˙ˆ
?
dk
?
n
` φ1

ÿ

`‰k

?
d`
?
n

˙

`

?
r

?
n

ˆ

1`

?
2t
?
n

˙

`
2t` 2

?
2t

n

*

with at least probability 1´ 2e´t,

sup
g`PGj`,`PrKsztku

›

›∆
p4q
jk pgq

›

›

S

ď 2 sup
g`PGj`,`PrKsztku

}EJk pgqMjkpgq}S{n

ď 2σλ
1{2
j

"ˆ

1`
1`

?
2t

?
n

˙ˆ
?
dk
?
n
` φ1

ÿ

`‰k

?
d`
?
n

˙

`
1
?
n
`

2t` 3
?

2t

n

*

with at least probability 1´ 2e´t, and

sup
g`PGj`,`PrKsztku

›

›∆
p5q
jk pgq

›

›

S

ď 2 sup
g`PGj`,`PrKsztku

}MJ
jkpgqM

c
jkpgq}S{n

ď 2λ
1{2
j

a

λ1p1` δkq

ˆ

ź

`PrKsztku

ψ1`

˙

ˆ

"ˆ

1`
1`

?
2t

?
n

˙?
r

?
n
`

1
?
n
`

2t` 3
?

2t

n

*

with at least probability 1´ 2e´t.
Putting the above inequalities together, we find that for r ď

n and with at least probability 1´ e´2pd1^
?
nq,

inf
g`PGj`,`PrKsztku

sλjpgq ě λjα
2K´2{C 10 (44)
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and with ψ´k “
ś

`PrKsztku ψ`

sup
g`PGj`,`PrKsztku

›

›∆jkpgq
›

›

S
(45)

ď C 10λ1ψ
2
´k ` C

1
0σ

2
`

d
1{2
k,φ{n

1{2 ` dk,φ{n
˘

`C 10λ
1{2
j σd

1{2
k,φ{n

1{2 ` C 10pλ1λjr{nq
1{2ψ´k,

where dk,φ “
`

d
1{2
k ` pφ ^ 1q

ř

`PrKsztku d
1{2
`

˘2
and C 10 is a

numeric constant. Here the upper bound for ∆
p3q
jk is absorbed

into those for ∆
p1q
jk and ∆

p2q
jk by Cauchy-Schwarz.

Let pajkpgq be the top eigenvector of Tkpgq in (42). As
}ajk}2 “ }pajkpgq}2 “ 1, (42), (44) and (45) imply

sup
g`PGj`,`PrKsztku

}pajkpgqpa
J
jkpgq ´ ajka

J
jk}S (46)

ď C0,α max
!

pλ1{λjqψ
2
´k, R

pidealq
jk,φ ,

b

pλ1{λjqpr{nqψ´k

)

with at least probability 1´ e´2pd1^
?
nq, where Gj` are as in

(43), Rpidealq
jk,φ as in (22) and C0,α “ C0α

2´2K with a numeric
constant C0. Here we assume C0 can be taken as the constant
in (23) and (24).
Step 2 (Error bound sequences). Recall that pA

pmq
` “

ppa
pmq
1` , . . . ,pa

pmq
r` q P Rd`ˆr, pΣpmq` “ pA

pmqJ
`

pA
pmq
` , and pB

pmq
` “

pA
pmq
` ppΣ

pmq
` q´1 “ ppb

pmq
1` , ...,pb

pmq
r` q P Rd`ˆr. Let

Ωm,` “
!

max
hďr

}pa
pmq
h` pa

pmqJ
h` ´ ah`a

J
h`}S ď ψm,`

)

(47)

with constants ψm,` ď ψ0 to be specified later sequentially. As
the PCA of T pgq in (42) does not depend on the signs of gh`,
we may assume without loss of generality aJh`pa

pmq
h` ě 0 for

all ph, `q. Thus, in Ωm,` the proof of Proposition 4 provides

maxhďr }pa
pmq
h` ´ ah`}2 ď ψm,`{

a

1´ 1{p4rq, (48)
›

›pb
pmq
h`

›

›

2
ď } pB

pmq
` }

1{2
S ď

ˆ

a

1´ δ` ´
r1{2ψ0

a

1´ 1{p4rq

˙´1

.

Let P` “ A`pA
J
` A`q

´1AJ` and PK` “ Id` ´ PJ` . As pB
pmq
` ´

B` “ PK`
`

pA
pmq
` ´A`

˘

ppΣ
pmq
` q´1 ´B`

`

pA
pmq
` ´A`

˘J
pB
pmq
` ,

›

›pb
pmq
h` ´ bh`

›

›

2

2

ď
›

› pA
pmq
` ´A`

›

›

2

S

`

} pB
pmq
` }2S ` }B`}

2
S

˘`

}pb
pmq
h` }

2
2 ^ }bh`}

2
2

˘

ď trψ2
m,`{p1´ 1{p4rqqup2{α2q

`

}pb
pmq
h` }

2
2 ^ }bh`}

2
2

˘

by the algebraic symmetry between the estimator and esti-
mand, where α is as in (23). Let pgpmqh` “ pb

pmq
h` {}

pb
pmq
h` }2. As

›

›

pg
pmq
h` ´ bh`

›

›

2
ď

›

›pb
pmq
h` ´ bh`

›

›

2
for }pbpmqh` }2 ě }bh`}2 “ 1,

›

›

pg
pmq
h` ´ bh`{}bh`}2

›

›

2
ď pψm,`{αq

a

2r{p1´ 1{p4rqq (49)

by scale invariance. Moreover, (48) provides

max
h‰j

ˇ

ˇaJh`pg
pmq
j`

ˇ

ˇ ď ψm,`{
a

1´ 1{p4rq,
ˇ

ˇaJj`pg
pmq
j`

ˇ

ˇ ě α, (50)

as pa
pmqJ
h` pg

pmq
j` “ Ith “ ju{}pb

pmq
j` }2. Thus, in the event Ωm,`,

pg
pmq
h` “ pb

pmq
h` {}

pb
pmq
h` }2 P Gj,` for ` ‰ k in (43) with ψ` “ ψm,`,

the α in (23) and any upper bound φ for (49).
Let

Ωm,j,k “
 

}pa
pmq
jk pa

pmqJ
jk ´ ajka

J
jk}S ď ψm,j,k

(

.

Let ψ0,j,k “ ψ0,k “ ψ0 and sequentially update them by

ψm,j,k “ C0,α

!´

pλ1{λjq
śK´1
`“1 ψ

2
m,k´`

¯

_R
pidealq
jk,φm,k

_

´

a

r{n
b

λ1{λj
śK´1
`“1 ψm,k´`

¯)

,

ψm,k “ ψm,r,k, (51)

k “ 1, . . . ,K , m “ 1, 2, . . . , with the C0,α in (46) and

φm,k “ 1^
`

max1ď`ăKpψm,k´`{αq
a

2r{p1´ 1{p4rqq
˘

.

Here and in the sequel, we take the convention pm, `q “ pm´
1,K``q with the subscript pm, `q. We note that ψm,k depends
on ψm,k´1, . . . , ψm,k´K`1 only as an increasing function of
their product and maximum. Thus, as ψ1,k ď ψ0,k “ ψ0 by
(24), ψm,k ď ψm´1,k for all k P rKs and m ě 1 by induction.

By (46), (43), (49) and (50), the events Ωm,` in (47) satisfy

P
 `

X
K´1
`“1 Ωm,k´`

˘

X Ωcm,j,k
(

ď e´2pd1^
?
nq (52)

with Xrj“1Ωm,j,k Ď Ωm,k.
Let φ0 “ pψ˚{αq

a

2r{p1´ 1{p4rqq be as in (23) with
ψ˚ “ C0,αR

pidealq
rK,1 . A simple way of dealing with the dy-

namics of (51) is to compare ψm,j,k with

ψ˚m,j,k “ C0,α

!´

pλ1{λjq
ś

`‰kψ
˚2
m´1,`

¯

_R
pidealq
jk,φ0

_

´

a

r{n
b

λ1{λj
ś

`‰kψ
˚
m´1,`

¯)

,

ψ˚m,k “ ψ˚m,r,k, (53)

with initialization ψ˚0,j,k “ ψ0. Compared with (51), (53)
is easier to analyze due to the use of static φ0 and the
monotonicity of ψ˚m,k in k. While (51) uses inputs with
indices pm, k ´ rK ´ 1sq, (53) uses inputs with indices
pm ´ 1, rKsztkuq. Thus, as maxj,k,φ C0,αR

pidealq
jk,φ ď ψ˚,

ψm,k ď ψ˚m,k before ψ˚m,k first hits p0, ψ˚s at a certain
pm˚, k˚q. As ψ˚m˚,k ď ψ˚ for k P rKs, ψm˚,k ď ψ˚ for
k P rKs, so that φm,k ď φ0 for m ą m˚. It follows that

ψm`1,j,k ď ψ˚m,j,k ď ψ˚m,k, @pm, j, kq. (54)

Step 3 (Contraction of error bounds). Recall that εjk “

C0,αR
pidealq
jk,φ0

. By (52) and (54), (25) follows from

ψ˚m,j,k ď ε_ εjk @j, k,

for εr2 ď ε ď ψ0 and m ě mε ` 2. Let εr,K`1 “ ψ0. By
induction, it suffices to prove that for εrk0 ď ε ă εr,k0`1

ψ˚m,j,k ď ε_ ε1jk @m ě mε ` 2,@j, k (55)

where ε1rk “ ψ0 for k ą k0, ε1jk “ εjk for j ă r or k ď k0,
with each fixed k0 ě 2. This is done by comparing (53) with

ψ1m,j,k “

´

C0,αpλ1{λjq
ś

`‰kψ
12
m´1,`

¯

_ ε1jk

_

´

C0,α

a

r{n
b

λ1{λj
ś

`‰kψ
1
m´1,`

¯

,

ψ1m,k “ ψ1m,r,k, (56)

with ψ10,j,k “ ψ0. Because εjk ď ε1jk,

ψ˚m,j,k ď ψ1m,j,k, @ m, j, k. (57)

Let m˚ “ mintm : ψ1m,k0 ď εu. For m ă m˚, ψ1m,k “ ψ1m,k0
for k ď k0 and ψ1m,k “ ψ0 for k0 ă k ď K, so that

C0,αpλ1{λrqψ
12pk0´1q
m˚´1,k0

ψ
2pK´k0q
0 ď ε,
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C0,α

a

r{n
a

λ1{λrψ
1k0´1
m˚´1,k0

ψK´k00 ď ε,

which implies ψ1m˚,j,k ď ε _ ε1jk @j, k, due to λj ě λr and
ψ1m˚´1,k0

ď ψ0. Consequently, (55) holds by (57). We note
that when ψ˚m,2 “ εr2, ψ˚m`1,j,k ď ε˚ _

?
ε˚ε0 _ εjk.

It remains to prove m˚ ď mε ` 2. For ε ě C0,αr{n,

ε ă ψ1m,k0 “ ψ0ρ
1`p2k0´2q`¨¨¨`p2k0´2qm´1

with the ρ ă 1 in (24) for m ă m˚, so that

m˚ ´ 2 ď rlogplogpε{ψ0q{ log ρq{ logp2k0 ´ 2qs ď mε.

Let m1 “ mintm : ψ1m,k0 ď C0,αr{nu and n1 “ t1 ` . . . `
p2k0 ´ 2qm1´2uItm1 ě 2u. For ε ă C0,αr{n, we have

ε ă ψ1m,k0
“ ψ0ρ

1`...`pk0´1qm´m1

1 ρn1pk0´1qm´m1`1

ď ψ0ρ
1`...`pk0´1qm´1

for m1 ď m ă m˚, so that

m˚ ´ 2

ď

#

rlogplogpε{ψ0q{ log ρq{ logpk0 ´ 1qs, k0 ą 2,

rlogpε{ψ0q{ log ρqs, k0 “ 2.

Again m˚ ď mε ` 2.

Theorem 5. Let T “
řr
j“1 λj b

N
k“1 ajk ` Ψ as in (4).

Suppose Ψ P Rd1ˆ¨¨¨ˆdN has i.i.d Np0, σ2q entries. Then, in
an event with probability at least 1´e´2dS´2pd{dSq, Algorithm
3 (CPCA) gives the following bound in the estimation of the
CP basis vectors ajk , 1 ď j ď r, 1 ď k ď N ,

}pacpca
jk pacpcaJ

jk ´ ajka
J
jk}S

ďp1` 2
?

2λ1{λj,˘qδ ` 6σp
a

dS `
a

d{dSq{λj,˘ (29)

where δ “ }AJSAS ´ I}S _ }A
J
ScASc ´ Ir}S as in Theorem 4

and λj,˘ “ minpλj´1´λj , λj´λj`1q are the eigengaps with
λ0 “ 2λ1 and λr`1 “ 0.

Proof of Theorem 5. Let aj,S “ vecpbkPSajkq and aj,Sc “

vecpbkPrNszS aj,kq. Let U “ pu1, . . . , urq and V “

pv1, . . . , vrq be the orthonormal matrices in Proposition 5 with
A and B there replaced respectively by AS and ASc . By
Proposition 5,

}aj,Sa
J
j,S ´ uju

J
j }S _ }aj,ScaJj,Sc ´ vjv

J
j }S ď δ,

›

›matSpT˚q ´ UΛV J
›

›

S
ď
?

2δλ1, (58)

where T˚ “
řr
j“1 λj b

N
k“1 ajk. Let Ψ˚ “ matSpΨq “

matSpT ´ T˚q. We have
›

›matSpT q ´ UΛV J
›

›

S
ď
?

2δλ1 ` }Ψ
˚}S.

As λ1 ą λ2 ą ... ą λr ą λr`1 “ 0, Wedin’s perturbation
theorem [62] provides

max
 

}paj,Spa
J
j,S ´ uju

J
j }S, }paj,Sc

paJj,Sc ´ vjv
J
j }S

(

ď
2
?

2λ1δ ` 2}Ψ˚}S
mintλj´1 ´ λj , λj ´ λj`1u

. (59)

Combining (58) and (59), we have

max
 

}paj,Spa
J
j,S ´ aj,Sa

J
j,S}S, }paj,Sc

paJj,Sc ´ aj,ScaJj,Sc}S
(

ďδ `
2
?

2λ1δ ` 2}Ψ˚}S
mintλj´1 ´ λj , λj ´ λj`1u

. (60)

By Theorem II.13 in [64], for any x ą 0,

P

¨

˝}Ψ˚}S{σ ą

d

ź

kPS

dk `

d

ź

kPrNszS

dk ` x

˛

‚ď e´x
2
{2.

It implies that, choosing x “ 2
?
dS`2

?
dSc , in an event with

probability at least 1´ e´2dS´2dSc ,

}Ψ˚}S ď 3σ
a

dS ` 3σ
a

dSc . (61)

We formulate each puj P Rd to be a K-way tensor pUj P

Rd1ˆ¨¨¨ˆdK . Let pUjk “ matkppUjq, which is viewed as an
estimate of ajkvecpblPSztku ajlqJ P RdkˆpdS{dkq. Then pacpca

jk

is the top left singular vector of pUjk. By Proposition 3, for
any k P S

}pacpca
jk pacpcaJ

jk ´ ajka
J
jk}

2
S ^ p1{2q ď }paj,Spa

J
j,S ´ aj,Sa

J
j,S}

2
S.

Similar bound can be obtained for }pacpca
jk pacpcaJ

jk ´ ajka
J
jk}S

for k P Sc. Substituting (60) and (61) into the above equation,
we have the desired results.

Theorem 6. Let data T be as in Theorem 5 and Ω0 “

tmaxj,kp2 ´ 2|aJjkpa
p0q
jk |q

1{2 ď ψ0u for any initial estimates
pa
p0q
jk . Let P˘ be as in (25). Suppose

α˚ ą 0, ρ˚ ă 1, 6α1´N
˚ R

˚pidealq
rK,1 ď ψ0 ă 1, (33)

with the quantities defined in (30), (31) and (32). Then, in an
event with probability at least PtΩ0u ´ e´dN ´

řN
k“1 e

´dk ,
Algorithm 4 (ICO) provides

|pλico
j {λj ´ 1| ď ε˚jN _ ε, (34)

}paico
jk pa

icoJ
jk ´ ajka

J
jk}S ď ε˚jk _ ε, (35)

min
ΠrPP˘

} pAico
k Πr ´Ak}F ď r1{2pε˚rk _ εq, (36)

simultaneously for all 1 ď j ď r and 1 ď k ď N , within
m ě mε ` 3 iterations, where ε˚jk “ 6αN´1

˚ R
˚pidealq
jk,φ˚0

and
mε “ rlogplogpε{ψ0q{ log ρ˚q{ log 2s for ε˚r2 ď ε ă ψ0.
Moreover, (34), (35) and (36) hold in the same event within
mεr2 ` 4 iterations for ε “ 6α1´N

˚

?
r ´ 1pλ1{λrq

śN
k“2 ε

˚
rk.

If Algorithm 3 (CPCA) is used as initialization, then PtΩ0u ě

1´
řN
k“1 e

´2dk for ψ0 “ 6rλ1δ`σp
?
dS`

a

d{dSqs{λmin,˘.

Proof of Theorem 6. Let ψ0,` “ ψ0 and define sequentially

φ˚m,k´1 “ pN ´ 1qα´1
˚

?
2r max

1ď`ăN
ψm,k´`,

ψm,k “

´

6α1´N
˚

?
r ´ 1pλ1{λjq

śN´1
`“1 ψm,k´`

¯

_

´

6α1´N
˚ R

˚pidealq
jk,φ˚m,k´1

¯

, (62)

k “ 1, . . . , N , m “ 1, 2, . . . By induction, (33) gives ψm,k ď
ψm´1,k ď ψ0. Here and in the sequel, we take the convention
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that pm, `q “ pm ´ 1, N ` `q with the subscript pm, `q, and
that ˆ`pθ

pmq
j,` “ ˆN``pθ

pm´1q
j,N`` for any estimator pθ

pmq
jk . Let

Ω˚m,k´1 “ X
N´1
`“1 Ωm,k´` (63)

with Ωm,` “
 

maxhďr
`

2 ´ 2|aJh`pa
pmq
h` |

˘1{2
ď ψm,`

(

. Let
pg
pmq
j` “ pb

pmq
j` {}

pb
pmq
j` }2, and gj` “ bj`{}bj`}2. By (48), (49)

and (50) in the proof of Theorem 3,
›

›

pg
pmq
j` ´ gj`

›

›

2
ď pψm,`{α˚q

?
2r,

ˇ

ˇaJj`pg
pmq
j`

ˇ

ˇ ě α˚, (64)

in Ωm,` with the α˚ in (32).
Given tpapmqj,k´`, j P rrs, ` P rN ´ 1su, the m-th iteration

for tensor mode k produces estimates papmqjk as the normalized
version of T ˆk´N`1

`“k´1
pb
pmqJ
j,` . Because T “

řr
j“1 λj b

N
k“1

ajk `Ψ, the “noiseless” version of this update is given by

T ˆ`PrNsztku b
J
j` “ λjajk `Ψˆ`PrNsztku b

J
j` P Rdk . (65)

Similarly, for any 1 ď j ď r,

T ˆk´N`1
`“k´1

pb
pmqJ
j,` “

r
ÿ

h“1

rλh,jahk `Ψˆk´N`1
`“k´1

pb
pmqJ
j,` P Rdk ,

where rλh,j “ λh
śN´1
`“1 aJh,k´`

pb
pmq
j,k´`. Let

rφm,` “ ψm,`{
`

a

1´ δmax ´
?
rψm,`

˘

`
.

By the definition of α˚ in (32) and the condition ψm,` ď ψ0,
rφm,`{p1 ´ rφm,`q ď ψm,`{α˚. Thus, by the arguments in the
proof of Proposition 6,

`

2´ 2|aJjkpa
pmq
jk |

˘1{2
(66)

ď

?
2
›

›Ψˆk´N`1
`“k´1 pg

pmqJ
j,`

›

›

2

λj
śN´1
`“1 aJj,k´`pg

pmq
j,k´`

`
λ1

a

2p1` δkq

λj{
?
r ´ 1

N´1
ź

`“1

ψm,k´`
α˚

in Ω˚m,k´1. As Ψˆk´N`1
`“k´1 pg

pmqJ
j,` is linear in each pg

pmq
j` ,

›

›Ψˆk´N`1
`“k´1 pg

pmqJ
j,`

›

›

2

ď pN ´ 1qmax
`ăN

}pg
pmq
j,k´` ´ gj,k´`}2}∆}

`
›

›Ψˆ`PrNsztku g
J
j`

›

›

2
,

where }∆} “ maxv`PSd`´1@`

`

Ψ ˆN`“1 v
J
`

˘

. As we also have
›

›Ψˆk´N`1
`“k´1 pg

pmqJ
j,`

›

›

2
ď }∆}, (64) yields

›

›Ψˆk´N`1
`“k´1 pg

pmqJ
j,`

›

›

2
(67)

ď min
 

}∆}, φ˚m,k´1}∆} `
›

›Ψˆ`PrNsztku g
J
j`

›

›

2

(

in Ω˚m,k´1, in view of the definition of φ˚m,k´1 in (62). By the
Sudakov-Fernique and Gaussian concentration inequalities,

P

˜

}∆}{σ ą
N
ÿ

`“1

a

d` ` x

¸

ď e´x
2
{2

and Pt}Ψˆ`PrNsztku gJj`}2 ą
?
dk ` xu ď e´x

2
{2. Thus,

}∆} ď σ
řN
`“1

a

d` ` σ
a

2dN ,
›

›Ψˆ`PrNsztku g
J
j`

›

›

2
ď p1`

?
2qσ

a

dk

in an event Ω1 with at least probability 1´
řN
k“1 e

´dk´e´dN .
Consequently, by (67), in Ω1 X Ω˚m,k´1,

›

›Ψˆk´N`1
`“k´1 pg

pmqJ
j,`

›

›

2

L`

λj
śN´1
`“1 a

J
j,k´`pg

pmq
j,k´`

˘

ď p1`
?

2qσ
`

d
1{2
k ` pφ˚m,k´1 ^ 1q

řN
`“1d

1{2
`

˘

α1´N
˚ {λj

ď
?

8α1´N
˚ R

˚pidealq
jk,φ˚m,k´1

(68)

Substituting (68) into (66), we have, in the event Ω1XΩm,k´1,
`

2´ 2|aJjkpa
pmq
jk |

˘1{2
ď ψm,j,k (69)

with

ψm,j,k “ max

"6R
˚pidealq
jk,φ˚m,k´1

αN´1
˚

,
6λ1

?
r ´ 1

λjα
N´1
˚

N´1
ź

`“1

ψm,k´`

*

.

Consequently, Ωm,k Ă Ω1XΩ˚m,k´1 and the upper bound for
required number of iterations follows from the same (but much
simpler) argument in Steps 2 and 3 of the proof of Theorem 3.

As for the estimation of λj , similar to (66), we can obtain
ˇ

ˇpλ
pmq
j ´ λj

ˇ

ˇ

ď
›

›Ψˆ`PrNs pb
pmqJ
j`

›

›

2
` pr ´ 1qλ1

N
ź

`“1

φm,` `
N
ÿ

`“1

φm,`. (70)

Then, employing similar procedures as above, we can prove
the bound (34).
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