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Abstract 

Accelerating the development of π-conjugated molecules for applications such as energy 

generation and storage, catalysis, sensing, pharmaceuticals, and (semi)conducting technologies 

requires rapid and accurate evaluation of the electronic, redox, or optical properties. While high-

throughput computational screening has proven to be a tremendous aid in this regard, machine 

learning (ML) and other data-driven methods can further enable orders of magnitude reduction in 

time while at the same time providing dramatic increases in the chemical space that is explored. 

However, the lack of benchmark datasets containing the electronic, redox, and optical properties 

that characterize the diverse, known chemical space of organic π-conjugated molecules limits ML 

model development. Here, we present a curated dataset containing 25k molecules with density 

functional theory (DFT) and time-dependent DFT (TDDFT) evaluated properties that include 

frontier molecular orbitals, ionization energies, relaxation energies, and low-lying optical 

excitation energies. Using the dataset, we train a hierarchy of ML models, ranging from classical 

models such as ridge regression to sophisticated graph neural networks, with molecular SMILES 

representation as input. We observe that graph neural networks augmented with contextual 

information allow for significantly better predictions across a wide array of properties. Our best-

performing models also provide an uncertainty quantification for the predictions. To democratize 

access to the data and trained models, an interactive web platform has been developed and 

deployed. 
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Introduction 

Organic, π-conjugated molecules, whether discovered as natural products or synthesized in the 

laboratory, have been essential drivers in the development of chemistry as a science over the past 

century-plus. π-conjugated molecules present tremendous chemical diversity, and offer immense 

capacity to the synthetic chemist to tailor molecular electronic, redox, and optical properties. 

Furthermore, physicochemical (noncovalent) interactions of π-conjugated molecules with the 

environment (e.g., solution solubility, solid-state packing arrangements, binding to biological 

agents) can be altered, leading to a growing application space that includes dyes, pharmaceuticals, 

(semi)conductors, energy generation and storage, and catalysis, to name but a few.1-13  

This vast chemical diversity, including what we formally understand as well as knowledge we do 

not currently possess, prevents easy and rapid assessment of a proposed molecule's suitability for 

a given application. Hence, influential discoveries often happen through slow, and with great 

resource and human costs, synthetic trial-and-error approaches. With rapid computer hardware and 

software developments, high-performance computing has become a powerful and more accessible 

tool to aid molecular design and discovery. These computational advances have resulted in high-

throughput virtual screening procedures that reduce the time for determining molecular properties 

from several months/weeks/days of synthesis and purification to several hours or even minutes 

and seconds.14-21 These computational screening procedures often use quantum chemical 

calculations to evaluate properties, including the ionization (both oxidation and reduction) 

energies, relaxation energies, and low-lying excited state energies, to name but a few, to filter 

promising molecules for synthesis follow-up. 
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The computational time and resources required to evaluate molecular descriptors can further be 

reduced by using machine learning (ML) techniques. With ever-growing, curated high-throughput 

computational and experimental data sets, ML models are now being trained to predict expansive 

sets of molecular properties.22-31 A widely used benchmark dataset for training ML models to 

predict molecular properties is the quantum-chemically derived QM9 dataset, a subset of the GDB-

17 database.32, 33 The QM9 dataset is limited to molecules that contain only select atoms, including 

C, H, O, N, and F, and fewer than nine heavy atoms. Hence, molecular property predictions by 

models trained with QM9 are typically not generalizable for larger organic π-conjugated molecules 

or molecules that contain atoms such as S or Cl. To overcome this challenge, several datasets are 

being created and expanded for large organic π-conjugated molecules.14, 18, 34-40 These datasets 

generally sample a niche chemical space with a strict value range for the electronic structure and 

optical property descriptors or are limited in the properties evaluated quantum mechanically. 

Furthermore, the trained ML models are usually not readily available to synthetic chemists to 

validate their chemical intuition before synthesis. 

Here, we present a curated dataset of 25,251 organic, π-conjugated molecules to serve as a 

benchmark dataset for training ML models. The dataset contains electronic, redox, and optical 

property descriptors such as frontier molecular orbital energies, vertical and adiabatic ionization 

potentials and electron affinities, relaxation energies and corresponding reorganization energies 

(often used in understanding charge and energy transfer), and singlet and triplet excitation 

energies, all computed via density functional theory (DFT) and time-dependent DFT (TDDFT). 

We then train a hierarchy of ML models – from simple classical ML models such as ridge 

regression to sophisticated models like graph neural network (GNN) – to predict these properties 

in seconds using the molecular SMILES representation41 as the input. Our systematic approach 
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allows us to gain insights into the effects of model complexity and the featurization of the SMILES 

input on prediction accuracy. Furthermore, we provide an uncertainty estimate for our best-

performing models, which is critical for inferring the trustworthiness of ML predictions. An 

interactive web interface (https://oscar.as.uky.edu/ocelotml_2d) has been developed and deployed to 

democratize access to and use of the ML models. The best trained models are accessible through 

the web interface and can be downloaded programmatically, as demonstrated in the GitHub 

repository (see the Data Availability statement for the link). 

 

Methods 

The curated dataset used in this study is derived from the OCELOT (Organic Crystals in Electronic 

and Light-Oriented Technologies) database of DFT computed properties for organic, π-conjugated 

molecules and crystal structures.42 A detailed description of the methods to generate the high-

throughput data is provided elsewhere.42 In brief, the π-conjugated molecules were obtained from 

the crystal structures in the OCELOT database using the OCELOT API.42 Each molecule is 

fragmented to obtain the largest, contiguous π-conjugated fragment that is then used for the 

subsequent DFT calculations (see Figure S1 in the Supplementary Information, SI). The DFT 

structure optimizations, single-point energies, and TDDFT evaluations for the low-lying excited 

states are performed with (ionization potential) IP-tuned LC-ωHPBE functionals, derived for each 

distinct molecule, and the Def2SVP basis set.43-45 Entries that do not contain all the DFT/TDDFT 

values or have erroneous values are removed. All calculations were performed with the Gaussian 

16 Rev. A.03 software suite.46 

https://oscar.as.uky.edu/ocelotml
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Full details of the DFT and TDDFT calculations and ML model training are provided in the SI; 

here, for the sake of brevity, we provide salient features of the ML model development pipeline. 

ML model training was performed in PyTorch version 1.10 and used Cuda 11.4 for GPU 

acceleration.47, 48 A five-fold cross-validation method was implemented instead of a fixed train-

test data split for training the models as the dataset is small. Moreover, this method provides 

insights into the trained models' generalizability over the dataset's diversely sampled chemical 

space. All models, except models with evidential deep learning, were subject to five-fold cross-

validation. The performance metrics reported here are the averaged results of five-fold cross-

validation and the respective standard deviations. The hyperparameters for each model were tuned 

with Optuna version 2.10, where the metric R2 is maximized.49 The hyperparameters for all models 

were obtained using only one random 80:20 split of the dataset. The mean squared error (MSE) 

loss function was used for training all models except the evidential deep learning models. The two-

dimensional molecular descriptors and extended connectivity fingerprints of radius 2 (ECFP2) that 

were used as the input features to some models were generated with RDKit 2021.3.5.50, 51 The two-

dimensional descriptors were normalized by first dividing each feature by its maximum absolute 

value and then fitting each feature to the normal distribution. The SI provides a complete list of 

descriptors and a detailed discussion on hyperparameter tuning.  

First-generation models were trained with Scikit-Learn version 0.24.2 with training accelerated by 

Scikit-learn-intelex version 2021.2.52 Two model sets were generated – one with only molecular 

descriptors as input features and the other with molecular descriptors and ECFP2, where the length 

of the bit-vector of ECFP2 was tuned along with the other hyperparameters of the model. Similar 

to the first-generation models, second-generation models using feed-forward networks (FFN) 
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made use of two model sets, one with only the molecular descriptors as input and one that used 

both molecular descriptors and ECFP2 bit-vectors with their lengths tuned.  

Third-generation models were created with message-passing neural networks (MPNN) for 

quantum chemistry.53 The MPNN utilized a graph-based representation of molecules where nodes 

represent atoms and edges represent bonds. The nodes and edges were associated with features 

like the type of atom and the type of bond on which the MPNN operated to provide a learned 

representation of the molecule. The learning process for MPNN involved 𝑇𝑇 message-passing steps. 

During each step 𝑡𝑡 < 𝑇𝑇, the features ℎ𝑣𝑣𝑡𝑡  associated with a node 𝑣𝑣 were updated using an update 

function 𝑈𝑈𝑡𝑡. The information 𝑚𝑚𝑡𝑡 to update the feature was gathered by the message function 𝑀𝑀𝑡𝑡 

from features ℎ𝑤𝑤𝑡𝑡  of atoms 𝑤𝑤 in the neighborhood of 𝑣𝑣 and associated bonds 𝑒𝑒𝑣𝑣𝑣𝑣 as described by:  

𝑚𝑚𝑡𝑡 =  � 𝑀𝑀𝑡𝑡(ℎ𝑣𝑣𝑡𝑡 , ℎ𝑤𝑤𝑡𝑡 , 𝑒𝑒𝑣𝑣𝑣𝑣 )
𝑤𝑤 ∈𝑁𝑁(𝑣𝑣)

(1) 

ℎ𝑣𝑣𝑡𝑡+1 = 𝑈𝑈𝑡𝑡(ℎ𝑣𝑣𝑡𝑡 ,𝑚𝑚𝑣𝑣
𝑡𝑡+1) (2) 

To fetch the learned representation after 𝑇𝑇 message-passing steps, the set2set model as described 

by Gilmer et al. was used.53 The representation from the MPNN was then passed to a 2-layer FFN 

for molecular property prediction. The molecular graphs for MPNNs were created from SMILES 

and embedded with atom and bond features using the deep graph library 0.7.2 (DGL) and DGL-

Lifesci v0.2.8 Python packages.54, 55 The atom and bond features used for generating the MPNN 

input are listed in Table 1 and Table 2, respectively.  

The fourth-generation models used the same MPNN network as the third generation. However, the 

output features from MPNN were concatenated with molecular or DFT descriptors before being 
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passed to the FFN. The hyperparameter tuning process was the same as that of the third-generation 

models. 

Table 1. Atom features used for the MPNN input generation. The features use the Canonical 
AtomFeaturizer in the DGL-Lifesci package.55 

Atom feature Size 

One-hot encoding of atom type 43 

One-hot encoding of atom degree 11 

One-hot encoding of the number of implicit 
Hydrogens on the atom 7 

The formal charge on the atom 1 

Number of radical electrons 1 

One-hot encoding of atom hybridization 5 

Whether the atom is aromatic 1 

One-hot encoding of total Hydrogens in the 
atom 5 

 

Table 2. Bond features used for the MPNN input generation. The features use the Canonical 
BondFeaturizer in the DGL-Lifesci package.55 

Bond feature Size 

One-hot encoding of the bond type 4 

Whether the bond is conjugated 1 

Whether the bond is in a ring 1 

One-hot encoding of the stereo configuration 
of a bond 6 

 

Evidential uncertainties for the fourth-generation models were evaluated by factoring the code to 

include an evidential deep learning layer.56 Evidential deep learning assumes that the prediction 
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(𝑦𝑦) of a model arises from a Gaussian distribution (𝑁𝑁) with unknown mean and variance (𝜇𝜇,𝜎𝜎2). 

Accordingly, the mean and variance are represented as – 

𝜇𝜇 ~ 𝑁𝑁(𝛾𝛾,𝜎𝜎2𝜐𝜐−1) (3) 

𝜎𝜎2 ~ Γ−1(𝛼𝛼,𝛽𝛽) (4)

where, Γ is the gamma function, and 𝛾𝛾, 𝜐𝜐,𝛼𝛼,𝛽𝛽 are parameters. The posterior distribution follows a 

normal inverse gamma distribution from which the prediction (𝔼𝔼[𝜇𝜇]) and epistemic uncertainty 

(𝑉𝑉𝑉𝑉𝑉𝑉[𝜇𝜇]) are computed from the following equations: 

𝔼𝔼[𝜇𝜇] =  𝛾𝛾 (5) 

𝑉𝑉𝑉𝑉𝑉𝑉[𝜇𝜇] =  
𝛽𝛽

𝜐𝜐(𝛼𝛼 − 1)
(6) 

The loss function 𝐿𝐿(𝑥𝑥) for training the evidential deep learning model includes a negative 

likelihood loss 𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥) that is responsible for maximizing the model prediction and an evidential 

loss 𝐿𝐿𝐸𝐸𝐸𝐸(𝑥𝑥) which minimizes the evidence of errors. 

𝐿𝐿𝐸𝐸𝐸𝐸(𝑥𝑥) = |𝑦𝑦 − 𝛾𝛾| ∙  (2𝜐𝜐 + 𝛼𝛼) (7) 

𝐿𝐿(𝑥𝑥) =  𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁(𝑥𝑥) +  λ𝐿𝐿𝐸𝐸𝐸𝐸(𝑥𝑥) (8) 

The hyperparameter λ in the loss function was set to 0.2 for training the models with uncertainty 

quantification.56 The errors were recalibrated with a Python-based uncertainty toolbox package by 

minimizing the miscalibration area.57 The recalibration of uncertainty used a black-box optimizer 

to find a standard deviation scalar factor that produced the best recalibration. The hyperparameters 
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of the model MPNN and FFN were the same as those without the uncertainty quantification. The 

chemical space visualizations were created with ChemPlot 1.2.0 with SMILES as input.58  

 

Results and discussion 

The OCELOT chromophore v1 dataset contains 25,251 organic π-conjugated molecules and their 

electronic, redox, and optical properties computed with the high accuracy DFT/TDDFT 

calculations. The molecules in the dataset are fragments of experimentally synthesized organic 

compounds. The dataset contains elements C, N, O, F, S, Cl, Br, Se, P, Si, B, As, Te, I, and H with 

up to 100 atoms per molecule, as shown in Figure 1. The dataset is chemically diverse, with the 

number of π-conjugated rings ranging from one for benzene derivatives to 28 for large π-

conjugated systems, including fullerene derivatives. Over 15k molecules (ex., biphenyl) do not 

have fused-aromatic rings, and 8k molecules (ex., naphthalene) have one fused-aromatic ring. The 

dataset has 33 molecules in common with the QM9 dataset (see Figure S2). Details concerning 

DFT/TDDFT data generation and dataset curation are presented in the Methods section and in the 

SI. The DFT and TDDFT properties available in the dataset are vertical (VIE) and adiabatic (AIE) 

ionization energies, vertical (VEA) and adiabatic (AEA) electron affinities, cation (CR) and anion 

(AR) relaxation energies, HOMO energies (HOMO), LUMO energies (LUMO), HOMO-LUMO 

energy gaps (H-L), electron (ER) and hole (HR) reorganization energies, and lowest-lying singlet 

(S0S1) and triplet (S0T1) excitation energies. Select derived properties are depicted in Figure 1, 

and statistics for each property are provided in Table S1 (see SI). Dataset generation required over 

5M core hours of computing time on high-performance computing resources. While this dataset 

contains over 25k entries and 200k energy entries, it is still small compared to ML training datasets 
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in other fields.32, 59 The dataset is available on the OCELOT website, and can be downloaded 

programmatically.60  

 

Figure 1. (Top left) Atom count distributions in the OCELOT chromophore v1 dataset. (Top right) Bar 
plots show the dataset's distribution of aromatic rings and fused aromatic rings. (Bottom left) Random 
selection of 25 molecules from the dataset. (Bottom right) Schematic representation of the potential energy 
surfaces of molecular neutral (green), radical-cation (yellow), and radical-anion (blue) states. The numbers 
1-7 represent points at which DFT energies are evaluated. The tables at the bottom show the computation 
involved in obtaining some properties described in the dataset. 

 

A variety of ML models were trained to predict the DFT or TDDFT computed properties at reduced 

computational cost, following a systematic hierarchical approach. While molecular electronic, 

redox, and optical properties depend on the conformation, the generation of accurate 3D 
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conformations from 2D molecular representations is challenging and an active area of research.61-

63 Hence, as a baseline, we used the 2D SMILES representation of a molecule as input to train the 

ML pipeline and predict DFT/TDDFT-level computed properties. Four generations of ML models, 

each with increasing complexity from the predecessor, were created to investigate the prediction 

accuracy for different ML architectures, as schematically depicted in Figure 2 and Figure S3. In 

our preliminary ML model training, we compared a model's performance to predict single and 

multiple properties. The results shown in Table S2 indicate that training an ML model to predict a 

single property generally yields better performance. Hence, each ML model is trained to predict 

one property from the dataset; the best-trained ML models for every property from each generation 

are publicly available. 
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Figure 2. Schematic representation of the ML pipeline explored in this work. The input is a SMILES 
representation of a molecule, in this case benzene, from which the molecular representations are generated. 
The input representation for an ML model and the model architecture for the four generations is indicated 
by the color-coded arrows. 

 

In the first-generation ML models, three classical ML algorithms were employed: Ridge regression 

(RR), support vector machine (SVM), and kernel ridge regression (KRR). We focused on these 

models as previous reports have shown that SVM and KRR perform well in predicting molecular 

properties.64, 65 RR was used as the baseline instead of linear regression (LR) as preliminary LR 

Model

         

Classical ML FFN MPNN + FFN

Representation

Input C1=CC=CC=C1

ECFP2

Descriptors

ECFP2

Descriptors

Attributed Graph Attributed Graph

Prediction

1st Gen 2nd Gen 3rd Gen 4th Gen
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results provided large coefficients that led to significant prediction outliers. To train the models, 

we generated a set of 266 molecular descriptors that included the number of rotatable bonds, the 

molecular weight, and the number of rings as the input features for the model from the 2D SMILES 

molecular representation. R2 and mean absolute error (MAE) were used to evaluate the model 

performance, with results in Table S3 (see SI). The first-generation ML models perform well on a 

few properties, namely AIE, AEA, VIE, and VEA, with R2 values in the range of 0.70 to 0.79. The 

models overfit training data for other target properties, which could be due to the low number of 

input features, 266, used as input to the models. Before trying more sophisticated models, we 

enriched the input feature by concatenating the ECFP2, which provides more local information 

about a molecule than the molecular descriptors. While the molecular descriptor vector length was 

fixed to 266, the length of the ECFP2 bit-vector was optimized for each property during 

hyperparameter tuning. A performance improvement was observed for the models with both 

molecular descriptors and ECFP2 used (Table 3). For the SVM, the R2 for AIE, AEA, and VIE 

exceeds 0.80, and the MAE is reduced by about 30 meV with the inclusion of ECFP2. The 

predictions for S0S1 and S0T1 also improved. Though these models are not as complex as those 

discussed below, they effectively predict some electronic properties at a low computational cost. 

Of the three algorithms, SVM outperformed KRR and LR for most properties, while KRR has 

better performance than RR for all properties, which corroborates with previous reports.35  
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Table 3. Performance metrics for the first-generation ML models. MAE is reported in eV for all models. 
The best R2 and MAE for each property are in bold. The values are averaged over five-fold cross-validation 
models. The input features for these models are the molecular descriptors and ECFP2. 

Property 
RR SVM KRR 

R2 MAE R2 MAE R2 MAE 

HOMO 0.53±0.015 0.345±0.005 0.58±0.007 0.317±0.003 0.54±0.011 0.337±0.003 

LUMO 0.60±0.012 0.340±0.006 0.73±0.011 0.277±0.005 0.67±0.012 0.306±0.002 

H-L 0.42±0.006 0.580±0.005 0.44±0.012 0.604±0.006 0.45±0.004 0.561±0.004 

VIE 0.76±0.006 0.231±0.004 0.81±0.007 0.204±0.002 0.74±0.008 0.241±0.004 

AIE 0.77±0.010 0.222±0.002 0.82±0.004 0.193±0.002 0.77±0.008 0.222±0.004 

CR1 0.29±0.015 0.058±0.001 0.32±0.008 0.059±0.001 0.33±0.009 0.057±0.001 

CR2 0.34±0.008 0.059±0.001 0.36±0.010 0.061±0.001 0.38±0.009 0.056±0.001 

HR 0.35±0.012 0.112±0.001 0.37±0.011 0.114±0.001 0.33±0.016 0.113±0.001 

VEA 0.82±0.004 0.218±0.004 0.88±0.004 0.172±0.002 0.79±0.006 0.231±0.004 

AEA 0.82±0.005 0.210±0.001 0.85±0.005 0.182±0.002 0.81±0.004 0.219±0.002 

AR1 0.36±0.009 0.057±0.001 0.44±0.013 0.053±0.001 0.37±0.013 0.057±0.001 

AR2 0.36±0.013 0.052±0.001 0.39±0.010 0.051±0.001 0.34±0.009 0.053±0.000 

ER 0.40±0.019 0.104±0.02 0.43±0.011 0.099±0.002 0.38±0.012 0.105±0.002 

S0S1 0.60±0.009 0.307±0.006 0.67±0.009 0.275±0.004 0.60±0.004 0.307±0.002 

S0T1 0.68±0.008 0.230±0.003 0.76±0.007 0.183±0.003 0.67±0.008 0.235±0.004 

 

Though adding the ECFP2 to the input features improved the performance of the first-generation 

ML models, the relaxation energies (ARs and CRs) suffered from low prediction accuracy. We 

hypothesize that this inadequate accuracy could be due to the models' limited ability to find the 

complex functions mapping the input features to the DFT-derived values. Hence, for the second-

generation ML models, we implemented a feed-forward network (FFN) architecture known to 

represent arbitrarily complex functions, given sufficient data.66 For the second-generation ML 
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models, we used the same input features as the first-generation models. Second-generation model 

performance is tabulated in Table 4. The models with molecular descriptors and ECFP2 again 

outperform models with only molecular descriptors as input features for all properties except for 

the CR1, AR1, and HOMO energies. Interestingly, the predictions from the first-generation SVM 

models are as good as the second-generation models with corresponding input features. There is 

no significant increase in performance on properties such as the relaxation energies (ARs and CRs) 

and reorganization energies (ER and HR) over the first-generation models. This observation 

indicates that prediction accuracy relies less on the complexity of the models and that a more robust 

input feature may be needed to improve the predictions. 
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Table 4. Performance metrics computed for the second-generation ML models. MAE is reported in eV for 
all models. The best R2 and MAE for each property are in bold. The values are averaged over five-fold 
cross-validation models. The second-generation ML model results with and without ECFP2 are included.  

Property 
2nd Gen without ECFP2 2nd Gen with ECFP2 

R2 MAE R2 MAE 

HOMO 0.51±0.011 0.351±0.011 0.49±0.009 0.354±0.012 

LUMO 064±0.011 0.323±0.007 0.69±0.011 0.297±0.004 

H-L 0.39±0.008 0.589±0.015 0.42±0.009 0.578±0.011 

VIE 0.75±0.010 0.238±0.006 0.78±0.003 0.219±0.001 

AIE 0.76±0.012 0.230±0.003 0.80±0.008 0.207±0.003 

CR1 0.26±0.009 0.060±0.001 0.17±0.017 0.063±0.001 

CR2 0.29±0.008 0.062±0.001 0.34±0.013 0.059±0.001 

HR 0.30±0.013 0.118±0.002 0.35±0.012 0.110±0.002 

VEA 0.79±0.012 0.233±0.004 0.86±0.003 0.186±0.002 

AEA 0.80±0.003 0.224±0.002 0.86±0.001 0.176±0.002 

AR1 0.32±0.007 0.059±0.001 0.27±0.037 0.062±0.002 

AR2 0.33±0.023 0.053±0.000 0.37±0.015 0.051±0.001 

ER 

S0S1 

S0T1 

0.38±0.008 0.106±0.001 0.41±0.007 0.101±0.002 

0.59±0.016 0.313±0.004 0.65±0.010 0.282±0.003 

0.62±0.018 0.254±0.005 0.75±0.003 0.194±0.003 

 

With learned molecular representations from message-passing neural networks (MPNN), FFN is 

able to provide more accurate predictions of molecular properties.67, 68 Thus, the third-generation 

ML models use an MPNN architecture to generate a robust input feature for FFN. The MPNN uses 

a graph representation of a molecule as input where the nodes represent the atoms, and bonds are 

represented by the edges between the nodes. Node attributes included atom type and hybridization, 

while edge attributes included bond type and whether a bond is π-conjugated (part of the sp2 
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hybridized system), which the MPNN used to generate learned molecule representations. The 

output representation from the MPNN acted as the input feature for an FFN, which was used to 

predict the molecular property.  

The MPNN models show improved performance over the previous ML model generations (see 

Table 5). VIE and S0T1, along with AIE, AIE, and VEA, have R2 values greater than 0.85. The 

MAE is also reduced on average by 40 meV for these properties compared to the second-

generation ML models. The relaxation energies (CR and AR), reorganization energies (HR and 

ER), and HOMO-LUMO energy gaps (HL) have significantly improved R2 values compared to 

previous generations; however, the MAE reduction is small. The R2 values that remain smaller 

than 0.6 for these properties indicate that the learned representation alone is insufficient and that 

more global molecular features, including the number of rotatable bonds, number of aromatic 

rings, etc., are required. It has previously been shown that concatenating the features from MPNN 

with handcrafted features can improve prediction accuracy.69  
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Table 5. Performance metrics computed for the third and fourth-generation ML models. MAE is reported 
in eV for all models. The best R2 and MAE for each property are in bold. The values are averaged over five-
fold cross-validation models. The fourth-generation ML models include molecular descriptors concatenated 
to the MPNN output. 

Property 
3rd Gen 4th Gen 

R2 MAE R2 MAE 

HOMO 0.60±0.01 0.796±0.446 0.61±0.01 0.330±0.028 

LUMO 0.76±0.01 0.291±0.044 0.76±0.01 0.289±0.028 

H-L 0.47±0.02 1.264±0.696 0.50±0.01 0.548±0.029 

VIE 0.86±0.01 0.202±0.043 0.86±0.00 0.191±0.024 

AIE 0.87±0.01 0.176±0.015 0.87±0.01 0.173±0.006 

CR1 0.37±0.01 0.054±0.001 0.38±0.02 0.055±0.002 

CR2 0.40±0.01 0.061±0.001 0.44±0.01 0.053±0.001 

HR 0.38±0.02 0.126±0.022 0.43±0.02 0.133±0.019 

VEA 0.92±0.01 0.193±0.052 0.93±0.00 0.157±0.018 

AEA 0.93±0.01 0.160±0.027 0.94±0.01 0.154±0.027 

AR1 0.46±0.02 0.057±0.002 0.47±0.02 0.051±0.001 

AR2 0.45±0.01 0.048±0.002 0.43±0.02 0.052±0.001 

ER 0.50±0.01 0.093±0.002 0.50±0.01 0.098±0.006 

S0S1 0.76±0.01 0.252±0.017 0.76±0.01 0.249±0.013 

S0T1 0.87±0.00 0.148±0.012 0.87±0.00 0.150±0.028 

 

With this insight, we concatenated molecular descriptors in the fourth-generation ML models to a 

learned representation derived from an MPNN. The fourth-generation ML models have the lowest 

MAE for most properties in the dataset (see Table 5). The improvement in R2 value over the third 

generation is marginal for some properties, including molecular descriptors into the input for FFN. 

HR and HL show the most significant improvement in R2 (≈ 0.05), though the R2 values remain 
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close to 0.5. It is worth noting that the values of the relaxation energies (CR and AR) are of the 

same magnitude as the MAEs of properties like AIE, VIE, AEA, and AIE. Thus, the difficulty in 

predicting the relaxation energies could be due to the lack of descriptors that accurately describe 

the different diabatic potential energies involved (see Figure 1). Moreover, the models were not 

provided with any 3D geometry information.  

To further improve the performance of the fourth-generation ML models, DFT values for AIE, 

AIE, VEA, and VIE were used as concatenated features to the learned representation rather than 

the molecular descriptors. Using this feature set, we only trained the models for the properties with 

R2 below 0.8; CR1 and AR1 were omitted as these properties are obtained by subtracting two of 

the given DFT values. The corresponding models show a significant improvement in the R2 values 

from less than 0.5 to over 0.69 for AR2 and CR2 and above 0.90 for ER, HR, and S0S1 (see Table 

6). The MAEs are reduced to 45 meV for ER and 39 meV for HR. However, importantly, the 

models require DFT values to achieve this accuracy. Using the predicted values of AIE, AEA, 

VIE, and VEA from the fourth-generation model with molecular descriptors instead of the DFT 

computed values did not yield a significant improvement in the accuracy of CR2, ER, AR2, and 

HR when compared to the fourth-generation model with molecular descriptors (see Table 5 and 

Table 6). However, R2 for LUMO, HOMO, and HL improved by 0.04. This observation suggests 

that only highly accurate descriptors are necessary to improve the performance on properties like 

relaxation energy and reorganization energy. Including 3D geometry information in the input 

features could further enhance the accuracy of predictions. We are actively working in this 

direction.  
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Table 6. Performance metrics computed for the fourth-generation ML models with DFT and ML predicted 
DFT (ML-DFT) properties for AIE, AEA, VIE, and VEA concatenated to the MPNN representation. For 
ML-DFT, the required input DFT values were predicted from the fourth-generation ML model with 
molecular descriptors (see Table 5 for the performance of the model). MAE is reported in eV for all models. 
The values are averaged over five-fold cross-validation models. 

Property 
DFT ML-DFT 

R2 MAE R2 MAE 

HOMO 0.81±0.01 0.327±0.140 0.68±0.01 1.105±1.661 

LUMO 0.93±0.00 0.132±0.009 0.82±0.01 0.235±0.020 

H-L 0.84±0.01 0.415±0.169 0.59±0.01 0.872±0.291 

CR2 0.69±0.01 0.036±0.003 0.44±0.00 0.057±0.006 

HR 0.92±0.01 0.039±0.011 0.44±0.01 0.107±0.005 

AR2 0.77±0.01 0.034±0.008 0.47±0.02 0.057±0.009 

ER 0.94±0.01 0.045±0.014 0.52±0.02 0.117±0.032 

S0S1 0.90±0.01 0.396±0.041 0.80±0.01 0.322±0.042 

 

Predictions from ML models are not always accurate, as inherent uncertainty is associated with 

each prediction.70 Though not all of the models we trained are accurate over the entire chemical 

space, an estimation of prediction confidence is beneficial. Uncertainty quantification of ML 

models is rapidly evolving.71, 72 Here, we employed an evidential deep learning algorithm, due to 

its ease of implementation, to estimate the uncertainty56 of the best-performing models, i.e., the 

fourth-generation ML models (see Figure S5).  

The trained evidential deep learning model provides uncertainty estimates that are overconfident, 

underconfident, or well-calibrated,73 as shown in Figure S6. Hence, we recalibrated the 

uncertainties and used miscalibration area, sharpness, and negative log-likelihood (NLL) as 

metrics to quantify uncertainty (see Table S4).56, 74, 75 After recalibration, the miscalibration area 
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and NLL decrease, indicating improved uncertainty estimates. The sharpness, which is analogous 

to the average variance of the uncertainty estimates, decreases for underconfident models and 

increases for overconfident ones corroborating with improvement in the estimates. The 

performance of these models is marginally lower compared to the fourth-generation ML models 

with molecular descriptors (see Table S5). This is expected as there is a trade-off between 

predicting the property and estimating the uncertainty.56 As shown in Figure 3 and Figure S6, 

predicting VIE, VEA, AEA, AIE, and S0T1 have low uncertainty associated with the chemical 

space of the test dataset, while CR2, CR1, AR1, AR2, ER, and HR have relatively high prediction 

uncertainty, as expected from the corresponding model accuracy metrics. Analogous to machine 

predictions, the trained evidential uncertainty estimations are not accurate on data points that lie 

towards the lower or higher end of the distributions. For instance, the prediction of S0T1 for 

pentacene with uncertainty is 1.225 ± 6.029 eV, while the DFT computed value is 0.859 eV. 

Nevertheless, the predictions and uncertainty estimates are reasonable for the region of well-

distributed data points. 
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Figure 1. Predictions from the fourth generation ML model with evidential learning and molecular 
descriptors as the concatenated feature on the test dataset for properties VIE (top) and HR (bottom). The 
histograms on the left plot represent the distribution of the corresponding DFT evaluated property in the 
test dataset. Scatter plots on the right represent the chemical space of the test dataset. The data points where 
the uncertainty is greater than 10% of the DFT values are in gray.  

 

While several reported ML pipelines exist that predict the molecular properties, their accessibility 

to those with no little-to-no expertise in ML or computer programming is limited. To overcome 

this barrier and democratize ML access and use, we created the OCELOT ML 

(https://oscar.as.uky.edu/ocelotml) architecture, where ML pipelines for the organic, π-conjugated 

molecules can be deployed for easy access to the predictions. OCELOT ML provides a dashboard 

with performance metrics from various ML models on the dataset. We also deployed an interactive 

web interface on the OCELOT ML architecture, allowing users to draw a two-dimensional 

representation of the molecule and prediction properties using the ML models (Figure 4). The 
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fourth-generation ML models from this article with uncertainty predictions are available on the 

OCELOT ML platform.  

 

Figure 2. (Top) Snapshot of the publicly available interface deployed at the OCELOT website 
(https://oscar.as.uky.edu/ocelotml_2d) for predicting the properties using the trained models discussed in 
this article. The prediction is made in seconds when a 2D structure of a molecule is submitted. (Bottom) 
Representative bar plot indicating the improvement in ML model performance over the four generations 
for the property S0S1. 

https://oscar.as.uky.edu/ocelotml
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Conclusion 

Here, we present a curated dataset of 25k molecules from the OCELOT database that contains 

computed a suite of electronic, redox, and optical properties for organic, π-conjugated molecules 

to serve as a benchmark for training ML models for property prediction π-conjugated molecules. 

This dataset can be downloaded both interactively and programmatically from the OCELOT 

website. 

We trained a hierarchy of ML models with varying complexity to predict the electronic, redox, 

and optical properties of π-conjugated molecules. Interestingly, we observe no significant 

improvement in performance on switching from classical ML algorithms like SVM to FFN, as 

shown in Figure 4. Moreover, the results indicate that the input features are critical in achieving 

better prediction accuracy. The MAE for properties like AIE, AIE, VIE, VEA, and S0T1 decrease 

when learned representations from MPNN are used in conjunction with handcrafted molecular 

descriptors. However, the relaxation and reorganization energy predictions improved only on 

concatenating DFT computed AIE, AIE, VEA, and VIE values to the learned representation from 

MPNN. Nevertheless, the incorporated uncertainty quantifications provide a confidence to accept 

or ignore the ML models' predictions. The best ML models for the prediction of ionization energies 

and electron affinities presented here have low average errors of less than 10% in predicting the 

DFT computed properties from only a SMILES representation of a molecule over a vast chemical 

space. These models reduce the computational time to estimate properties to a few seconds 

compared to DFT methods which can take a few hours. We also present OCELOT ML, a web-

based platform for hosting ML models to allow easy access to ML predictions.    



26 

Data and code availability 

The code used for training and testing is available on GitHub at 

https://github.com/caer200/ocelotml_2d. The OCELOT chromophore v1 dataset is available on the 

OCELOT website at https://oscar.as.uky.edu/datasets.  
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