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Abstract—Emerging machine learning (ML) technologies, in combination with the increasing computational power of mobile devices,
lead to the extensive adoption of ML-based applications. Different from conventional model training that needs to collect all the user
data in centralized cloud servers, federated learning (FL) has recently drawn increasing research attention as it enables
privacy-preserving model training. With FL, decentralized edge devices in participation, train their model copies locally over their siloed
datasets, and periodically synchronize the model parameters. However, model training is computationally extensive which easily drains
the battery of mobile devices. In addition, due to the uneven distribution of siloed datasets, the shared model may become biased. To
address the efficiency and fairness concerns in a resource-constrained federated learning setting, in this paper, we propose Eiffel to
judiciously select mobile devices to participate in the global model aggregation, and adaptively adjust the frequency of local and global
model updates. Eiffel aims to make scheduling and coordination for the federated learning towards both resource efficiency and model
fairness. We have conducted theoretical analysis of Eiffel from the perspectives of fairness and convergence. Extensive experiments

with a wide variety of real-world datasets and models, both on a networked prototype system and in a larger-scale simulated
environment, have demonstrated that while maintaining similar accuracy performance, Eiffel outperforms existing baselines with
respect to reducing communication overhead by up to 6x for higher efficiency and improving the fairness metric by up to 57%

compared to the state-of-the-art algorithms.

Index Terms—Federated Learning, Fairness, Efficiency, Scheduling, Resource Constraints

1 INTRODUCTION

With the ever-growing computation capability and the ex-
tensive adoption of mobile devices (e.g., smartphones, wear-
able medical devices, sensory equipment) in today’s era of
Internet-of-Things, an astronomical amount of data are gen-
erated daily over the network. According to a recent survey
of Cisco, IoT devices will account for 50% (14.7 billion) of
all global networked devices by 2023 [1]. Each edge device
is producing massive amount of data every year, which
can be naturally leveraged by user-interactive applications
driven by machine learning techniques. Typically, a machine
learning model is trained in a centralized fashion where
a datacenter gathers input data from all the participating
edge devices. As one might anticipate, this is not a suitable
method of model training for edge devices due to privacy
sensitivity of user data and communication burden incurred
by transferring massive raw data.

To overcome these limitations, federated learning [2] has
emerged as an attractive paradigm for decentralized ma-
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chine learning across edge devices. Instead of aggregating
raw data from user devices to a centralized server, federated
learning enables client devices to collaboratively participate
in the computation process on their local data towards
learning a shared model. In particular, in a typical iterative
training process, each device calculates on its local data,
sends local update of model parameters for global aggrega-
tion and pulls the updated parameters for the next iteration.
In this way, user data will be kept at local device rather than
being sent to a remote server, thus preventing the privacy
leakage!.

Despite the salient advantages from the privacy-
preserving perspective, there are unique challenges and
open problems that remain under-explored in federated
learning. The uppermost issue to tackle is the constrained
resources on edge devices, including the limited network
bandwidth and various network latency that render the
communication stage a bottleneck in the model training pro-
cess. Moreover, as input data are distributed across millions
of devices in a highly uneven fashion (not independent-
and-identically-distributed, i.e., non-i.i.d.) [3] and devices
are not always available to participate in the training due
to dynamics on power condition or network connection [4],
the model training performance, with respect to accuracy
and convergence, is negatively impacted.

To enable efficient federated learning in such a resource-
constrained environment, existing works have investigated

1. Note that there may be some indirect privacy leakage from the
model updates when a potential adversary can infer some sensitive
attributes, which is out of the scope of our consideration.



a number of approaches ( [3]-[14], etc.) to reducing the
communication overhead, including gradient compression
[8], sparsification [15], less frequent synchronization [4], etc.

On the other hand, considering the uncertain availability
of mobile devices, the dynamic selection of participating
devices brings another degree of freedom towards training
efficiency [11], [12], [16]. Apart from the efficiency issue, an
equally important concern is fairness, which has not yet been
amply investigated in the context of resource-constrained
federated learning.

In this paper, we aim to design an efficient federated
learning scheme with the guaranteed degree of device-level
fairness, extending the state-of-the-art fairness proposal [17]
to a resource-constrained setting. In particular, our notion
of fairness is defined with respect to the model loss (or
accuracy) distribution among user devices, such that the
enforcement of fairness can attenuate the possibility of
learning a biased global model.

To achieve these objectives, we present our design of Eif-
fel, an EffIcient and Fair scheduling algorithm for FEderated
Learning, in a resource-constrained environment. Having
observed that involving the complete set of a large number
of devices for model update is impractical and suboptimal
in terms of prolonging communication time, Eiffel selects
participating edge devices and controls the frequency of
global model update aggregation in an adaptive manner.
Particularly, a variety of factors, including the local loss,
data size, computation power, resource demand and age
of update of each user device, are comprehensively consid-
ered. Participants are dynamically selected and coordinated
through the learning process, to achieve the best resource
efficiency given a fixed budget while ensuring fairness.

We have theoretically analyzed the model fairness
achieved by our algorithm with two metrics: the variance of
performance distribution and the cosine similarity between
the performance vector and all-ones vector. Both metrics
are used to evaluate the uniformity of loss (or accuracy)
distribution among the devices resulted from the proposed
algorithm.

We have further conducted convergence analysis of our
algorithm for convex models and derived the upper bound
of the difference between the resulted loss function with
the optimal loss. Based on the convergence bound and
under a resource budget, the frequency of the global model
update is calculated following the adaptive framework [4]
to minimize the loss function.

Through extensive experiments using real-world
datasets on both a hardware setting and in a larger-scale
simulated environment for convex and non-convex models
and for different data distributions, we demonstrate the
fairness and efficiency of our proposed approach. Eiffel
performs fairer than the state-of-the-art gq-FFL [17] by
resulting in at least 49% less variance in terms of loss
distribution. It also achieves at least 60% smaller variance
compared to RS (random selection) and 100% compared
to LLS (a better performance-based selection algorithm),
under both ii.d. and non-i.i.d. settings for various models.
With respect to model accuracy, the results demonstrate
that Eiffel’s performance remains similar to the adaptive
federated learning baseline [4] in both non-ii.d. and ii.d.
settings for the convex model. For computation-intensive
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model training, ie, a complex model CNN trained
on CIFAR-10 dataset, Eiffel saves the communication
overhead by up to 6.45x, thanks to the efficient device
selection algorithm and the strategically calculated global
aggregation frequency, while sacrificing the accuracy
performance by less than 5% compared to [4] for the
non-i.i.d setting. To summarize, our extensive experimental
results confirm the effectiveness of our proposed approach
in achieving model fairness for different machine learning
models and data distribution settings. Compared to
the state-of-the-art adaptive federated learning baseline,
Eiffel is able to achieve similar model performance while
significantly improving the communication efficiency.

The remainder of this paper is organized as follows. We
discuss the state-of-the-arts and differentiate our work from
the existing literature in Section 2. The system model and
problem setting are presented in Section 3. We then present
our design of Eiffel in Section 4, and conduct theoretical
analysis of its fairness and convergence in Section 5. Our
evaluation setting and experimental results are presented in
Section 6 to demonstrate the advantages of our solution. Fi-
nally, we discuss the practical aspects and future directions
in Section 7, and conclude the paper in Section 8.

2 STATE-OF-THE-ART AND MOTIVATION

Due to the privacy concern of raw data generated and
stored at edge devices, federated learning [2], without ex-
posing raw data, has been increasingly employed by large
companies and organizations for machine learning tasks
across thousands to millions of user devices [18]. Unique
challenges and open problems come long with its promis-
ing advantages to increasingly draw research attention, in-
cluding uneven data distribution (non-i.i.d.) across devices,
constrained resources (power condition), network dynam-
ics (bandwidth, latency) which impact the communication
stage, efc.

Under the resource-constrained learning environment,
existing works have proposed a variety of approaches to-
wards efficiency improvement, such as reducing the com-
munication traffic volume with gradient compression ( [8],
[19]) or sparsification [15], reducing the communication fre-
quency by adaptive model synchronization( [4], [7]), reduc-
ing the number of communicating entities through dynamic
participant selection ( [11], [12], [16], [20]), etc. In particular,
participant selection has become a prevailing problem to
be addressed in federated learning, where edge devices are
not always available to participate. A selection algorithm
was proposed in [11] to randomly select user devices as
many as possible without violating resource constraints.
Amiri et al. [12] scheduled devices based on the channel
condition and the significance of local model updates. Yang
et al. [21] proposed an analytic model on the performance of
federated learning given a set of scheduling schemes and
inter-cell interference. The factor related to the staleness
of model updates for user devices is introduced in [13]
for the scheduling decision. Recently proposed participant
selection algorithm, Power-Of-Choice [22], establishes that
biasing the devices with higher local losses increases the rate
of convergence compared to unbiased participant selection.
SCAFFOLD [23] states that FEDAVG [2] suffers from the



“client-drift” issue due to the non-i.i.d. data which results
in slow convergence. SCAFFOLD handles this issue by
modifying the local loss calculation. Oort [20] schedules
user devices for participation based on their statistical
utilities defined by the loss values of local models and
their global system utilities determined by device speeds.
Convergence analysis has also been conducted by recent
studies [4], [24], [25] for federated learning with different
client selection settings, i.e., all participation and selective
participation of client devices. Different from synchronous
federated learning as aforementioned, some recent studies
focus on addressing the challenges of asynchronous feder-
ated learning. SAFA [26] enables a deadline for receiving
parameter update from the participating user devices. Thus
it can distinguish the straggler participants and also take
necessary steps to update the model with stale parameters.
FLEET [27] also enables stale updates but is adjoined with
a dumpening factor to give smaller weights as staleness
increases.

Apart from the efficiency goal, another important con-
cern is the fairness with respect to how the collaboratively
learned model performs (measured by loss value or accu-
racy level) across user devices.

A common definition of fairness in machine learning is
with respect to the accuracy parity across protected groups
[28]. Such a fairness cannot be trivially extended to feder-
ated learning, since it makes no sense to ensure identical ac-
curacy on each device given the significant variation among
the data. Good-intent fairness [16] was introduced to address
this issue to some extent, by maximizing the performance of
the worst performing device.

Li et al. [17] and Huang et al. [29] proposed algorithms
to achieve the fairness which is defined as the distribution
of model accuracy across devices. Collaborative Fairness
[30] regulates that the participants will get different model
parameter updates based on their contributions. Such a fair-
ness definition is important for business models in biomedi-
cal or financial institutions to make predictions in practice. A
similar idea to incentivize contributors owing high quality
data is proposed by Yu et al. [31]. The algorithm provides
a dynamic payoff-sharing scheme that distributes budgets
among data owners to maximize the utility and minimize
the inequality. HFFFL [32] presents a similar reward mech-
anism for data contribution among the clients. It ensures
proportional fairness by categorizing clients into different
levels for collaboration. FairFed [33] presents a mechanism
to detect adversarial devices and reject their model updates.
FLASH [34] is a heterogeneity-aware fair algorithm which
considers heterogeneity in device type (in terms of hardware
variety) and user behavior (in terms of device status, such
as idle, charging, connected to a slow network).

In sharp contrast to these approaches, our proposed
solution takes into account both the resource efficiency and
the model fairness. To the best of our knowledge, we are the
first to incorporate both the adaptive update frequency and
the selection of user devices per round in the synchronous
federated learning setting, achieving the best utilization of
limited resources while ensuring fairness of the learned
model. With respect to the fairness notion, Eiffel ensures
fair model distribution among heterogeneous devices in
the strategical selective setting, considering different data

Notation | Meaning
F;(0) Local loss function at node %
F(0) Global loss function

D; Dataset at node ¢
Local model parameter at node ¢ in iteration t

Global model parameter in iteration t
n Gradient descent step size
T Number of local update steps between

two global aggregations

T Total number of local update steps at each node
K Total number of global aggregation steps,

equal to T'/T

0 Gradient divergence defined in Definition 1

h(T) Defined in Eq. (11),
gap between the model parameters obtained from
distributed and centralized gradient descents

P Lipschitz parameter of F;(0) for all i and F'(6)

Jé] Smoothness parameter of F;(6) for all s and F'(6)

Cm Resource (type m) consumption
in one local update step

bm Resource (type m) consumption in one global
aggregation step

R Resource (type m) budget

TABLE 1: Main notations in system model.

distribution and computation power across devices.

3 SYSTEM MODEL

In this section, we present our system model, with main no-
tations summarized in Table 1. The preliminaries and basics
of adaptive federated learning are presented in our problem
setting, followed by the elaboration on the efficiency and
fairness requirements.

3.1 Federated Learning

In federated learning, each participating device maintains a
model copy, trains the copy with its local data and commu-
nicates the model parameter update through an aggregator
(e.g., an edge server).

Consider a mobile edge computing system consisting
of N user equipment (or UEs, interchangeably used for
user devices) and an aggregator, as illustrated by Fig. 1.
To collaboratively learn a shared model with federated
learning, all the UEs perform local update computing and
their parameter updates are averaged in the aggregator.
In particular, for the n-th UE, we denote its local dataset
as D, = {z; € Rly; € R}LQ’{" with size |D,,|, where
|.| denotes the cardinality, z; is the input of the machine
learning model with cardinality d and y; is the desired
output. For dataset D,, at UE n, the loss function associated
with this UE can be represented as

LS ),

Fo(0) 2 —
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where f;(0) is the loss function defined on its parameter
vector § for each data point i. Let us denote the entire set of
databy D £ 25:1 D,,. Then the global loss function on all
the distributed datasets can be expressed as

o o1 DnFu(0).

F () 5



The objective of federated learning is to learn the model
with the non-i.i.d. data residing in the UEs, by minimizing
a particular loss function F'(0) to find 6* = arg minF(9).

ADAPTER ++
000
SELECTOR |:| D
D@_\L_Emmm
)

Fig. 1: The federated learning setup for our proposed approach. Each
User Equipment (UE) or device is preloaded with the model. An Aggrega-
tor selects (using Selector) a subset of UEs to receive model parameters
(2-way darker arrows are used to denote those selected UEs) after each
adaptive number of local iterations.

3.2 Resource Efficiency

The resource efficiency in federated learning can be intu-
itively interpreted as how fast a model can be learned by co-
ordinating the resources on multiple user equipments across
time. The resources are generally related to computation
and communication, which are constrained in the federated
learning setting with low-end mobile devices, as opposed
to the conventional machine learning training in centralized
datacenters. More formally, resource efficiency is evaluated
by the performance of the global model, after a given num-
ber of iterations for learning. For the purpose of maximizing
resource efficiency in a resource-constrained environment,
an optimally designed adapter is desired to determine the
frequency of local updates and global aggregations [4]. Let
T denotes the number of local model iteration between each
consecutive global aggregation, and T is the total number
of local iterations required to complete the learning at each
node. We further use K to represent the total number of
global aggregations through the learning process. Assuming
that T" is an integer multiple of 7, we have K = % Upon
the completion of training, the learned model parameters,
denoted as 67, is defined as

07 2 argmin F(6),

0e{fkr):k=0,1,2..K}. @

For each user device, different types of resources are re-
quired to participate in federated learning. Given a total
of M types of resources, each participating UE consumes
¢ units of resource with type m € {1,2,..., M} in every
local update step, and consumes b, units at each global
aggregation step, where c,, > 0, b,, > 0 and both are finite
real values.

Throughout the training process with 71" iterations, the to-
tal amount of type-m resource to be consumed is (T'+1)c,, +
(K + 1)by,, where the additional “+1” is for computing
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F(6(KT)). This amount should not exceed a given budget
R,,. Essentially, the adaptive federated learning needs to
determine the optimal 7 and K (and thus T'), to achieve the
best possible training performance at the end of training,
i.e., the minimum loss function F(#/) computed with the
final model parameter 0f, given resource constraints. This
optimization problem is formally presented as follows:

min F(67)
vr,Ke{1,2,3....}
s.t. (T + Ve + (K4 Dby < Ry, Vim

T=Kr. @)

3.3 Model Fairness

Apart from adaptively determining the frequency of local
updates and global aggregations, we further consider the
flexibility of device participation for global aggregation (de-
termined by a selector), based on the following observations.

First, due to limited network resource and unstable
connection, not all UEs can always participate in the global
aggregation step. Second, as data are non-i.i.d. across UEs,
aggregating updates from all the UEs is not the best option
for model convergence. Therefore, instead of blindly involv-
ing all the UEs, we hope to judiciously coordinate the UEs
for their participation.

Intelligent selection of UEs can save essential resource
such as bandwidth compared to the default setting of
all participation. Moreover, since different UEs contribute
differently towards training performance, based on their
datasets, energy consumption, efc., appropriate selection of
UEs, with the intuitive idea of involving important UEs
more frequently, has strong promise to achieve better train-
ing performance. On the other hand, with flexible participa-
tion introduced, there exists risk that a device may never be
selected and the learned model is severely biased.

To avoid such situations, we consider the fairness of the
learned model, which is defined uniquely for the federated
learning setting: given trained models 6 and 0', we can say that
0 is more fair than @', if the loss or accuracy of 6 on the N devices
{f1, f2, ..., [N}, is more uniform than that of ¢’ [17]. With the
consideration of both resource efficiency and model fairness,
we will present our solution of dynamic UE selection in the
next section.

4 DESIGN OF Eiffel FOR EFFICIENT AND FAIR
SCHEDULING

Now we present our design of Eiffel to efficiently and fairly
coordinate mobile devices for their participation in the
complete training process of federated learning.

The main idea of Eiffel is to select a set of mobile devices,
i.e., UEs, in each round, to participate in federated learning.
To make judicious decisions on the selection of UEs, we
consider the comprehensive factors of the local loss, the
data size, the computation power, resource demand and last
update time associated with each UE. Accounting for these
factors, an overall index will be calculated by Eiffel, to indi-
cate the priority of each UE to be selected for participation
by the scheduling algorithm.

Particularly, before each global aggregation, the follow-
ing factors will be considered for the i*" UE: the loss value



fi(0) achieved with local model, the size of local data d;, the
computation power ¢;, the resource demand r; and the age
of update (AoU) t; which refers to the last communication
round when the UE participated in global aggregation. With
the these metrics captured before the global update, the
priority index of the i*" UE will be calculated as

@/ £:(0) + odi + 7 + it ®

Here, w, 0,7, 1 are used to set weight for each of the factors
aforementioned to be considered in priority. A higher value
of this index indicates a higher priority. Intuitively, a UE
with a lower loss f;(#) indicates a more accurate copy of
model, and thus should have higher priority to participate
in and contribute to the global model aggregation. Similarly,
if a UE has more local data (a larger d;), it should be
preferred in our selection to make contribution. The third
term, 7%, represents the resource efficiency of the UE, and a
h1gher value makes the UE more competitive to be selected.
Finally, the AoU metric ¢; helps to prevent a UE from being
left isolated for a long time. The four weight parameters will
remain constant for all the UEs within one global update but
can be flexibly tuned based on the performance of the global
model.

The procedures at the aggregator and each UE are pre-
sented in Algorithm 1, which is coordinated by Eiffel with
an essential design of a dynamic selection of UEs for the
participation in global updates. The aggregator initiates the
learning process by sending the model 6§, initialized as a
constant or random vector, and the local training step 7,
initialized as 1, to all the UEs (1ine 6-7). Accordingly, each
UE, upon receiving data from the aggregator, will perform
local training iterations for 7 steps. Then it reports the local
updates and per-step resource usage to the aggregator (1ine
30-34), to be globally aggregated as elaborated next. , When
the aggregator receives weights and other parameters from
the selected UEs, it will update the global model using
weighted average (1ine 10-16, specifically 1ine 13). The
relative weight, associated with each UE, is proportional to
the amount of its local data d;, the ratio of its computation
power to resource demand "‘, and its AoU metric main-
tained using L;(?) in the algorlthm (with more elaboration
to come in the next section). Meanwhile, the local loss at
each selected UE will be recorded in L; (%), the accumulated
resource consumption for each type will be updated (1ine
15), and the AoUs of all the UEs will be updated (line
14,18).

With all the metrics readily available, the adaptive value
of T for the next round of local updates is calculated follow-
ing [4]. In addition, a dynamic participant selection comes
into action to decide the next set of UEs for reporting their
model updates in the next round (1ine 21-22).

Given the per-round resource budget R, a subset of UEs
will be selected based on their priority index values in
Eq. (8). More specifically, a number of UEs are chosen from
select, which is the list of UEs selected in the last round, to
exhaust a portion (k percent) of the budget, while the rest
of the budget is used to involve UEs from L — select, which
did not participate in the previous round. The rationale for
introducing the proportion parameter x is to promote con-
tribution from more participants: for example, if the priority

Algorithm 1: Procedures at the Aggregator and
each user equipment (UE) coordinated with Eiffel

Input:
List of all UEs L,

List of computation power of UEs L. < ¢y, ...,cn >,
List of resource demand of UEs L, < rq,...,TN >,
List of data size of UEs Ly < d1, ..., dx >,
Resource budget R,,, Vm,
Per-round resource budget .
Initialize:
1: Initialize # as a constant or random vector
2: List of local loss of UEs L; +< 0,...,0 >
3: Listof AoUof UEs L; +< 1,...,1 >
4: select < L, 7+ 1, sy« 0,Ym
At the Aggregator:
5. while True do
6: if 1st round then
7 Send 6 and 7 to each UE in L
8 else
9 6+ 0, VF()<«0
10: for UE 7 in select do
11: Receive 0;, F;(0), VF;(0) and ¢, 4, Ym
13: 0 += dlaﬁl/D // where o; = %t(z)
14: Li(i) <1, Ly(i) < VF;(6) '
15: Sm += Cm iT + 2bpy,, Ym
16: end for
17: for UE ¢ in L — select do
18: Li(i) <= Ly(i) + 1
19: end for
20: Calculate 7 based on [4]
21: select <+ UEs from sorted select to consume kR
22: select < UEs from sorted L — select to consume

(1-k)R // sorting based on Eq.(3)
23; if 3m | Sm+ Y icserect (CmiT + 2bm) > Ry, then

24: Send STOP flag to each UE in L
25: Return 6
26: end if
27: Send 6 and 7 to each UE in select
28:  end if
29: end while

At each UE:

30: while STOP flag not received do

31:  Receive 0 and 7 from the Aggregator

32:  Perform local iterations for 7 steps to update 6;
33:  Send 0;, F;(0), VF;(0), cm i, Ym to the Aggregator
34: end while

ranking of each UE remains the same across two consecutive
rounds, this proportional selection gives opportunities to a
few promising UEs that were just below the threshold to be
selected in the previous round.

After participant selection, the aggregator checks the
availability of each type of resource for the next round,
based on an estimation. Given the selected UEs in select,
the updated 7, and the current total accumulated type-m re-
source usage s, it calculates the expected total usage after
the next round, based on the historical ¢, ; and available
by, (1ine 23). If the resource budget R,, is violated for any



type m, the aggregator will stop training at each UE and
return the final model parameters (1ine 23-26). Otherwise,
it sends model and step updates to each selected participant
to start the next round of training.

In summary, the dynamic selection of UEs, in com-
bination with the adjustment of local computation steps,
manages to improve the resource efficiency and benefit the
model convergence. Moreover, the criteria for selecting UEs
accounts for a comprehensive set of factors, contributing to
the guarantee of fairness. These features will be formally
analyzed in our next section.

5 ANALYSIS OF FAIRNESS AND CONVERGENCE

In this section, we will analyze the behavior of Eiffel from
both of the convergence and fairness perspectives.

5.1 Convergence Analysis

Our convergence analysis is based on the adaptive federated
learning setting which incorporates our scheduling algo-
rithm?. The goal is to find the upper bound of:

F(67) - F(6), )

where 0* is the optimal model parameter. As aforemen-
tioned, T iterations throughout the training can be divided
into K different intervals, with only the first and last itera-
tions in each interval involving global aggregation. We use
the shorthand notation [k] to denote the iteration interval
[(k—=1)71, k7], for k =1,2,..., K. The global loss function on
all distributed datasets can be expressed as:

» Sioy DiciFy(0)
= 5 ,
where o; = Cr—t, impacting how likely the local model of
the ' UE will be selected for the contribution to the global
model update, and P is the number of devices selected from
a total of N devices on each global iteration. The device
selection probability is proportional to DT#, thus a local
device which possesses more training data, higher compu-
tational power, has longer waiting time to send parameters
and has less resource demand will get a higher probability
of selection.

In contrast, prior works define F'(0) =
select a subset of UEs with probabilities % at each round.
Considering only data size leads to unfairness among the
participating devices. Eiffel’s selection algorithm provides a
good balance of efficiency and fairness.

Our analysis is conducted based on the assumptions that
for all 4, 1) F;(0) is convex, 2) F;(0) is p — Lipschitz, that is
for any 6 and @', || F;(0) — F;(0")|| < p||0 — ¢'|], and 3) F;(0)
is B — smooth, i.e., for any 0 and ¢, | VF;(0) — VE;(¢')] <
B|0 — 0'||. The learning problem here is to minimize F(6),
i.e., to find the optimal model parameter §* such that:

0* £ arg min F(0). (6)

F(0) )

>F  DiFi(6)
1T tO

After the global iteration, for node i, the update is
0:(t) = 0:(t = 1) = iV Fiei(0:(t — 1)), @)
2. The convergence analysis is only for convex models, similar to

the literature. Non-convex models are considered in our experimental
evaluation.

6

where 6, (t) denotes the parameter after previous global
aggregation. 7 is the step size. For any iteration ¢ which
may or may not be a global aggregation step, we have

0(t) i Diaib;(t)

= ®)

For each local iteration interval [k], we use vj(t) to denote
an auxiliary parameter vector that follows a centralized
gradient descent according to

v (t) = vy (t = 1) = naVE (v (t — 1)), )

where vy (t) is defined for interval ¢t € [(k — 1)7,k7]
for a given k. At the beginning of each interval [k],
v ((k — 1)7) £ 0((k — 1)7), where 6(t) is the average of
local parameters defined in Eq.(8). For the analysis, gradient
divergence is further defined below which is the difference
between the gradient of local loss function and the gradient
of global loss function.

Definition 1. (Gradient Divergence) For any i and 6, we
define §; as an upper bound of ||VF;(0) — VF(0)]|, i.e.,

52 > oim1 Diaid;
B D

(10)
also

This definition is related to the data distribution and ac-
counts for the metrics we use for scheduling defined in the
previous section. Upper bound of Eq. (4) can be derived by
adopting the adaptive setting of [4] in two steps:

o The first step is to find the difference between the
distributed (6(t)) and centralized gradient descents
(v(t)) after each T steps of local update without
global aggregation.

For any interval [k] and ¢ € [k], the upper bound of
difference between 6(t) and vy (t) is derived as
10(t) — v (D[] < h(t — (k= 1)7) (11)
where h(z) £
{0,1,2,..}.

e The second step is to combine the aforementioned
gap with the convergence bound of v(t) within each
interval [k] to obtain the convergence bound of 6(¢)

which is essentially deriving the upper bound of
FO(T)) — F(6%).

S(mB + 1" — 1) — iz, Yz €

1
F(O(T)) - F(0) < (12)
T(pon(1 - 15%) — £23)
where ¢ = m and € represents the lower

bound of F(Q([T])) — F(6%), B, p are Smoothness and
Lipschitz parameters. From Eq. (12) we can say that
the impact of « is that the increment of computation
power and age of update and decrement of resource
demand will lead to a faster convergence as the right
hand side of Eq. (12) will be smaller.



5.2 AQuantification of Fairness

Our analysis of fairness is based on two metrics: the variance
of performance across devices and the Cosine similarity
between the performance distribution and 1 [17]. For the
ease of mathematical exposition, we restate the objective
function of federated learning as follows:

25\21 Diagfi,q(e).
D b

meinFq(G): g=0orl

Here o denotes the contribution of each selected device
on the global model update according to our selection algo-
rithm. ¢ = 0 corresponds to the general objective function
for federated learning without the selection algorithm.

The variance of performance distribution: The perfor-
mance distribution on m devices X = {f1 4(0), ..., fm,q(60)}
is defined to be more uniform under solution 6 than ¢’, if the
variance of X under solution 8 is less than that under ¢’, that
is:

Var(fl,q(a)v HS] fm,q(e)) < Var(fl,q(e/)v HS] fm,q(g/))

Our proposed algorithm selects a set of devices in each
round for global aggregation. Since the selected devices
include k percent of the previously unselected devices,
as in Algorithm 1, it ensures that the variance among
performance of all the N devices will be smaller. In a
more formal manner, suppose 6 is the optimal solution
of our problem ming Fi(f), and 6" is the solution to
the conventional problem ming Fy(6) which does not en-
able selection, we can easily verify that our solution 0
leads to a more uniform performance distribution than 6"

2
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Cosine similarity between the performance distribu-
tion and 1:
The performance distribution on m devices X =
{f1,4(60), ..., fm q(0)} is defined to be more uniform under
solution @ than 6’, when the cosine similarity of X and 1
under solution 6 is greater than that under ¢’, which is:
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Following a similar setting and analysis as the previous
metric, we have the followmg 1nequa11t1es for our solu-

t1on 6 and other 9’ ~ ZZ 1 fio(8) > ZZ 1 fi0(¢) and
~ lel ffo( ) > & 2121 fﬁO(Q’) Therefore we can derive
the following expression, omitting the steps similar as in
[17] due to space limit:
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Again, we have demonstrated that our solution leads to
a more uniform performance distribution, when measured
using the cosine similarity metric.

6 EXPERIMENTAL ANALYSIS

In this section, we evaluate Eiffel with extensive experi-
ments, from the perspectives of machine learning models’
performance (accuracy and loss), efficiency (communication
improvement) and fairness (variance of loss distribution
across devices). All these metrics collectively demonstrate
the superiority of Eiffel in achieving fairness as well as
efficiency. We show that Eiffel’s device selection barely ham-
pers the model performance while reducing communication
overhead.

6.1 Experimental Setup

Our experiments were conducted in both a prototype sys-
tem and an emulated large-scale environment. To conduct
the experiments in a resource-constrained heterogeneous
environment, we use devices of different memory and
computation power, as shown in Table 2. Two different
laptops and a mobile phone were employed as the user
devices (UEs), and a cloud server, i.e., a small AWS instance,
was used as the aggregator in the prototype federated
learning system. All the UEs have local datasets on which
model training was conducted. We also conducted larger-
scale simulation experiments on an AWS cba.4xlarge
instance with 16 vCPUs, where we emulated a federated
learning environment with hundreds of UEs participating.
We took careful measures when instantiating each of the
participating UE processes to mitigate the gap between our
emulation and reality. Models were trained with emulated
UEs where the resource budget (in terms of computation
time) was generated according to a Gaussian distribution
with mean and standard deviation values derived from
our prototype measurements. The computational power of
each UE follows commonly used devices such as laptops,
mobile phones, Raspberry Pi, and efc., consistent with the
real-world heterogeneous environment. Each UE and the
aggregator communicates with each other using Socket.
Models and Datasets. We use both convex and non-
convex models to evaluate our proposed algorithm. One
of them is the popular binary classifier, squared-SVM (to be
mentioned as SVM for simplicity), and the other one is a
convolutional neural network (CNN). For the SVM model,
we feed the publicly available large-scale MNIST [35] hand-
written digit dataset for model training. It contains gray-
scale images of 70,000 handwritten digits (60,000 for training
and 10,000 for testing). As a binary classifier, the SVM model
will classify a digit as either odd or even for the MNIST
dataset. The CNN model used in our experiments follows
a standard structure with 9 layers in total, including two
5x5x32 convolutional layers, two 2x2 max-pool layers, two
local response normalization layers, two fully-connected
layers and one softmax classification layer. In addition to
the MNIST dataset aforementioned, two large-scale image
datasets, Fashion-MNIST and CIFAR-10 [36], are also used
for CNN model training. More specifically, Fashion-MNIST
has the same format as MNIST but includes 28x28 grayscale



Devices and Servers | Configuration
Quad-Core Intel
UE1 (Laptop) CPU (Core i5@1.4 GHz )
Memory | 8 GB
System macOS Catalina
UE2 (Laptop) CPU Intel Core i5@2.3 GHz
Memory | 8 GB
System macOS Sierra
. Exynos 7904,0Octa-Core
UE3 (Mobile) CPU (2@1.6 GHz, 6@1.35 GHz )
Memory | 4GB RAM
System Android Pie
Intel(R) Xeon(R)
Aggregator cru CPU E5-2676 v3 @ 2.40GHz
(Cloud Server) Memory | 1GB
System Ubuntu 18.04.5 LTS
. cba.4xlarge, 16-vCPU
Emulation cru AMD EPYC 7R32 @3.3GHz
(Cloud Server) Memory | 32 GB
System Ubuntu 18.04.5 LTS

TABLE 2: Experimental setup: prototype setting and emulation envi-
ronment.

images of fashion items instead of digits. It consists of 70000
images, categorized into 10 classes, with 60,000 used as a
training set and the rest for a test set. CIFAR-10 [36] consists
of 60,000 32x32 color images. We have also conducted our
experiments with two types of data distribution (i.e., i.i.d.
and non-i.i.d.) among the UEs. More specifically, for the i.i.d.
setting, each data sample is assigned randomly to a UE. For
the non-i.i.d. setting, each UE consists of data with the same
label. If there are more labels than UEs, each UE will have
data with more than one label, but the number of labels at
each UE is no more than the total number of labels divided
by the total number of UEs rounded to the next integer. In
the training phase, the learning step hyperparameter is set to
0.01 and the batch size is 100. We launch our model training
in the popular machine learning framework, Tensorflow
[37], with stochastic gradient descent as the optimizer. Other
hyperparameters such as control parameters for different
models and the maximum value of T are kept the same with
[4] for the adopted control algorithm to select the optimal
value of 7 accordingly.

Evaluation Metrics. Under both i.i.d. and non-ii.d data
distribution settings, we evaluate our solution with respect
to the accuracy, efficiency and fairness. The accuracy metrics
include the loss value and accuracy level of the trained
model with respect to different 7 values (i.e., the local
iteration number). The efficiency is measured by the com-
munication frequency for global aggregation multiplied by
the number of UEs selected and the time for exchanging
parameters between the aggregator and UEs. Our fairness
evaluation is based on two commonly used metrics in the
federated learning setting: variance and skewness [16], [17].
The variance of loss distribution among the UEs indicates
how the final global model is biased among a group of
UEs, while the skewness metric implies how much the loss
distribution is deviated from the normal distribution and
how symmetric it is across the UEs.

Baselines. We compare Eiffel with the following base-
lines to evaluate their model accuracy performance and
communication efficiency:

o Canonical federated learning, where every partici-
pating UE contributes to the model training using

a fixed (non-adaptive) 7 value.

e Adaptive federated learning strategy in [4] which
adopts the optimal 7 value given the resource con-
straints.

o Centralized gradient descent version of model train-
ing where the whole training is carried out on a
single UE.

With respect to fairness, we choose three additional base-
lines:

o q-FFL [17], the state-of-the-art fairness-oriented fed-
erated learning, with the q value set as 1.5.

e Random selection (RS), which selects UEs to con-
tribute to global model aggregation in a random
manner.

e Least training loss based selection (LLS), which se-
lects the devices that generate the smallest local
training loss in each round.

All the baselines select the same number of UEs as Eiffel in
each experiment.

Model Avg

Dataset | 28 | loss (%) | 10% | 10% | Var | Skew.
SVM Eiffel | 223 B 55 | 00101 | 0.067
MNIST [TiS | 214 prt 50 | 0.0216 | 1.806
RS [ 232 15 54 [ 0.1240 | 2.105
GFFC | 235 08 [51 [ 00159 | 1055
CNN Eifiel | 292 354 [ 70 | 00120 | 0.036
CIFAR-10 [TLS | 304 457 [ 90 [ 0.1640 | 0734
RS [ 281 38 [ 70 [ 00192 | 0.167
GFFC | 252 344 |74 [ 00179 [ 0.0673

TABLE 3: Statistics of model loss distribution for SVM trained on
MNIST and CNN on CIFAR-10, achieved by Eiffel, LLS, RS, and q-FFL,
respectively.

6.2 Results and Analysis
6.2.1 Fairness

We have conducted two sets of experiments to evaluate the
fairness achieved by Eiffel, in comparison with the three
baselines aforementioned: LLS (Least training loss based
selection), RS (Random Selection), and q-FFL [17]. Table 3
presents the results for SVM and CNN models, trained
on MNIST and CIFAR-10 datasets, respectively, involving
100 emulated UEs with different computation power, time
budget and non-ii.d data distribution. In particular, we
show the average loss of all the UEs (column 3), the average
loss of the worst 10% UEs (column 4), the average loss of
the best 10% UEs (column 5), the variance of the loss across
all the UEs (column 6), and the skewness (column 7).

As observed in Table 3, Eiffel achieves the minimum
variance among all the comparing baselines, for both SVM
and CNN models. Compared with q-FFL, the state-of-the-
art fairness baseline, Eiffel reduces the variance by 57.8%
and 59% for the two models, respectively. Moreover, with
respect to the skewness metric, the advantages of Eiffel over
q-FFL and the other two baselines are more obvious. For
CNN model, Eiffel achieves a 86.94% smaller skewness of
loss distribution than q-FFL, and for SVM the skewness is
reduced by more than 100%. Both of the variance and skew-
ness metrics demonstrate the advantages of Eiffel over all
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Fig. 2: Distribution of loss values across user devices for CNN and
SVM models, respectively, achieved by Eiffel and the three comparing
baselines.

the baselines in achieving fairness of model loss distribution
across UEs.

In a more intuitive manner, Fig. 2 illustrates the distribu-
tion of loss values across 20 user devices in our prototype
experiment for the two models and four algorithms. More
specifically, the x-axis represents the loss values of a learned
global model at local devices, and the y-axis implies how
many devices have the similar loss values, falling to the
same loss range. For example, for SVM, considering the
range of 0.3 to 0.4, there are two devices in the Random
baseline whose loss values fall into this range, and one
device in the LLS setting in this range. As observed, with
Eiffel, 60% of the UEs have their loss values of the SVM
model in the range of 0.17 to 0.085, while for the CNN
model, 65% UEs have loss values centered around the range
of 0.08 to 0.1. In comparison, with the other three algorithms,
we hardly identify the similar range of loss value where
there are more than 40% devices, except for LLS on SVM
model. Although 50% UEs’ losses for SVM with LLS are
centered around 0.01 to 0.1, the variance of the overall loss
distribution is higher than all the other algorithms.

6.2.2 Efficiency

Next we show the communication efficiency of Eiffel com-
pared to the adaptive federated learning baseline [4]. Table
4 presents the average number (7) of local iterations across

Data Model | Avg. 7T | Avg. T Comm.
Distribution of [4] of Eiffel | Improvement

SVM 29.65 35.23 2.06
iid. 87.31 94.45 3.05
CNN 80.28 100.50 5.77
70.28 90.50 6.45
SVM 4.31 7.89 2.44
non-ii.d. 6.33 8.74 1.57
CNN | 10152 | 179.75 6.19
89.65 120.79 4.98

TABLE 4: The frequency of global aggregation, indicated by the average
number (7) of local iterations across rounds, achieved by Eiffel and
the adaptive federated learning baseline [4], and the communication
improvement of Eiffel over [4], under different settings.

rounds achieved by the baseline (Column 3) and Eiffel (Col-
umn 4), under two settings of UEs (corresponding to two
values in each cell of the table), for SVM and CNN models
with i.i.d and non-i.i.d data distributions, respectively.

As observed, the average 7 value with Eiffel is con-
sistently larger than the baseline across different settings.
A larger 7 indicates more local iterations on each UE be-
tween two consecutive global aggregations, which leads to
a smaller communication frequency. This brings significant
advantages in the resource-constrained environment where
the overall communication network bandwidth is limited.
In order to quantify the communication overhead, we use
an intuitive measure: the multiplication of the total number
of participating UEs, the total number of global aggrega-
tions, and the communication time for parameter exchange
between the aggregator and participating UEs. We calculate
the ratio of the baseline’s communication overhead to Eiffel,
shown as the communication improvement of Eiffel over [4]
in Table 4 (Column 5). Results have demonstrated the com-
munication efficiency improvement of Eiffel in comparison
with the baseline. In addition to a relatively small increase of
the 7 value, the smaller number of participating UEs and the
reduced communication time lead to the large improvement
of communication efficiency.

6.2.3 Accuracy

As mentioned, we have also compared our strategy with
the baselines in terms of the model loss and accuracy. Fig. 3
presents the loss and accuracy values of the SVM model,
learned by 60 UEs in our prototype, with different strategies,
i.e., Eiffel (represented by the single blue dot), the adaptive
federated learning baseline [4] (represented by the single red
dot) and the centralized learning baseline (represented by
the green line), respectively. In particular, Eiffel and [4] have
adaptive 7 values across rounds. Their average 7 values and
their model loss or accuracy values are used to position their
corresponding dots in Fig. 3. We also investigate the variants
of Eiffel and [4] with fixed global update frequency (fixed
T) across rounds, and illustrate how they perform given
different values of 7 (11 values ranging from 1 to 100), as
represented by the blue dotted line and the red dotted line.
The centralized approach does not depend on 7 and thus
be represented as a flat line. In a similar vein, Fig. 4 and
Fig. 5 present the performance of the CNN model learned
with 20 UEs on CIFAR-10 and Fashion-MNIST, respectively.
The experiments are conducted with the identical resource
budget setting for all the baselines.
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Fig. 3: Loss function values and classification accuracy with different 7 achieved by Eiffel, adaptive federated learning baseline [4] and centralized
baseline for SVM model trained on MNIST under different settings. The average 7 value of Eiffel, baseline [4] and their corresponding loss,

accuracy values are represented by single markers.
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Fig. 5: Loss function values and classification accuracy with different 7 achieved by Eiffel, adaptive federated learning baseline [4] and centralized
baseline for CNN model trained on F-MNIST under different settings. The average 7 value of Eiffel, baseline [4] and their corresponding loss,

accuracy values are represented by single markers.

The experimental results shown in Fig. 3-Fig. 5 consist of
both settings of i.i.d. and non-i.i.d. data distribution across
the UEs. For the ii.d. distribution, the performance of the
variants of Eiffel and the baseline [4] (i.e., the fixed-T setting),
represented by the blue dotted lines and red dotted lines in
Fig. 3a,c, Fig. 4a,c and Fig. 5a,c, exhibits much similarity
with the increasing 7 value. With the adaptive setting, the
average 7 values of Eiffel for these cases are also aligned
with or larger than the average 7 of the adaptive federated
learning baseline [4], as illustrated by the x-coordinates of
the singe blue and red dots in the corresponding figures. A
larger 7 value resulted by Eiffel (Fig. 4a,c) indicates a lower

global aggregation frequency which leads to the reduction
of the communication overhead. With the non-i.i.d. distri-
bution setting, the performance results exhibit a bit more di-
versity for Eiffel and the baseline [4]. For CNN on CIFAR-10,
a more complex model on a larger dataset compared to SVM
on MNIST and CNN on Fashion-MNIST, Eiffel sacrifices the
model performance by less than 5% when compared to the
baseline [4], as illustrated in Fig. 4b,d. Such a performance
tradeoff is anticipated, since Eiffel has a smaller number of
UEs selected in participation and ensures fairness among all
the participants as aforementioned. In general, even though
with fewer participating UEs, Eiffel manages to achieve
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UEs on model performance.

comparable model performance with the adaptive federated
learning baseline [4], as demonstrated by the y-coordinates
of blue and red single dots in Fig. 3-Fig. 5.

For the Centralized baseline, represented by the green
line, the training datasets associated with each UE are resid-
ing in the centralized server, where the model is trained on
the complete set of training data using centralized gradient
descent. Intuitively, if given a fixed number of iterations or
rounds, the Centralized baseline will result in better model
performance, with lower loss and higher accuracy, than the
decentralized approach. However, our experimental setting
has a fixed resource budget (fixed computation time), thus
the centralized approach does not necessarily beat the de-
centralized one. For example, as shown in Fig. 4a, federated
learning can benefit from utilizing the computation capa-
bilities of UEs in parallel, while the centralized approach
relies on the computation resource of a single server which
prolongs the iteration time, especially when the model is
complex and the dataset is large.

Table 5 further provides a comprehensive presentation
on the model performance of Eiffel and [4] under different
settings as aforementioned, in comparison with the Central-
ized baseline. In particular, we show the difference of the
loss values between Eiffel and the Centralized baseline (Col-
umn 4), and that between [4] and the Centralized baseline
(Column 5), under the adaptive federated learning setting
and the three fixed-7 settings (with values of 1, 30 and 70,
respectively), for both i.i.d. and non-i.i.d. data distributions.
The positive value indicates how far the loss increases from
the Centralized baseline, while the negative value implies
that the decentralized federated learning approach gets
better model performance, in terms of lower loss, than the

11

Adaptive Loss Diff. Loss Diff.
Model Data Setgn of Eiffel vs. of [4] vs.
Dataset Distribution r valuge ) Centralized | Centralized
(%) (%)
e iid Avgr | (900829 | ()0.077
T (#2109 | (+)2.137
30 () 0.099 (- 0.089
70 () 0.116 () 0.124
non-i.i.d. Avg-T (+) 343 (+) 3.63
i (+) 2.366 (1) 2.54
30 (+) 5.61 (7 581
70 (+) 7.66 (+) 829
AR 0 iid. Avgr () 6.2 () 6.2
1 (-) 55.62 (-) 53.95
30 (-) 4.6 (- 43
70 (+) 0.045 (-) 0.03
non-ii.d. Avg-T (+) 25.7 (+) 20.7
1 (+) 31.52 (+) 30.47
30 (+) 35.57 (+) 28.13
70 (+) 3453 (+) 33.70
ESINIST Lid. Avgr (+) 441 (+) 4.81
T (+) 2346 (+) 2346
30 (+)2.343 (+) 2.383
70 (+) 1.386 (#) 1.701
non-i.i.d. Avg-T (+) 821 (+) 8.694
1 (+)19.3 (+) 18.35
30 (+) 12.809 (+) 14.809
70 () 13328 | (+) 14328

Avg-T : average value of 7 in the adaptive federated learning

TABLE 5: Comparison on loss value differences of Eiffel vs. centralized
baseline and adaptive learning baseline [4] vs. centralized baseline, for
SVM trained on MNIST, CNN trained on CIFAR-10, and CNN on F-
MNIST, respectively, under different settings.

centralized one.

6.2.4 Varying Resource Budget and Participation Ratio

We have conducted another set of experiments in the pro-
totype system, to show the impact of different parameters
on model performance, including the resource budget and
the number of selected participants. Fig. 6 shows the effect
of different resource budget on the loss and accuracy per-
formance achieved by the SVM model, when trained with
the strategies of Eiffel, adaptive baseline [4], and the fixed
7 setting (7 = 10, the green dashed line), respectively. Intu-
itively, the model performance improves with the increasing
resource budget for each comparing strategy. Adaptive 7
setting is always more efficient than fixed 7 setting with
increasing resource budget. For Eiffel and [4], with the
increment of resource budget, their 7 values become close to
1. Therefore, with the increased frequency of global aggrega-
tion, the performance gets better. We can also observe that,
initially, due to very small resource budget, Eiffel starts with
selecting a small number of UEs which results in a lower
performance compared to [4]. With increasing resource bud-
get, it attains better performance compared to [4], because of
its effective scheduling strategy that improves the learning
efficiency. With respect to the impact of device selection
ratio, we have conducted the experiments of learning the
SVM model with Eiffel under the settings of selecting 5,
10, 15 and 20 out of 20 devices, given different 7 values,
respectively. As shown in Fig. 7, there exists an obvious
performance gap between selecting 5 devices and the other
three settings. The small number of participants leads to the



performance degradation, intuitively. On the other hand,
when we select 10, 15 and all of the 20 devices, consecu-
tively, the performance remains almost identical with the
varying 7 value. Thus we can afford to select only 10 or 15
out of 20 UEs to get the similar model performance while
saving resource to a large extent.

7 DiscussiON AND FUTURE DIRECTION

We have demonstrated the communication and computa-
tion efficiency as well as model fairness achieved by Eiffel
in our prototype system and emulated large-scale environ-
ment. The crucial issues studied and challenges addressed
by Eiffel generally exist in any real-world federated learning
application. Thus, the solution proposed in Eiffel can be
taken advantage of by a broad range of real-life federated
learning applications deployed in today’s Internet-of-Things
infrastructure, with some additional privacy enhancement
(e.g., preventing the indirect privacy leakage) according to
particular requirement.

Eiffel coordinates the learning based on a number of
factors associated with participating UEs and the network,
i.e, the memory, computation power, bandwidth and com-
munication time. Further mathematical and algorithmic
analysis could be explored to understand the impact of each
term on achieving efficiency and fairness. We would like to
conduct further investigation including more heterogeneity
of resources among the UEs, i.e. mobility patterns of mobile
devices, and better management of stragglers among UEs,
including case study based on different real-life scenarios
such as unexpected system failures, extremely constrained
resource availability, etc. We also consider to incorporate the
flexibility of adding different fairness preference in our algo-
rithm, and conduct more large-scale real-world experiments
to further evaluate Eiffel.

8 CONCLUSION

In this paper we propose Eiffel, which is an efficient and
fair scheduling algorithm for large-scale federated learning
in resource-constrained environments. Our algorithm saves
the communication throughout the process of federated
learning by selecting a subset of devices to achieve the best
resource efficiency. The algorithm is also designed to ensure
model fairness, which is defined with respect to the model
performance distribution across the devices. We have ana-
lyzed the performance of Eiffel, including the fairness anal-
ysis and the convergence bound derivation. Furthermore,
we have conducted experiments in a variety of settings,
learning simple and complex models on publicly available
large-scale image datasets for both i.i.d and non i.i.d data
distributions in the real-world and simulated environment.
Results demonstrate that Eiffel outperforms the state-of-the-
art in terms of model fairness and communication efficiency,
while achieving similar model performance.

REFERENCES

[1] C. Systems, “Cisco Annual Internet Report 2018-2023 White Pa-
y P
per,” 2020.

(2]

(3]

(4]

(5]

6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

12

H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. Aguera y Arcas, “Communication-Efficient Learning of Deep
Networks from Decentralized Data,” in Proc. International Confer-
ence on Artificial Intelligence and Statistics, 2017, pp. 1273-1282.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. (2018)
Federated Learning with Non-IID Data. [Online]. Available: arXiv
preprint arXiv:1806.00582

S. Wang, T. Tuor, T. Salonidis, K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive Federated Learning in Resource Constrained
Edge Computing Systems,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 6, pp. 1205-1221, 2019.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical Secure Ag-
gregation for Privacy-Preserving Machine Learning,” in Proc. the
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175-1191.

X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-
Edge AL Intelligentizing Mobile Edge Computing, Caching and
Communication by Federated Learning,” IEEE Network, vol. 33,
no. 5, pp. 156-165, 2019.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He,
and K. Chan, “When Edge Meets Learning: Adaptive Control
for Resource-Constrained Distributed Machine Learning,” in Proc.
IEEE International Conference on Computer Communications, 2018.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtarik, A. Suresh, and
D. Bacon, “Federated Learning: Strategies for Improving Commu-
nication Efficiency,” in Proc. NIPS Workshop on Private Multi-Party
Machine Learning, 2016.

H. B. McMahan, E. Moore, D. Ramage, and B. Agliera y
Arcas. (2016) Federated Learning of Deep Networks using Model
Averaging. [Online]. Available: arXiv preprint arXiv:1602.05629

J. Konecny, H. B. McMahan, and D. Ramage. (2015) Federated
Optimization:Distributed Optimization Beyond the Datacenter.
[Online]. Available: arXiv preprint arXiv:1511.03575

T. Nishio and R. Yonetani, “Client Selection for Federated Learning
with Heterogeneous Resources in Mobile Edge,” in Proc. IEEE
International Conference on Communications, 2019, pp. 1-7.

M. M. Amiri, G. Deniz, S. R. Kulkarni, and H. V. Poor, “Update
Aware Device Scheduling for Federated Learning at the Wireless
Edge,” in Proc. IEEE International Symposium on Information, 2020,
pp- 2598-2603.

H. H. Yang, A. Arafa, T. Q. S. Quek, and H. V. Poor, “AGE-BASED
SCHEDULING POLICY FOR FEDERATED LEARNING IN MO-
BILE EDGE NETWORKS,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, 2020, pp. 8743-8747.

W. Shi, S. Zhou, and Z. Niu, “Device scheduling with fast conver-
gence for wireless federated learning,” in Proc. IEEE International
Conference on Communications, 2020, pp. 1-6.

A.F. Aji and K. Heafield, “Sparse Communication for Distributed
Gradient Descent,” in Proc. Empirical Methods in Natural Language
Processing, 2017, pp. 440-445.

M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic Federated Learn-
ing,” in Proc. International Conference on Machine Learning, 2019, pp.
4615-4625.

T. Li, M. Sanjabi, A. Beirami, and V. Smith, “Fair Resource Allo-
cation in Federated Learning,” in Proc. International Conference on
Learning Representations, 2020.

H. Brendan McMahan and D. Ramage, “Federated Learning: Col-
laborative Machine Learning without Centralized Training Data,”
Google Research Blog, vol. 3, 2017.

C. Hardy, E. Le Merrer, and B. Sericola, “Distributed Deep Learn-
ing on Edge-devices: Feasibility via Adaptive Compression,” in
Proc. IEEE International Symposium on Network Computing and Ap-
plications, 2017, pp. 1-8.

F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort:
Efficient Federated Learning via Guided Participant Selection,” in
Proc. USENIX Symposium on Operating Systems Design and Imple-
mentation, 2021, pp. 19-35.

H. H. Yang, Z. Liu, T. Q. S. Quek, and H. V. Poor, “Schedul-
ing Policies for Federated Learning in Wireless Networks,” IEEE
Transactions on Communications, vol. 68, no. 1, pp. 317-333, 2020.
Y. J. Cho, J. Wang, and G. Joshi. (2020) Client Selection
in Federated Learning: Convergence Analysis and Power-of-
Choice Selection Strategies. [Online]. Available: arXiv preprint
arXiv:2010.01243

S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and
A. T. Suresh, “SCAFFOLD: Stochastic Controlled Averaging for



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Federated Learning,” in Proc. International Conference on Machine
Learning, 2020, pp. 5132-5143.

F. Haddadpour and M. Mahdavi. (2019) On the Convergence
of Local Descent Methods in Federated Learning. [Online].
Available: arXiv preprint: arXiv 1910.14425

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. (2020) On
the Convergence of FedAvg on Non-IID Data. [Online]. Available:
arXiv preprint: arXiv 1907.02189

W. Wy, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “SAFA:
a Semi-Asynchronous Protocol for Fast Federated Learning with
Low Overhead,” IEEE Transactions on Computers, vol. 70, no. 5, pp.
655-668, 2020.

G. Damaskinos, R. Guerraoui, A.-M. Kermarrec, V. Nitu, R. Patra,
and F. Taiani, “Fleet: Online Federated Learning via Staleness
Awareness and Performance Prediction,” in Proc. International
Middleware Conference, 2020, pp. 163-177.

M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gum-
madi, “Fairness Beyond Disparate Treatment & Disparate Impact:
Learning Classification without Disparate Mistreatment,” in Proc.
International Conference on World Wide Web, 2017, pp. 1171-1180.
W. Huang, T. Li, D. Wang, S. Du, and ]J. Zhang. (2020) Fairness
and Accuracy in Federated Learning. [Online]. Available: arXiv
preprint:arXiv 2012.10069

L. Lyu, X. Xu, Q. Wang, and H. Yu, “Collaborative Fairness in
Federated Learning,” in Federated Learning.  Springer, 2020, pp.
189-204.

H. Yu, Z. Liu, Y. Liu, T. Chen, M. Cong, X. Weng, D. Niyato,
and Q. Yang, “A Fairness-aware Incentive Scheme for Federated
Learning,” in Proc. the AAAI/ACM Conference on Al, Ethics, and
Society, 2020, pp. 393-399.

J. Zhang, C. Li, A. Robles-Kelly, and M. Kankanhalli. (2020)
Hierarchically Fair Federated Learning. [Online]. Available: arXiv
preprint arXiv:2004.10386

M. H. Rehman, A. Dirir, K. Salah, and D. Svetinovic, “FairFed:
Cross-Device Fair Federated Learning,” in Proc. IEEE Applied
Imagery Pattern Recognition Workshop, 2020, pp. 1-7.

C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, and X. Liu,
“Characterizing Impacts of Heterogeneity in Federated Learning
upon Large-Scale Smartphone Data.”

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

A. Krizhevsky and G. Hinton, “Learning Multiple Layers of
Features from Tiny Images,” Technical report, University of Toronto,
2009.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for
Large-Scale Machine Learning,” in Proc. USENIX symposium on
operating systems design and implementation, 2016, pp. 265-283.

Abeda Sultana received her BSc degree from
Department of Computer Science & Engineer-
ing, University of Dhaka, Bangladesh in 2018.
She is a third year PhD student of Department
of Computer Science, School of Computing and
Informatics, University of Louisiana at Lafayette.
Her research interest includes distributed ma-
chine learning, scheduling of distributed system,
resource allocation, and federated learning.

13

Md Mainul Haque received his BSc degree from
Department of Computer Science & Engineer-
ing, University of Dhaka, Bangladesh, in 2015.
He is a third year PhD student of Department
of Computer Science, School of Computing and
Informatics, University of Louisiana at Lafayette.
His research interests include distributed ma-
chine learning, deep learning, scheduling.

Li Chen received the BEng degree from the
Department of Computer Science and Technol-
ogy, Huazhong University of Science and Tech-
nology, Wuhan, China, in 2012, and the MASc
and PhD degrees from the Department of Elec-
trical and Computer Engineering, University of
Toronto, Toronto, Canada, in January 2015 and
July 2018, respectively. She is currently an as-
sistant professor with the Department of Com-
puter Science, School of Computing and Infor-
matics, University of Louisiana at Lafayette. Her
research interests include big data analytics, machine learning sys-
tems, cloud computing, datacenter networking, resource allocation, and
scheduling in networked systems.

Fei Xu received the PhD degree in computer
science and engineering from the Huazhong
University of Science and Technology, Wuhan,
China, in 2014. He received Outstanding Doc-
toral Dissertation Award in Hubei province,
China, and ACM Wuhan & Hubei Computer
Society Doctoral Dissertation Award in 2015.
He is currently an associate professor with the
School of Computer Science and Technology,
East China Normal University, Shanghai, China.
His research interests include cloud computing
and datacenter, virtualization technology, and distributed systems.

Xu Yuan (Senior Member, |IEEE) received the
B.S. degree from the College of Information
Technology, Nankai University, Tianjin, China, in
2009, and the Ph.D. degree from the Bradley
Department of Electrical and Computer Engi-
neering, Virginia Tech, Blacksburg, VA, USA,
in 2016. From 2016 to 2017, he was a Post-
Doctoral Fellow of Electrical and Computer En-
gineering with the University of Toronto, Toronto,
ON, Canada. He is currently a Hardy Edmiston
Endowed Assistant Professor in the School of
Computing and Informatics at the University of Louisiana at Lafayette,
Lafayette, LA, USA. He was the receipt of NSF CRIl Award and NSF
CAREER Award. His research interest focuses on artificial intelligence,
cybersecurity, networking and cyber-physical system.




