
   
 

   
   
Page 1 of 33 
 

Measuring complex refractive index through deep-
learning-enabled optical reflectometry  

Ziyang Wang†, Yuxuan Cosmi Lin‡, 1, *, Kunyan Zhang₴, Wenjing Wu† ,%, Shengxi Huang†,* 

†. Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, 

USA 

‡. Department of Electrical Engineering and Computer Sciences, University of California, 

Berkeley, CA 94720, USA 

₴. Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 

16802, USA 

%. Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX 

77005, USA 

1. Z.W. and Y.C.L. should be considered joint first author 

  



   
 

   
   
Page 2 of 33 
 

ABSTRACT  

Optical spectroscopy is indispensable for research and development in nanoscience and 

nanotechnology, microelectronics, energy, and advanced manufacturing. Advanced optical 

spectroscopy tools often require both specifically designed high-end instrumentation and intricate 

data analysis techniques. Beyond the common analytical tools, deep learning methods are well 

suited for interpreting high-dimensional and complicated spectroscopy data. They offer great 

opportunities to extract subtle and deep information about optical properties of materials with 

simpler optical setups, which would otherwise require sophisticated instrumentation. In this work, 

we propose a computational ellipsometry approach based on a conventional tabletop optical 

microscope and a deep learning model called ReflectoNet. Without any prior knowledge about the 

multilayer substrates, ReflectoNet can predict the complex refractive indices of thin films and 2D 

materials on top of these nontrivial substrates from experimentally measured optical reflectance 

spectra with high accuracies. This task was not feasible previously with traditional reflectometry 

or ellipsometry methods. Fundamental physical principles, such as the Kramers-Kronig relations, 

are spontaneously learned by the model without any further training. This approach enables in-

operando optical characterization of functional materials and 2D materials within complex 

photonic structures or optoelectronic devices. 

KEYWORDS: Convolutional neural network, refractive index, ellipsometry, Kramers-Kronig 

relation, optical thin films  
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INTRODUCTION 

Complex refractive indices are among the most fundamental properties of materials. They act as 

optical “fingerprints” of materials and contain rich information about light-matter interaction, such 

as optical interband/intraband transitions, quantum confined state transitions, phonon polaritons, 

and exciton polaritons. They are also essential material properties in designing photonic and 

optoelectronic devices.[1–6] In 2D materials, refractive indices disclose the unique and tunable 

properties that make them promising candidates for a range of applications such as photodetectors, 

light-emitting diodes, and biosensors, with enhanced performance and efficiency.[7–10] 

Ellipsometry is a widely used technique that measures the refractive index of thin films and 2D 

materials.[11–13] It first measures the changes in polarization in terms of the amplitude ratio Ψ 

and phase difference Δ (Figure S1). The measured Ψ and Δ are related to the optical reflectance 

ratio between p and s polarizations,  𝑟𝑝

𝑟𝑠
= tan(𝛹) 𝑒𝑖𝛥, which is a function of the thickness and 

complex refractive index. Ψ and Δ will be fitted by a model that describes the multilayer sample, 

where the refractive index of the target layer consists of multiple oscillators. Therefore, the 

refractive indices of the target layer can be obtained (Figure S2). The analyses of ellipsometry are 

commonly done by commercial software such as WVASE and CompleteEASE.[14,15] Recently, 

many advances in ellipsometry accelerated the characterization of 2D materials and disclosed the 

relationship between ellipsometry spectra and different optical properties.[16–19] Despite its wide 

use, ellipsometry and its analysis technique still face three main challenges. First, selecting a 
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proper model requires intervention by human experts due to intensive parameter tuning, including 

the selection of type and number of oscillators.[20] Further, the substrate structures have to be 

simple and known. However, in many practical scenarios, the substrate structures are inevitably 

more complicated with partially unknown information. Finally, the optical setup for ellipsometry 

demands a large incident angle which requires special instrumentation and is not directly 

implementable on a common reflection optical microscope setup. Previous studies have made 

efforts to simplify the process of parameter selections but were still limited by the requirements of 

simple and well-defined substrate structures, and unconventional optical setups.[21–23] 

In this work, we developed a deep learning method that extracts complex refractive indices of 

thin films, including 2D materials, placed on unknown and arbitrary multilayer substrates from 

optical reflectance spectra measured on an optical microscope. Unlike traditional reflectometry or 

ellipsometry, our approach does not require extensive fitting and is able to tackle all the three 

challenges mentioned above. First, our framework obtains refractive indices of thin films and 2D 

materials without solving inverse functions or tuning parameters. Second, our method can be used 

in complex substrate structures without knowing the structure parameters or materials of 

substrates. Moreover, our model only takes reflectance spectra as the inputs, which can be easily 

integrated with optical microscopes (Figure 1a). Compared to ellipsometry analysis software, our 

algorithm can directly obtain refractive indices of thin films and 2D materials without intervention 

or tunning by human experts and our method can be used without inputting the parameters of 

substrates. Specifically, we designed an encoder-decoder convolutional neural network named 
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ReflectoNet that takes reflectance spectra as the inputs and predicts the corresponding refractive 

indices (Figure 1a, b, c). To train the neural network, we generated a dataset using over 400 

materials with density functional theory (DFT) simulated refractive indices and 450,000 multilayer 

stack structures. With an independently generated dataset of testing materials and multilayer stack 

structures, the predictions made by ReflectoNet reach an overall median Pearson’s correlation 

coefficient of 0.88. We further validated our method using experimentally measured reflectance 

of real 2D materials on different substates. We also showed that a more complex version of 

ReflectoNet, called C-ReflectoNet, can deal with even more complicated substrate structures. 

Finally, we found that both ReflectoNet and C-ReflectoNet spontaneously learn the Kramers-

Kronig (KK) relations, a fundamental physical principle governing the light-matter interaction, 

without any extra training.[24] ReflectoNet will significantly accelerate the in-operando 

characterization of unknown materials, including 2D materials, in complex photonic structures. 

Our deep neural network approach can also be extended to extract other material properties and be 

applied to various spectroscopic data. 
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Figure 1. Overall workflow of refractive index prediction. (a) Input of 5 pairs of reflectance 

spectra measured with and without the target layers. (b) Schematic illustration of the encoder-

decoder convolutional neural network, ReflectoNet, with multiple convolutional layers (blue 

rectangles), four down-sampling layers (red arrows), and four up-sampling layers (green arrows). 

The inset shows a schematic of the multilayer stack structure used in this study. (c) Prediction of 

the real part, n, and the imaginary part, k, of refractive indices in dash curves and their 

corresponding ground truths in solid curves. 

 

RESULTS AND DISCUSSION 

The test structure is a multilayer stack consisting of a thin film or 2D material of interest (target 

layer), a relatively transparent dielectric layer, and a thick substrate layer (illustrated in the inset 

of Figure 1b). The thicknesses and the complex refractive indices of the dielectric and the substrate 
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layers are generated randomly and “unknown” to the training model. The input data of the learning 

problem are 5 pairs of reflectance spectra measured or simulated from 5 different multilayer stacks 

with the same material (the same refractive indices) in the target layer, but different materials in 

both the dielectric layer and the substrate layer. In addition, the thicknesses of the target layer and 

dielectric layer can be different (see Table S1 for details). Each pair of reflectance spectra contains 

two reflectance spectra for the same multilayer stack structure, but one with the target layer and 

the other without the target layer. Figure 1a shows one example of the input data. The outputs of 

the learning problem are complex refractive indices of the target material as a function of the 

incident light wavelength (Figure 1c). The spectral range selected in this study is the visible range 

(400 nm – 800 nm), but the method can be readily applied to any spectral range of interest. The 

model is based on an encoder-decoder convolutional neural network named ReflectoNet, as shown 

in Figure 1b. The downsampling (encoder) and upsampling (decoder) convolutional layers are 

symmetric. This structure is designed to better extract spectroscopic features in the input data and 

produce same-dimensional refractive index spectra as the outputs. Details about ReflectoNet can 

be found in the Experimental Section, Figure S3, and Table S2. 

Deep learning models typically require large training datasets. However, producing training data 

in large quantities through experiments is extremely time-consuming. To address this issue, the 

datasets (including training, validation, and testing) used in this study were numerically simulated 

(Figure S4). The refractive indices of the target layer were extracted from the C2DB database,[25–

27] which are theoretically simulated by the DFT with GW approximation and the Bethe-Salpeter 
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equations (BSE).[28] 400 different materials from C2DB were used and further augmented 

through a transformation satisfying the KK relations. The refractive indices of the dielectric and 

substrate layers were generated using the Sellmeier formula.[29] The multilayer stack structures 

(materials and thicknesses) were randomly generated, and the optical reflectance spectra were 

computed using the transfer matrix method.[30] With the help of the numerical database and 

additional data augmentation approaches (see the Experimental Section for additional information), 

reflectance spectra of 450,000 different multilayer stacks were generated and grouped into 90,000 

input-output pairs: 10 reflectance spectra of 5 multilayer stack structures as each input data, and 

the refractive indices of materials in the target layer as the ground truth of the corresponding 

predictions (“labels”). 95% of the input-output pairs were used as the training dataset, and 5% 

were used as the validation dataset. Additionally, we generated an independent testing dataset that 

contains 10,000 multilayer stack structures using completely different target layer materials 

(“unseen” by the learning model). To train the model, we developed a loss function that combines 

the mean square error (MSE) and 1 minus Pearson's correlation coefficient (1−PCC). 1−PCC 

ensures the fast convergence of the positions, shapes of the characteristic peaks, and other relative 

spectral features. MSE minimizes the discrepancy of the absolute values at each wavelength. An 

Adam optimizer with an exponential learning rate decay scheduler was adapted during the 

training.[31] Details about the convolutional neural network architecture, the loss function, and 

the training procedure are described in the Experimental Section. 
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In order to measure the prediction accuracy of the fully trained ReflectoNet, we introduced two 

metrics: the root mean square percentage score (RMSPS) and Pearson's correlation coefficient 

(PCC). RMSPS is sensitive to the absolute difference between the ground truth and the prediction, 

and is in the range of −∞ to 1, where 1 corresponds to perfect prediction and a lower value means 

less accurate prediction. PCC measures the similarities of the shapes between the ground truth and 

the prediction, and is in the range of −1 to 1, where 1 corresponds to perfect prediction. Details 

about these two metrics are discussed in the Experimental Section. Figure 2a shows examples of 

the predicted complex refractive indices. These examples are selected randomly from each dataset. 

The red curves are the real part n, and the green curves are the imaginary part k. The predicted 

curves (dashed) match very well with the ground truth (solid), both in terms of spectral features 

and absolute values. Figure 2b summarizes the RMSPS and the PCC of the training, the validation, 

and the testing datasets. Our trained ReflectoNet achieves a median RMSPS of 0.86 and a median 

PCC of 0.93 on the training set, and a median RMSPS of 0.83 and a median PCC of 0.91 on the 

validation set. Both the RMSPS and the PCC are similar on training and validation sets, indicating 

a good convergence of training without overfitting. Both training and validation sets reach the 

highest RMSPS of 0.97 and the highest PCC of 0.99.  

With the testing set generated independently, a median RMSPS of 0.81 and a median PCC of 

0.88 are reached, as shown in the last panel in Figure 2b. The highest RMSPS and PCC for the 

testing set are 0.95 and 0.99, respectively. These scores are only slightly lower than those on 

training and validation sets, confirming the fidelity and robustness of the predictions made by 
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ReflectoNet.

 

Figure 2. Predictions of complex refractive indices made by ReflectoNet on the training, the 

validation, and the testing sets. (a) Examples of the predicted n and k in dash curves and their 

corresponding ground truths in solid curves tested on the training (top row), the validation (middle 

row), and the testing sets (bottom row). (b) Box plots showing 0, 25, 50, 75, and 100th percentiles 

of the RMSPS (blue) and the PCC (red) for the training, the validation, and the testing sets. 

We further demonstrate that ReflectoNet could make predictions with reasonable accuracies 

from experimentally measured data, even though the model is trained on numerically simulated 

data. 2D material thin flakes, including MoS2, MoSe2, WS2, and WSe2 with different thicknesses, 

were exfoliated onto two different substrates: bare silicon and 300 nm SiO2/silicon substrates. 
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Although our model can be applied to all kinds of substrate structures, we chose these two 

substrates because they are the most commonly used substrates for 2D material studies. All of the 

four 2D materials, even the simulated ones, are not seen by ReflectoNet during training. In our 

experiment, MoS2 flakes with thicknesses of 5 nm, 10 nm, and 26 nm on bare silicon substrates 

and MoS2 flakes with thicknesses of 3 nm and 9 nm on 300 nm SiO2/Si substrates were prepared. 

The thicknesses of the target flake were confirmed by atomic force microscopy. The corresponding 

reflectance spectra and optical microscopic images are shown in Figure 3a and b. We also 

measured the reflectance spectra of empty substrates without MoS2 flakes (without the target 

layer), as shown in the red curves in Figure 3a. Similarly, we prepared testing structures and 

measured reflectance spectra for additional MoS2 samples and for MoSe2, WS2, and WSe2 (Figure 

S5 – S8). The reflectance spectra of these samples were taken by a benchtop optical microscope 

coupled with a broadband light source and a spectrometer, and were fed into the fully trained 

ReflectoNet for the prediction of the complex refractive indices. ReflectoNet predicts both n and 

k as shown in dashed curves in Figure 3c and Figure 3d. For all the four 2D materials, the 

predicted n and k (dashed curves) match reasonably well with the ground truth (solid curves) in 

terms of characteristic peaks, trends, and absolute index values. The prediction accuracies for the 

experimental results are slightly lower than those for the numerically generated data, possibly 

because there are discrepancies in the data distributions (trends and absolute index ranges) between 

the experimental dataset and the numerically generated dataset. To alleviate this issue, we have 

developed an approach to augment and transform the refractive indices from the simulated 
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database to match the distributions with the experimental dataset better (detailed discussion can be 

found in the Experimental Section). These results indicate that our ReflectoNet trained with 

numerically generated data can achieve high performance in predicting real experimental results. 

 



   
 

   
   
Page 13 of 33 
 

Figure 3. Predictions of complex refractive indices on experimentally measured reflectance 

spectra for exfoliated 2D materials. (a) 5 pairs of reflectance spectra of different multilayer stack 

structures with and without the exfoliated MoS2 as the target layer. (b) The corresponding optical 

microscopic images of MoS2 with different thicknesses, and on bare silicon (first three rows) and 

on 300 nm SiO2/Si substrates (bottom two rows). (c) Predictions of n and k in dash curves and 

their corresponding ground truths in solid curves for the MoS2 samples. (d) Predictions of n and k 

in dash curves and their corresponding ground truths in solid curves for MoSe2, WS2, and WSe2 

samples. 

 

A unique advantage of ReflectoNet is that it can extract complex refractive indices of a thin film 

or 2D material placed on top of a nontrivial substrate with unknown information. In the previous 

section, we trained ReflectoNet with simple multilayer stack structures (one target material layer, 

none or one dielectric layer, and one substrate layer), denoted as S-structure. However, 2D 

materials in photonic and electronic devices are sometimes covered by passivation or native oxide 

layers. Also, 2D materials are often placed on specifically designed, more complicated multilayer 

dielectric structures. To consider more practical applications, we trained another ReflectoNet with 

the target material layers covered by top dielectrics and placed them on more complex multilayer 

stack structures. We call this new model complex-ReflectoNet, or C-ReflectoNet in short. The 

detailed stack structures for C-ReflectoNet, called C-structure, is shown in Table S1. We generated 
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a new dataset numerically with 450,000 multilayer stacks with 0 or 1 layer of dielectrics above the 

target material layer (top dielectric stack, TDS) and 0 to 3 layers of dielectrics under the target 

material layer (bottom dielectric stack, BDS). The complex multilayer stack structures with TDS, 

target layer, BDS, and substrate are illustrated in Figure 4a, and details are described in the 

Experimental Section. We obtained C-ReflectoNet by using the same training setup as previously 

described for ReflectoNet in the Experimental Section. C-ReflectoNet achieves high performance 

in predicting refractive indices of thin films and 2D materials from optical reflectance spectra when 

placed on complex, unknown multilayer stack structures. Predictions are made by both 

ReflectoNet and C-ReflectoNet on a series of newly generated testing sets with the materials of 

the target layers “unseen” by the models. In these new testing sets, the level of complexities of the 

multilayer stack structures are varied, and the prediction results are summarized in Figure 4. 

First, the performance of ReflectoNet and C-ReflectoNet for the predictions of testing datasets 

with different levels of complexities are compared, as shown in Figure 4b. Again, ReflectoNet is 

trained by an S-structure training set, and C-ReflectoNet is trained by a C-structure training set. 

Here we tested ReflectoNet on the S-structure testing set, denoted as SS (simple on simple) in 

Figure 4b; and test C-ReflectoNet on both the S-structure and the C-structure testing set, denoted 

as CS (complex on simple) and CC (complex on complex), respectively. We noticed that the 

median of RMSPS is slightly improved from 0.81 to 0.84, and the median of PCC is slightly 

improved from 0.88 to 0.89 when the testing scenario is changed from SS to CC, whereas the 

variations of both RMSPS and PCC are increased. These results indicate improved overall scores 
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of the prediction accuracies, but at the same time, the accuracies also have broader distributions. 

On the other hand, both RMSPS and PCC are dropped in the CS testing scenario. In summary, the 

performances of C-ReflectoNet (CC), ReflectoNet (SS), and C-ReflectoNet with simpler 

structures (CS) can be ordered as CC > SS > CS. To better visualize the trend, we defined the 

wavelength-dependent MSEs between the test results of certain testing scenarios (T = SS, CC, or 

CS) and the ground truth (G) values of n and k, denoted as MSE(T, G). As shown in Figure 4d 

and Figure 4e, in predicting both n and k, MSE(CC, G) is the smallest across all wavelengths, 

indicating a better performance of CC. Figure 4g, h, j, k are two examples of the predicted n and 

k as a function of wavelength by SS, CC, and CS compared with the ground truth. The differences 

in performance with different training structures show that our framework can work even better in 

predicting refractive indices of thin films and 2D materials in more complex stack structures than 

in simple ones.  

Further, we investigated the impact of the level of complexities of the multilayer dielectric 

structures on the prediction accuracies made by C-ReflectoNet, and the key metrics are 

summarized in Figure 4c. We systematically varied the level of complexities in the testing dataset, 

including the number of layers in TDS, the number of layers in BDS, the number of different types 

of materials in BDS in each group (5 pairs of the reflectance spectra) of the input data, and the 

number of different types of materials in the substrate layer in each group of the input data. The 

key observations are: (1) RMSPS and PCC are less affected by the number of layers in TDS (TDS 

# 1, 0 in Figure 4c); (2) the performance of C-ReflectoNet degrades only slightly (the median 
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RMSPS and the median PCC decrease from 0.83 to 0.8 and from 0.9 to 0.87, respectively) when 

the number of layers in BDS decreases from 3 to 1 (BDS # 3, 2, 1 in Figure 4c); (3) a significant 

drop of both the median RMSPS and the median PCC is observed when the number of material 

types in the bulk substrate in each group of the input data is decreased from 5 to 1 (BDS # 1 to 1’ 

in Figure 4c): the median RMSPS and the median PCC drop from 0.8 to 0.76 and from 0.87 to 

0.84, respectively; (4) when the number of different types of materials in BDS in each group of 

the input data decreases from 5 to 1 (BDS # 1’ to BDS variation 1 in Figure 4c), the performance 

of C-ReflectoNet also decreases slightly, with the median RMSPS changing from 0.76 to 0.75, 

and the median PCC changing from 0.84 to 0.81; and (5) a much more severe performance 

degradation takes place when no BDS is present in the structure (the median RMSPS and the 

median PCC decrease from 0.75 to 0.69 and from 0.81 to 0.8, respectively; BDS variation 0 in 

Figure 4c). In summary, the prediction framework shows higher prediction accuracies for more 

complex multilayer stack structures, probably because the model is given access to a much wider 

hyperspace of variables in this physical problem in the training stage. This aspect is fundamentally 

more advantageous than traditional methods such as optical ellipsometry with deterministic model 

fittings, which can only extract the refractive indices of a thin film on a known simple substrate 

structure. Our method can also be directly extended to extract refractive indices of anisotropic 

materials. We simply measure the reflectance spectra along different axes of the anisotropic 

material by rotating the material in the plane. We thus envision that our approach can be further 
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developed to predict optical properties of materials in-operando when they are integrated into 

complex photonic structures and electronic devices.  

 

Figure 4. Predictions of complex refractive indices on complex multilayer stack structures, 

and the learning of the KK-relations. (a) Schematic of the C-structure with TDS, target layer, 

BDS, and substrate. (b) Box plots showing 0, 25, 50, 75, and 100th percentiles of RMSPS and PCC 

performances using different models and testing sets. The associated table summarizes the key 

parameters in each testing scenario. SS (simple on simple) is ReflectoNet tested on S-structure; 

CC (complex on complex) is C-ReflectoNet tested on C-structure; and CS (complex on simple) is 

C-ReflectoNet tested on S-structure. (c) Box plots showing 0, 25, 50, 75, and 100th percentiles of 
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RMSPS and PCC performances using C-ReflectoNet and tested on testing sets with structures of 

different levels of complexities. The associated table summarizes the key parameters of different 

test structures. TDS # is the number of the top dielectric layers. BDS # is the number of the bottom 

dielectric layers. BDS # 1’ is test structures with 1 dielectric layer in BDS, 5 types of material in 

BDS and 1 type of material in substrate. BDS variation is the number of different types of materials 

in BDS in each group of the input data. The testing structures are ordered by decreasing 

complexities from left to right. (d) Wavelength-dependent MSEs of ground truth n and model-

predicted n for SS, CC, and CS. (e) Wavelength-dependent MSEs of ground truth k and model-

predicted k for SS, CC, and CS. (f) Wavelength-dependent MSEs between KK-relation-calculated 

k and model-predicted k by SS, CC, and CS. (g) Predicted n as a function of wavelength by SS, 

CC, and CS compared with the ground truth of test material #1. (h) Predicted k as a function of 

wavelength by SS, CC, and CS compared with the ground truth of test material #1. (i) KK-relation-

calculated k compared with model-predicted k of test material #1. The other curves are the same 

as SS, CC, and CS in (h). (j) Predicted n as a function of wavelength by SS, CC, and CS compared 

with the ground truth of test material #2. (k) Predicted k as a function of wavelength by SS, CC, 

and CS compared with the ground truth of test material #2. (l) KK-relation-calculated k compared 

with model-predicted k of test material #2. The other curves are the same SS, CC, and CS in (k). 
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Finally, we demonstrated that our ReflectoNet was capable of learning not only the specific data 

but also the inherent physics buried in the data. The real and imaginary parts of the complex 

refractive indices of materials are governed by the KK relation, which results from the causality 

of electromagnetism. Both ReflectoNet and C-ReflectoNet spontaneously learn the KK relations 

between n and k from the training dataset and the n and k values predicted by our models 

automatically satisfy the KK relations. We used the KK relations to compute k values from model-

predicted n values. Details on the calculations of refractive indices using the KK relations are 

described in the Experimental Section. Figure 4f shows that the MSEs between the model-

predicted k values and the KK-relation-calculated k values are reasonably small in the entire 

spectral range, denoted as MSE(T, KK(T)), where T stands for SS, CS, or CC. All three MSEs are 

lower at the center wavelength (600 nm) and higher at the two boundaries of the given spectral 

range. In Figure 4e, we plotted MSE(KK(G), G) for k values, where KK(G) represents the k values 

computed from the ground truth n values through the KK relations, as the yellow solid curve. 

MSE(KK(G), G) has the same trend. The pattern is caused by the integrals in the KK relations, 

which require the n values for the entire spectral range even for computing any single wavelength 

k value. Therefore, extrapolation outside the given spectral range needs to be made, and the 

computed k values are inevitably inaccurate near the boundaries of the given spectral range. Figure 

4i and Figure 4l are two material examples (the y-axes are shifted for each testing scenario for 

visual clarity). The predicted k values and the KK-relation-calculated k values match reasonably 

well.  
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Moreover, ReflectoNet and C-ReflectoNet can make predictions about n and k with better 

accuracies than the KK-relation-computed values around the boundaries of the given spectral 

range. In Figure 4e, compared to MSE(KK(G), G), all the model-predicted k values (SS, CS, CC) 

have smaller MSEs around both boundaries of the given spectral range. Both models can better 

learn the relationships between n and k from optical reflectance spectra, outperforming the KK-

relation-calculated values, especially when the provided spectral range is limited.  

 

CONCLUSION 

In summary, we developed a computational ellipsometry approach based on a deep learning 

model that extracts complex refractive indices of thin films and 2D materials on complicated, 

unknown substrates with simplified optical setups. Specifically, we designed an encoder-decoder 

convolutional neural network named ReflectoNet that takes the reflectance spectra measured on a 

desktop optical microscope as the inputs and predicts the corresponding refractive indices of the 

target thin films and 2D materials. The model is trained on numerically generated data sets but can 

be used for experimentally measured data. We further demonstrated that the approach could extract 

refractive indices of materials in relatively complex multilayer material stacks, and the model can 

spontaneously learn the underlying physical principles, the Kramers-Kronig relations. This method 

can readily be used for in-operando optical characterizations of functional materials and 2D 

materials in complex photonic devices and can be extended to other spectroscopic characterization 
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applications. Our work is a salient demonstration showing that machine learning can simplify 

material characterization: using simple characterization and judiciously developed machine 

learning models, we can obtain material properties that traditionally require complicated 

instrumentation. 

 

EXPERIMENTAL SECTION 

Database extraction and preparation 

We extracted the optical properties of 2D materials from a computational 2D material database 

(C2DB).[26,27] Firstly, we developed a web crawler to download optical polarizabilities of over 

400 DFT simulated materials. We used the polarizability along x in energy level range 0 to 10 eV, 

which is set in the database for further calculations. To convert the polarizabilities into refractive 

indices, we used the equation as follows: 

𝜂(𝜔) = √𝜒(𝜔) + 1 (1) 

Here, the polarizability 𝜒(𝜔) and refractive index 𝜂(𝜔) are complex numbers at wavelength 𝜔.  

 

Reflectance calculation with data augmentation 

We randomly generated stacks of materials. With randomly generated structures of thin films 

and 2D materials placed on substrates, we used the transfer matrix method implemented in 

MATLAB to calculate the reflectance spectra from the refractive indices of the materials.[30] 
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Specifically, in the multilayer stack structures, dielectric layers and the target thin film layer are 

treated differently. For the target thin film layer, we augmented the refractive indices calculated 

from C2DB using the following transformations:[32]  

𝜖1
′ (𝜔) = 𝜖1(𝜔) × 𝑐1 + 𝑐2 (2)

𝜖2
′ (𝜔) = 𝜖2(𝜔) × 𝑐1 (3)

 

Here, 𝜖1 and 𝜖2 are real and imaginary parts of complex dielectric function in the range of 400 

nm to 800 nm. The complex dielectric functions are related to the refractive index by 𝜖1(𝜔) =

𝑛(𝜔)2 − 𝑘(𝜔)2 and 𝜖2(𝜔) = 2𝑛(𝜔) ∗ 𝑘(𝜔). Using different 𝑐1 and 𝑐2, we were able to generate 

more materials. Such transformations satisfy the KK relations, and detailed proof can be found in 

Supporting Information. The ranges of 𝑐1  and 𝑐2  were chosen to make the DFT simulated 

materials better reflect the distributions of complex refractive indices of real 2D materials. The 

thicknesses of the target layers are varied in the range of 0.3 – 20 nm (Table S1). 

To generate the transparent materials (k = 0) in the dielectric layers, we used the Sellmeier 

formula as follows:[29] 

𝑛(𝜆) = √1 +
𝑐1 × 𝜆2

𝜆2 − 𝑐2
2 +

𝑐3 × 𝜆2

𝜆2 − 𝑐4
2 +

𝑐5 × 𝜆2

𝜆2 − 𝑐6
2

(4)

𝑘(𝜆) = 0 (5)

 

Here, the 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 and 𝑐6 are variables for different materials, and 𝜆 is wavelength in 

micrometers. For example, the constants for fused silica are 𝑐1 = 0.696, 𝑐2 = 0.068, 𝑐3 = 0.408, 

𝑐4 = 0.116, 𝑐5 = 0.897 and 𝑐6 = 9.896. We set 𝑐1 = 0.5 − 2, 𝑐2 = 0.004 − 0.0095, 𝑐3 = 0 −

0.7, 𝑐4 = 0.08 − 0.16 , 𝑐5 = 0.8 − 0.68 and 𝑐6 = 9 − 16 with uniform distribution, according to 
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various dielectric materials in an experimental refractive index database.[33] The thicknesses of 

dielectric materials are in the range of 10 – 500 nm. 

As shown in Figure 4a, the dielectric materials placed on thin film are named TDS, and 

dielectric materials placed under thin film are named BDS. There is always one layer of thick 

dielectric substrate with infinite thickness named substrate. Such a thick layer is necessary for 

realistic experimental samples but needs to be treated separately in the transfer matrix method 

calculation because the constraint for phase coherence needs to be removed.  

 

Neural network model and training procedure 

The input data dimension of ReflectoNet is 10 × 400. There are 10 channels of 1D vectors 

with 400 features in each channel, representing 5 pairs of reflectance spectra, in the wavelength 

range of 400 nm to 800 nm, of multilayer stack structures with and without the target layer. The 

output data dimension of the network is 2 × 400. These 2 channels are 1D vectors with the same 

length as the input vectors, representing n and k, respectively, of the target layer thin film material 

in the same wavelength range. As shown in Figure 1, Figure S3, and Table S2, the input first 

goes through a 1D convolutional layer with 10 input channels, 64 output channels, the kernel size 

of 3, the stride of 1, and the padding of 1 to maintain the same feature dimensions. Then, there is 

one 1D batch normalization layer and one rectified linear unit (ReLU) activation layer.[34] There 

are two more 1D convolutional layers with the same input and output channel numbers followed 
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by 1D batch normalization and ReLU. These three 1D convolutional layers form a three-

convolutional-layers group with the input dimension c × f and the output dimension 2c × f, where 

c is the number of channels and f is the number of features. Then, one 1D max pooling layer with 

the kernel size of 2 and the stride of 2 is applied to reduce the feature dimensions by half. Including 

the first convolutional layer group followed by max pooling, there are four of such three-

convolutional-layer groups followed by a max pooling layer with doubled channels and halved 

features each time. After the encoder section, there are 512 channels with 50 features in each 

channel. Then, there is a bottleneck layer with the output of 1024 channels with 25 features in each 

channel, followed by one dropout layer with a dropout rate of 0.5. In the decoder section, there are 

four up-sample layers followed by three-convolutional-layers groups with input 2c × f and output 

c × f. Similar to the encoder section, each three-convolutional-layers group consists of 3 1D 

convolutional layers: the first 1D convolutional layer is with the number of output channels half 

of the number of the input channels, the kernel size of 3, the stride of 1, and the padding of 1 

followed by one 1D batch normalization layer and ReLU; and 2nd and 3rd 1D convolutional layers 

are with the input and output channels the same size, followed by 1D batch normalization and 

ReLU. After the decoder section, one convolutional layer with 2 output channels, the kernel size 

of 1, the stride of 1, and the padding of 0 is applied as the output layer.  

For the training of ReflectoNet and C-ReflectoNet, we generated reflectance spectra pairs of 

450,000 multilayer stack structures with and without the target layer. We combined every 5 pairs 

of reflectance spectra as an input group. There are 90,000 input data groups in total. We randomly 
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split the dataset into training and validation sets and generated a testing set independently with thin 

films and 2D materials unseen in the other datasets. We also added gaussian noise to the input 

reflectance spectra in training to prevent overfitting. Using the training set, we trained the network 

with the Adam optimizer and the exponential learning rate decay scheduler till it converged 

(Figure S9, S10).[31] We chose the MSE loss combined with 1−PCC implemented by the cosine 

similarity between the mean-centered prediction and ground truth as the loss function, described 

as following: [35] 

𝑙𝑜𝑠𝑠(𝑌, 𝑌̂) =
1

𝑛
∑(

1

2
(𝑌𝑛𝑖 − 𝑌̂𝑛𝑖)

2
+

1

2
(𝑌𝑘𝑖 − 𝑌̂𝑘𝑖)

2
)

+10 × (1 −
∑(𝑌𝑛𝑖−𝜇𝑛)(𝑌̂𝑛𝑖 − 𝜇̂𝑛)

√∑(𝑌𝑛𝑖 − 𝜇𝑛)2 √∑(𝑌̂𝑛𝑖 − 𝜇̂𝑛)2
+ 1 −

∑(𝑌𝑘𝑖−𝜇𝑘)(𝑌̂𝑘𝑖 − 𝜇̂𝑘)

√∑(𝑌𝑘𝑖 − 𝜇𝑘)2 √∑(𝑌̂𝑘𝑖 − 𝜇̂𝑘)2
)

(6) 

Here, 𝑌𝑛 is the ground truth n and 𝑌̂𝑛 is the predicted n. 𝑌𝑘 is the ground truth k and 𝑌̂𝑘 is the 

predicted k. 𝜇𝑛 is the mean of the ground truth n and 𝜇̂𝑛 is the mean of the predicted n. 𝜇𝑘 is the 

mean of the ground truth k and 𝜇̂𝑘 is the mean of the predicted k. Specifically, the MSE between 

the ground truth and the predicted n and k (the first term) minimizes the difference in the absolute 

refractive index values. The 1−PCC between the ground truth and the predicted n and k (the second 

term) minimizes the relative characteristic trends, peaks, and features.  

Different setups of model complexity, loss function selection, and noise configuration have been 

tested in the training of S-structure while all the other hyperparameters, including epoch, learning 

rate decay, mini-batch size, etc., are fixed. First, models with different structures are trained. When 

the bottleneck layer (the deepest layer between encoder and decoder) is added, the median PCC 
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for the training set is significantly improved, from 0.84 to 0.87. However, the median PCC for the 

validation set drops from 0.82 to 0.78 and has broader distributions, indicating overfitting. To 

prevent overfitting, a dropout layer with a dropout rate of 0.5 is added after the bottleneck 

layer.[36] Both the median PCC for training and validation sets are improved (to 0.89 and 0.88, 

respectively), and the performance is more robust (narrower distributions). Then, a gaussian error 

linear unit (GELU), with a smooth region around zero and gradients in all regions, is used to 

replace ReLU.[37] Both the median PCC for training and validation sets slightly drop. Finally, 

skip connections between the convolutional layers in the same depth of encoder and decoder are 

added to enable reusability of the features similar to those used in the U-net.[38] Again, both the 

median PCC for training and validation sets slightly drop. Therefore, in the following model 

training, an encoder-decoder convolutional neural network with bottleneck layer, dropout layer, 

and ReLU activation is used. Second, different loss functions are used in training. The MSE 

measures the average of squares of errors and is used to minimize the discrepancy of absolute 

values at each wavelength. When using only MSE as the loss, the model achieves a median PCC 

of 0.89 and 0.88 for training and validation sets, respectively. Then, the 1−PCC is added to ensure 

the fast convergence of the positions and shapes of the characteristic peaks as well as other relative 

spectral features. Both the median PCC for training and validation sets are improved, to 0.91 and 

0.9. After a scaling factor is applied to the 1−PCC to balance the different scales between MSE 

loss and 1−PCC loss, the median PCC for training and validation sets are boosted to 0.93 and 0.91. 

In all the setups, gaussian noises are added to the inputs in training. When we remove the artificial 
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noise in training, the median PCC of the training set increases from 0.89 to 0.91, while the median 

PCC of the validation set stays at 0.88, indicating severer overfitting. A detailed performance 

summary of training using different model structures, loss functions, and noise is in Figure S11.  

 

Performance evaluation criteria 

To check the prediction performance of our model, we used two metrics, RMSPS and PCC. Both 

parameters represent perfect predictions when reaching 1. RMSPS is 1 minus the mean squared 

error normalized by the mean of the ground truth refractive indices. If the MSE is 0, RMSPS will 

be 1. If the MSE exceeds the mean of the ground truth, RMSPS will become negative. PCC is 

commonly used in measuring the correlation between two variables. The mathematical 

formulations of these two performance metrics are: 

𝑅𝑀𝑆𝑃𝑆 = 1 −
√∑(𝑌𝑛𝑖 − 𝑌̂𝑛𝑖)

2
+ (𝑌𝑘𝑖 − 𝑌̂𝑘𝑖)

2

∑(𝑌𝑛𝑖 + 𝑌𝑘𝑖)
(7)

𝑃𝐶𝐶 =  
∑(𝑌𝑛𝑖−𝜇𝑛)(𝑌̂𝑛𝑖 − 𝜇̂𝑛)

2√∑(𝑌𝑛𝑖 − 𝜇𝑛)2 √∑(𝑌̂𝑛𝑖 − 𝜇̂𝑛)2
+

∑(𝑌𝑘𝑖−𝜇𝑘)(𝑌̂𝑘𝑖 − 𝜇̂𝑘)

2√∑(𝑌𝑘𝑖 − 𝜇𝑘)2 √∑(𝑌̂𝑘𝑖 − 𝜇̂𝑘)2
(8)

 

 

Experimental sample preparation and spectroscopy measurements 

2D material thin flakes were mechanically exfoliated by Scotch tape from bulk single crystals 

of MoS2, MoSe2, WS2, and WSe2 (HQ Graphene) onto bare Si and SiO2/Si (SiO2 thickness = 

300nm) substrates, respectively. Flakes were identified and located by optical microscope, and the 



   
 

   
   
Page 28 of 33 
 

thickness of each flake was determined by atomic force microscope (AFM) (Bruker, Dimension 

Icon). 

The micro-reflection spectroscopy was measured on a home-built spectroscopy system using 

Laser-Driven Light Sources as the broadband white light source. The white light was incident from 

a 100× objective (NA = 0.9) with a beam size of 8 μm. The spectrometer was coupled with a 

600/mm grating and a Horiba Syncerity CCD detector to measure the reflection in the visible 

wavelength. 

The ellipsometry measurement was conducted on a Woollam M-2000F focused beam 

spectroscopic ellipsometer. The measuring angle was fixed at 65°, and the focused spot size was 

around 25 × 60 µm. The measured flakes were located using a digital CCD camera. 

CompleteEASE software was used to perform the data analysis to obtain the dielectric constant 

from the measured data. The fitting was done using the Tauc-Lorentz model. 

 

Kramers-Kronig relation calculation 

We implemented the calculation of the KK relations with a numerical implementation of 

integration and differentiation using the equations as follows:  

𝑛(𝜔) = 1 + 𝑃 ∫
𝑑𝜔′

𝜋

+∞

−∞

𝑘(𝜔′)

𝜔′ − 𝜔
(9)

𝑘(𝜔) = −𝑃 ∫
𝑑𝜔′

𝜋

+∞

−∞

𝑛(𝜔′) − 1

𝜔′ − 𝜔
(10)
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To calculate the k for each wavelength 𝜔, we used backward differentiation for 𝑑𝜔′ and nearest 

extrapolation for wavenumbers below and beyond the known wavenumbers to achieve ±∞ in the 

integral. Then the KK calculated k is calibrated by the mean of the ground truth k by subtracting 

the difference between the averages. 

The numerical integration in the range 400 nm to 800 nm with extrapolation outside the range 

is as follows, where 𝑓(𝑘) =
2𝑐𝜋

𝑘
 converges the wavelength k to angular frequency 𝜔: 

𝑛(𝜔) = 1 +
1

𝜋
∑

𝑘(𝑓(𝑖′))

𝑓(𝑖′) −  𝜔
× (𝑓(𝑖′) − 𝑓(𝑖′ − 1))

800

𝑖′=400

+ ∑
𝑘(𝑓(400))

𝑓(400) −  𝜔
× (𝑓(𝑖′) − 𝑓(𝑖′ − 1))

399

𝑖′=2

+ ∑
𝑘(𝑓(801))

𝑓(801) −  𝜔
× (𝑓(𝑖′) − 𝑓(𝑖′ − 1))

1200

𝑖′=801

 

(11) 

𝑘(𝜔) = −
1

𝜋
∑

𝑛(𝑓(𝑖′)) − 1

𝑓(𝑖′) −  𝜔
× (𝑓(𝑖′) − 𝑓(𝑖′ − 1))

800

𝑖′=400

− ∑
𝑛(400) − 1

𝑓(400) −  𝜔
× (𝑓(𝑖′) − 𝑓(𝑖′ − 1))

399

𝑖′=2

− ∑
𝑛(801) − 1

𝑓(801) −  𝜔
× (𝑓(𝑖′) − 𝑓(𝑖′ − 1))

1200

𝑖′=801

 

(12) 
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