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Abstract: Brain disorders such as brain tumor and neurodegenerative disease (NDs) are accompa-
nied by chemical alterations in the tissues. Early diagnosis of these diseases will provide key benefits
for patients and opportunities for preventive treatments. To detect these sophisticated diseases, var-
ious imaging modalities have been developed such as computed tomography (CT), magnetic reso-
nance imaging (MRI), and positron emission tomography (PET). However, they provide inadequate
molecule specific information. In comparison, Raman spectroscopy (RS) is an analytical tool that
provides rich information about molecular fingerprints. It is also inexpensive and rapid compared
to CT, MRI, and PET. While intrinsic RS suffers from low yield, in recent years, through the adoption
of Raman enhancement technologies and advanced data analysis approaches, RS has undergone
significant advancements in its ability to probe biological tissues including brain. This review dis-
cusses recent clinical and biomedical applications of RS and related techniques applicable to brain
tumors and NDs.
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1. Introduction

The human brain is without doubt one of the most fascinating works of nature. It is
the central organ of the nervous system which controls essential activities of humans.
Brain disorders arise due to atypical features in brain functional, structural, and biochem-
ical levels. Many of these diseases, including Alzheimer's disease (AD), Parkinson's dis-
ease (PD), Huntington’s disease (HD), and brain tumors represent public health chal-
lenges as they can have a profound and even debilitating impact on a patient’s life[1-4].
The level of care required for patients with brain anomalies adds further economic and
social burden highlighting the importance of developing efficient treatments. As a result,
detection of these devastating disorders at an early stage represents paramount im-
portance in precision medicine. Current diagnosis methods are highly reliant on CT, MRI,
and PET[5-7]. While these techniques offer deep tissue imaging capabilities, they suffer
from major drawbacks such as high cost, poor spatial resolution, limited insight into spe-
cific molecular information, and the adverse effects of using ionizing radiation. Therefore,
developing fast, non-invasive, and cost-effective tools remains a central theme in clinical
applications.

Numerous developments in laser spectroscopy have enabled significant progression
of vibrational spectroscopy in biological applications. As one special method of various
vibrational spectroscopic techniques, RS has been established as the front runner in the
clinical diagnosis of brain anomalies[8,9]. It is widely accepted as a noninvasive modality
that can provide a wealth of information on the cellular and molecular level due to the
inelastic scattering of incident light. Typically, in RS, light from a monochromatic laser
interacts with the sample's vibrational modes, resulting in inelastic photon scattering.
These photons are shifted in energy to values different than that of excitation. This is
measured as Raman shift and gives information that is specific to chemical bonds. The
resulting spectra provide unique information where the Raman shift value provides in-
formation about different molecular species and their relative concentration can be eval-
uated based on the strength of different peaks. Thus, RS can provide a vibrational



“fingerprint” of the sample under investigation. More importantly, RS has significant po-
tential in the diagnosis, progression, and evaluation of treatments for brain disor-
ders[10,11]. This is mainly due to its ability to differentiate healthy and diseased tissues
that can reveal specific biomarkers based on the stage of the disease. Moreover, RS does
not require labeling for detection. Sometimes the signal generated from biological tissues
in spontaneous RS is relatively weak. In such situations, surface-enhanced Raman scatter-
ing (SERS) is useful to gather meaningful information[9]. Additionally, this technique can
be used in vivo due to the advancement of fiber-optic probes coupled with portable Ra-
man systems. These advances in RS in clinical applications have been further augmented
by rapid progress in chemometrics and ML algorithms[5]. Several data analysis methods
and ML models such as principal component analysis (PCA), classical least square fitting
(CLS), partial least square (PLS), and linear discriminant analysis (LDA) allow the extrac-
tion of hidden information that can’t be accessed through human inspection and basic
statistical methods.

In this review, we attempt to shed further light on significant advances and state-of-
the-art development of RS in clinical applications of brain disorders. We first start our
discussion with the principle of Raman scattering and general spectrometer setup. There
we discuss a range of Raman techniques such as resonance Raman spectroscopy (RRS),
SERS, and variations of RS. After that, we include a brief discussion on statistical analysis
tools including machine learning on Raman spectra as effective tools for biomarker iden-
tification of brain disorders. Then, we present different brain disorders categorized under
NDs and tumors. Finally, we discuss the challenges and prospects of RS for clinical appli-
cations of brain anomalies. We believe that this comprehensive review will stimulate and
trigger the understanding of RS as a potential tool in the diagnosis of brain disorders.

2. The Principles of Raman Spectroscopy and Related Techniques

When a photon of light interacts with matter, it can be scattered either elastically or
inelastically. RS engages the inelastic scattering of light by matter which was first de-
scribed by C.V. Raman early in the 20t century. The Raman effect is observed through
Stokes and anti-Stokes scattering in which the scattered light has either a lower or higher
frequency than that of the incident light respectively. In the biomedical field, Stokes scat-
tering is the most dominant pathway, and the signal is relatively weak. Only 1 in 10 mil-
lion photons experience Raman scattering. The difference in energy between the incident
light and the Raman scattered light is characteristic of the frequency of the vibrational
bond that is excited. Additionally, Raman scattering requires a change in polarizability.
The spectrum of the scattered photons is represented as the Raman spectrum, and it shows
the intensity of the scattered light as a function of the Raman shift. Raman shift values are
an identification of the target molecule which reflects specific chemical bonds and consti-
tutions. So, every molecule has a unique spectrum that can be identified as a vibrational
fingerprint allowing the identification of biological materials such as proteins, lipids, and
DNA.

For the measurements of scattering signal, the RS systems are used which are com-
posed of a light source, the spectrometer, a filter to block the laser line, and a detector
(Figure 1f). Lasers are used to provide monochromatic radiation for the excitation of mol-
ecules. A key consideration of the experimental design is the choice of laser wavelength.
This can depend on various factors such as resonance conditions of the sample, extent of
fluorescence, background signal, the sensitivity of the detectors, and signal-to-noise ratio
(SNR). Objective lenses are used to focus the light on the sample and to collect the scat-
tered radiation. The scattered light is then analyzed by spectrometer coupled to a suitable
detector. A set of filters (laser line filter and long pass or notch filter) are being used to
remove excitation radiation and Rayleigh scattered light. A diffraction grating is used to
separate useful radiation into constituent wavelengths and is finally detected by a sensi-
tive detection system, commonly by a charge-coupled device (CCD). Large data sets are
often required to apply chemometrics and ML analysis to extract meaningful data. To-
ward this goal, large sampling areas up to centimeters need to be analyzed with suitable



approaches. This is when Raman mapping is particularly useful. One possibility is to
move the laser or sample in a predetermined pattern to measure the Raman spectrum at
every position. Additional approaches involve expanding the laser focus, laser line, light
sheet, and wide-field illumination. Resulted Raman maps contain chemical and structural
information coupled with spatial information.
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Figure 1. Principles of RS (a) Energy level diagram showing Raman scattering, SERS, and RRS. E ,
El, and Vrl show the electronic ground state, an electronic excited state, and vibrational excited states,

respectively. (b) Raman spectrum induced by laser light focused on a sample during Raman micros-
copy. (c) Spatial distribution of Raman spectra, also referred to as hyperspectral Raman images,
where Raman images are obtained as distributions of Raman peak intensities. (d) Energy level dia-
gram of SRS, electronic pre resonant stimulated Raman scattering (eprSRS), and CARS. (e) SRS mi-
croscopy detects the energy exchange between the pump and probe beams via the vibrational exci-
tation state as stimulated Raman gain (probe beam) or loss (pump beam) to reconstruct a Raman
image. CARS microscopy uses CARS signals emitted from the sample as the image contrast.
Adapted with permission from Reference [11] © 2021 American Chemical Society. (f) Generic setup
for a Raman microspectroscopy system. Adapted with permission from Reference [37] © 2018 Amer-
ican Chemical Society.

2.1. Resonance Raman Spectroscopy (RRS)

Spontaneous Raman scattering is inherently weak, and it required special conditions
to magnify the signal. In RRS, the wavelength of the excitation light is tuned to match the
electronic transitions of the sample under investigation (Figure 1a). Such resonance con-
ditions result in the enhancement of the signal that could be undetectable under normal
conditions. Additionally, RRS only amplifies Raman scattering from a specific vibrational
mode. In literature, enhancement up to six orders of magnitude was reported[12]. This
technique allows the design of an enhancement mechanism without the interference of
foreign moieties. One drawback of RRS is increased fluorescence which can interfere with
the Raman signal. However, this can be minimized by choosing the proper wavelength
for excitation. RRS is becoming a popular tool in identifying NDs and brain cancers. For
example, RRS provides information about protein structures and conformations as well
as healthy and diseased tissues.



2.2. Surface-Enhanced Raman Spectroscopy (SERS)

While conventional RS provides excellent chemical specificity, it is inherently weak.
One method for enhancing the weak signal is using metallic substrates to take the ad-
vantage of the enhanced electric field at the surface of metal nanoparticles caused by lo-
calized surface plasmon resonance (LSPR)[13-15]. Gold and silver nanoparticles are
widely used for SERS experiments and their properties can be tuned depending on the
size, shape, composition, and dielectric environment of the nanoparticle[16]. SERS is a
rapid, sensitive, and label-free technique that allows even single-molecule detection.
Therefore, it has clear advantages for diagnostic applications related to NDs. In SERS
measurements, resulting enhancement is maximized when plasmon frequency is in reso-
nance with frequency in incident light (Figure 1a). However, other factors need to be con-
sidered such as nanoparticle clustering and surface adsorption[17].

2.3. Other Variations of Raman Spectroscopy

While spontaneous Raman scattering, SERS, and RRS are available as widely re-
searched techniques, other variations of RS are also used in brain diagnosis. Coherent anti-
stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) are widely uti-
lized versions of nonlinear RS. The principle behind CARS is to use a pump laser beam
and a Stokes laser beam to produce an anti-Stokes signal (Figure 1d). In CARS an en-
hanced Raman signal is obtained which is orders of magnitude stronger than spontaneous
Raman scattering. SRS is also based on the same principle as CARS to produce resonantly
enhanced signals (Figure 1d,e). The amplified Raman signals allow for the label-free de-
tection of target analytes with a high spatial resolution. Tip-enhanced Raman spectros-
copy is a combination of SERS and scanning tunneling microscopy (STM). As a result, it
has unique advantages such as chemical sensitivity and high spatial resolution. Fiber optic
probes and handheld instruments are particularly useful as they are portable, have small
dimensions, and are easy to use in clinical testing.

3. Statistical and Machine Learning Analysis for Raman Data

Raman spectra measured on brain samples are high-dimensional, complex, and
noisy. To analyze the complicated Raman spectra of brain samples, classical statistical
models are frequently used. In diagnosing various brain diseases, PCA is applied to visu-
alize sample patterns and interpret significant Raman peaks. For example, in studying
AD, Fonseca et al. deployed PCA on Raman spectra of mouse brains to visualize the dif-
ference between samples with different ages captured by RS (Figure 2a)[18]. Sevgi et al.
visualized principal components (PCs) to identify important Raman peaks correlated to
PD in Rat brain models (Figure 2b)[19]. Researchers also perform PCA to reduce dimen-
sionality and extract features before further analysis. Huefner et al. applied PCA on Ra-
man spectra and used the generated PCs as inputs to diagnose HD with serum sam-
ples[20]. In analyzing molecular processes in brain cancer, Lemoine et al. used 50 PCs
produced by PCA and optimized the performances of the classifier(Figure 2c)[21]. Other
researchers also reduce the dimension of Raman data with PCA in studying various brain
tumors including gliomas and meningiomas before feeding into the classifiers[22-24].
Other statistical tools such as t-distributed stochastic neighbor embedding (t-SNE) can
also be used to visualize the difference between Raman spectra of different samples. Wang
et al. applied t-SNE to project the high-dimensional Raman spectra of mouse brains with
and without AD into 2-dimensional plots and visualized the clusters[25].

ML is an advanced technique that can recognize patterns and capture minor differ-
ences between data clusters. Therefore, it is an excellent tool for analyzing Raman spectra.
In recent years, ML methods have been thriving in the clinical diagnosis of brain diseases
and the detection of brain cancers. Wang et al. proposed an interpretable ML method with
the support vector machine (SVM) and RS to identify potential biomarkers of AD in
mouse brains[25]. Specifically, they collected Raman spectra on slices of mouse brains
with and without AD, applied SVM to classify AD and non-AD spectra, and identified a
spectral feature importance map that reveals the importance of each Raman wavenumber
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in classifying AD and non-AD spectra (Figure 2d). Desroches et al. also applied SVM to
perform in vivo diagnosis of brain cancer with RS[26]. Morais et al. combined PCA and
SVM and achieved high performance in differentiating meningioma Grade I and Grade II
samples (Figure 2e)[23]. Another popular ML approach is PCA-LDA. Bury et al. identified
different tumor statuses with the LDA-PCA approach and achieved high accuracy (Figure
2f)[27]. Other researchers also demonstrated that PCA-LDA is efficient in studying differ-
ent brain cancers and tumors with Raman spectra[21-24]. Partial least squares discrimi-
nant analysis (PLS-DA) is also widely used in investigating brain cancer. Abramczyk et
al. classified Raman spectra of tissue from grade IV medulloblastoma and non-tumor us-
ing PLS-DA[28]. Other researchers performed classifications with PLS-DA and achieved
high accuracy in classifying different tumoral brain tissues[29,30].
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Figure 2. Illustration of applicability of statistical and ML methods on RS in brain clinical applica-
tions. (a) Histogram showing the differences between groups by PCA of the Raman spectral of brain
samples. 12-month-old wild-type mice WT (black), 6-month-old transgenic mice Tg6 (blue), and 12-
month-old transgenic mice Tgl2 (red). Adapted with permission from Reference [18] © 2021 The
Royal Society of Chemistry. (b) Visualization of the loadings of PC7. Positive side wild type rat (WT)
while negative side transgenic rat (TG) brain samples. Adapted with permission from Reference [19]
© 2021 Frontiers. (c) Raman spectra were processed by both band fitting and PCA with 50 principal
components before being fed into classifiers. Adapted with permission from Reference [21] © 2019
The Royal Society of Chemistry. (d) Workflow of Raman signals’ data collection, preprocessing, and
ML classification and interpretation to differentiate AD/non-AD Raman spectra of brain samples.
Adapted with permission from Reference [25] © 2022 American Chemical Society. (e) Receiver op-
erating characteristic (ROC) curve for PCA-QDA. AUC: area under the curve. AUC values between
0.7 and 0.8 are considered acceptable, between 0.8 and 0.9 are considered excellent, and above 0.9
are considered outstanding. Adapted with permission from Reference [23] © 2019 The Royal Society
of Chemistry. (f) Confusion matrix for PCA-LDC model classifying: Non-tumor brain tissue (N);
Low-grade Glioma (LG); High-grade Glioma (HG); Meningioma (Men); Metastasis (Met); Lym-
phoma (Ly). Green is correctly classified, whereas red is incorrectly classified. Adapted with per-
mission from Reference [27] © MDPI 2019.

There are many other ML methods applied on Raman spectra of various tissues and
diseases which can be extended to Raman spectra of brain samples. Perumal et al. applied



logistic regression to evaluate the diagnostic biomarker of ovarian cancer[29]. Tree-based
ML methods are also used in classifying Raman spectra. In classifying the Raman spectra
of the receptor-binding domain of SARS-CoV-2 and MERS-CoV virus, Zhang et al. applied
random forest and XGBoost and achieved accuracies over 95%[17]. Ye et al. also applied
XGBoost to classify Raman spectra of different strains of SARS-CoV-2[31]. Convolutional
neural networks are also used in classifying Raman spectra of different samples[31-33].
For example, Ma et al. achieved an accuracy of 92% with 1D-CNN in diagnosing breast
cancer.

ML models are also useful in reducing signal noise and enhancing SNR. Variational
autoencoder (VAE) is a convolutional neural network architecture with encoding and de-
coding stages[34-36]. The VAE is trained in an unsupervised way that reconstructs the
input spectra. The encoder compresses the input in a latent space. With the lower dimen-
sion of the latent space, the noise is removed during the reconstruction by the decoder.
He et al. applied the VAE to improve the signal-to-noise ratio of Raman spectra and sig-
nificantly increase the accuracy of tumor subtype detection[35].

4. Applications of Raman Spectroscopy in Brain Diseases

The seriousness of brain disorders has led to significant investment into research that
can identify diagnoses, therapies, and preventive pathways of these deadly diseases. This
broad category of brain disorders can vary depending on symptoms and severity. Out of
many diseases that can affect the brain, NDs and brain tumors are more prevalent. The
major hallmark of NDs is protein accumulation. However, abnormal conformational
properties including amyloidosis, tauopathies, a-synucleinopathies, and proteinopathies
are also responsible for the development of NDs. RS has great potential in identifying
these diseases and was successfully applied in clinical studies. Table 1 compares mecha-
nisms, biomarkers, Raman sensitivity, and diagnose methods other than Raman spectros-
copy for NDs.

Table 1. Mechanisms, biomarkers, Raman sensitivity, and diagnose methods other than Raman
spectroscopy for NDs.

AD PD HD

Expansion of CAG trinucleotides

A Protein misfolding[10] coding for poly-glutamine (poly-

Aggregation of a-synu-

Mechanism Hyperphosphorylation of tau . Q) stretch at the NHa-terminus
. . clein[10,37] ..
causing aggregation[10,37] of the huntingtin (Htt) pro-
tein[10,37]
Tau proteins (t-tau ,p-tau)[38] Hungtintin protein
A[3 (Aﬁ oligomer, A[340, Mutant Htt (mHtt) [43]
AB42)[38] a-synuclein[39] Polyglutamine[44]
Neurofilament light chain (NfL) Dopamine[39] Triglycerides, phospholipids,
. Vinisin-like protein 1 (VLP-1) Orexin[40,41] Fatty acids[45]
Biomarkers . . .
Neuron-specific enolase (NSE 8-Hydroxy-2’" -Deoxyguano- Myelin basic protein
Heart fatty acid binding protein sine[40] (MBP)[46,47]
(HFABP) miRNA[42] Total tau (t-tau)[48]
Glial activation (YKL-40) Melatonin[49]
Cortosol[50,51]

Raman Sensitivity

100 nM for a-synuclein[54]
101* M for Dopamine[55]
1 nM for Dopamine[56]

100 fg/mL for AB[52]

29 uM fi Htt tein[43
10° M for Dopamine[53] MM for mHtt protein[43]

Diagnose methods other than
Raman Spectroscopy

Mental state examination
Neurological assessment

Brain imaging techniques
Genetic testing[6,37,57]

Mental state examination
Neurological assessment
Brain imaging tech-

niques[6,37,57]

Mental state examination
Neurological assessment
Brain imaging tech-

niques[6,37,57]




The application of Raman techniques to clinical samples and animal models is still at
early stage and still need close collaborations between spectroscopists, material scientists,
biomedical engineers, and clinicians are required to make the clinical transformation of
RS a reality. However, emerging reports have demonstrated promising potential of RS in
clinical settings[58-61]. The exploitation of Raman techniques in clinical laboratory is
mainly dependent on the availability of portable Raman systems and the advancements
in miniaturization[62,63]. Tanwar et al. and Allakhverdiev et al. described the clinical ap-
plications of Raman spectroscopy on four different avenues including disease diagnosis,
surgical guidance, therapeutic monitoring, and metabolite monitoring[63,64]. The Raman
spectrum of biofluids such as urine, saliva, serum, and tears induce many peaks repre-
sentative of the plethora of cellular constitutes. Additionally, biomarker identification of
such biofluids has potential to study of various physiological and pathological processes.
Differences between healthy samples and pathologic conditions are exhibited as peak
shifting and different intensity of the Raman spectrum. Additionally, there could be emer-
gence of new peaks allowing precise identification of pathologies. DePaoli et al. described
three main system types required for the exploitation of RS in neurosurgery[62]. First,
there should be availability of single-point RS probes for intact tissue assessment. Another
requirement is access to portable Raman microscopes for histopathological evaluation af-
ter tissue resection. Finally, there should be availability of endoscopic imagers for surgical
guidance. In this section, we introduce the state-of-the-art developments of RS in the di-
agnosis of the above-mentioned brain anomalies.

4.1. Neurodegenerative Diseases

NDs constitute chronic, progressive, and irreversible diseases that can affect many of
the body’s activities, such as movements, talking, heart function, balance, and breathing.
Some of these diseases include AD, PD, HD, and so on. The diagnosis and treatment of
NDs represent a significant challenge to healthcare specialists as most of the symptoms
become evident at later stages. Research in NDs currently undergoes at a rapid pace.
Promising results from various studies have led to improving the understanding of risk
factors associated with this disease. This includes age, family history, susceptibility genes,
lifestyle choices, environmental factors, education, and gender to name a few. Although
the pathogenesis and the degeneration mechanisms are different for each disease, they
share common characteristics such as protein misfolding and aggregation, enabling RS as
a handy tool in diagnosis. A comprehensive understanding of protein structure is the key
to controlling disease progress. RS of healthy tissue is composed of many constituents and
when certain pathologic conditions arise there will be a change in Raman shift values and
intensities of the peaks. This provides a unique pathway to identify biomarkers related to
NDs with the aid of chemometrics.

4.1.1. Alzheimer’s Disease (AD)

AD is the most prevalent neurodegenerative disorder associated with weight loss,
memory deficits, and cognitive decline. Various studies support the finding that the accu-
mulation of Amyloid-f3 (Af) in the brain is responsible for the progression of AD. Addi-
tionally, tau proteins are also responsible for the initiating event of AD. RS and related
methods have evolved as a sensitive method for biomarker screening of AD.

(a) Fundamental Investigations Related to AD

Conventional RS has been applied to the investigation of biomarkers related to the
progression of AD using post-mortem human brain tissues and biofluids. SRS has been
applied in studying amyloid plaques in AD. A recent work by Ji et al. reported three-color
SRS imaging of amyloid plaques of AD[65]. The researchers were able to distinguish mis-
folded and normal proteins by measuring the spectral shifts of the amide-I bands (Figure
3a). The results revealed approximately 10 cm-1 blue shift of the amide-I band which was



obvious in both frozen and fresh tissue samples. In another work, Lochocki used SRS-
based multimodal technique to detect amyloid deposits in snap-frozen AD human brain
tissue[66]. SRS results revealed transformation of protein to a 3-sheet structure.

In an early report, Sudworth et al. utilized RS in combination with PCA analysis to
discriminate AD disease status in terms of protein conformation changes[67]. A similar
study conducted by Hu and coworkers verified for the first time that Raman signatures
from the brain hippocampus could help to explore the pathogenesis of AD[68]. They in-
jected Afpzs-3sinto the hippocampus CA1 regions of rats, and an experimental procedure
was carried out using 785 nm laser for spectral acquisition. To rule out effects from injec-
tion itself, the researchers also carried out continuous monitoring of the detailed spectral
changes. Compared with the spectra of normal rats, that of AD rats is characterized by
signature peaks and normalized intensity differences. For example, a shoulder Raman
peak at 1670 cm* assigned to the C=0O stretching vibration of the 3 sheet secondary struc-
ture has been used to distinguish AD and healthy samples. Additionally, normalized in-
tensities of Raman peaks at 1065, 1088, 1130, 1300, and 1440 cm are dominated in AD
samples demonstrating hallmarks in progress of AD such as A3 deposition, increase of
cholesterol, and increase of slightly hyperphosphorylated tau.

Michael et al. reported the utility of RS as a beneficial technique to analyze eye lens
diseases caused by protein aggregation[69,70]. The study showed that protein aggregates
of the hippocampus and cortical cataracts of eye lenses have significantly different Raman
profiles. More recently, Popp and coworkers carried out biochemical characterization of
retinal neurodegeneration of an AD model by ex vivo Raman investigations[71]. Investi-
gated samples captured the layered structure of the retina using a spatial resolution of 2
pm in Raman-based imaging. This finding was further supported by hematoxylin and
eosin (H&E) staining procedure. The layers were identified based on Raman signature
peaks attributed to nucleic acids, Rhodopsin, lipids, and proteins (Figure 3b,c). For tar-
geted in vivo applications, with a focus on AD detection en face Raman imaging was pro-
cessed revealing important biochemical information. The study revealed that an early
state biochemical change in the protein composition precedes more conventional late-
stage structural changes and pathological pathways of AD. Furthermore, researchers
achieved 85.9% accuracy in chemometric analysis.

Two-dimensional (2D) materials are layered crystalline materials characterized by a
list of exotic properties. The family of 2D materials includes graphene, transition metal
dichalcogenides (TMDs), hexagonal boron nitride (h-BN), black phosphorous (BP),
MXenes, etc[72-75]. They are highly applicable in optical bioimaging, therapy, and tissue
engineering[76,77]. These fascinating materials have been explored in the landscape of
NDs and other brain disorders[57,78-80]. Choi et al. demonstrated the reliability of gra-
phene oxide (GO)-hybrid nano arrays as the SERS sensing substrate for detecting 10 to
10 M concentration of dopamine[53]. Very recently, our group reported rapid biomarker
screening of AD could aid timely and effective treatment measures[25]. Briefly, we uti-
lized graphene-assisted RS and ML techniques to differentiate mouse brain with and with-
out AD. We collected data from three different brain regions: cortex, hippocampus, and
thalamus. In the case with graphene in contact, it exhibited much higher SNR for all the
three brain regions. We explained the results based on exceptional properties of graphene
such as high thermal conductivity and fluorescence quenching capability. More im-
portantly, using ML interpretation we identified three molecules (triolein, phosphatidyl-
choline, and actin) that are positively correlated with AD and two molecules (cytochrome
and glycogen) that are negatively correlated to AD

SERS can also help provide molecular fingerprints of brain tissues. Liu and cowork-
ers used black phosphorous and gold nanoparticle nanohybrid (BP-AuNPs) as a SERS
substrate to understand the molecular composition of various encephalic regions[81].
SERS measurements were achieved through Balb/c mice and 785 nm excitation. Spectra
were collected from four encephalic regions (cerebral cortex, hippocampus, thalamus, and
hypothalamus) showing spectral differences among different regions. The difference
spectra obtained by subtracting the left and right hemisphere of four encephalic regions



provides insight into variation in the local biochemical environments. In another study,
Demeritte and colleagues designed core-shell nanoparticles modified with GO for selec-
tive separation and label-free identification of AD biomarkers. Here, A3 was magnetically
separated from the whole blood sample and achieved a detection limit of 100 fg/mL[52].
It has been shown that metal ions especially Fe¥, Cu?, and Zn? have a significant impact
on A aggregation[82,83]. The link between metal ions and disordered proteins in NDs is
well-known and widely studied using SERS. Zhou et al. reported the potential of SERS
spectra to reveal real-time imaging of A3 aggregation under different conditions[84]. In
their study, AuNPs synthesized in situ with A3 monomer and fresh mouse brain were
used as a template to understand the role of metal ions on A3 aggregation. Their results
mentioned that Cu? and Zn?* ions of low concentration promoted fibril formation, while
Fe3* and Zn? of high concentration inhibit fibril formation (Figure 3d). Other Raman tech-
niques on biomarker detection of AD and the dynamical behavior of A3 aggregation are
progressing gradually, offering valuable insight for the clinical transformation of RS in
disease prevention[85-87].

Mild cognitive impairment (MCI) is a condition often misdiagnosed with early-stage
AD typically characterized by subjective memory impairment and modest deficit in main
cognitive domains[88]. The advanced stage of AD is associated with severe cognitive de-
cline. Individuals with MCI are memory impaired but have no functional decline and do
not meet the requirements for dementia[89]. This early-stage of AD could lead to worsen-
ing of the clinical diagnosis prolonging the diagnosis period of AD for treatment proce-
dures. Therefore, identifying biomarkers for this pre-symptomatic stage of AD will be the
key to successful treatments. It has been reported that brain glucose uptake is reduced by
9%, in patients with MCI allowing biomarker identification[88].

(b) Clinically Applied Investigations Related to AD

The diagnosis accuracy of neurodegenerative diseases can be significantly enhanced
using RS. Most of the published studies rely on comparison of comparison of Raman fea-
tures of healthy donors with that of infected patients. Diagnosis of AD is associated with
abnormal formation of amyloid plaques and neurofibrillary tangles. Therefore, many re-
searchers developed Raman-based strategies to detect such protein aggregated in bioflu-
ids and tissue samples. For example, Lochocki et al. employed RS to study A{3 deposition
in AD tissue sections from post-mortem patients[90]. Additionally, Ryzhikova et al. sug-
gested that early detection of AD is possible using RS investigation of CSF[91]. In that
study, researchers resolved AD diagnosis with 84% sensitivity and specificity. In another
study same researchers reveled the applicability of blood serum for AD diagnostics[92].
Moreover, Carlomagno et al. used multivariate statistical analysis of human serum for AD
disease evaluation[93].

RS is one of the most popular methods for profiling cellular metabolites such as neu-
rotransmitters. Imbalances in neurotransmitters are directly correlated to NDs such as AD
and PD. As metabolite monitoring is an important aspect in clinical studies, significant
research progress has been made for spatial localization of neurotransmitters on living
cells[94]. Manciu et al. revealed the clinical potential of RS for detection and monitoring
of neurotransmitters[95]. The study carried out real-time detection of serotonin, adeno-
sine, and dopamine in vitro. Recently, Fu et al. used animal model for label-free imaging
of acetylcholine using SRS[96]. The authors used vibrational signatures of acetylcholine at
720 cm-1 to quantify its local concentration directly at the neuromuscular junctions of frog
cutaneous pectoris muscle. SERS has been used for monitoring the concentrations of var-
ious neurotransmitters and fibrilization of AD responsible proteins. SERS measurements
have been previously reported for the detection of several neurotransmitters including
dopamine, melatonin, serotonin, GABA, and acetylcholine[97-100]. These neurotransmit-
ters are particularly important as they are useful as biomarkers for diagnosis and moni-
toring neurological diseases. More recently, Moody et al. carried out comprehensive study
of SERS detection using seven neurotransmitters to establish optimal detection conditions
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such as type of metal and wavelength[101]. Additionally, they used PCA analysis to de-
compose large data sets and identify spectral patterns. For serotonin, GABA, and gluta-
mate, the best limit of detection (LOD) was achieved with silver nanoparticles as a SERS
substrate at an excitation wavelength of 633 nm. On the other hand, for melatonin, dopa-
mine, epinephrine, and norepinephrine, the best LOD was achieved using gold nanopar-
ticles (AuNPs) at an excitation wavelength of 785 nm. In a different study, Ende et al.
demonstrated physicochemical trapping of neurotransmitters based on AuNPs and poly-
vinylpyrrolidone (PVP) to detect molecules that are weakly affinitive for gold[102]. Addi-
tionally, Lee et al. reported spread spectrum SERS (ss-SERS) technique to detect neuro-
transmitters at attomolar level opening opportunities for early diagnosis of neurological
disorders[103]. Experimental results showed improvement in the SNR of more than three
orders of magnitude. Such an exceptional SNR enhancement allows ultrasensitive detec-
tion of neurotransmitters.
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Figure 3. Utility of Raman spectroscopic techniques in diagnosis of AD. (a) SRS images of fresh

-1
mouse brain sections at (A) 1658, (B) 1670, and (C) 1680 cm . (D) Three color image showing the
distribution of lipids (green), proteins (blue) and amyloid plaque (pink) in the mouse brain tissue.

(E) SRS spectra of the 16001720 cm ' region, showing the 10 cm ' shift of the amide I band. Adapted
with permission from Reference [65] © American Association for the Advancement of Science. Over-
all mean spectra based on the two groups WT (red) and AD mice (black) of the en face Raman meas-
urements used for the (b) classification model and (c) the cross sections. Adapted with permission
from Reference [71] © 2020 American Chemical Society. (d) SERS imaging of A4 in brain tissues
where (i) Bright-field of tissue slices from 2-month-old APP/PS1 transgenic mice treated with (A)

+ 3+ +
control diet, (B) Cu2 , and (C) Fe , Zn2 of (D) low and (E) high concentration incubated with our
SERS platform for 90 min. SERS imaging of Af, in hippocampus of tissue slices: (A) control diet,

2+ 3+ 2+
(B)Cu ,and (C)Fe ,Zn of (D) low and (E) high concentration. (ii represents I and iii represents

6
I,,)- (iv) SERS spectra of AB, in hippocampus of tissue slices from 2-month-old APP/PS1 transgenic

2+ 3+ 2+
mice treated with (A) control diet, (B) Cu , and (C) Fe ,Zn of (D) low and (E) high concentration.
Adapted with permission from Reference [84] © 2020 American Chemical Society.



Clinical evaluation of suspected MCI patients has similarities to that for AD includ-
ing but not limited to the history of the patient, mental status examination, and medical
laboratory tests. Cerebrospinal fluid (CSF) measures of A3 and tau are useful as bi-
omarkers in predicting the progression from MCI to AD[89]. Hansson et al. revealed the
potential of CSF concentrations of A1, total tau (t-tau), and tau phosphorylated at thre-
onine 181 (p-tau) in predicting the progression from MCI to AD[104]. Cennamo et al.
demonstrated SERS of tear fluid as a potential source of a biomarker to differentiate AD
and MCl-affected patients[105]. They used 18 AD-affected and 7 MCl-affected patients
including both men and women. Spectral differences were characterized in different re-
gions attributed to lactoferrin and lysozyme protein components. Additionally, research-
ers used PCA analysis to discriminate AD and MCl-affected patients. In another study,
Raman spectroscopy was used to analyze saliva samples collected from AD and MCI in-
dividuals and achieved greater than 99% accuracy[106]. In the end, researchers proved
that RS in combination with ML is successful as an accurate diagnostic method in the early
stages of AD

4.1.2. Parkinson's Disease (PD)

After AD, PD is the second most common NDs. Weight loss and behavioral abnor-
malities are common symptoms of PD. The neuropathological hallmark of PD includes
abnormal deposition of a protein called a-synuclein and dopamine deficiency[107]. The
native form of a-synuclein is intrinsically disordered and it undergoes a transition of the
structure due to PD[108].

(a) Fundamental Investigations Related to PD

RS has been utilized to characterize the secondary structure of a-synuclein and its
aggregation. Raman optical activity (ROA) is a chiroptical spectroscopic technique useful
in identifying the secondary structure of proteins. This technique is based on the differ-
ence in scattering intensities between left and right circularly polarized light. Mensch et
al. used ROA to conventional RS to detect the transition of a-synuclein from a disordered
to a-helical or B-sheet forms[109]. They used increasing concentrations of fluorinated al-
cohols to induce aggregation of a-synuclein and identified states that act as intermediate
for aggregation and {-sheet rich oligomers. It is of great importance to understand the
aggregation process of a-synuclein as it is an important drug discovery target for PD. To-
wards that goal, RS was utilized to identify differences in normal and fibril states of a-
synuclein. Maiti et al. used a three-component band fitting (a-helix ~ 1650-1656 cm~—1, [3-
sheet ~1664-1670 cm—1, and unordered ~1680 cm~-1) of amide I region to investigate the
secondary structure during aggregation of a-synuclein[110]. Results estimated that 48%
of the secondary structure is composed of a-helix. In a follow-up study, the same research
group carried out further analysis of the a-synuclein amide I region during fibrilla-
tion[111]. Data revealed that the transition of monomer to aggregate is a complex phe-
nomenon that results from the interplay between various processes (Figure 4b). The re-
sults have validated that one of the intermediates a-synuclein aggregation possesses a-
helical conformation. Additionally, an increase in 3-sheet content and a decrease in the
disorder of protein was observed during aggregation.

In particular, the SERS study on a-synuclein is scarce. In an early study, Zhang and
coworkers designed a Liquid Core Photonic Crystal Fiber (LCPCF) and SERS-based sen-
sor for a-synuclein detection[112]. More recently, SERS-based microfluidic testing chips
have been constructed for the investigation of the transient species of a-synuclein at phys-
iological concentration[54]. Briefly, optical tweezers were used to tune the separation of
two silver nanoparticle-coated silica microbeads allowing precise control of the hotspot.
In the 200 parallel SERS measurements of 1 pM a-synuclein solution is characterized by
unique Raman fingerprints attributed to a-helix and p-sheets (Figure 4a). Further, this
method allowed the LOD of a-synuclein as low as 100 nM. Since dopamine deficiency is



a neuropathological hallmark of PD, several studies have applied SERS to the detection of
dopamine. An et al. used AuNPs immobilized on a glass substrate for the detection of
dopamine and obtained a detection limit of 1 nM[55]. The Raman spectrum of dopamine
displayed broad bands at 1267, 1331, 1158, 1478, 1578, and 1584 cm™ with peaks at 1267
and 1478 cm™ identified as phenolic carbon-oxygen and phenyl C=C stretches, respec-
tively. FesOs/Ag nanocomposite has been successfully applied for the determination of
dopamine in an artificial cerebrospinal fluid and mouse striatum[113]. Many studies have
demonstrated SERS as a facial-sensing strategy for dopamine. An in-depth discussion of
SERS as a detection method for dopamine is out of the scope of this review, and readers
are encouraged to read other articles on this topic[114,115].

(b) Clinically Applied Investigations Related to PD

The strategy of collecting biochemical information at structural level of biological or-
ganization is applicable in other NDs such as PD. SERS has been used to probe the dopa-
mine, human dopamine transporter, and dopamine-human dopamine transporter (DA-
hDAT) interactions in live cells[116]. The analysis of experimental results revealed that
Raman wavenumbers of 807 and 1076 cm-1 are crucial for the DA-hDAT interactions.
These peaks are attributed to bound states of dopamine molecules in the human dopa-
mine transporter. Furthermore, analysis of physiological dopamine concentration in com-
plex biological fluids was also reported as an alternative diagnostic test for PD[117]. For
example, Phung et al. reported 86% lower dopamine concentration for patients with drug-
induced Parkinsonism compared with the level in the healthy human body[56]. The aver-
age dopamine concentrations of the two groups were 2.31 x 10-8 M and 3.24 x 10-9 M for
healthy and infected samples. Further, the results demonstrated the detection of dopa-
mine concentration as low as 10-11 M (Figure 4d,e). These findings highlight the applica-
bility of the SERS technique as an ultrasensitive detection platform to diagnose PD
through dopamine as its concentration in samples is relatively low. In another study,
Schipper and coworkers developed an innovative platform for plasma metabolomics for
biomarker studies of PD[118]. In that study, the researchers demonstrated that RS and
near-IR spectroscopy (NIRS) of plasma differentiate individuals with idiopathic from
healthy samples with ~75% accuracy. This finding was based on significant variations in
oxidative stress sensitivity bands in comparison with the control. Additionally, the study
mentioned that reactive oxidative species (ROS) modify the proteins, lipids, and other cel-
lular substrates in plasma. Carlomagno et al. used the saliva of PD patients to create an
automatic classification model[119]. In that study, Raman spectroscopic analysis was ap-
plied to the saliva of 23 PD patients and 33 healthy samples. Acquired data were further
analyzed using ML techniques. The proposed method highlights the potential to deter-
mine PD onset and progression, monitor therapies, and rehabilitation efficiency.

Brain disorders affect the normal functions of the retinal layers and their subsections.
Many studies have shown that PD has a direct correlation with visual dysfunctions in-
cluding color discrimination, visual activity, Contrast sensitivity, blurred image, motion
perception, and loss of vision[120]. Mammadova et al. used RS to investigate retinal pa-
thology in a transgenic mouse model (TgM83) expressing the human A53T a-synuclein
mutation[121]. In that work, a-synuclein was shown to accumulate in the inner and outer
retina of 8-month-old TgM83 transgenic mice, expressing A53T human a-synuclein under
the control of the Prnp promoter. Phospho-a-synuclein was only present in the outer nu-
clear layer. In addition, TgM83 transgenic mics showed increased microglial activation
followed by increased GFAP immunoreactivity. Bedoni and coworkers examined saliva
from PD, AD, and Amyotrophic Lateral Sclerosis (ALS) patients showing key spectral dif-
ferences[122]. In this study, RS was used to detect biomarkers of ALS compared not only
to controls but also to PD and AD patients (Figure 4c). They mentioned this approach can
drastically shorten diagnosis times that lead to precise and quick diagnoses of the most
dangerous neurogenerative diseases. Overall, the above findings suggest that different
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Raman techniques correlate well with clinical trials offering an easy and user-friendly tool
for disease diagnosis.
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Figure 4. Applicability of different Raman techniques in diagnosis of PD. (a) Mapping of 200 SERS
spectra of 1 pM alpha-synuclein solution obtained from two AgNP-coated beads trapped at 20 nm
with 1s acquisition time. The color bar shows the normalized intensities from low (dark blue) to
high (red). Adapted with permission from Reference [54] © 2021 Nature Portfolio. (b) Structural
changes of a-synuclein during aggregation. Raman spectra (A-D) reveal a narrowing of the amide
I band with an increase in intensity of the peak ~1670 cm, indicating an increase in [3-sheet struc-
tures with aggregation. (E) ThT fluorescence spectra only show a large increase in fluorescence on
filament addition, despite the high level of 3-sheet detected in the protofilament sample by RS. (F)
Spheroidal oligomers were observed at 21 days of incubation, with protofilaments at 32 days and
filaments at 42 days of incubation. Adapted with permission from reference [111] © 2006 Elsevier.
(c) Average Raman spectra with SD of (A) ALS, (B) PD, (C) AD and (D) control groups. Adapted
with permission from Reference [122] © 2020 Nature Portfolio. (d) Raman spectra of plasma dopa-
mine extracted from the blood samples of healthy subjects and patients and (e) plasma dopamine
levels of all blood plasma samples using the SERS technique. Adapted with permission from Refer-
ence [56] © 2018 Royal Society of Chemistry.

4.1.3. Huntington's Disease (HD)

HD is a progressive NDs that belongs to the category of autosomal-dominant disor-
ders. This is caused by the expansion of CAG trinucleotides coding for poly-glutamine
(poly-Q) stretch at the NH2-terminus of the huntingtin (Htt) protein. So mutated Htt is
the cause of HD. Patients with HD characteristically lose weight and are observed with
motor, psychiatric, and cognitive abnormalities. Similar to AD and PD, its pathogenesis is
related to the aggregation and accumulation of misfolded proteins in peripheral nerves.
HD has no cure, and most of the diagnosis is done by genetic testing. Therefore, finding
suitable biomarkers for the detection and identification of onset of the HD could be bene-
ficial and enable therapeutic intervention.
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(a) Fundamental Investigations Related to HD

RS has been used for the quantification and visualization of aggregated proteins and
other aspects of HD. Miao et al. reported a novel platform for live-cell imaging of aggre-
gates by combining SRS microscopy with GIn-d5 labeling[43]. This combined approach
facilitated measuring absolute concentrations of sequestered mutant Htt and other pro-
teins within the same aggregate. It has been demonstrated more recently that UV reso-
nance Raman spectroscopy (UVRRS) is useful to monitor polyglutamine backbone, side
chain hydrogen bonding, and fibrillization[44]. CARS microscopy has been used to image
polyglutamine aggregate structures in vitro and in vivo[123].

(b) Clinically Applied Investigations Related to HD

SERS and spontaneous RS of serum were used to identify disease progression of
HDJ[20]. The study mentioned that there are significant differences corresponding to gen-
otype and gender in serum samples of HD patients and healthy controls. For HD patients,
Raman bands at 1245 cm™! and 1667 cm! are dominant indicating higher content of 3-sheet
protein structures present in the HD serum compared to healthy controls (Figure 5). Pe-
ripheral fibroblasts are useful as a potential model for HD. In this regard, RS has also been
used to identify living fibroblast (skin) cells from an HD patient with an accuracy of
95%][124]. Raman spectrum from HD patients revealed that more (3-sheet proteins are pre-
sent at 1220 cm ! This is consistent with the finding that the aggregation of the protein
from the mutated huntingtin gene, is known to take a beta-sheet form. Additionally, there
are other differences in HD patients including reduction in the amount of lipids and cho-
lesterol.
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Figure 5. Illustration of applicability of Raman techniques in diagnosis of HD. Average RS (a) and
SERS (b) spectra of serum from healthy control subjects (blue lines) and HD patients (red line) as
well as their standard deviations (c and d, respectively). The different spectra of the averages for RS
(black line, e) and SERS (black line, f) are within the standard deviation (¢ and d) of the average
spectra (a and b). Yellow marked regions indicate important peaks. Adapted with permission from
Reference [20] © 2020 Royal Society of Chemistry.



In another study, RS and partial least squares analysis was used in analysis in dis-
crimination of peripheral cells affected by HD[45]. Significant differences were observed
in the low wavenumber region (400 cm-1 to 1800 cm-1). HD patients showed differences
in the Raman peaks at 428 and 701 cm-1, which is an indicative of cholesterol and choles-
terol esters, in comparison to control samples. Additionally, differences were seen at 1045,
1073, and 1130 cm-1 regions corresponding to triglycerides, phospholipids, fatty acids,
and proteins. For healthy samples three peaks are prominent (548, 1331, and 1685 cm-1)
which were missing in HD patients. Those peaks were attributed to cholesterol, phospho-
lipids, and proteins. Overall, this study is an excellent example demonstrating biological
fluids as a useful biomarker for HD diagnosis. All these findings clearly illustrate that
Raman-based techniques are excellent tools in early diagnosis of HD paving a path toward
clinical translation.

4.2. Brain Tumors

Brain tumors account for 90% of all central nervous system tumors and occur due to
the growth of malignant cells in tissues of the brain. Advances have been made using
different techniques such as PET, ultrasound (US), MRI, and optical coherence tomogra-
phy (OCT) to provide structural information and surgical planning of brain tumors[125-
127]. Such conventional methods have limitations including the inability to capture tumor
heterogeneity, low sensitivity, and low resolution. Therefore, there is an urgent need to
develop new methods that can detect tumor presence non-invasively. Over the past cou-
ple of decades, research efforts have leveraged the benefits of Raman techniques for brain
tumor diagnosis. The brain contains many Raman active species allowing it to be an effi-
cient and non-invasive technique in brain cancer detection. Also, RS strategies for label-
free spectroscopic analysis of brain tumors have allowed accurate diagnosis of brain tu-
mors and assessment of surgical outcomes.

(a) Fundamental Investigations Related to Brain Tumor

Detection of brain cancer-specific biomarkers in the blood is somewhat challenging
due to the limited exchange of biomolecules. The development of SERS-based nanosen-
sors has recently been shown to address this issue that enables deep brain cancer surveil-
lance[128] (Figure 6a). More recently, Premachandran et al. reported a Ni-NiO-based
SERS platform for the detection of blood-based molecules that helps accurate detection of
the presence of primary and secondary tumors [129]. The developed hybrid SERS sub-
strate helps to combine electromagnetic enhancement from metallic Ni as well as chemical
enhancement due to the charge transfer mechanism. Detection is based on Raman molec-
ular profiles of sera with a minimal working volume of 5 uL. Raman spectrum of brain
cancer revealed signature peaks assigned to lipids, fatty acids, and proteins. The specific-
ity of the developed platform for cancer detection was further revealed by comparing mo-
lecular fingerprints of brain cancer sera with that of breast, lung, and colorectal cancers
(Figure 6 d,e). Additionally, the developed method could identify the exact tumor location
based on species such as glycogen, phosphatidylinositol, nucleic acids, and lipids. Kircher
et al. reported a combination of SERS, PA, and MRI to visualize brain tumor margins with
high precision using Au nanotags, functionalized with Gd organometallic com-
plexes[130]. This approach of combining endoscopic, photoacoustic, and Raman imaging
capabilities would open a possibility of clinical translation of the MPR approach (magnetic
resonance imaging—photoacoustic imaging-Raman imaging nanoparticle). Li and
coworkers developed a surface-enhanced resonance Raman scattering (SERRS) probe us-
ing gold nanostars and IR-783 dye[131]. The developed SERRS probe demonstrated an
ultrahigh detection limit of 5 pM in an aqueous solution.

Prasad and coworkers utilized CARS to monitor the intense upregulation of protein
and lipid synthesis signals in microglia cells[132]. Their results demonstrate the activation



of microglia in the presence of bacterial liposaccharide due to the action of proteins and
lipids further verifying the potential of CARS in the detection of neurological diseases.
Koljenovic et al. showed that fiber-optic Raman probes to collect Raman scattered light in
high wavenumber spectral region (2400-3800 cm™) can be used to characterize porcine
brain tissue ex vivo[133]. Authors evaluated coronal plain sections of 7 pig brains. Based
on the biochemical differences revealed by Raman spectra, they were able to distinguish
adjacent brain structures. In a different study this group examined 20 unfixed cryosections
of glioblastoma by RS for separating vital and necrotic tissues[134]. Spectral signatures
resembled that of cholesterol and cholesterol esters consistent with increased presence of
cholesterol in necrotic tissues. Cluster analysis revealed 100 % diagnostic accuracy.

(b) Clinically Applied Investigations Related to Brain Tumor

Several Raman techniques were investigated guiding brain tumor diagnosis. For in-
stance, spontaneous Raman scattering could be useful to identify tumor margins, tumor
infiltration zones, brain edema, and tumor recurrence[130,135-137]. Jermyn et al. reported
the use of RS for the intraoperative detection of brain cancer in a clinical trial of hu-
man[138]. Their hand-held contact RS probe technique could distinguish a normal brain
from dense cancer and a normal brain invaded by cancer cells, with a sensitivity of 93%
and a specificity of 91% (Figure 6b,c). This RS system’s success in clinical utility was ena-
bled by optical probe to maximize photon collection efficiency. Minimizing the volume of
residual cancer is an important factor in clinical practices. This study estimated the cellular
resolution of the Raman probe, with the detection of as few as 17 cancer cells/0.0625 mm?2
further verifying the utility of this technique in rapid cancer detection. The presence of
cancer cells was detected using lipid bands (700 to 1142 cm~-1), nucleic acid bands (1540
to 1645 cm-1), and the phenylalanine band in proteins (1005 cm—1). With subsequent stud-
ies researchers were able to commercialize the optical probe for clinical translation[139-
141]. A similar probe was reported that combines RS, intrinsic fluorescence spectroscopy,
and diffuse reflectance spectroscopy that can translatable to the diagnosis of other can-
cers[142]. Recently, imaging needle was developed for intraoperative detection of blood
vessels during neurosurgery in humans[143]. In another study, Kircher and coworkers
demonstrated the potential of SERS and optoacoustic tomography for intraoperative brain
tumor delineation thereby improving surgical care[144]. The authors mentioned the pro-
posed dual-modal concept is suitable for clinical translation due to the acceptable illumi-
nation energy used throughout the experiment. Using SERS, guiding brain tumor resec-
tion is also possible. The breakthrough demonstration reported by Kircher’s group
showed instrumentation that can aid brain tumor resection[145]. They used a hand-held
Raman scanner to target glioblastoma tissues intraoperatively in genetically engineered
mouse animal models. In another work, Hollon et al. demonstrated stimulated Raman
histology as a powerful technique for near real-time intraoperative brain tumor diagno-
sis[146]. By combining convolutional neural network (CNN) with stimulated Raman his-
tology, researchers were able to achieve 100% classification accuracy. By leveraging recent
developments in deep learning to train CNN on more than 2.5 million SRH images, re-
searchers were able to predict brain tumor diagnosis in the operating room under 150 s,
which is significantly faster than conventional techniques. The outcome of this clinical
trial demonstrates how stimulated Raman histology as a complementary pathway for tis-
sue diagnosis can improve the care of brain tumor patients. Overall, above mentioned
findings create the possibility of translating Raman -based techniques from the laboratory
to the clinic.

Recent progress with the use of CARS for discerning healthy cells from tumor cells is
highly promising. Galli et al. used a combination of CARS, two-photon excited fluores-
cence, and green fluorescence protein (GFP) labeling to identify glioblastoma tumors and
infiltrates[137]. In this study, human tissue samples were collected during brain surgeries.
The cell morphology and chemical contrast provided by CARS allowed tumor recognition
and localization of infiltrating tumor cells. Uckermann et al. employed CARS for the
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detection of different human brain tumors in a mouse model[147]. Here C-H molecular
vibration was used as a probe to distinguish the lipid content of the sample since all brain
tumors have significantly low lipid content (Figure 6f). SRS has shown the capacity to
reveal features of tumor tissues similar to the standard H&E stain method[148]. Camelo-
Piragua and coworkers demonstrate an SRS-based technique in a clinical operating room
to improve the surgical care of brain-tumor patients[149]. Here, they developed a porta-
ble, fiber-laser-based SRS microscopy system for rapid intraoperative tissue processing.
Additionally, a clinical SRS microscope has been designed and utilized in operating
rooms[150]. In this report researchers developed a method based on stimulated Raman
Histology to avoid time, labor, and resource intensive standard H&E histology. This
method was able to produce 2 x 2 mm SRH images at the bed site within 90-120 s.
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Figure 6. Illustration of applicability of Raman techniques in diagnosis of brain tumors. (a) Sche-
matic showing the overall design of the experiments starting from nanoparticle preparation to in-
travenous infusion, surgical resection, and analyses. Adapted with permission from Reference [128]
© 2019 American Chemical Society. (b) Experimental setup diagram with the 785-nm NIR laser and
the high-resolution CCD spectroscopic detector used with the Raman fiber optic probe. (c) The
probe (Emvision, LLC) used to interrogate brain tissue during surgery. Inset shows the excitation of
different molecular species, such as cholesteroland DNA, to produce the Raman spectra of cancer
versus normal brain tissue. Adapted with permission from Reference [138] © 2015 Science. (d) SERS
spectra of sera from brain, breast, lung, and colorectal cancer. (e) Raman spectral profiles of serum
of brain cancer patients and serum of metastasized brain cancer. Adapted with permission from
Reference [129] © 2022 American Chemical Society. (f) A: CARS image of a human U87MG glioblas-
toma in a mouse brain and B: CARS image of a separate small glioblastoma island in a mouse brain.
Adapted with permission from Reference [147] © 2014 Public Library of Science.

A recent study by Bury et al. analyzed 29 brain tissue samples that had been obtained
during surgery[27]. Using gold nanoparticles as a SERS substrate and handheld Raman
device researchers were able to differentiate tumor types from fresh brain tissue. Another
clinically relevant study by ji et al. used SRS to identify human brain tumor infiltration in



surgical specimens from 22 neurosurgical patients[151]. By constructing two-color images
based on Raman intensity ratios, they were able to identify structure as lipid or protein
rich. They reported a sensitivity of 97.5 % and a specificity of 98.5 % of detecting tumor
infiltration. In an alternative approach, Desroches et al. developed an instrument using a
core needle biopsy probe for detection of dense human brain tumor[26]. This instrument
can be used in situ during surgery and has minimal impact on the flow of clinical proce-
dure. Using high wavenumber Raman spectroscopy, cancer cells were detected with 80 %
sensitivity and 90 % specificity. In a follow up work, same researchers developed naviga-
tion-guided fiber optic Raman probe that allows surgeons to interrogate brain tissue in
situ at the tip of biopsy needle prior to tissue removal[152]. Feature engineering was used
to develop a new representation for spectral data tailored for brain tissue diagnosis in a
clinical setting[21]. This method was based on dataset of 547 in vivo Raman spectra of 65
patients. In contrast to conventional imaging techniques used for tumor diagnosis, the
spectroscopic signatures provided by Raman techniques provide additional information
about molecular information about tissues and cell-to-cell heterogeneity. Raman mapping
in combination with PLS method was used to predict the tumor amount in dura and men-
ingioma obtained from 20 patients during neurosurgical procedure[153]. Raman spectra
of dura was characterized by higher collagen content while lipid content of meningioma
is significantly higher. Results of this work opened an avenue for the development of an
in vivo Raman spectroscopy method for real-time guidance of meningioma resection. Le-
blond and coworkers reported optimum conditions of a Raman spectroscopy setup suita-
ble for neurosurgery[139]. They demonstrated that SNR increased as the camera temper-
ature decreased and integration time increased. Additionally, they revealed that external
sources of light such as microscope light, operating room lights, LCD screens, daylight
leakage impair the ability of accurate Raman measurements of the sample. Overall, dif-
ferent Raman techniques are now steadily becoming popular and applicable in the clinical
diagnosis of brain disorders.

5. Conclusion and Future Prospects

In the past few years, with the advances in spectroscopic tools and nanoscience, the
diagnosis of brain disorders has made great progress. RS can assist in uncovering path-
ways of brain disorder progression. Several studies have demonstrated the capability of
RS for identifying tissue classification of different areas of the brain as well as identifying
different variants of brain pathologies. The applicability of Raman spectroscopic tech-
niques in the diagnosis of brain disorders continuously expands due to their effectiveness.
The current interest of researchers is to establish a place for RS in standard clinical prac-
tices. The translation of RS towards the clinics has been amplified due to technological
advancements alongside continued research breakthroughs highlighting clinical applica-
tions.

Despite the remarkable work presented in this review in the field of RS in clinical
applications of brain disorders, there remain several challenges that stand in the way of
clinical transition. It has been known to the scientific community that RS has suffered from
drawbacks such as weak signals, long acquisition times, fluorescence from biological sam-
ples, time-consuming data processing, and costs. Remarkable progress has been made
over the past decades to address these challenges with the help of advancements in in-
struments and ML techniques. To enhance weak signals and improve SNR, several com-
plementary techniques such as SERS, RRS, and SRS are useful. Additionally, instrumental
design is heading toward gathering data with high resolution, high accuracy, and fast
acquisition times. The consistency of the sample measurements is pivotal for the transition
from benchtop to bedside. It involves the establishment of profound spectral databases
and the need for inter-system calibration. Calibration should be performed using National
Institute of Standards and Technology (NIST) approved reference materials. Additionally,
one of the translational hurdles involves the variable results from different Raman setups.
Therefore, attention should be focused on defining methodologies, developing ML



models, and chemometric methods to account for undesirable variations. The roadmap
of the translation of RS in clinical studies also involves clinical trials, regulatory approval,
FDA guidelines, and market assessment. The key to obtaining sufficient data and their
interpretation is based on suitable animal models to study biomarker identification and
disease progression. Sometimes it could be challenging to measure the Raman signal in
the presence of extraneous light sources. Therefore, engineering solutions based on proper
light filtering can be used to minimize this effect in clinical settings. All in all, close collab-
orations between spectroscopists, material scientists, biomedical engineers, and clinicians
are required to make the clinical transformation of RS a reality.

There are still challenges in deploying ML methods in practical clinical diagnosis.
One of the challenges is to select a proper model. The Raman spectra are high-dimensional
and with noise. Therefore, the models can be easily overfitted with over-complex ML
models. To achieve high accuracy in classification and prevent overfitting, the complexity
of the model must be carefully selected with experts and cross-validation techniques.
Also, the ML frameworks should be modified specifically for Raman spectra to recognize
the patterns and correlation of Raman peaks. Another challenge of ML methods is inter-
pretability. Many complex ML models can achieve high performance in classification
while the interpretation of these models is hard. The ML methods act as black boxes and
cannot understand the problem. However, in clinical diagnosis, the robustness and inter-
pretation of diagnosis are critical. The lack of transparency in classification and diagnosis
limits the practical deployment of the technique. To resolve the interpretability of ML
methods, linear models are preferred since they are easy to explain. Some feature selection
techniques that can be potentially extended and applied to rationalize the decision-mak-
ing process in analyzing clinical Raman spectra in brain diseases and cancers.

We anticipate the future development of RS in clinical trials of NDs on several fronts.
At present 2D materials are rarely used in conjunction with Raman techniques for bi-
omarker detection and disease progression on brain disorders. Therefore, exploring vari-
ous disciplines of 2D material-assisted RS is an effective approach for future directions.
On the way of moving forward with 2D material-assisted RS, several factors need to be
carefully researched such as material performances, stability in a biological medium,
large-scale production, and biosafety. In this regard, surface functionalization of 2D ma-
terials that improve biocompatibility and colloidal stability needs to be thoroughly inves-
tigated. Research also needs to focus on integrating RS with other spectroscopic tech-
niques to design multimodal techniques that can provide additional and complementary
information on clinical settings. Spectroscopic identification can be somewhat challenging
when multiple analytes are present in complex biofluids. To overcome this issue, Raman
techniques can be hyphenated with separation techniques such as liquid chromatography.
Additionally, the focus should be aimed at the simultaneous detection of multiple bi-
omarkers. Future Raman-based devices should be automated as much as possible to min-
imize the burden on the clinical community. In the future, ML-Raman techniques may
further improve the accuracy and reduce the time and cost in the early diagnosis of vari-
ous brain diseases and cancers. With the ability to analyze a large number of spectra and
recognize the pattern, ML technologies can also be further developed to rapidly identify
biomarkers and, therefore, facilitate drug development. The availability of open Raman
datasets, open-source libraries, and high-performance computing resources will also ac-
celerate the progress in applying different existing ML methods and developing new ML
algorithms in analyzing clinical Raman spectra. We envision that the future of precision
medicine in clinics will be based on robotics. Therefore, necessary steps should be taken
to design Raman-based techniques with robots. Overall, the rapid development of Ra-
man-based techniques and ML capabilities is continuously pushing the boundaries in clin-
ics to improve patients” well-being. We hope this review will open a new avenue to this
burgeoning field.
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