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Abstract: Brain disorders such as brain tumor and neurodegenerative disease (NDs) are accompa-

nied by chemical alterations in the tissues. Early diagnosis of these diseases will provide key benefits 

for patients and opportunities for preventive treatments. To detect these sophisticated diseases, var-

ious imaging modalities have been developed such as computed tomography (CT), magnetic reso-

nance imaging (MRI), and positron emission tomography (PET). However, they provide inadequate 

molecule specific information. In comparison, Raman spectroscopy (RS) is an analytical tool that 

provides rich information about molecular fingerprints. It is also inexpensive and rapid compared 

to CT, MRI, and PET. While intrinsic RS suffers from low yield, in recent years, through the adoption 

of Raman enhancement technologies and advanced data analysis approaches, RS has undergone 

significant advancements in its ability to probe biological tissues including brain. This review dis-

cusses recent clinical and biomedical applications of RS and related techniques applicable to brain 

tumors and NDs. 
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1. Introduction 

The human brain is without doubt one of the most fascinating works of nature. It is 

the central organ of the nervous system which controls essential activities of humans. 

Brain disorders arise due to atypical features in brain functional, structural, and biochem-

ical levels. Many of these diseases, including Alzheimer's disease (AD), Parkinson's dis-

ease (PD), Huntington’s disease (HD), and brain tumors represent public health chal-

lenges as they can have a profound and even debilitating impact on a patient’s life[1-4]. 

The level of care required for patients with brain anomalies adds further economic and 

social burden highlighting the importance of developing efficient treatments. As a result, 

detection of these devastating disorders at an early stage represents paramount im-

portance in precision medicine. Current diagnosis methods are highly reliant on CT, MRI, 

and PET[5-7]. While these techniques offer deep tissue imaging capabilities, they suffer 

from major drawbacks such as high cost, poor spatial resolution, limited insight into spe-

cific molecular information, and the adverse effects of using ionizing radiation. Therefore, 

developing fast, non-invasive, and cost-effective tools remains a central theme in clinical 

applications.  

Numerous developments in laser spectroscopy have enabled significant progression 

of vibrational spectroscopy in biological applications. As one special method of various 

vibrational spectroscopic techniques, RS has been established as the front runner in the 

clinical diagnosis of brain anomalies[8,9]. It is widely accepted as a noninvasive modality 

that can provide a wealth of information on the cellular and molecular level due to the 

inelastic scattering of incident light. Typically, in RS, light from a monochromatic laser 

interacts with the sample's vibrational modes, resulting in inelastic photon scattering. 

These photons are shifted in energy to values different than that of excitation. This is 

measured as Raman shift and gives information that is specific to chemical bonds. The 

resulting spectra provide unique information where the Raman shift value provides in-

formation about different molecular species and their relative concentration can be eval-

uated based on the strength of different peaks. Thus, RS can provide a vibrational 



“fingerprint” of the sample under investigation. More importantly, RS has significant po-

tential in the diagnosis, progression, and evaluation of treatments for brain disor-

ders[10,11]. This is mainly due to its ability to differentiate healthy and diseased tissues 

that can reveal specific biomarkers based on the stage of the disease. Moreover, RS does 

not require labeling for detection. Sometimes the signal generated from biological tissues 

in spontaneous RS is relatively weak. In such situations, surface-enhanced Raman scatter-

ing (SERS) is useful to gather meaningful information[9]. Additionally, this technique can 

be used in vivo due to the advancement of fiber-optic probes coupled with portable Ra-

man systems. These advances in RS in clinical applications have been further augmented 

by rapid progress in chemometrics and ML algorithms[5]. Several data analysis methods 

and ML models such as principal component analysis (PCA), classical least square fitting 

(CLS), partial least square (PLS), and linear discriminant analysis (LDA) allow the extrac-

tion of hidden information that can’t be accessed through human inspection and basic 

statistical methods.  

In this review, we attempt to shed further light on significant advances and state-of-

the-art development of RS in clinical applications of brain disorders. We first start our 

discussion with the principle of Raman scattering and general spectrometer setup. There 

we discuss a range of Raman techniques such as resonance Raman spectroscopy (RRS), 

SERS, and variations of RS. After that, we include a brief discussion on statistical analysis 

tools including machine learning on Raman spectra as effective tools for biomarker iden-

tification of brain disorders. Then, we present different brain disorders categorized under 

NDs and tumors. Finally, we discuss the challenges and prospects of RS for clinical appli-

cations of brain anomalies. We believe that this comprehensive review will stimulate and 

trigger the understanding of RS as a potential tool in the diagnosis of brain disorders. 

2. The Principles of Raman Spectroscopy and Related Techniques 

When a photon of light interacts with matter, it can be scattered either elastically or 

inelastically. RS engages the inelastic scattering of light by matter which was first de-

scribed by C.V. Raman early in the 20th century. The Raman effect is observed through 

Stokes and anti-Stokes scattering in which the scattered light has either a lower or higher 

frequency than that of the incident light respectively. In the biomedical field, Stokes scat-

tering is the most dominant pathway, and the signal is relatively weak. Only 1 in 10 mil-

lion photons experience Raman scattering. The difference in energy between the incident 

light and the Raman scattered light is characteristic of the frequency of the vibrational 

bond that is excited. Additionally, Raman scattering requires a change in polarizability. 

The spectrum of the scattered photons is represented as the Raman spectrum, and it shows 

the intensity of the scattered light as a function of the Raman shift. Raman shift values are 

an identification of the target molecule which reflects specific chemical bonds and consti-

tutions. So, every molecule has a unique spectrum that can be identified as a vibrational 

fingerprint allowing the identification of biological materials such as proteins, lipids, and 

DNA.  

For the measurements of scattering signal, the RS systems are used which are com-

posed of a light source, the spectrometer, a filter to block the laser line, and a detector 

(Figure 1f). Lasers are used to provide monochromatic radiation for the excitation of mol-

ecules. A key consideration of the experimental design is the choice of laser wavelength. 

This can depend on various factors such as resonance conditions of the sample, extent of 

fluorescence, background signal, the sensitivity of the detectors, and signal-to-noise ratio 

(SNR). Objective lenses are used to focus the light on the sample and to collect the scat-

tered radiation. The scattered light is then analyzed by spectrometer coupled to a suitable 

detector. A set of filters (laser line filter and long pass or notch filter) are being used to 

remove excitation radiation and Rayleigh scattered light. A diffraction grating is used to 

separate useful radiation into constituent wavelengths and is finally detected by a sensi-

tive detection system, commonly by a charge-coupled device (CCD). Large data sets are 

often required to apply chemometrics and ML analysis to extract meaningful data. To-

ward this goal, large sampling areas up to centimeters need to be analyzed with suitable 



approaches. This is when Raman mapping is particularly useful. One possibility is to 

move the laser or sample in a predetermined pattern to measure the Raman spectrum at 

every position. Additional approaches involve expanding the laser focus, laser line, light 

sheet, and wide-field illumination. Resulted Raman maps contain chemical and structural 

information coupled with spatial information. 

 

 

 

Figure 1. Principles of RS (a) Energy level diagram showing Raman scattering, SERS, and RRS. E
0
, 

E
1
, and V

n
 show the electronic ground state, an electronic excited state, and vibrational excited states, 

respectively. (b) Raman spectrum induced by laser light focused on a sample during Raman micros-

copy. (c) Spatial distribution of Raman spectra, also referred to as hyperspectral Raman images, 

where Raman images are obtained as distributions of Raman peak intensities. (d) Energy level dia-

gram of SRS, electronic pre resonant stimulated Raman scattering (eprSRS), and CARS. (e) SRS mi-

croscopy detects the energy exchange between the pump and probe beams via the vibrational exci-

tation state as stimulated Raman gain (probe beam) or loss (pump beam) to reconstruct a Raman 

image. CARS microscopy uses CARS signals emitted from the sample as the image contrast. 

Adapted with permission from Reference [11] © 2021 American Chemical Society. (f) Generic setup 

for a Raman microspectroscopy system. Adapted with permission from Reference [37] © 2018 Amer-

ican Chemical Society. 

2.1. Resonance Raman Spectroscopy (RRS) 

Spontaneous Raman scattering is inherently weak, and it required special conditions 

to magnify the signal. In RRS, the wavelength of the excitation light is tuned to match the 

electronic transitions of the sample under investigation (Figure 1a). Such resonance con-

ditions result in the enhancement of the signal that could be undetectable under normal 

conditions. Additionally, RRS only amplifies Raman scattering from a specific vibrational 

mode. In literature, enhancement up to six orders of magnitude was reported[12]. This 

technique allows the design of an enhancement mechanism without the interference of 

foreign moieties. One drawback of RRS is increased fluorescence which can interfere with 

the Raman signal. However, this can be minimized by choosing the proper wavelength 

for excitation. RRS is becoming a popular tool in identifying NDs and brain cancers. For 

example, RRS provides information about protein structures and conformations as well 

as healthy and diseased tissues. 

 

         

      

   



2.2. Surface-Enhanced Raman Spectroscopy (SERS) 

While conventional RS provides excellent chemical specificity, it is inherently weak. 

One method for enhancing the weak signal is using metallic substrates to take the ad-

vantage of the enhanced electric field at the surface of metal nanoparticles caused by lo-

calized surface plasmon resonance (LSPR)[13-15]. Gold and silver nanoparticles are 

widely used for SERS experiments and their properties can be tuned depending on the 

size, shape, composition, and dielectric environment of the nanoparticle[16]. SERS is a 

rapid, sensitive, and label-free technique that allows even single-molecule detection. 

Therefore, it has clear advantages for diagnostic applications related to NDs. In SERS 

measurements, resulting enhancement is maximized when plasmon frequency is in reso-

nance with frequency in incident light (Figure 1a). However, other factors need to be con-

sidered such as nanoparticle clustering and surface adsorption[17].  

2.3. Other Variations of Raman Spectroscopy  

While spontaneous Raman scattering, SERS, and RRS are available as widely re-

searched techniques, other variations of RS are also used in brain diagnosis. Coherent anti-

stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) are widely uti-

lized versions of nonlinear RS. The principle behind CARS is to use a pump laser beam 

and a Stokes laser beam to produce an anti-Stokes signal (Figure 1d). In CARS an en-

hanced Raman signal is obtained which is orders of magnitude stronger than spontaneous 

Raman scattering. SRS is also based on the same principle as CARS to produce resonantly 

enhanced signals (Figure 1d,e). The amplified Raman signals allow for the label-free de-

tection of target analytes with a high spatial resolution. Tip-enhanced Raman spectros-

copy is a combination of SERS and scanning tunneling microscopy (STM). As a result, it 

has unique advantages such as chemical sensitivity and high spatial resolution. Fiber optic 

probes and handheld instruments are particularly useful as they are portable, have small 

dimensions, and are easy to use in clinical testing.   

3. Statistical and Machine Learning Analysis for Raman Data 

Raman spectra measured on brain samples are high-dimensional, complex, and 

noisy. To analyze the complicated Raman spectra of brain samples, classical statistical 

models are frequently used. In diagnosing various brain diseases, PCA is applied to visu-

alize sample patterns and interpret significant Raman peaks. For example, in studying 

AD, Fonseca et al. deployed PCA on Raman spectra of mouse brains to visualize the dif-

ference between samples with different ages captured by RS (Figure 2a)[18]. Sevgi et al. 

visualized principal components (PCs) to identify important Raman peaks correlated to 

PD in Rat brain models (Figure 2b)[19]. Researchers also perform PCA to reduce dimen-

sionality and extract features before further analysis. Huefner et al. applied PCA on Ra-

man spectra and used the generated PCs as inputs to diagnose HD with serum sam-

ples[20]. In analyzing molecular processes in brain cancer, Lemoine et al. used 50 PCs 

produced by PCA and optimized the performances of the classifier(Figure 2c)[21]. Other 

researchers also reduce the dimension of Raman data with PCA in studying various brain 

tumors including gliomas and meningiomas before feeding into the classifiers[22-24]. 

Other statistical tools such as t-distributed stochastic neighbor embedding (t-SNE) can 

also be used to visualize the difference between Raman spectra of different samples. Wang 

et al. applied t-SNE to project the high-dimensional Raman spectra of mouse brains with 

and without AD into 2-dimensional plots and visualized the clusters[25].   

ML is an advanced technique that can recognize patterns and capture minor differ-

ences between data clusters. Therefore, it is an excellent tool for analyzing Raman spectra. 

In recent years, ML methods have been thriving in the clinical diagnosis of brain diseases 

and the detection of brain cancers. Wang et al. proposed an interpretable ML method with 

the support vector machine (SVM) and RS to identify potential biomarkers of AD in 

mouse brains[25]. Specifically, they collected Raman spectra on slices of mouse brains 

with and without AD, applied SVM to classify AD and non-AD spectra, and identified a 

spectral feature importance map that reveals the importance of each Raman wavenumber 



in classifying AD and non-AD spectra (Figure 2d). Desroches et al. also applied SVM to 

perform in vivo diagnosis of brain cancer with RS[26]. Morais et al. combined PCA and 

SVM and achieved high performance in differentiating meningioma Grade I and Grade II 

samples (Figure 2e)[23]. Another popular ML approach is PCA-LDA. Bury et al. identified 

different tumor statuses with the LDA-PCA approach and achieved high accuracy (Figure 

2f)[27]. Other researchers also demonstrated that PCA-LDA is efficient in studying differ-

ent brain cancers and tumors with Raman spectra[21-24]. Partial least squares discrimi-

nant analysis (PLS-DA) is also widely used in investigating brain cancer. Abramczyk et 

al. classified Raman spectra of tissue from grade IV medulloblastoma and non-tumor us-

ing PLS-DA[28]. Other researchers performed classifications with PLS-DA and achieved 

high accuracy in classifying different tumoral brain tissues[29,30]. 

 

Figure 2. Illustration of applicability of statistical and ML methods on RS in brain clinical applica-

tions. (a) Histogram showing the differences between groups by PCA of the Raman spectral of brain 

samples. 12-month-old wild-type mice WT (black), 6-month-old transgenic mice Tg6 (blue), and 12-

month-old transgenic mice Tg12 (red). Adapted with permission from Reference [18] © 2021 The 

Royal Society of Chemistry. (b) Visualization of the loadings of PC7. Positive side wild type rat (WT) 

while negative side transgenic rat (TG) brain samples. Adapted with permission from Reference [19] 

© 2021 Frontiers. (c) Raman spectra were processed by both band fitting and PCA with 50 principal 

components before being fed into classifiers. Adapted with permission from Reference [21] © 2019 

The Royal Society of Chemistry. (d) Workflow of Raman signals’ data collection, preprocessing, and 

ML classification and interpretation to differentiate AD/non-AD Raman spectra of brain samples. 

Adapted with permission from Reference [25] © 2022 American Chemical Society. (e) Receiver op-

erating characteristic (ROC) curve for PCA-QDA. AUC: area under the curve. AUC values between 

0.7 and 0.8 are considered acceptable, between 0.8 and 0.9 are considered excellent, and above 0.9 

are considered outstanding. Adapted with permission from Reference [23] © 2019 The Royal Society 

of Chemistry. (f) Confusion matrix for PCA-LDC model classifying: Non-tumor brain tissue (N); 

Low-grade Glioma (LG); High-grade Glioma (HG); Meningioma (Men); Metastasis (Met); Lym-

phoma (Ly). Green is correctly classified, whereas red is incorrectly classified. Adapted with per-

mission from Reference [27] © MDPI 2019. 

There are many other ML methods applied on Raman spectra of various tissues and 

diseases which can be extended to Raman spectra of brain samples. Perumal et al. applied 

   

      

   

   

   



logistic regression to evaluate the diagnostic biomarker of ovarian cancer[29]. Tree-based 

ML methods are also used in classifying Raman spectra. In classifying the Raman spectra 

of the receptor-binding domain of SARS-CoV-2 and MERS-CoV virus, Zhang et al. applied 

random forest and XGBoost and achieved accuracies over 95%[17]. Ye et al. also applied 

XGBoost to classify Raman spectra of different strains of SARS-CoV-2[31]. Convolutional 

neural networks are also used in classifying Raman spectra of different samples[31-33]. 

For example, Ma et al. achieved an accuracy of 92% with 1D-CNN in diagnosing breast 

cancer. 

ML models are also useful in reducing signal noise and enhancing SNR. Variational 

autoencoder (VAE) is a convolutional neural network architecture with encoding and de-

coding stages[34-36]. The VAE is trained in an unsupervised way that reconstructs the 

input spectra. The encoder compresses the input in a latent space. With the lower dimen-

sion of the latent space, the noise is removed during the reconstruction by the decoder. 

He et al. applied the VAE to improve the signal-to-noise ratio of Raman spectra and sig-

nificantly increase the accuracy of tumor subtype detection[35]. 

4. Applications of Raman Spectroscopy in Brain Diseases 

The seriousness of brain disorders has led to significant investment into research that 

can identify diagnoses, therapies, and preventive pathways of these deadly diseases. This 

broad category of brain disorders can vary depending on symptoms and severity. Out of 

many diseases that can affect the brain, NDs and brain tumors are more prevalent. The 

major hallmark of NDs is protein accumulation.  However, abnormal conformational 

properties including amyloidosis, tauopathies, α-synucleinopathies, and proteinopathies 

are also responsible for the development of NDs. RS has great potential in identifying 

these diseases and was successfully applied in clinical studies. Table 1 compares mecha-

nisms, biomarkers, Raman sensitivity, and diagnose methods other than Raman spectros-

copy for NDs.  

Table 1. Mechanisms, biomarkers, Raman sensitivity, and diagnose methods other than Raman 

spectroscopy for NDs. 

 AD PD HD 

Mechanism 

 Aβ Protein misfolding[10] 
Hyperphosphorylation of tau 

causing aggregation[10,37]  

Aggregation of α-synu-

clein[10,37] 

Expansion of CAG trinucleotides 

coding for poly-glutamine (poly-

Q) stretch at the NH2-terminus 

of the huntingtin (Htt) pro-

tein[10,37]  

Biomarkers  

Tau proteins (t-tau ,p-tau)[38]  
Aβ  (Aβ oligomer, Aβ40, 

Aβ42)[38]  
Neurofilament light chain (NfL) 

Vinisin-like protein 1 (VLP-1) 

Neuron-specific enolase (NSE 

Heart fatty acid binding protein 

(HFABP) 

Glial activation (YKL-40) 

  

α-synuclein[39] 

Dopamine[39] 

Orexin[40,41] 
8-Hydroxy-2’ -Deoxyguano-

sine[40] 

miRNA[42] 

Hungtintin protein 

Mutant Htt (mHtt)[43]  

Polyglutamine[44] 
Triglycerides, phospholipids, 

Fatty acids[45] 
Myelin basic protein 

(MBP)[46,47]  

Total tau (t-tau)[48]  

Melatonin[49] 

Cortosol[50,51] 

Raman Sensitivity 
100 fg/mL for Aβ[52] 

10-9 M for Dopamine[53]   

100 nM for α-synuclein[54] 

10-11 M for Dopamine[55] 

1 nM for Dopamine[56] 

29 µM for mHtt protein[43] 

Diagnose methods other than 

Raman Spectroscopy 

Mental state examination 

Neurological assessment 

Brain imaging tech-

niques[6,37,57]  

Mental state examination 

Neurological assessment 

Brain imaging tech-

niques[6,37,57]  

Mental state examination 

Neurological assessment 

Brain imaging techniques 

Genetic testing[6,37,57] 

 



The application of Raman techniques to clinical samples and animal models is still at 

early stage and still need close collaborations between spectroscopists, material scientists, 

biomedical engineers, and clinicians are required to make the clinical transformation of 

RS a reality. However, emerging reports have demonstrated promising potential of RS in 

clinical settings[58-61]. The exploitation of Raman techniques in clinical laboratory is 

mainly dependent on the availability of portable Raman systems and the advancements 

in miniaturization[62,63]. Tanwar et al. and Allakhverdiev et al. described the clinical ap-

plications of Raman spectroscopy on four different avenues including disease diagnosis, 

surgical guidance, therapeutic monitoring, and metabolite monitoring[63,64]. The Raman 

spectrum of biofluids such as urine, saliva, serum, and tears induce many peaks repre-

sentative of the plethora of cellular constitutes. Additionally, biomarker identification of 

such biofluids has potential to study of various physiological and pathological processes. 

Differences between healthy samples and pathologic conditions are exhibited as peak 

shifting and different intensity of the Raman spectrum. Additionally, there could be emer-

gence of new peaks allowing precise identification of pathologies. DePaoli et al. described 

three main system types required for the exploitation of RS in neurosurgery[62]. First, 

there should be availability of single-point RS probes for intact tissue assessment. Another 

requirement is access to portable Raman microscopes for histopathological evaluation af-

ter tissue resection. Finally, there should be availability of endoscopic imagers for surgical 

guidance. In this section, we introduce the state-of-the-art developments of RS in the di-

agnosis of the above-mentioned brain anomalies. 

4.1. Neurodegenerative Diseases 

NDs constitute chronic, progressive, and irreversible diseases that can affect many of 

the body’s activities, such as movements, talking, heart function, balance, and breathing. 

Some of these diseases include AD, PD, HD, and so on. The diagnosis and treatment of 

NDs represent a significant challenge to healthcare specialists as most of the symptoms 

become evident at later stages. Research in NDs currently undergoes at a rapid pace. 

Promising results from various studies have led to improving the understanding of risk 

factors associated with this disease. This includes age, family history, susceptibility genes, 

lifestyle choices, environmental factors, education, and gender to name a few. Although 

the pathogenesis and the degeneration mechanisms are different for each disease, they 

share common characteristics such as protein misfolding and aggregation, enabling RS as 

a handy tool in diagnosis. A comprehensive understanding of protein structure is the key 

to controlling disease progress. RS of healthy tissue is composed of many constituents and 

when certain pathologic conditions arise there will be a change in Raman shift values and 

intensities of the peaks. This provides a unique pathway to identify biomarkers related to 

NDs with the aid of chemometrics.  

 

4.1.1. Alzheimer’s Disease (AD) 

 

AD is the most prevalent neurodegenerative disorder associated with weight loss, 

memory deficits, and cognitive decline. Various studies support the finding that the accu-

mulation of Amyloid-β (Aβ) in the brain is responsible for the progression of AD. Addi-

tionally, tau proteins are also responsible for the initiating event of AD. RS and related 

methods have evolved as a sensitive method for biomarker screening of AD.  

 

(a) Fundamental Investigations Related to AD  

 

Conventional RS has been applied to the investigation of biomarkers related to the 

progression of AD using post-mortem human brain tissues and biofluids. SRS has been 

applied in studying amyloid plaques in AD. A recent work by Ji et al. reported three-color 

SRS imaging of amyloid plaques of AD[65]. The researchers were able to distinguish mis-

folded and normal proteins by measuring the spectral shifts of the amide-I bands (Figure 

3a). The results revealed approximately 10 cm-1 blue shift of the amide-I band which was 



obvious in both frozen and fresh tissue samples. In another work, Lochocki used SRS-

based multimodal technique to detect amyloid deposits in snap-frozen AD human brain 

tissue[66]. SRS results revealed transformation of protein to a β-sheet structure.        

In an early report, Sudworth et al. utilized RS in combination with PCA analysis to 

discriminate AD disease status in terms of protein conformation changes[67]. A similar 

study conducted by Hu and coworkers verified for the first time that Raman signatures 

from the brain hippocampus could help to explore the pathogenesis of AD[68]. They in-

jected Aβ25-35 into the hippocampus CA1 regions of rats, and an experimental procedure 

was carried out using 785 nm laser for spectral acquisition. To rule out effects from injec-

tion itself, the researchers also carried out continuous monitoring of the detailed spectral 

changes. Compared with the spectra of normal rats, that of AD rats is characterized by 

signature peaks and normalized intensity differences. For example, a shoulder Raman 

peak at 1670 cm-1 assigned to the C=O stretching vibration of the β sheet secondary struc-

ture has been used to distinguish AD and healthy samples. Additionally, normalized in-

tensities of Raman peaks at 1065, 1088, 1130, 1300, and 1440 cm-1 are dominated in AD 

samples demonstrating hallmarks in progress of AD such as Aβ deposition, increase of 

cholesterol, and increase of slightly hyperphosphorylated tau. 

 Michael et al. reported the utility of RS as a beneficial technique to analyze eye lens 

diseases caused by protein aggregation[69,70]. The study showed that protein aggregates 

of the hippocampus and cortical cataracts of eye lenses have significantly different Raman 

profiles. More recently, Popp and coworkers carried out biochemical characterization of 

retinal neurodegeneration of an AD model by ex vivo Raman investigations[71]. Investi-

gated samples captured the layered structure of the retina using a spatial resolution of 2 

µm in Raman-based imaging. This finding was further supported by hematoxylin and 

eosin (H&E) staining procedure. The layers were identified based on Raman signature 

peaks attributed to nucleic acids, Rhodopsin, lipids, and proteins (Figure 3b,c). For tar-

geted in vivo applications, with a focus on AD detection en face Raman imaging was pro-

cessed revealing important biochemical information. The study revealed that an early 

state biochemical change in the protein composition precedes more conventional late-

stage structural changes and pathological pathways of AD. Furthermore, researchers 

achieved 85.9% accuracy in chemometric analysis.  

Two-dimensional (2D) materials are layered crystalline materials characterized by a 

list of exotic properties. The family of 2D materials includes graphene, transition metal 

dichalcogenides (TMDs), hexagonal boron nitride (h-BN), black phosphorous (BP), 

MXenes, etc[72-75]. They are highly applicable in optical bioimaging, therapy, and tissue 

engineering[76,77]. These fascinating materials have been explored in the landscape of 

NDs and other brain disorders[57,78-80]. Choi et al. demonstrated the reliability of gra-

phene oxide (GO)-hybrid nano arrays as the SERS sensing substrate for detecting 10-4 to 

10-9 M concentration of dopamine[53]. Very recently, our group reported rapid biomarker 

screening of AD could aid timely and effective treatment measures[25]. Briefly, we uti-

lized graphene-assisted RS and ML techniques to differentiate mouse brain with and with-

out AD. We collected data from three different brain regions: cortex, hippocampus, and 

thalamus. In the case with graphene in contact, it exhibited much higher SNR for all the 

three brain regions. We explained the results based on exceptional properties of graphene 

such as high thermal conductivity and fluorescence quenching capability. More im-

portantly, using ML interpretation we identified three molecules (triolein, phosphatidyl-

choline, and actin) that are positively correlated with AD and two molecules (cytochrome 

and glycogen) that are negatively correlated to AD 

SERS can also help provide molecular fingerprints of brain tissues. Liu and cowork-

ers used black phosphorous and gold nanoparticle nanohybrid (BP-AuNPs) as a SERS 

substrate to understand the molecular composition of various encephalic regions[81]. 

SERS measurements were achieved through Balb/c mice and 785 nm excitation. Spectra 

were collected from four encephalic regions (cerebral cortex, hippocampus, thalamus, and 

hypothalamus) showing spectral differences among different regions. The difference 

spectra obtained by subtracting the left and right hemisphere of four encephalic regions 



provides insight into variation in the local biochemical environments. In another study, 

Demeritte and colleagues designed core-shell nanoparticles modified with GO for selec-

tive separation and label-free identification of AD biomarkers. Here, Aβ was magnetically 

separated from the whole blood sample and achieved a  detection limit of 100 fg/mL[52]. 

It has been shown that metal ions especially Fe3+, Cu2+, and Zn2+ have a significant impact 

on Aβ aggregation[82,83]. The link between metal ions and disordered proteins in NDs is 

well-known and widely studied using SERS. Zhou et al. reported the potential of SERS 

spectra to reveal real-time imaging of Aβ aggregation under different conditions[84]. In 

their study, AuNPs synthesized in situ with Aβ monomer and fresh mouse brain were 

used as a template to understand the role of metal ions on Aβ aggregation. Their results 

mentioned that Cu2+ and Zn2+ ions of low concentration promoted fibril formation, while 

Fe3+ and Zn2+ of high concentration inhibit fibril formation (Figure 3d). Other Raman tech-

niques on biomarker detection of AD and the dynamical behavior of Aβ aggregation are 

progressing gradually, offering valuable insight for the clinical transformation of RS in 

disease prevention[85-87]. 

Mild cognitive impairment (MCI) is a condition often misdiagnosed with early-stage 

AD typically characterized by subjective memory impairment and modest deficit in main 

cognitive domains[88]. The advanced stage of AD is associated with severe cognitive de-

cline. Individuals with MCI are memory impaired but have no functional decline and do 

not meet the requirements for dementia[89]. This early-stage of AD could lead to worsen-

ing of the clinical diagnosis prolonging the diagnosis period of AD for treatment proce-

dures. Therefore, identifying biomarkers for this pre-symptomatic stage of AD will be the 

key to successful treatments. It has been reported that brain glucose uptake is reduced by 

9%, in patients with MCI allowing biomarker identification[88]. 

 

(b) Clinically Applied Investigations Related to AD  

 

The diagnosis accuracy of neurodegenerative diseases can be significantly enhanced 

using RS. Most of the published studies rely on comparison of comparison of Raman fea-

tures of healthy donors with that of infected patients. Diagnosis of AD is associated with 

abnormal formation of amyloid plaques and neurofibrillary tangles. Therefore, many re-

searchers developed Raman-based strategies to detect such protein aggregated in bioflu-

ids and tissue samples. For example, Lochocki et al. employed RS to study Aβ deposition 

in AD tissue sections from post-mortem patients[90]. Additionally, Ryzhikova et al. sug-

gested that early detection of AD is possible using RS investigation of CSF[91]. In that 

study, researchers resolved AD diagnosis with 84% sensitivity and specificity. In another 

study same researchers reveled the applicability of blood serum for AD diagnostics[92]. 

Moreover, Carlomagno et al. used multivariate statistical analysis of human serum for AD 

disease evaluation[93]. 

RS is one of the most popular methods for profiling cellular metabolites such as neu-

rotransmitters. Imbalances in neurotransmitters are directly correlated to NDs such as AD 

and PD. As metabolite monitoring is an important aspect in clinical studies, significant 

research progress has been made for spatial localization of neurotransmitters on living 

cells[94]. Manciu et al. revealed the clinical potential of RS for detection and monitoring 

of neurotransmitters[95]. The study carried out real-time detection of serotonin, adeno-

sine, and dopamine in vitro. Recently, Fu et al. used animal model for label-free imaging 

of acetylcholine using SRS[96]. The authors used vibrational signatures of acetylcholine at 

720 cm-1 to quantify its local concentration directly at the neuromuscular junctions of frog 

cutaneous pectoris muscle. SERS has been used for monitoring the concentrations of var-

ious neurotransmitters and fibrilization of AD responsible proteins. SERS measurements 

have been previously reported for the detection of several neurotransmitters including 

dopamine, melatonin, serotonin, GABA, and acetylcholine[97-100]. These neurotransmit-

ters are particularly important as they are useful as biomarkers for diagnosis and moni-

toring neurological diseases. More recently, Moody et al. carried out comprehensive study 

of SERS detection using seven neurotransmitters to establish optimal detection conditions 



such as type of metal and wavelength[101]. Additionally, they used PCA analysis to de-

compose large data sets and identify spectral patterns. For serotonin, GABA, and gluta-

mate, the best limit of detection (LOD) was achieved with silver nanoparticles as a SERS 

substrate at an excitation wavelength of 633 nm. On the other hand, for melatonin, dopa-

mine, epinephrine, and norepinephrine, the best LOD was achieved using gold nanopar-

ticles (AuNPs) at an excitation wavelength of 785 nm. In a different study, Ende et al. 

demonstrated physicochemical trapping of neurotransmitters based on AuNPs and poly-

vinylpyrrolidone (PVP) to detect molecules that are weakly affinitive for gold[102]. Addi-

tionally, Lee et al. reported spread spectrum SERS (ss-SERS) technique to detect neuro-

transmitters at attomolar level opening opportunities for early diagnosis of neurological 

disorders[103]. Experimental results showed improvement in the SNR of more than three 

orders of magnitude. Such an exceptional SNR enhancement allows ultrasensitive detec-

tion of neurotransmitters.   

 

Figure 3. Utility of Raman spectroscopic techniques in diagnosis of AD. (a) SRS images of fresh 

mouse brain sections at (A) 1658, (B) 1670, and (C) 1680 cm
−1

. (D) Three color image showing the 

distribution of lipids (green), proteins (blue) and amyloid plaque (pink) in the mouse brain tissue. 

(E) SRS spectra of the 1600–1720 cm
−1

 region, showing the 10 cm
−1

 shift of the amide I band. Adapted 

with permission from Reference [65] © American Association for the Advancement of Science. Over-

all mean spectra based on the two groups WT (red) and AD mice (black) of the en face Raman meas-

urements used for the (b) classification model and (c) the cross sections. Adapted with permission 

from Reference [71] © 2020 American Chemical Society. (d) SERS imaging of Aβ40 in brain tissues 

where (i) Bright-field of tissue slices from 2-month-old APP/PS1 transgenic mice treated with (A) 

control diet, (B) Cu
2+

, and (C) Fe
3+

, Zn
2+

 of (D) low and (E) high concentration incubated with our 

SERS platform for 90 min. SERS imaging of Aβ
40

 in hippocampus of tissue slices: (A) control diet, 

(B) Cu
2+

, and (C) Fe
3+

, Zn
2+

 of (D) low and (E) high concentration. (ii represents I
1268

 and iii represents 

I
1244

). (iv) SERS spectra of Aβ
40

 in hippocampus of tissue slices from 2-month-old APP/PS1 transgenic 

mice treated with (A) control diet, (B) Cu
2+

, and (C) Fe
3+

, Zn
2+

 of (D) low and (E) high concentration. 

Adapted with permission from Reference [84] © 2020 American Chemical Society. 

   

         



Clinical evaluation of suspected MCI patients has similarities to that for AD includ-

ing but not limited to the history of the patient, mental status examination, and medical 

laboratory tests. Cerebrospinal fluid (CSF) measures of Aβ and tau are useful as bi-

omarkers in predicting the progression from MCI to AD[89]. Hansson et al. revealed the 

potential of CSF concentrations of Aβ1-42, total tau (t-tau), and tau phosphorylated at thre-

onine 181 (p-tau) in predicting the progression from MCI to AD[104]. Cennamo et al. 

demonstrated SERS of tear fluid as a potential source of a biomarker to differentiate AD 

and MCI-affected patients[105]. They used 18 AD-affected and 7 MCI-affected patients 

including both men and women. Spectral differences were characterized in different re-

gions attributed to lactoferrin and lysozyme protein components. Additionally, research-

ers used PCA analysis to discriminate AD and MCI-affected patients. In another study, 

Raman spectroscopy was used to analyze saliva samples collected from AD and MCI in-

dividuals and achieved greater than 99% accuracy[106]. In the end, researchers proved 

that RS in combination with ML is successful as an accurate diagnostic method in the early 

stages of AD 

 

4.1.2. Parkinson's Disease (PD) 

 

After AD, PD is the second most common NDs. Weight loss and behavioral abnor-

malities are common symptoms of PD. The neuropathological hallmark of PD includes 

abnormal deposition of a protein called α-synuclein and dopamine deficiency[107]. The 

native form of α-synuclein is intrinsically disordered and it undergoes a transition of the 

structure due to PD[108].  

 

(a) Fundamental Investigations Related to PD  

 

RS has been utilized to characterize the secondary structure of α-synuclein and its 

aggregation. Raman optical activity (ROA) is a chiroptical spectroscopic technique useful 

in identifying the secondary structure of proteins. This technique is based on the differ-

ence in scattering intensities between left and right circularly polarized light. Mensch et 

al. used ROA to conventional RS to detect the transition of α-synuclein from a disordered 

to α-helical or β-sheet forms[109]. They used increasing concentrations of fluorinated al-

cohols to induce aggregation of α-synuclein and identified states that act as intermediate 

for aggregation and β-sheet rich oligomers. It is of great importance to understand the 

aggregation process of α-synuclein as it is an important drug discovery target for PD. To-

wards that goal, RS was utilized to identify differences in normal and fibril states of α-

synuclein. Maiti et al. used a three-component band fitting (α-helix ∼ 1650−1656 cm−1, β-

sheet ∼1664−1670 cm−1, and unordered ∼1680 cm−1) of amide I region to investigate the 

secondary structure during aggregation of α-synuclein[110]. Results estimated that 48% 

of the secondary structure is composed of α-helix. In a follow-up study, the same research 

group carried out further analysis of the α-synuclein amide I region during fibrilla-

tion[111]. Data revealed that the transition of monomer to aggregate is a complex phe-

nomenon that results from the interplay between various processes (Figure 4b). The re-

sults have validated that one of the intermediates a-synuclein aggregation possesses a-

helical conformation. Additionally, an increase in β-sheet content and a decrease in the 

disorder of protein was observed during aggregation.  

In particular, the SERS study on α-synuclein is scarce. In an early study, Zhang and 

coworkers designed a Liquid Core Photonic Crystal Fiber (LCPCF) and SERS-based sen-

sor for α-synuclein detection[112]. More recently, SERS-based microfluidic testing chips 

have been constructed for the investigation of the transient species of α-synuclein at phys-

iological concentration[54]. Briefly, optical tweezers were used to tune the separation of 

two silver nanoparticle-coated silica microbeads allowing precise control of the hotspot. 

In the 200 parallel SERS measurements of 1 µM α-synuclein solution is characterized by 

unique Raman fingerprints attributed to α-helix and β-sheets (Figure 4a). Further, this 

method allowed the LOD of α-synuclein as low as 100 nM. Since dopamine deficiency is 



a neuropathological hallmark of PD, several studies have applied SERS to the detection of 

dopamine. An et al. used AuNPs immobilized on a glass substrate for the detection of 

dopamine and obtained a detection limit of 1 nM[55]. The Raman spectrum of dopamine 

displayed broad bands at 1267, 1331, 1158, 1478, 1578, and 1584 cm-1 with peaks at 1267 

and 1478 cm−1 identified as phenolic carbon-oxygen and phenyl C=C stretches, respec-

tively. Fe3O4/Ag nanocomposite has been successfully applied for the determination of 

dopamine in an artificial cerebrospinal fluid and mouse striatum[113]. Many studies have 

demonstrated SERS as a facial-sensing strategy for dopamine. An in-depth discussion of 

SERS as a detection method for dopamine is out of the scope of this review, and readers 

are encouraged to read other articles on this topic[114,115].  

 

(b) Clinically Applied Investigations Related to PD  

 

The strategy of collecting biochemical information at structural level of biological or-

ganization is applicable in other NDs such as PD. SERS has been used to probe the dopa-

mine, human dopamine transporter, and dopamine-human dopamine transporter (DA-

hDAT) interactions in live cells[116]. The analysis of experimental results revealed that 

Raman wavenumbers of 807 and 1076 cm-1 are crucial for the DA-hDAT interactions. 

These peaks are attributed to bound states of dopamine molecules in the human dopa-

mine transporter. Furthermore, analysis of physiological dopamine concentration in com-

plex biological fluids was also reported as an alternative diagnostic test for PD[117]. For 

example, Phung et al. reported 86% lower dopamine concentration for patients with drug-

induced Parkinsonism compared with the level in the healthy human body[56]. The aver-

age dopamine concentrations of the two groups were 2.31 × 10-8 M and 3.24 × 10-9 M for 

healthy and infected samples. Further, the results demonstrated the detection of dopa-

mine concentration as low as 10-11 M (Figure 4d,e).  These findings highlight the applica-

bility of the SERS technique as an ultrasensitive detection platform to diagnose PD 

through dopamine as its concentration in samples is relatively low. In another study, 

Schipper and coworkers developed an innovative platform for plasma metabolomics for 

biomarker studies of PD[118]. In that study, the researchers demonstrated that RS and 

near-IR spectroscopy (NIRS) of plasma differentiate individuals with idiopathic from 

healthy samples with ∼75% accuracy. This finding was based on significant variations in 

oxidative stress sensitivity bands in comparison with the control. Additionally, the study 

mentioned that reactive oxidative species (ROS) modify the proteins, lipids, and other cel-

lular substrates in plasma. Carlomagno et al. used the saliva of PD patients to create an 

automatic classification model[119]. In that study, Raman spectroscopic analysis was ap-

plied to the saliva of 23 PD patients and 33 healthy samples. Acquired data were further 

analyzed using ML techniques. The proposed method highlights the potential to deter-

mine PD onset and progression, monitor therapies, and rehabilitation efficiency.   

Brain disorders affect the normal functions of the retinal layers and their subsections. 

Many studies have shown that PD has a direct correlation with visual dysfunctions in-

cluding color discrimination, visual activity, Contrast sensitivity, blurred image, motion 

perception, and loss of vision[120]. Mammadova et al. used RS to investigate retinal pa-

thology in a transgenic mouse model (TgM83) expressing the human A53T α-synuclein 

mutation[121]. In that work, α-synuclein was shown to accumulate in the inner and outer 

retina of 8-month-old TgM83 transgenic mice, expressing A53T human α-synuclein under 

the control of the Prnp promoter. Phospho-α-synuclein was only present in the outer nu-

clear layer. In addition, TgM83 transgenic mics showed increased microglial activation 

followed by increased GFAP immunoreactivity. Bedoni and coworkers examined saliva 

from PD, AD, and Amyotrophic Lateral Sclerosis (ALS) patients showing key spectral dif-

ferences[122]. In this study, RS was used to detect biomarkers of ALS compared not only 

to controls but also to PD and AD patients (Figure 4c). They mentioned this approach can 

drastically shorten diagnosis times that lead to precise and quick diagnoses of the most 

dangerous neurogenerative diseases. Overall, the above findings suggest that different 



Raman techniques correlate well with clinical trials offering an easy and user-friendly tool 

for disease diagnosis.      

 

 
Figure 4. Applicability of different Raman techniques in diagnosis of PD. (a) Mapping of 200 SERS 

spectra of 1 µM alpha-synuclein solution obtained from two AgNP-coated beads trapped at 20 nm 

with 1 s acquisition time. The color bar shows the normalized intensities from low (dark blue) to 

high (red). Adapted with permission from Reference [54] © 2021 Nature Portfolio. (b) Structural 

changes of α-synuclein during aggregation. Raman spectra (A–D) reveal a narrowing of the amide 

I band with an increase in intensity of the peak ∼1670 cm–1, indicating an increase in β-sheet struc-

tures with aggregation. (E) ThT fluorescence spectra only show a large increase in fluorescence on 

filament addition, despite the high level of β-sheet detected in the protofilament sample by RS. (F) 

Spheroidal oligomers were observed at 21 days of incubation, with protofilaments at 32 days and 

filaments at 42 days of incubation. Adapted with permission from reference [111] © 2006 Elsevier. 

(c) Average Raman spectra with SD of (A) ALS, (B) PD, (C) AD and (D) control groups. Adapted 

with permission from Reference [122] © 2020 Nature Portfolio. (d) Raman spectra of plasma dopa-

mine extracted from the blood samples of healthy subjects and patients and (e) plasma dopamine 

levels of all blood plasma samples using the SERS technique. Adapted with permission from Refer-

ence [56] © 2018 Royal Society of Chemistry. 

 

4.1.3. Huntington's Disease (HD) 

 

HD is a progressive NDs that belongs to the category of autosomal-dominant disor-

ders. This is caused by the expansion of CAG trinucleotides coding for poly-glutamine 

(poly-Q) stretch at the NH2-terminus of the huntingtin (Htt) protein. So mutated Htt is 

the cause of HD. Patients with HD characteristically lose weight and are observed with 

motor, psychiatric, and cognitive abnormalities. Similar to AD and PD, its pathogenesis is 

related to the aggregation and accumulation of misfolded proteins in peripheral nerves. 

HD has no cure, and most of the diagnosis is done by genetic testing. Therefore, finding 

suitable biomarkers for the detection and identification of onset of the HD could be bene-

ficial and enable therapeutic intervention. 

 

   

   

      

   



 

(a) Fundamental Investigations Related to HD  

 

RS has been used for the quantification and visualization of aggregated proteins and 

other aspects of HD. Miao et al. reported a novel platform for live-cell imaging of aggre-

gates by combining SRS microscopy with Gln-d5 labeling[43]. This combined approach 

facilitated measuring absolute concentrations of sequestered mutant Htt and other pro-

teins within the same aggregate. It has been demonstrated more recently that UV reso-

nance Raman spectroscopy (UVRRS) is useful to monitor polyglutamine backbone, side 

chain hydrogen bonding, and fibrillization[44]. CARS microscopy has been used to image 

polyglutamine aggregate structures in vitro and in vivo[123].  

 

(b) Clinically Applied Investigations Related to HD  

 

SERS and spontaneous RS of serum were used to identify disease progression of 

HD[20]. The study mentioned that there are significant differences corresponding to gen-

otype and gender in serum samples of HD patients and healthy controls. For HD patients, 

Raman bands at 1245 cm-1 and 1667 cm-1 are dominant indicating higher content of β-sheet 

protein structures present in the HD serum compared to healthy controls (Figure 5). Pe-

ripheral fibroblasts are useful as a potential model for HD. In this regard, RS has also been 

used to identify living fibroblast (skin) cells from an HD patient with an accuracy of 

95%[124]. Raman spectrum from HD patients revealed that more β-sheet proteins are pre-

sent at 1220 cm-1. This is consistent with the finding that the aggregation of the protein 

from the mutated huntingtin gene, is known to take a beta-sheet form. Additionally, there 

are other differences in HD patients including reduction in the amount of lipids and cho-

lesterol.  

 

Figure 5. Illustration of applicability of Raman techniques in diagnosis of HD. Average RS (a) and 

SERS (b) spectra of serum from healthy control subjects (blue lines) and HD patients (red line) as 

well as their standard deviations (c and d, respectively). The different spectra of the averages for RS 

(black line, e) and SERS (black line, f) are within the standard deviation (c and d) of the average 

spectra (a and b). Yellow marked regions indicate important peaks. Adapted with permission from 

Reference [20] © 2020 Royal Society of Chemistry. 

   

   

   

   

   

   



In another study, RS and partial least squares analysis was used in analysis in dis-

crimination of peripheral cells affected by HD[45]. Significant differences were observed 

in the low wavenumber region (400 cm-1 to 1800 cm-1). HD patients showed differences 

in the Raman peaks at 428 and 701 cm-1, which is an indicative of cholesterol and choles-

terol esters, in comparison to control samples.  Additionally, differences were seen at 1045, 

1073, and 1130 cm-1 regions corresponding to triglycerides, phospholipids, fatty acids, 

and proteins. For healthy samples three peaks are prominent (548, 1331, and 1685 cm-1) 

which were missing in HD patients. Those peaks were attributed to cholesterol, phospho-

lipids, and proteins. Overall, this study is an excellent example demonstrating biological 

fluids as a useful biomarker for HD diagnosis. All these findings clearly illustrate that 

Raman-based techniques are excellent tools in early diagnosis of HD paving a path toward 

clinical translation.  

 

4.2. Brain Tumors  

Brain tumors account for 90% of all central nervous system tumors and occur due to 

the growth of malignant cells in tissues of the brain. Advances have been made using 

different techniques such as PET, ultrasound (US), MRI, and optical coherence tomogra-

phy (OCT) to provide structural information and surgical planning of brain tumors[125-

127]. Such conventional methods have limitations including the inability to capture tumor 

heterogeneity, low sensitivity, and low resolution. Therefore, there is an urgent need to 

develop new methods that can detect tumor presence non-invasively. Over the past cou-

ple of decades, research efforts have leveraged the benefits of Raman techniques for brain 

tumor diagnosis.  The brain contains many Raman active species allowing it to be an effi-

cient and non-invasive technique in brain cancer detection. Also, RS strategies for label-

free spectroscopic analysis of brain tumors have allowed accurate diagnosis of brain tu-

mors and assessment of surgical outcomes.  

 

(a) Fundamental Investigations Related to Brain Tumor   

 

Detection of brain cancer-specific biomarkers in the blood is somewhat challenging 

due to the limited exchange of biomolecules. The development of SERS-based nanosen-

sors has recently been shown to address this issue that enables deep brain cancer surveil-

lance[128] (Figure 6a). More recently, Premachandran et al. reported a Ni-NiO-based 

SERS platform for the detection of blood-based molecules that helps accurate detection of 

the presence of primary and secondary tumors [129]. The developed hybrid SERS sub-

strate helps to combine electromagnetic enhancement from metallic Ni as well as chemical 

enhancement due to the charge transfer mechanism. Detection is based on Raman molec-

ular profiles of sera with a minimal working volume of 5 µL. Raman spectrum of brain 

cancer revealed signature peaks assigned to lipids, fatty acids, and proteins. The specific-

ity of the developed platform for cancer detection was further revealed by comparing mo-

lecular fingerprints of brain cancer sera with that of breast, lung, and colorectal cancers 

(Figure 6 d,e). Additionally, the developed method could identify the exact tumor location 

based on species such as glycogen, phosphatidylinositol, nucleic acids, and lipids. Kircher 

et al. reported a combination of SERS, PA, and MRI to visualize brain tumor margins with 

high precision using Au nanotags, functionalized with Gd organometallic com-

plexes[130]. This approach of combining endoscopic, photoacoustic, and Raman imaging 

capabilities would open a possibility of clinical translation of the MPR approach (magnetic 

resonance imaging–photoacoustic imaging–Raman imaging nanoparticle). Li and 

coworkers developed a surface-enhanced resonance Raman scattering (SERRS) probe us-

ing gold nanostars and IR-783 dye[131]. The developed SERRS probe demonstrated an 

ultrahigh detection limit of 5 pM in an aqueous solution.  

Prasad and coworkers utilized CARS to monitor the intense upregulation of protein 

and lipid synthesis signals in microglia cells[132]. Their results demonstrate the activation 



of microglia in the presence of bacterial liposaccharide due to the action of proteins and 

lipids further verifying the potential of CARS in the detection of neurological diseases. 

Koljenovic et al. showed that fiber-optic Raman probes to collect Raman scattered light in 

high wavenumber spectral region (2400-3800 cm-1) can be used to characterize porcine 

brain tissue ex vivo[133]. Authors evaluated coronal plain sections of 7 pig brains. Based 

on the biochemical differences revealed by Raman spectra, they were able to distinguish 

adjacent brain structures. In a different study this group examined 20 unfixed cryosections 

of glioblastoma by RS for separating vital and necrotic tissues[134]. Spectral signatures 

resembled that of cholesterol and cholesterol esters consistent with increased presence of 

cholesterol in necrotic tissues.  Cluster analysis revealed 100 % diagnostic accuracy.  

  

(b) Clinically Applied Investigations Related to Brain Tumor  

 

Several Raman techniques were investigated guiding brain tumor diagnosis. For in-

stance, spontaneous Raman scattering could be useful to identify tumor margins, tumor 

infiltration zones, brain edema, and tumor recurrence[130,135-137]. Jermyn et al. reported 

the use of RS for the intraoperative detection of brain cancer in a clinical trial of hu-

man[138]. Their hand-held contact RS probe technique could distinguish a normal brain 

from dense cancer and a normal brain invaded by cancer cells, with a sensitivity of 93% 

and a specificity of 91% (Figure 6b,c). This RS system’s success in clinical utility was ena-

bled by optical probe to maximize photon collection efficiency. Minimizing the volume of 

residual cancer is an important factor in clinical practices. This study estimated the cellular 

resolution of the Raman probe, with the detection of as few as 17 cancer cells/0.0625 mm2 

further verifying the utility of this technique in rapid cancer detection. The presence of 

cancer cells was detected using lipid bands (700 to 1142 cm−1), nucleic acid bands (1540 

to 1645 cm−1), and the phenylalanine band in proteins (1005 cm−1). With subsequent stud-

ies researchers were able to commercialize the optical probe for clinical translation[139-

141]. A similar probe was reported that combines RS, intrinsic fluorescence spectroscopy, 

and diffuse reflectance spectroscopy that can translatable to the diagnosis of other can-

cers[142]. Recently, imaging needle was developed for intraoperative detection of blood 

vessels during neurosurgery in humans[143]. In another study, Kircher and coworkers 

demonstrated the potential of SERS and optoacoustic tomography for intraoperative brain 

tumor delineation thereby improving surgical care[144]. The authors mentioned the pro-

posed dual-modal concept is suitable for clinical translation due to the acceptable illumi-

nation energy used throughout the experiment. Using SERS, guiding brain tumor resec-

tion is also possible. The breakthrough demonstration reported by Kircher’s group 

showed instrumentation that can aid brain tumor resection[145]. They used a hand-held 

Raman scanner to target glioblastoma tissues intraoperatively in genetically engineered 

mouse animal models. In another work, Hollon et al. demonstrated stimulated Raman 

histology as a powerful technique for near real-time intraoperative brain tumor diagno-

sis[146]. By combining convolutional neural network (CNN) with stimulated Raman his-

tology, researchers were able to achieve 100% classification accuracy. By leveraging recent 

developments in deep learning to train CNN on more than 2.5 million SRH images, re-

searchers were able to predict brain tumor diagnosis in the operating room under 150 s, 

which is significantly faster than conventional techniques. The outcome of this clinical 

trial demonstrates how stimulated Raman histology as a complementary pathway for tis-

sue diagnosis can improve the care of brain tumor patients. Overall, above mentioned 

findings create the possibility of translating Raman -based techniques from the laboratory 

to the clinic.  

Recent progress with the use of CARS for discerning healthy cells from tumor cells is 

highly promising. Galli et al. used a combination of CARS, two-photon excited fluores-

cence, and green fluorescence protein (GFP) labeling to identify glioblastoma tumors and 

infiltrates[137]. In this study, human tissue samples were collected during brain surgeries. 

The cell morphology and chemical contrast provided by CARS allowed tumor recognition 

and localization of infiltrating tumor cells.  Uckermann et al. employed CARS for the 



detection of different human brain tumors in a mouse model[147]. Here C-H molecular 

vibration was used as a probe to distinguish the lipid content of the sample since all brain 

tumors have significantly low lipid content (Figure 6f). SRS has shown the capacity to 

reveal features of tumor tissues similar to the standard H&E stain method[148]. Camelo-

Piragua and coworkers demonstrate an SRS-based technique in a clinical operating room 

to improve the surgical care of brain-tumor patients[149]. Here, they developed a porta-

ble, fiber-laser-based SRS microscopy system for rapid intraoperative tissue processing. 

Additionally, a clinical SRS microscope has been designed and utilized in operating 

rooms[150]. In this report researchers developed a method based on stimulated Raman 

Histology to avoid time, labor, and resource intensive standard H&E histology. This 

method was able to produce 2 × 2 mm SRH images at the bed site within 90-120 s.  

 

 

 

Figure 6. Illustration of applicability of Raman techniques in diagnosis of brain tumors. (a) Sche-

matic showing the overall design of the experiments starting from nanoparticle preparation to in-

travenous infusion, surgical resection, and analyses. Adapted with permission from Reference [128] 

© 2019 American Chemical Society. (b) Experimental setup diagram with the 785-nm NIR laser and 

the high-resolution CCD spectroscopic detector used with the Raman fiber optic probe. (c) The 

probe (Emvision, LLC) used to interrogate brain tissue during surgery. Inset shows the excitation of 

different molecular species, such as cholesteroland DNA, to produce the Raman spectra of cancer 

versus normal brain tissue. Adapted with permission from Reference [138] © 2015 Science. (d) SERS 

spectra of sera from brain, breast, lung, and colorectal cancer. (e) Raman spectral profiles of serum 

of brain cancer patients and serum of metastasized brain cancer. Adapted with permission from 

Reference [129] © 2022 American Chemical Society. (f) A: CARS image of a human U87MG glioblas-

toma in a mouse brain and B: CARS image of a separate small glioblastoma island in a mouse brain. 

Adapted with permission from Reference [147] © 2014 Public Library of Science. 

A recent study by Bury et al. analyzed 29 brain tissue samples that had been obtained 

during surgery[27]. Using gold nanoparticles as a SERS substrate and handheld Raman 

device researchers were able to differentiate tumor types from fresh brain tissue. Another 

clinically relevant study by ji et al. used SRS to identify human brain tumor infiltration in 



surgical specimens from 22 neurosurgical patients[151]. By constructing two-color images 

based on Raman intensity ratios, they were able to identify structure as lipid or protein 

rich. They reported a sensitivity of 97.5 % and a specificity of 98.5 % of detecting tumor 

infiltration. In an alternative approach, Desroches et al. developed an instrument using a 

core needle biopsy probe for detection of dense human brain tumor[26]. This instrument 

can be used in situ during surgery and has minimal impact on the flow of clinical proce-

dure. Using high wavenumber Raman spectroscopy, cancer cells were detected with 80 % 

sensitivity and 90 % specificity. In a follow up work, same researchers developed naviga-

tion-guided fiber optic Raman probe that allows surgeons to interrogate brain tissue in 

situ at the tip of biopsy needle prior to tissue removal[152]. Feature engineering was used 

to develop a new representation for spectral data tailored for brain tissue diagnosis in a 

clinical setting[21]. This method was based on dataset of 547 in vivo Raman spectra of 65 

patients. In contrast to conventional imaging techniques used for tumor diagnosis, the 

spectroscopic signatures provided by Raman techniques provide additional information 

about molecular information about tissues and cell-to-cell heterogeneity. Raman mapping 

in combination with PLS method was used to predict the tumor amount in dura and men-

ingioma obtained from 20 patients during neurosurgical procedure[153]. Raman spectra 

of dura was characterized by higher collagen content while lipid content of meningioma 

is significantly higher. Results of this work opened an avenue for the development of an 

in vivo Raman spectroscopy method for real-time guidance of meningioma resection. Le-

blond and coworkers reported optimum conditions of a Raman spectroscopy setup suita-

ble for neurosurgery[139]. They demonstrated that SNR increased as the camera temper-

ature decreased and integration time increased. Additionally, they revealed that external 

sources of light such as microscope light, operating room lights, LCD screens, daylight 

leakage impair the ability of accurate Raman measurements of the sample.    Overall, dif-

ferent Raman techniques are now steadily becoming popular and applicable in the clinical 

diagnosis of brain disorders.   

 

5. Conclusion and Future Prospects 

In the past few years, with the advances in spectroscopic tools and nanoscience, the 

diagnosis of brain disorders has made great progress. RS can assist in uncovering path-

ways of brain disorder progression. Several studies have demonstrated the capability of 

RS for identifying tissue classification of different areas of the brain as well as identifying 

different variants of brain pathologies. The applicability of Raman spectroscopic tech-

niques in the diagnosis of brain disorders continuously expands due to their effectiveness. 

The current interest of researchers is to establish a place for RS in standard clinical prac-

tices. The translation of RS towards the clinics has been amplified due to technological 

advancements alongside continued research breakthroughs highlighting clinical applica-

tions.  

Despite the remarkable work presented in this review in the field of RS in clinical 

applications of brain disorders, there remain several challenges that stand in the way of 

clinical transition. It has been known to the scientific community that RS has suffered from 

drawbacks such as weak signals, long acquisition times, fluorescence from biological sam-

ples, time-consuming data processing, and costs. Remarkable progress has been made 

over the past decades to address these challenges with the help of advancements in in-

struments and ML techniques. To enhance weak signals and improve SNR, several com-

plementary techniques such as SERS, RRS, and SRS are useful. Additionally, instrumental 

design is heading toward gathering data with high resolution, high accuracy, and fast 

acquisition times. The consistency of the sample measurements is pivotal for the transition 

from benchtop to bedside. It involves the establishment of profound spectral databases 

and the need for inter-system calibration. Calibration should be performed using National 

Institute of Standards and Technology (NIST) approved reference materials. Additionally, 

one of the translational hurdles involves the variable results from different Raman setups. 

Therefore, attention should be focused on defining methodologies, developing ML 



models, and chemometric methods to account for undesirable variations.  The roadmap 

of the translation of RS in clinical studies also involves clinical trials, regulatory approval, 

FDA guidelines, and market assessment. The key to obtaining sufficient data and their 

interpretation is based on suitable animal models to study biomarker identification and 

disease progression. Sometimes it could be challenging to measure the Raman signal in 

the presence of extraneous light sources. Therefore, engineering solutions based on proper 

light filtering can be used to minimize this effect in clinical settings. All in all, close collab-

orations between spectroscopists, material scientists, biomedical engineers, and clinicians 

are required to make the clinical transformation of RS a reality.    

There are still challenges in deploying ML methods in practical clinical diagnosis. 

One of the challenges is to select a proper model. The Raman spectra are high-dimensional 

and with noise. Therefore, the models can be easily overfitted with over-complex ML 

models. To achieve high accuracy in classification and prevent overfitting, the complexity 

of the model must be carefully selected with experts and cross-validation techniques. 

Also, the ML frameworks should be modified specifically for Raman spectra to recognize 

the patterns and correlation of Raman peaks. Another challenge of ML methods is inter-

pretability. Many complex ML models can achieve high performance in classification 

while the interpretation of these models is hard. The ML methods act as black boxes and 

cannot understand the problem. However, in clinical diagnosis, the robustness and inter-

pretation of diagnosis are critical. The lack of transparency in classification and diagnosis 

limits the practical deployment of the technique. To resolve the interpretability of ML 

methods, linear models are preferred since they are easy to explain. Some feature selection 

techniques that can be potentially extended and applied to rationalize the decision-mak-

ing process in analyzing clinical Raman spectra in brain diseases and cancers. 

We anticipate the future development of RS in clinical trials of NDs on several fronts. 

At present 2D materials are rarely used in conjunction with Raman techniques for bi-

omarker detection and disease progression on brain disorders. Therefore, exploring vari-

ous disciplines of 2D material-assisted RS is an effective approach for future directions. 

On the way of moving forward with 2D material-assisted RS, several factors need to be 

carefully researched such as material performances, stability in a biological medium, 

large-scale production, and biosafety. In this regard, surface functionalization of 2D ma-

terials that improve biocompatibility and colloidal stability needs to be thoroughly inves-

tigated. Research also needs to focus on integrating RS with other spectroscopic tech-

niques to design multimodal techniques that can provide additional and complementary 

information on clinical settings. Spectroscopic identification can be somewhat challenging 

when multiple analytes are present in complex biofluids. To overcome this issue, Raman 

techniques can be hyphenated with separation techniques such as liquid chromatography. 

Additionally, the focus should be aimed at the simultaneous detection of multiple bi-

omarkers. Future Raman-based devices should be automated as much as possible to min-

imize the burden on the clinical community. In the future, ML-Raman techniques may 

further improve the accuracy and reduce the time and cost in the early diagnosis of vari-

ous brain diseases and cancers. With the ability to analyze a large number of spectra and 

recognize the pattern, ML technologies can also be further developed to rapidly identify 

biomarkers and, therefore, facilitate drug development. The availability of open Raman 

datasets, open-source libraries, and high-performance computing resources will also ac-

celerate the progress in applying different existing ML methods and developing new ML 

algorithms in analyzing clinical Raman spectra. We envision that the future of precision 

medicine in clinics will be based on robotics. Therefore, necessary steps should be taken 

to design Raman-based techniques with robots.  Overall, the rapid development of Ra-

man-based techniques and ML capabilities is continuously pushing the boundaries in clin-

ics to improve patients’ well-being. We hope this review will open a new avenue to this 

burgeoning field.   
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