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Abstract

n u

As buzzwords like “big data,” “machine learning,” and “high-throughput” expand through chemistry,
chemists need to consider more than ever their data storage, data management, and data accessibility,
whether in their own laboratories or with the broader community. While it is commonplace for chemists
to use spreadsheets for data storage and analysis, a move towards database architectures ensures that
the data can be more readily findable, accessible, interoperable, and reusable (FAIR). However, making
this move has several challenges for those with limited-to-no knowledge of computer programming and
databases. This perspective presents basics of data management using databases with a focus on chemical
data. We overview database fundamentals by exploring benefits of database use, introducing
terminology, and establishing database design principles. We then detail the extract, transform, and load
process for database construction, which includes an overview of data parsing and database architectures,
spanning Standard Query Language (SQL) and No-SQL structures. We close by cataloging overarching

challenges in database design. This perspective is accompanied by an interactive demonstration available

at https://github.com/D3TaLES/databases demo. We do all of this within the context of chemical data

with the aim of equipping chemists with the knowledge and skills to store, manage, and share their data

abiding by FAIR principles.


https://github.com/D3TaLES/databases_demo

Introduction

Chemistry is no stranger to big data. As early as the 19'" century, chemists compiled atomic and molecular
information in catalogs, such as the Beilstein Handbook of Organic Chemistry! and Gmelin Handbook of
Inorganic Chemistry,2 where molecular physical and spectroscopic properties and synthesis pathways
were recorded. Journals and periodicals also cataloged the emerging chemical literature with card index
systems.® During the next century, more collections of chemical data arose such as the Chemical Rubber
Company (CRC) Handbook, which was compiled and sold by a young engineering student trying to pay his
way through college.* Eventually, organizations like the International Union of Pure and Applied Chemistry
(IUPAC) collected and standardized chemical data, resulting in the Color Books.> With the advent of
computer technology and virtual storage in the late 20'" century, these catalogs and journals migrated to
electronic formats. Today, chemists access big data daily by exploring the literature with resources such
as the Web of Science or by searching online chemical catalogs such as SciFinder and Reaxys (which
includes the original Gmelin and Beilstein data).®” The big chemical data in these online formats inform

and direct research across the discipline.

With more precise and efficient instrumentation, individual laboratories now generate data on scales
previously seen only in these corporate catalogs and databases. For example, a single X-ray
crystallography experiment can generate up to 90 gigabytes of data, meaning experiments could generate
a terabyte of data in only a few days,® while a molecular dynamics simulation with 100-milion-atom can
produce 5 gigabytes of data per frame.® These vast catalogs of data are now paving the way for data-
driven research methods, offering a move away from time-consuming and resource-expensive Edisonian
trial-and-error approaches.'® ! Agrawal and Choudhary termed the use of big data in chemistry the “4th
paradigm” in chemical research, following the paradigms of empirical science, model-based theoretical
science, and computational science.'? The shift towards big data-driven chemistry has the potential to
amplify lab productivity and escalate scientific progress as much as it has done in the fields of biology and

medicine.'® 4

The generation of large volumes of data and increasing emphasis on data accessibility requires individual
laboratories to consider new strategies for data management, as reflected in the growing demand for
data management plans by federal funding agencies.'>?° Additionally, to effectively create and implement
data-driven research methods, there is a need for the data to meet several criteria. A specific data piece,

perhaps a spectroscopic measurement for a chemical system, should be findable with a straightforward



search. Concurrently, the measurement data should be accessible via standard data access procedures,
even if the access includes authentication. The data structure and terminology (for instance, the name of
the chemical system and the organization of chemical descriptors) should be interpretable by anyone with
sufficient domain knowledge. Finally, there should be enough informational data describing the
measurement of the chemical system (metadata) that the measurement can be reproduced, making the
data reusable. These characteristics—findable, accessible, interoperable, and reusable—constitute the
FAIR data principles.?* FAIR data principles offer the potential to dramatically enhance data and machine-
driven evolutions in chemistry, but it demands not only digitizing chemical data but also capturing the

necessary input parameters, process operations, and output data.

Standard data management tools such as spreadsheets and filesystems are not equipped to manage the
volumes of data that researchers can now produce, and they are difficult to adapt to FAIR data principles.
Most spreadsheet software cannot host more than a million data entries, and these data are maintained
at significantly reduced processing speeds; optimum performance is seen with only a few hundred
thousand data entries.?? Problems pertaining to performance become exaggerated when dealing with
multi-dimensional data. Additionally, file-based systems facilitate redundancies, which increase storage
costs and enable data inconsistencies. The embedded auto-correct features in many spreadsheets have
also notoriously caused data errors in published data.?®* 2* The system of spreadsheets, filesystems, and
laboratory notebooks alone will not meet the needs of chemists to store and share growing amounts of

FAIR data. #>%/

Database management systems (DBMS) provide solutions to many of these problems. Databases store
large quantities of similar, often multi-dimensional data in a consistent organizational structure that can
abide by FAIR. Databases are readily scalable, searchable, and sharable. Additionally, as data analyses
(specifically, big-data analyses) become a more integral part of chemical discovery, chemists will need
time-saving tools to automate these processes. A database’s search infrastructure and consistent
organizational structure can accelerate and enable automated analyses. Further, databases are critical for
(semi)autonomous robotic experiments, as they allow for the management of large data volumes and

automated analyses.?®

t2° for inorganic

Domain specific databases have arisen to store FAIR data, such as the Materials Projec
materials, the Cambridge Structural Database (CSD)* for crystal structures, and the Protein Data Bank

(PDB)3! for protein structures. However, for chemists interested in creating databases for their specific



chemical domain or in their own laboratory, the educational resources can be complex. Hence, there is a
need to provide information to train chemists to manage large data with databases that abide by FAIR

data principles.

In this Perspective, we aim to present an introduction to database fundamentals for a chemistry audience.
We first illustrate the advantages of databases over standard file-based data management before
describing basic terminology and database design principles. We explore data parsing along with Standard
Query Language (SQL) and No-SQL database architectures by exploring the extract, transform, and load
process for building a database. Finally, we reflect on some overarching challenges in database design.
We do all this with chemistry-specific examples and explanations to promote the creation and accessibility
of domain specific data in the realms of FAIR data. We also provide a collection of interactive examples to
complement the discussion in this article, which can be accessed at

https://github.com/D3TaLES/databases demo.

Database Fundamentals

Why Databases?

In modern chemistry, the spreadsheet is a ubiquitous tool for storing and analyzing data. The spreadsheet
can be effective for managing and analyzing a few to thousands of datapoints, especially when users are
familiar with the tools and data formats. Given the ease and ubiquity of spreadsheet-based systems, why

should one invest the time and effort to build and learn a DBMS?

Scientific data generated in research laboratories are saved across several files with diverse formats. This
data heterogeneity impedes rapid analysis when tools such as laboratory notebooks and spreadsheets are
used to store processed data. To demonstrate the utility of databases compared to lab notebooks and
spreadsheets, consider the problem of comparing singlet excitation energies (or wavelengths) determined
via a quantum-chemical calculation with the optical response measured in a UV-Vis absorption
experiment (Figure 1). First, a researcher opens the output file from the quantum-chemistry software,
extracts the desired energy values and stores them, perhaps in a spreadsheet. The researcher must then
extract and store data points from the absorption spectrum, plot the spectrum, and identify the

absorption energies.?? Even if the data extraction process is automated with code, the researcher must


https://github.com/D3TaLES/databases_demo

manually transfer the data to a laboratory notebook or another spreadsheet to compare the DFT-
computed and experimentally-measured energies. Often, data are manually transferred again to another
specialized software for analysis, and this entire process must be repeated for each additional experiment.
The process is clunky and time-consuming to repeat. Sharing data introduces more problems because raw
data and calculations may be in multiple spreadsheets, which may not be readily interpretable by
collaborators and sharing files via email or even some file sharing apps can create issues with version
consistency. When using a database, raw data are imported directly into the database once. All
subsequent analysis, calculations, and comparisons find and use data from the database. Additionally,

database access can be granted to collaborators, enabling easy and constantly up-to-date data sharing.

Consider another problem: Imagine plotting the data from a series of UV-Vis experiments with benzene
and like derivatives (e.g., nitrobenzene, anthracene) where only molecules with a singlet excitation
greater than 4 eV are plotted. Here, the researcher must first extract data from the raw experimental and
computation data files. There are multiple ways to arrange this data in the spreadsheet; we consider the
following — columns for absorbance (transmittance), absorption wavelength, excitation energy, and the
molecule identifier. Within a spreadsheet, plotting spectra only when the excitations are greater than 4
eV requires manual selection or sophisticated data transformations. To perform this analysis on another
set of experiments, the researcher must repeat this entire process. Alternatively, for data stored in a
database, a single line of code fetches the data, and a few lines of code plot the analysis. Because
databases embed relationships between like data, a minor modification to the original query would

perform the analysis on any new data. These advantages are demonstrated in the accompanying code.

As shown by this thought experiment, the use of databases to store data can promote rapid analyses.
Furthermore, databases are designed to manage large quantities of data and are easily adapted for big
data analysis. The sections that follow detail the processes of inserting computational and UV-Vis data
into a database and making queries like the ones discussed above. They also discuss the distinct types of

databases that can be used along with the pertinent terminology.
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Figure 1. Schematic demonstrating advantages of a (right) database management system (DBMS) over a (left) file-based data
management system. Note some advantages of a DBMS over file-based data management: consolidated data, fast and repeatable
data queries that replace complex data transformations, and reduced risk of redundant and inconsistent data.

Database Terminology

Before delving deeper into database structure and design, we must first establish a basic terminology
(Table 1). A database is a collection of data structured in a manner that captures the relationships
between groups of like data. These individual pieces of data are termed data records. For example, a
database may contain a group of data concerning molecules with UV-Vis and computational data. A single
data record may correspond to a single molecule. Each data record has a series of attributes that contain
information about the record. So, each molecular data record in our example might have attributes such
as source, date synthesized, and UV-Vis data. One attribute must uniquely identify the record; this
becomes the primary key. The primary key that identifies a molecule data record might be the molecule
IUPAC name or a SMILES3* or SELFIES®® string (Figure 1). Similar data records are grouped together so that
each data grouping has a defined organizational structure. The organizational outline of a data group is a
schema, a map that notes how each attribute in a data record is related. By definition, all records in a data
group use the same schema. Defining the schema is critical for efficient database searches and

constructing FAIR data; schema will be discussed in detail later.



Table 1. Database terminology definitions, as adapted in part from Principles of Database Management.3¢

Term

Definition

Database Management
System (DBMS)

A software package consisting of several software modules used to define,
create, use, and maintain a database.3®

Database

A collection of related data items within a specific process or problem setting
stored on a computer system through the organization and management of a
database management system.%®

Data Groups

A collection of related data that is stored in the same format.
SQL term: Table, No-SQL term: Collection®’

Data record

A complete data instance for an individual item. A data group contains many
data records, each containing different data in the same structure.
SQL term: Row, No-SQL term: Document?’

Attribute

A characteristic of a data record.
SQL term: Column, No-SQL term: Field®’

Multidimensional Data

Data where an attribute is more than a single item. For example, an attribute
may be a list, or it may include sub-attributes. This requires special data
structures. In SQL, multidimensional data are handled with Table Joins, while
in No-SQL, they are handled with Embedded Documents.

Primary Key A selected candidate key that identifies tuples in the relation and is used to
establish connections to other relations; must be unique within the relation.®

Schema The description of the database data at different levels of detail, specifying
the data items, their characteristics and relationships, constraints, etc.3®

Query The request and retrieval of data from a database.

Insertion The addition of data to a database.

Extract Transform Load
(ETL)

The process in which data are extracted (E) from the source systems,
transformed (T) to fit the database schema, and then loaded (L) into the
database.®®

Building a Database: Extract, Transform, and Load

Building a database and populating it with data involves three key steps: extract, transform, and load (ETL)

(Figure 2).38 Data must first be extracted from the raw data files, and then transformed into a structure

that is compatible with the database schema. Finally, the transformed data must be loaded into the

database. The development of this process is a critical step toward efficiently populating a database.
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Figure 2. Schematic depictions of fundamental steps in populating a databaes — extract, transform, and load —depicted here in
the context of UV-Vis spectroscopy data.

Extract

The process of extracting data from the original files is the step most like the manual processes used in
file-based data management systems. In fact, data extraction for a database can be done manually by
opening a data file and identifying key data. For example, in the UV-vis optical absorption example above,
the researcher could open the UV-Vis spectrometer output file, identify a particular absorption peak, and

input that value into the database.

However, extraction can be automated with code to expedite data analysis and reduce human error.
There are many open-source packages that reduce the amount of effort to write parsing code. Imagine
our researcher’s spectrometer produces a spreadsheet with wavelength and absorbance data. A mere
four lines of code in the coding language Python with the packages pandas and scipy could extract data
and find the minimum absorption energy (Figure 3). Moreover, those four lines of code are applicable to
all future spectrometer data files. A more in-depth discussion of parsing techniques is beyond the scope
of this paper, but a full demonstration can be found in the accompanying code.3? Regardless of the method

used, extraction should pull important data from the raw data files so it will be ready for the next step.
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Figure 3. Schematic describing the four lines of code needed to extract data from a spectrometry comma-separated values (CSV)
file and determine the energy of the fist absorption peak. The bullet points note the python command needed for each line. Full
code can be found in the accompanying demonstration code.

Transform

After extraction, data is transformed into the schema-specified format. Schema design is the first step in
constructing a database. Designing the database schema is similar in concept to planning the rows and
columns in a spreadsheet. Advanced spreadsheet users know that, especially when dealing with multi-
dimensional data, deliberately planning the column/row structure alleviates many headaches later during
analysis. While it can be time consuming on the frontend, appropriate schema design is essential for an
efficient and FAIR database. Unintuitive schema design yields non-interoperable data. Additionally,
because database searches use schema structure, inefficient schema design can produce time-intensive
queries. For example, with a database of computational and absorption data, a small molecule chemist
might be most likely to query small molecules and their properties, so the molecule-centric schema
(where each data record is a molecule) would be most efficient for the laboratory. On the other hand, a
computational chemist might more often query individual calculations, so a computation-centric schema

(where each data record is a computation) would be most effective for that laboratory.

The first decision in schema design is the schema structure type. The two most common structure types
are structured query language (SQL) and No-SQL (Figure 4).3” SQL is structured like a series of tables, while
No-SQL is structured like a branching tree. Both structure types have a master schema (organizational
structure) that all records must follow. Additionally, in both types, one of the attributes for each record
must be a uniquely identifying primary key. This enables records to be identified and easily searched.
Often, primary keys are randomly generated strings of numbers and letters. For example, the digital object

identifier (DOI) generated for every published article frequently serves as a database primary key.
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Figure 4. Schematic representation of the two most common schema types in databaes design (SQL and No-SQL) depicted in the
context of UV-Vis spectroscopy data.

sQL

The SQL database structure is the original data management structure. It contains collections of two-
dimensional tables, akin to collections of spreadsheets pages. The table rows are data records, and
columns are attributes. Each attribute (column) can contain only a single numerical or text value for each
record (row). When a data record has an embedded attribute, an SQL database uses multiple tables. For
example, a molecule may contain the attribute UVVis_Data; however, UVVis_Data contains embedded
attributes such as Instrument_Name and Optical Gap. To accommodate these data, the first table
contains the molecule record with its primary key and its regular attributes, while another table contains
UWVis_Data and its attributes. Each record in UVVis_Data connects to the molecules table with a table-
joining column. This column contains a molecule primary key (Figure 4).3>“° There are several advantages
to an SQL structure. A well-implemented table structure eliminates many data redundancies, increasing
data storage efficiency. Also, because of its longevity, the SQL data structure is well documented and
supported. These databases can be well-secured, and all SQL-structured databases use the universal

Standard Query Language (SQL, from which these databases derive their name).
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No-SQL

No-SQL structures contain one or more collections of records (called a document in many types of No-
SQL). Within a collection, all documents share a schema. Schemas have a tree-branch structure. Each
document contains a series of attributes (branches in the tree), each of which may contain a value or list.
An attribute may also contain embedded attributes, e.g., smaller branches off the main branch. Figure 4
shows the nested nature of a No-SQL schema for the UVVis_Data. These nested attributes provide
scalable depth to a No-SQL database. A single document can easily hold all related data for a record like a
molecule, simplifying schema interpretation. Additionally, a No-SQL schema is flexible. This enables
dynamic schema adjustments amid the development processes and allows the shaping of schemas to fit
expected queries, making future data transactions extremely efficient.?” Finally, the modular format of
documents allows these databases to be scaled to multiple servers.** A portion of the documents can

easily be transferred to a new server if the original runs out of space.

Selecting a Schema

Both SQL and No-SQL schema types have advantages and disadvantages. For instance, the strict table-
based SQL structure limits schema design options. An application's data must conform to an SQL table
schema rather than the other way around. The interconnected table structure also prevents divided
storage, limiting scalability. Additionally, the restricted schema structure inhibits a schema designed
around perspective queries, often leading to much slower query times.?” The interconnected table
structure also prevents divided storage, limiting scalability. On the other hand, unlike SQL, No-SQL
databases cannot guarantee perfect consistency between documents because separate documents are
more prone to redundancies. These redundancies also make No-SQL databases bigger and less storage-
efficient than SQL. Additionally, No-SQL databases do not share the Standard Query Language, so each

database software can have its own query format.

Ultimately, No-SQL databases are best for prioritizing flexibility, ease of design, and scalability, while SQL
databases are best for prioritizing efficiency and consistency.*” ** There are many open access No-SQL
software, the most notable of which is MongoDB,* known for its user-friendly interface and high

consistency despite the limitations of No-SQLs.***” Common SQL software includes MySQL,*®
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PostgreSQL,* and Oracle, though software matters less with SQL databases since they all use the Standard
Query Language.® The demonstration GitHub repository for this paper gives an example of building a No-

SQL database with MongoDB and a SQL database.

Once a schema type is selected, the database designer builds an organizational structure that fits the data
needs. The design should be efficient yet intuitive. Figure 4 depicts an effective schema design for
absorption data in both SQL and No-SQL structures. Schema design is by far the most difficult aspect of
the transform step. Once the schema is designed, data from the extraction step is formatted to match the

schema, often done through dictionaries (No-SQL) or tables (SQL).

Load

Finally, the extracted and transformed data is loaded (or inserted) into the database. Anytime data is
written to or read from a database, a transaction occurs. Transactions are the building blocks for database
interaction. A transaction that writes information to the database is an insertion, while a transaction that
reads information from the database is a query. An insertion or query can be made individually through a

single line of code or automated so that hundreds of insertions are performed with one command.

While the ETL process is a critical component in implementing a database, there are other technical
considerations involving setting up and managing the database. While such detailed discussions are
beyond the scope of this review, we included a list of external resources with the accompanying
examples.>® These resources include online tutorials on installing and setting up SQL and No-SQL
databases for a variety of operating systems, and articles on more abstract data structures for large

datasets. Readers may also consult the accompanying interactive databases demonstrations.3

Queries

To access the data in a database, users must interact with it via a direct transaction or a user interface
called an application programming interface (APl). Some database software contain built-in API, and these
are often the most effective choice for users new to databases and coding. However, if a user has even
minimal coding experience, the easiest way to interact with a database is through a direct transaction. A

one-line query can search, filter, and transform data however the user might desire.
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A basic query contains two parts: selection and projection. The selection portion filters the data record(s)
(rows for SQL, documents for No-SQL) that will be returned. The projection specifies the record
attribute(s) (columns for SQL, fields for No-SQL) that will be shown. For example, imagine a researcher
wants to know the SMILES strings®* for all molecules in a database that have a molecular weight of more
than 100 g/mol. The selection would stipulate only data records with a molecular weight greater than 100
g/mol, while the projection would specify the return of the SMILES attribute (Figure 5). Alternatively, the
researcher might like to list the lowest-lying excited state energy for every molecule or find and count all
molecules with more than ten atoms. Basic queries like this are quick and easy in both SQL and No-SQL

databases, even when tens of thousands of molecules are present.

® ® Projection \l/

(Attributes)
N
- 7
Selection
(Data Records)
SELECT PROJECTION db [COLLECTION] .find(
FROM TABLE SELECTION,
WHERE SELECTION; PROJECTION)

C_ Get all the SMILES string in the molecules database where the molecular weight is greater than 100...

SQL Example No-SQL Example
SELECT smiles db["molecules”].£find(
FROM molecules {“molecular weight”: {“$gt”: 100}},
WHERE molecular weight > 100; {“smiles”: 1})

Figure 5. (A) Depiction of the selection and projection components of a database query along with (B) the format of basic queries
in SQL-structured and No-SQL-structured databases and (C) example queries in each database type. Note that example No-SQL
queries use the MongoDB query format because there is no standard No-SQL query language.

Let us return to the multi-faceted analysis of extracting the first singlet excited state energy (or

wavelength) from UV-Vis experiments and computational modeling: (1) Comparing the experimental and
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computed absorption energies and (2) plotting the absorption spectrum for only molecules where the
first absorption is greater than 4 eV. Again, straightforward one-line queries can gather the data for these
analyses. Subsequently, a couple of lines of code can produce analysis plots. Figure 6 demonstrates the
query and plotting steps or each of these examples, depicting the resulting plots; full code is available in
the accompanying resource.®®* Most importantly, these queries and plotting are readily repeated. The next

time our researcher runs a set of experiments, the entire analysis occurs with the push of a button.

Example 1 Example 2
Compare the experimental and computed Plot spectrum for only molecules where the
absorption energies first absorption is greater than 4 eV
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Figure 6. Queries and plots for comparing singlet excitation and experimental optical gap (left) and plotting the spectrum of only
molecules where the singlet excitation is greater than 4 eV (right).

Database Longevity

After database construction, designers must consider database backups. Regular and reliable database
backups are essential for an effective database because it is not a matter of if something will go wrong

with the database but when. Modern databases are vulnerable to failures ranging from hardware
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malfunctions to ransomware attacks to human error. But consistent and reliable backups can ward off the

potentially catastrophic effects of these failures.

There are four types of database backup: Full, incremental, delta, and logs. Successful databases often
use all four types. As the name suggests, a full backup duplicates the entire database for storage. While
thorough, these backups require significant storage space, often too much to perform more than once
every week or two. Incremental backups, on the other hand, duplicate storage for all database records
that have changed since the last full backup. Similarly, delta backups record the transactional changes
since the last backup of any kind. These three backup techniques constitute most database backup
systems. The final backup type is less a backup than an emergency record. Logs are the systematic record
of every database transaction. Theoretically, a database can be rebuilt by rerunning every transaction that
has occurred from the logs. However, this method is neither dependable nor efficient. Because the log

files grow quickly, the log history is frequently wiped clean.

Regardless of the specific backup plan designed, the most important part is redundancy. While database
design tries to avoid redundancies, database backup plans should incorporate redundancies wherever

possible. Save multiple full backups, saved on multiple servers, ideally on multiple networks.

Challenges

In 2017, The Minerals, Metals & Materials Society (TMS) issued a report cataloging challenges with
building effective materials data infrastructures.”> Many challenges centered on the community’s minimal
understanding of data storage and management options and associated best practices, a problem this
paper seeks to address.>® One of the most high-impact challenges identified was the lack of developed,
agreed-upon data schemas. As more domain-specific databases emerge, challenges arise in the
interaction of databases with various users and other databases.>*>® To effectively share data across labs
and data platforms, there must be some degree of agreement between the data representation,
terminology, and formats. A key first step in developing universal schemas is educating all members of
the scientific community about domain-specific ontologies, which are the fundamental categorization of
objects and the definition of relationships between the categories.*”® This will enable scientists’
contributions to the philosophical endeavor to develop universal ontologies that can lay the foundation

for a universal schema. Yet, to establish standard ontologies, scientists must first engage in their design.
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The second challenge in database development is the curation of gathered data. As the adage goes,
“garbage in, garbage out.” If inconsistent, incorrect, or outlier data enters a database, the data analytics
performed on that data will produce spurious insights. Too often, the best method for data curation
remains human gut checks. It is much easier for a human expert than a computer to identify a suspicious
peak in the NMR spectrum. At this point, database curation must continue to integrate human data checks
to curate incoming data. However, as the quantity of data grows, efforts to automate data curation must

follow suit.

The extraction of data from raw data files presents additional challenges. For example, different brands
of instruments may produce distinctly formatted output files. Each file will require an individualized parser
to extract necessary data. Moreover, some instrument output files do not contain all relevant data, so
additional metadata such as molecule concentration, solvent type, and even procedural details must be

gathered.

Finally, as more domain-specific databases emerge, challenges will arise in the interaction of databases
with various users and other databases. To abide by the FAIR principles, data must be accessible and
searchable in an interpretable format.?! An APl is the most useful tool for human-database interaction.
Additionally, to enable data machine-accessibility, databases should incorporate a representational state
transfer APl (REST API), which presents data for online sharing according to REST internet standards.
Unfortunately, if not included in the database software, APl and REST API require time and expertise to
develop. To circumnavigate these issues, there do exist powerful scientific data-sharing platforms which

include APl and/or REST API capabilities.>* 5> 60-63

Conclusions and Outlook

As chemistry enters the “fourth paradigm” of scientific discovery, it will be essential to effectively store
and manage data. Such efforts will not only enable the use of big data analytics and machine learning but
also establish the data management framework needed to integrate robotic/autonomous
experimentation into laboratories. While there remain challenges in constructing and maintaining a
DBMS, storage efficiency, query speeds, and ability to abide by FAIR data principles are unparalleled in
DBMS when compared to file-based systems. Therefore, we encourage all chemistry laboratories to

explore DBMS. At a minimum, we encourage laboratories to upload data to existing data databases, such
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as large-scale repositories and field-specific mid-sized databases, many of which are cataloged in database

“Stings 54,55, 61-67

Still, the growing data demands of many laboratories will necessitate small-scale laboratory databases.
Fortunately, there are many tools available. For those wishing to design a database from the ground up,
the software and designs described in this paper provide powerful tools for data management.
Meanwhile, for those seeking less intensive data management platforms, pre-built data storage structures
exist, allowing users to customize a data schema while providing an APl and graphical tools for data
analysis.” 70 Ultimately, the transition from file-based data management to DBMS will take many forms
across many fields. We hope that the introduction to database terminology and structures provided here

will guide chemists through the process of database design.

Data availability

The data and the code presented in this article are available on the GitHub repository at

https://github.com/D3TaLES/databases demo. This repository contains simple, chemistry-based

demonstrations of both an SQL and a No-SQL database structure and experimental file parsing. The
repository also contains a list of external resources that give more specific details for setting up a

database.
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