
1

Data Storage Architectures to Accelerate Chemical Discovery:

Data Accessibility for Individual Laboratories and the Community

Rebekah Duke, Vinayak Bhat, and Chad Risko*

Department of Chemistry &
Center for Applied Energy Research

University of Kentucky
Lexington, Kentucky 40506 USA

* Corresponding author: chad.risko@uky.edu

mailto:chad.risko@uky.edu

2

Abstract

As buzzwords like “big data,” “machine learning,” and “high-throughput” expand through chemistry,

chemists need to consider more than ever their data storage, data management, and data accessibility,

whether in their own laboratories or with the broader community. While it is commonplace for chemists

to use spreadsheets for data storage and analysis, a move towards database architectures ensures that

the data can be more readily findable, accessible, interoperable, and reusable (FAIR). However, making

this move has several challenges for those with limited-to-no knowledge of computer programming and

databases. This perspective presents basics of data management using databases with a focus on chemical

data. We overview database fundamentals by exploring benefits of database use, introducing

terminology, and establishing database design principles. We then detail the extract, transform, and load

process for database construction, which includes an overview of data parsing and database architectures,

spanning Standard Query Language (SQL) and No-SQL structures. We close by cataloging overarching

challenges in database design. This perspective is accompanied by an interactive demonstration available

at https://github.com/D3TaLES/databases_demo. We do all of this within the context of chemical data

with the aim of equipping chemists with the knowledge and skills to store, manage, and share their data

abiding by FAIR principles.

https://github.com/D3TaLES/databases_demo

3

Introduction

Chemistry is no stranger to big data. As early as the 19th century, chemists compiled atomic and molecular

information in catalogs, such as the Beilstein Handbook of Organic Chemistry1 and Gmelin Handbook of

Inorganic Chemistry,2 where molecular physical and spectroscopic properties and synthesis pathways

were recorded. Journals and periodicals also cataloged the emerging chemical literature with card index

systems.3 During the next century, more collections of chemical data arose such as the Chemical Rubber

Company (CRC) Handbook, which was compiled and sold by a young engineering student trying to pay his

way through college.4 Eventually, organizations like the International Union of Pure and Applied Chemistry

(IUPAC) collected and standardized chemical data, resulting in the Color Books.5 With the advent of

computer technology and virtual storage in the late 20th century, these catalogs and journals migrated to

electronic formats. Today, chemists access big data daily by exploring the literature with resources such

as the Web of Science or by searching online chemical catalogs such as SciFinder and Reaxys (which

includes the original Gmelin and Beilstein data).6, 7 The big chemical data in these online formats inform

and direct research across the discipline.

With more precise and efficient instrumentation, individual laboratories now generate data on scales

previously seen only in these corporate catalogs and databases. For example, a single X-ray

crystallography experiment can generate up to 90 gigabytes of data, meaning experiments could generate

a terabyte of data in only a few days,8 while a molecular dynamics simulation with 100-milion-atom can

produce 5 gigabytes of data per frame.9 These vast catalogs of data are now paving the way for data-

driven research methods, offering a move away from time-consuming and resource-expensive Edisonian

trial-and-error approaches.10, 11 Agrawal and Choudhary termed the use of big data in chemistry the “4th

paradigm” in chemical research, following the paradigms of empirical science, model-based theoretical

science, and computational science.12 The shift towards big data-driven chemistry has the potential to

amplify lab productivity and escalate scientific progress as much as it has done in the fields of biology and

medicine.13, 14

The generation of large volumes of data and increasing emphasis on data accessibility requires individual

laboratories to consider new strategies for data management, as reflected in the growing demand for

data management plans by federal funding agencies.15-20 Additionally, to effectively create and implement

data-driven research methods, there is a need for the data to meet several criteria. A specific data piece,

perhaps a spectroscopic measurement for a chemical system, should be findable with a straightforward

4

search. Concurrently, the measurement data should be accessible via standard data access procedures,

even if the access includes authentication. The data structure and terminology (for instance, the name of

the chemical system and the organization of chemical descriptors) should be interpretable by anyone with

sufficient domain knowledge. Finally, there should be enough informational data describing the

measurement of the chemical system (metadata) that the measurement can be reproduced, making the

data reusable. These characteristics—findable, accessible, interoperable, and reusable—constitute the

FAIR data principles.21 FAIR data principles offer the potential to dramatically enhance data and machine-

driven evolutions in chemistry, but it demands not only digitizing chemical data but also capturing the

necessary input parameters, process operations, and output data.

Standard data management tools such as spreadsheets and filesystems are not equipped to manage the

volumes of data that researchers can now produce, and they are difficult to adapt to FAIR data principles.

Most spreadsheet software cannot host more than a million data entries, and these data are maintained

at significantly reduced processing speeds; optimum performance is seen with only a few hundred

thousand data entries.22 Problems pertaining to performance become exaggerated when dealing with

multi-dimensional data. Additionally, file-based systems facilitate redundancies, which increase storage

costs and enable data inconsistencies. The embedded auto-correct features in many spreadsheets have

also notoriously caused data errors in published data.23, 24 The system of spreadsheets, filesystems, and

laboratory notebooks alone will not meet the needs of chemists to store and share growing amounts of

FAIR data.15, 25-27

Database management systems (DBMS) provide solutions to many of these problems. Databases store

large quantities of similar, often multi-dimensional data in a consistent organizational structure that can

abide by FAIR. Databases are readily scalable, searchable, and sharable. Additionally, as data analyses

(specifically, big-data analyses) become a more integral part of chemical discovery, chemists will need

time-saving tools to automate these processes. A database’s search infrastructure and consistent

organizational structure can accelerate and enable automated analyses. Further, databases are critical for

(semi)autonomous robotic experiments, as they allow for the management of large data volumes and

automated analyses.28

Domain specific databases have arisen to store FAIR data, such as the Materials Project29 for inorganic

materials, the Cambridge Structural Database (CSD)30 for crystal structures, and the Protein Data Bank

(PDB)31 for protein structures. However, for chemists interested in creating databases for their specific

5

chemical domain or in their own laboratory, the educational resources can be complex. Hence, there is a

need to provide information to train chemists to manage large data with databases that abide by FAIR

data principles.

In this Perspective, we aim to present an introduction to database fundamentals for a chemistry audience.

We first illustrate the advantages of databases over standard file-based data management before

describing basic terminology and database design principles. We explore data parsing along with Standard

Query Language (SQL) and No-SQL database architectures by exploring the extract, transform, and load

process for building a database. Finally, we reflect on some overarching challenges in database design.

We do all this with chemistry-specific examples and explanations to promote the creation and accessibility

of domain specific data in the realms of FAIR data. We also provide a collection of interactive examples to

complement the discussion in this article, which can be accessed at

https://github.com/D3TaLES/databases_demo.

Database Fundamentals

Why Databases?

In modern chemistry, the spreadsheet is a ubiquitous tool for storing and analyzing data. The spreadsheet

can be effective for managing and analyzing a few to thousands of datapoints, especially when users are

familiar with the tools and data formats. Given the ease and ubiquity of spreadsheet-based systems, why

should one invest the time and effort to build and learn a DBMS?

Scientific data generated in research laboratories are saved across several files with diverse formats. This

data heterogeneity impedes rapid analysis when tools such as laboratory notebooks and spreadsheets are

used to store processed data. To demonstrate the utility of databases compared to lab notebooks and

spreadsheets, consider the problem of comparing singlet excitation energies (or wavelengths) determined

via a quantum-chemical calculation with the optical response measured in a UV-Vis absorption

experiment (Figure 1). First, a researcher opens the output file from the quantum-chemistry software,

extracts the desired energy values and stores them, perhaps in a spreadsheet. The researcher must then

extract and store data points from the absorption spectrum, plot the spectrum, and identify the

absorption energies.32 Even if the data extraction process is automated with code, the researcher must

https://github.com/D3TaLES/databases_demo

6

manually transfer the data to a laboratory notebook or another spreadsheet to compare the DFT-

computed and experimentally-measured energies. Often, data are manually transferred again to another

specialized software for analysis, and this entire process must be repeated for each additional experiment.

The process is clunky and time-consuming to repeat. Sharing data introduces more problems because raw

data and calculations may be in multiple spreadsheets, which may not be readily interpretable by

collaborators and sharing files via email or even some file sharing apps can create issues with version

consistency. When using a database, raw data are imported directly into the database once. All

subsequent analysis, calculations, and comparisons find and use data from the database. Additionally,

database access can be granted to collaborators, enabling easy and constantly up-to-date data sharing.

Consider another problem: Imagine plotting the data from a series of UV-Vis experiments with benzene

and like derivatives (e.g., nitrobenzene, anthracene) where only molecules with a singlet excitation

greater than 4 eV are plotted. Here, the researcher must first extract data from the raw experimental and

computation data files. There are multiple ways to arrange this data in the spreadsheet; we consider the

following – columns for absorbance (transmittance), absorption wavelength, excitation energy, and the

molecule identifier. Within a spreadsheet, plotting spectra only when the excitations are greater than 4

eV requires manual selection or sophisticated data transformations. To perform this analysis on another

set of experiments, the researcher must repeat this entire process. Alternatively, for data stored in a

database, a single line of code fetches the data, and a few lines of code plot the analysis. Because

databases embed relationships between like data, a minor modification to the original query would

perform the analysis on any new data. These advantages are demonstrated in the accompanying code.33

As shown by this thought experiment, the use of databases to store data can promote rapid analyses.

Furthermore, databases are designed to manage large quantities of data and are easily adapted for big

data analysis. The sections that follow detail the processes of inserting computational and UV-Vis data

into a database and making queries like the ones discussed above. They also discuss the distinct types of

databases that can be used along with the pertinent terminology.

7

Figure 1. Schematic demonstrating advantages of a (right) database management system (DBMS) over a (left) file-based data
management system. Note some advantages of a DBMS over file-based data management: consolidated data, fast and repeatable
data queries that replace complex data transformations, and reduced risk of redundant and inconsistent data.

Database Terminology

Before delving deeper into database structure and design, we must first establish a basic terminology

(Table 1). A database is a collection of data structured in a manner that captures the relationships

between groups of like data. These individual pieces of data are termed data records. For example, a

database may contain a group of data concerning molecules with UV-Vis and computational data. A single

data record may correspond to a single molecule. Each data record has a series of attributes that contain

information about the record. So, each molecular data record in our example might have attributes such

as source, date synthesized, and UV-Vis data. One attribute must uniquely identify the record; this

becomes the primary key. The primary key that identifies a molecule data record might be the molecule

IUPAC name or a SMILES34 or SELFIES35 string (Figure 1). Similar data records are grouped together so that

each data grouping has a defined organizational structure. The organizational outline of a data group is a

schema, a map that notes how each attribute in a data record is related. By definition, all records in a data

group use the same schema. Defining the schema is critical for efficient database searches and

constructing FAIR data; schema will be discussed in detail later.

Sample Data Record:
• Name (primary key)
• Modified Source
• Date Made
• SMILES string
• Observations…
• Computation Data…
• UV-Vis Data…
• Optical Gap

• CV-measured value
• QM-calculated value

Name
Modified Source
Date Made
QM Data…

Calculations

Name
Source
Date Made
UV-VIs Data…

UV-Vis Experiment

Date
Name
Source
SMILES string
Observations…
Redox Potential

Lab Notebook
Entry

File-Based Data Management System Relational Database Management System

Where is the data? Which file?
Can I repeat complex analysis?

Computational
UV-Vis Data

#
#
#

Experimental
UV-VIs Data

#
#
#

One Query!
Repeat Analysis!

Molecule
Data Calculations UV-Vis

Experiment

8

Table 1. Database terminology definitions, as adapted in part from Principles of Database Management.36

Term Definition
Database Management
System (DBMS)

A software package consisting of several software modules used to define,
create, use, and maintain a database.36

Database A collection of related data items within a specific process or problem setting
stored on a computer system through the organization and management of a
database management system.36

Data Groups A collection of related data that is stored in the same format.
SQL term: Table, No-SQL term: Collection37

Data record A complete data instance for an individual item. A data group contains many
data records, each containing different data in the same structure.
SQL term: Row, No-SQL term: Document37

Attribute A characteristic of a data record.
SQL term: Column, No-SQL term: Field37

Multidimensional Data Data where an attribute is more than a single item. For example, an attribute
may be a list, or it may include sub-attributes. This requires special data
structures. In SQL, multidimensional data are handled with Table Joins, while
in No-SQL, they are handled with Embedded Documents.

Primary Key A selected candidate key that identifies tuples in the relation and is used to
establish connections to other relations; must be unique within the relation.36

Schema The description of the database data at different levels of detail, specifying
the data items, their characteristics and relationships, constraints, etc.36

Query The request and retrieval of data from a database.
Insertion The addition of data to a database.
Extract Transform Load
(ETL)

The process in which data are extracted (E) from the source systems,
transformed (T) to fit the database schema, and then loaded (L) into the
database.36

Building a Database: Extract, Transform, and Load

Building a database and populating it with data involves three key steps: extract, transform, and load (ETL)

(Figure 2).38 Data must first be extracted from the raw data files, and then transformed into a structure

that is compatible with the database schema. Finally, the transformed data must be loaded into the

database. The development of this process is a critical step toward efficiently populating a database.

9

Figure 2. Schematic depictions of fundamental steps in populating a databaes – extract, transform, and load –depicted here in
the context of UV-Vis spectroscopy data.

Extract

The process of extracting data from the original files is the step most like the manual processes used in

file-based data management systems. In fact, data extraction for a database can be done manually by

opening a data file and identifying key data. For example, in the UV-vis optical absorption example above,

the researcher could open the UV-Vis spectrometer output file, identify a particular absorption peak, and

input that value into the database.

However, extraction can be automated with code to expedite data analysis and reduce human error.

There are many open-source packages that reduce the amount of effort to write parsing code. Imagine

our researcher’s spectrometer produces a spreadsheet with wavelength and absorbance data. A mere

four lines of code in the coding language Python with the packages pandas and scipy could extract data

and find the minimum absorption energy (Figure 3). Moreover, those four lines of code are applicable to

all future spectrometer data files. A more in-depth discussion of parsing techniques is beyond the scope

of this paper, but a full demonstration can be found in the accompanying code.33 Regardless of the method

used, extraction should pull important data from the raw data files so it will be ready for the next step.

Raw Data Database

Extract Transform Load

Processed Data Schema

10

Figure 3. Schematic describing the four lines of code needed to extract data from a spectrometry comma-separated values (CSV)
file and determine the energy of the fist absorption peak. The bullet points note the python command needed for each line. Full
code can be found in the accompanying demonstration code.

Transform

After extraction, data is transformed into the schema-specified format. Schema design is the first step in

constructing a database. Designing the database schema is similar in concept to planning the rows and

columns in a spreadsheet. Advanced spreadsheet users know that, especially when dealing with multi-

dimensional data, deliberately planning the column/row structure alleviates many headaches later during

analysis. While it can be time consuming on the frontend, appropriate schema design is essential for an

efficient and FAIR database. Unintuitive schema design yields non-interoperable data. Additionally,

because database searches use schema structure, inefficient schema design can produce time-intensive

queries. For example, with a database of computational and absorption data, a small molecule chemist

might be most likely to query small molecules and their properties, so the molecule-centric schema

(where each data record is a molecule) would be most efficient for the laboratory. On the other hand, a

computational chemist might more often query individual calculations, so a computation-centric schema

(where each data record is a computation) would be most effective for that laboratory.

The first decision in schema design is the schema structure type. The two most common structure types

are structured query language (SQL) and No-SQL (Figure 4).37 SQL is structured like a series of tables, while

No-SQL is structured like a branching tree. Both structure types have a master schema (organizational

structure) that all records must follow. Additionally, in both types, one of the attributes for each record

must be a uniquely identifying primary key. This enables records to be identified and easily searched.

Often, primary keys are randomly generated strings of numbers and letters. For example, the digital object

identifier (DOI) generated for every published article frequently serves as a database primary key.

Read spectrometer
CSV data file

• pandas.read_csv()

Find absorbance peaks
• scipy.signal.
find_peaks()

Get the wavelength
values for each peak
• Python lists

Find the peak with
the max wavelength
• max()

1 2 3 4

11

Figure 4. Schematic representation of the two most common schema types in databaes design (SQL and No-SQL) depicted in the
context of UV-Vis spectroscopy data.

SQL

The SQL database structure is the original data management structure. It contains collections of two-

dimensional tables, akin to collections of spreadsheets pages. The table rows are data records, and

columns are attributes. Each attribute (column) can contain only a single numerical or text value for each

record (row). When a data record has an embedded attribute, an SQL database uses multiple tables. For

example, a molecule may contain the attribute UVVis_Data; however, UVVis_Data contains embedded

attributes such as Instrument_Name and Optical_Gap. To accommodate these data, the first table

contains the molecule record with its primary key and its regular attributes, while another table contains

UVVis_Data and its attributes. Each record in UVVis_Data connects to the molecules table with a table-

joining column. This column contains a molecule primary key (Figure 4).39, 40 There are several advantages

to an SQL structure. A well-implemented table structure eliminates many data redundancies, increasing

data storage efficiency. Also, because of its longevity, the SQL data structure is well documented and

supported. These databases can be well-secured, and all SQL-structured databases use the universal

Standard Query Language (SQL, from which these databases derive their name).

Molecule ID SMILES Molecular
Weight

molecule_001 #### ####

molecule_002 #### ####

molecule_003 #### ####

molecule_004 #### ####

UV-Vis ID Mol ID Instr.
Name

Optical
Gap

uvvis_001 molecule_001 #### ####

uvvis_002 molecule_001 #### ####

uvvis_003 molecule_002 #### ####

uvvis_004 molecule_003 #### ####

Absorb. ID UV-Vis ID Wave-
length

Absorb
-ance

absorb_001 uvvis_001 #### ####

absorb_002 uvvis_001 #### ####

absorb_003 uvvis_001 #### ####

absorb_004 uvvis_001 #### ####

Wavelength
Absorbance

Crystal
Structure
Crystal

Structure
Crystal

StructureMolecule

Molecule ID

Molecule
Database Data records

(Documents)
Molecular Weight

SMILES
Attribute

(Field)

UV-Vis Data
Absorbance Data

Etc.
Optical Gap

Embedded Document

Primary Key

SchemaDocument-Based No-SQL

Instrument Name
Attribute

(Field)

Primary Key Primary Key

Table Join

SQL

molecules

Primary Key

Table Join

uvvis_data absorbance_data

Molecule
Database

Da
ta

 re
co

rd
s

(R
ow

s)

12

No-SQL

No-SQL structures contain one or more collections of records (called a document in many types of No-

SQL). Within a collection, all documents share a schema. Schemas have a tree-branch structure. Each

document contains a series of attributes (branches in the tree), each of which may contain a value or list.

An attribute may also contain embedded attributes, e.g., smaller branches off the main branch. Figure 4

shows the nested nature of a No-SQL schema for the UVVis_Data. These nested attributes provide

scalable depth to a No-SQL database. A single document can easily hold all related data for a record like a

molecule, simplifying schema interpretation. Additionally, a No-SQL schema is flexible. This enables

dynamic schema adjustments amid the development processes and allows the shaping of schemas to fit

expected queries, making future data transactions extremely efficient.37 Finally, the modular format of

documents allows these databases to be scaled to multiple servers.41 A portion of the documents can

easily be transferred to a new server if the original runs out of space.

Selecting a Schema

Both SQL and No-SQL schema types have advantages and disadvantages. For instance, the strict table-

based SQL structure limits schema design options. An application's data must conform to an SQL table

schema rather than the other way around. The interconnected table structure also prevents divided

storage, limiting scalability. Additionally, the restricted schema structure inhibits a schema designed

around perspective queries, often leading to much slower query times.37 The interconnected table

structure also prevents divided storage, limiting scalability. On the other hand, unlike SQL, No-SQL

databases cannot guarantee perfect consistency between documents because separate documents are

more prone to redundancies. These redundancies also make No-SQL databases bigger and less storage-

efficient than SQL. Additionally, No-SQL databases do not share the Standard Query Language, so each

database software can have its own query format.

Ultimately, No-SQL databases are best for prioritizing flexibility, ease of design, and scalability, while SQL

databases are best for prioritizing efficiency and consistency.42, 43 There are many open access No-SQL

software, the most notable of which is MongoDB,44 known for its user-friendly interface and high

consistency despite the limitations of No-SQLs.45-47 Common SQL software includes MySQL,48

13

PostgreSQL,49 and Oracle, though software matters less with SQL databases since they all use the Standard

Query Language.50 The demonstration GitHub repository for this paper gives an example of building a No-

SQL database with MongoDB and a SQL database.33

Once a schema type is selected, the database designer builds an organizational structure that fits the data

needs. The design should be efficient yet intuitive. Figure 4 depicts an effective schema design for

absorption data in both SQL and No-SQL structures. Schema design is by far the most difficult aspect of

the transform step. Once the schema is designed, data from the extraction step is formatted to match the

schema, often done through dictionaries (No-SQL) or tables (SQL).

Load

Finally, the extracted and transformed data is loaded (or inserted) into the database. Anytime data is

written to or read from a database, a transaction occurs. Transactions are the building blocks for database

interaction. A transaction that writes information to the database is an insertion, while a transaction that

reads information from the database is a query. An insertion or query can be made individually through a

single line of code or automated so that hundreds of insertions are performed with one command.

While the ETL process is a critical component in implementing a database, there are other technical

considerations involving setting up and managing the database. While such detailed discussions are

beyond the scope of this review, we included a list of external resources with the accompanying

examples.51 These resources include online tutorials on installing and setting up SQL and No-SQL

databases for a variety of operating systems, and articles on more abstract data structures for large

datasets. Readers may also consult the accompanying interactive databases demonstrations.33

Queries

To access the data in a database, users must interact with it via a direct transaction or a user interface

called an application programming interface (API). Some database software contain built-in API, and these

are often the most effective choice for users new to databases and coding. However, if a user has even

minimal coding experience, the easiest way to interact with a database is through a direct transaction. A

one-line query can search, filter, and transform data however the user might desire.

14

A basic query contains two parts: selection and projection. The selection portion filters the data record(s)

(rows for SQL, documents for No-SQL) that will be returned. The projection specifies the record

attribute(s) (columns for SQL, fields for No-SQL) that will be shown. For example, imagine a researcher

wants to know the SMILES strings34 for all molecules in a database that have a molecular weight of more

than 100 g/mol. The selection would stipulate only data records with a molecular weight greater than 100

g/mol, while the projection would specify the return of the SMILES attribute (Figure 5). Alternatively, the

researcher might like to list the lowest-lying excited state energy for every molecule or find and count all

molecules with more than ten atoms. Basic queries like this are quick and easy in both SQL and No-SQL

databases, even when tens of thousands of molecules are present.

Figure 5. (A) Depiction of the selection and projection components of a database query along with (B) the format of basic queries
in SQL-structured and No-SQL-structured databases and (C) example queries in each database type. Note that example No-SQL
queries use the MongoDB query format because there is no standard No-SQL query language.

Let us return to the multi-faceted analysis of extracting the first singlet excited state energy (or

wavelength) from UV-Vis experiments and computational modeling: (1) Comparing the experimental and

db[COLLECTION].find(
SELECTION,
PROJECTION)

No-SQL

SELECT PROJECTION
FROM TABLE
WHERE SELECTION;

SQL

Selection

Table/
Collection

SELECT smiles
FROM molecules
WHERE molecular_weight > 100;

SQL Example

db[“molecules”].find(
{“molecular_weight”: {“$gt”: 100}},
{“smiles”: 1})

No-SQL Example

Get all the SMILES string in the molecules database where the molecular weight is greater than 100…

A.

B.

C.

(Data Records)

Projection
(Attributes)

15

computed absorption energies and (2) plotting the absorption spectrum for only molecules where the

first absorption is greater than 4 eV. Again, straightforward one-line queries can gather the data for these

analyses. Subsequently, a couple of lines of code can produce analysis plots. Figure 6 demonstrates the

query and plotting steps or each of these examples, depicting the resulting plots; full code is available in

the accompanying resource.33 Most importantly, these queries and plotting are readily repeated. The next

time our researcher runs a set of experiments, the entire analysis occurs with the push of a button.

Figure 6. Queries and plots for comparing singlet excitation and experimental optical gap (left) and plotting the spectrum of only
molecules where the singlet excitation is greater than 4 eV (right).

Database Longevity

After database construction, designers must consider database backups. Regular and reliable database

backups are essential for an effective database because it is not a matter of if something will go wrong

with the database but when. Modern databases are vulnerable to failures ranging from hardware

Example 1

Query

• SELECTION: All
• PROJECTION: Singlet

excitation and optical gap

Plotting

• Iterate through returned data
records, plotting each one.

• Specify plot details.

Compare the experimental and computed
absorption energies

Example 2
Plot spectrum for only molecules where the

first absorption is greater than 4 eV

Query

• SELECTION: Records with a
singlet excitation > 4 eV

• PROJECTION: Absorbance data

Plotting

• Iterate through returned data
records, plotting each one.

• Specify plot details.

16

malfunctions to ransomware attacks to human error. But consistent and reliable backups can ward off the

potentially catastrophic effects of these failures.

There are four types of database backup: Full, incremental, delta, and logs. Successful databases often

use all four types. As the name suggests, a full backup duplicates the entire database for storage. While

thorough, these backups require significant storage space, often too much to perform more than once

every week or two. Incremental backups, on the other hand, duplicate storage for all database records

that have changed since the last full backup. Similarly, delta backups record the transactional changes

since the last backup of any kind. These three backup techniques constitute most database backup

systems. The final backup type is less a backup than an emergency record. Logs are the systematic record

of every database transaction. Theoretically, a database can be rebuilt by rerunning every transaction that

has occurred from the logs. However, this method is neither dependable nor efficient. Because the log

files grow quickly, the log history is frequently wiped clean.

Regardless of the specific backup plan designed, the most important part is redundancy. While database

design tries to avoid redundancies, database backup plans should incorporate redundancies wherever

possible. Save multiple full backups, saved on multiple servers, ideally on multiple networks.

Challenges

In 2017, The Minerals, Metals & Materials Society (TMS) issued a report cataloging challenges with

building effective materials data infrastructures.52 Many challenges centered on the community’s minimal

understanding of data storage and management options and associated best practices, a problem this

paper seeks to address.53 One of the most high-impact challenges identified was the lack of developed,

agreed-upon data schemas. As more domain-specific databases emerge, challenges arise in the

interaction of databases with various users and other databases.54-56 To effectively share data across labs

and data platforms, there must be some degree of agreement between the data representation,

terminology, and formats. A key first step in developing universal schemas is educating all members of

the scientific community about domain-specific ontologies, which are the fundamental categorization of

objects and the definition of relationships between the categories.57-59 This will enable scientists’

contributions to the philosophical endeavor to develop universal ontologies that can lay the foundation

for a universal schema. Yet, to establish standard ontologies, scientists must first engage in their design.

17

The second challenge in database development is the curation of gathered data. As the adage goes,

“garbage in, garbage out.” If inconsistent, incorrect, or outlier data enters a database, the data analytics

performed on that data will produce spurious insights. Too often, the best method for data curation

remains human gut checks. It is much easier for a human expert than a computer to identify a suspicious

peak in the NMR spectrum. At this point, database curation must continue to integrate human data checks

to curate incoming data. However, as the quantity of data grows, efforts to automate data curation must

follow suit.

The extraction of data from raw data files presents additional challenges. For example, different brands

of instruments may produce distinctly formatted output files. Each file will require an individualized parser

to extract necessary data. Moreover, some instrument output files do not contain all relevant data, so

additional metadata such as molecule concentration, solvent type, and even procedural details must be

gathered.

Finally, as more domain-specific databases emerge, challenges will arise in the interaction of databases

with various users and other databases. To abide by the FAIR principles, data must be accessible and

searchable in an interpretable format.21 An API is the most useful tool for human-database interaction.

Additionally, to enable data machine-accessibility, databases should incorporate a representational state

transfer API (REST API), which presents data for online sharing according to REST internet standards.

Unfortunately, if not included in the database software, API and REST API require time and expertise to

develop. To circumnavigate these issues, there do exist powerful scientific data-sharing platforms which

include API and/or REST API capabilities.54, 55, 60-63

Conclusions and Outlook

As chemistry enters the “fourth paradigm” of scientific discovery, it will be essential to effectively store

and manage data. Such efforts will not only enable the use of big data analytics and machine learning but

also establish the data management framework needed to integrate robotic/autonomous

experimentation into laboratories. While there remain challenges in constructing and maintaining a

DBMS, storage efficiency, query speeds, and ability to abide by FAIR data principles are unparalleled in

DBMS when compared to file-based systems. Therefore, we encourage all chemistry laboratories to

explore DBMS. At a minimum, we encourage laboratories to upload data to existing data databases, such

18

as large-scale repositories and field-specific mid-sized databases, many of which are cataloged in database

listings. 54, 55, 61-67

Still, the growing data demands of many laboratories will necessitate small-scale laboratory databases.

Fortunately, there are many tools available. For those wishing to design a database from the ground up,

the software and designs described in this paper provide powerful tools for data management.

Meanwhile, for those seeking less intensive data management platforms, pre-built data storage structures

exist, allowing users to customize a data schema while providing an API and graphical tools for data

analysis.55, 68-70 Ultimately, the transition from file-based data management to DBMS will take many forms

across many fields. We hope that the introduction to database terminology and structures provided here

will guide chemists through the process of database design.

Data availability

The data and the code presented in this article are available on the GitHub repository at

https://github.com/D3TaLES/databases_demo. This repository contains simple, chemistry-based

demonstrations of both an SQL and a No-SQL database structure and experimental file parsing. The

repository also contains a list of external resources that give more specific details for setting up a

database.

Acknowledgments

This work was sponsored by the National Science Foundation in part through the Established Program to

Stimulate Competitive Research (EPSCoR) Track 2 program under cooperative agreement number

2019574 and the Designing Materials to Revolutionize and Engineer our Future (NSF DMREF) program

under award number DMR-1627428. We acknowledge the University of Kentucky Center for

Computational Sciences and Information Technology Services Research Computing for their fantastic

support and collaboration and use of the Lipscomb Compute Cluster and associated research computing

resources.

https://github.com/D3TaLES/databases_demo.T

19

Notes

The authors declare no competing financial interest.

TOC

How do I manage chemical data??

Spreadsheet
#
#
#

Data
Analysis

DBMS

Machine
Learning

Data
Sharing

20

References

(1) Luckenbach, R. The Beilstein Handbook of Organic Chemistry: the first hundred years.
Journal of Chemical Information and Computer Sciences 1981, 21 (2), 82-83. DOI:
10.1021/ci00030a006 (accessed 2022-06-30T21:48:11).

(2) Mague, J. Gmelin Handbook of Inorganic Chemistry. 8th Edition Rh. Organometallics 1984,
3 (6), 948-948. DOI: 10.1021/om00084a900 (accessed 2022-06-30T21:49:58).

(3) Barrows, F. E. Investigations of the Chemical Literature; Armour institute of technology ,
1919, but not published as a thesis., 1921.

(4) Broad, W. J. Rubber Bible Turns 60. Science 1979, 204 (4398), 1181-1181. DOI:
doi:10.1126/science.204.4398.1181.

(5) Hartshorn, R. Research Data, Big Data, and Chemistry. Chemistry International 2017, 39 (3),
2-4. DOI: doi:10.1515/ci-2017-0301.

(6) Sutton, M. The first chemical database. Chemistry World 2017, 2022.
(7) Mutton, T.; Ridley, D. D. Understanding Similarities and Differences between Two Prominent

Web-Based Chemical Information and Data Retrieval Tools: Comments on Searches for
Research Topics, Substances, and Reactions. Journal of Chemical Education 2019, 96 (10),
2167-2179. DOI: 10.1021/acs.jchemed.9b00268 (accessed 2022-06-30T22:10:59).

(8) Maia, F. R. N. C. The Coherent X-ray Imaging Data Bank. Nature Methods 2012, 9 (9), 854-
855. DOI: 10.1038/nmeth.2110 (accessed 2022-07-08T19:48:14).

(9) Omeltchenko, A.; Campbell, T. J.; Kalia, R. K.; Liu, X.; Nakano, A.; Vashishta, P. Scalable
I/O of large-scale molecular dynamics simulations: A data-compression algorithm. Computer
Physics Communications 2000, 131 (1), 78-85. DOI: https://doi.org/10.1016/S0010-
4655(00)00083-7.

(10) Glynn, C.; Rodriguez, J. A. Data-driven challenges and opportunities in crystallography.
Emerging Topics in Life Sciences 2019, 3 (4), 423-432. DOI: 10.1042/etls20180177 (accessed
7/8/2022).

(11) Yano, J.; Gaffney, K. J.; Gregoire, J.; Hung, L.; Ourmazd, A.; Schrier, J.; Sethian, J. A.;
Toma, F. M. The case for data science in experimental chemistry: examples and
recommendations. Nature Reviews Chemistry 2022, 6 (5), 357-370. DOI: 10.1038/s41570-
022-00382-w.

(12) Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of
the “fourth paradigm” of science in materials science. APL Materials 2016, 4 (5), 053208.
DOI: 10.1063/1.4946894 (accessed 2021-12-07T13:40:13).

(13) Savage, N. Bioinformatics: Big data versus the big C. Nature 2014, 509 (7502), S66-S67.
DOI: 10.1038/509s66a (accessed 2022-06-28T19:15:14).

(14) Hood, L.; Rowen, L. The human genome project: big science transforms biology and
medicine. Genome Medicine 2013, 5 (9), 79. DOI: 10.1186/gm483 (accessed 2022-06-
28T19:43:38).

(15) Jablonka, K. M.; Patiny, L.; Smit, B. Making the collective knowledge of chemistry open and
machine actionable. Nature Chemistry 2022, 14 (4), 365-376. DOI: 10.1038/s41557-022-
00910-7 (accessed 2022-04-27T19:17:49).

(16) Council, E. S. Open Research Data and Data Management Plans Information for ERC
grantees. 4.1 ed.; Commission, E., Ed.; European Research Council, 2022.

https://doi.org/10.1016/S0010-4655(00)00083-7
https://doi.org/10.1016/S0010-4655(00)00083-7

21

(17) Huang, Y.; Cox, A. M.; Sbaffi, L. Research data management policy and practice in Chinese
university libraries. Journal of the Association for Information Science and Technology 2021,
72 (4), 493-506. DOI: 10.1002/asi.24413 (accessed 2022-07-19T15:02:26).

(18) NIH. Grants Compliance & Oversight. National Institutes of Health, 2022.
https://grants.nih.gov/policy/compliance.htm (accessed 30 June 2022).

(19) Dissemination and Sharing of Research Results - NSF Data Management Plan Requirements.
National Science Foundation, 2022. https://www.nsf.gov/bfa/dias/policy/dmp.jsp (accessed
30 June 2022).

(20) Statement on Digital Data Management. Science, O. o., Ed.; U.S. Department of Energy.
(21) Wilkinson, M. D.; Dumontier, M.; Aalbersberg, I. J.; Appleton, G.; Axton, M.; Baak, A.;

Blomberg, N.; Boiten, J.-W.; Da Silva Santos, L. B.; Bourne, P. E.; et al. The FAIR Guiding
Principles for scientific data management and stewardship. Scientific Data 2016, 3 (1),
160018. DOI: 10.1038/sdata.2016.18 (accessed 2022-01-13T21:21:53).

(22) Excel specifications and limits. Microsoft, 2022. https://support.microsoft.com/en-
us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
(accessed 9 May 2022).

(23) Ziemann, M.; Eren, Y.; El-Osta, A. Gene name errors are widespread in the scientific
literature. Genome Biology 2016, 17 (1). DOI: 10.1186/s13059-016-1044-7 (accessed 2022-
07-11T17:10:31).

(24) Lewis, D. Autocorrect errors in Excel still creating genomics headache. Nature 2021. DOI:
10.1038/d41586-021-02211-4 From NLM.

(25) Howes, L. Chemistry data should be FAIR, proponents say. But getting there will be a long
road. Chemical & Engineering News 2019, 97 (35).

(26) Potthoff, J.; Tremouilhac, P.; Hodapp, P.; Neumair, B.; Bräse, S.; Jung, N. Procedures for
systematic capture and management of analytical data in academia. Analytica Chimica Acta:
X 2019, 1, 100007. DOI: https://doi.org/10.1016/j.acax.2019.100007.

(27) IUPAC. IUPAC Endorces the Chemistry Go FAIR Manifesto. International Union of Pure and
Applied Chemistry, 2019. https://iupac.org/iupac-endorses-the-chemistry-go-fair-manifesto/
(accessed 26 26 July 2022).

(28) Nisbet, M. L.; Pendleton, I. M.; Nolis, G. M.; Griffith, K. J.; Schrier, J.; Cabana, J.; Norquist,
A. J.; Poeppelmeier, K. R. Machine-Learning-Assisted Synthesis of Polar Racemates. Journal
of the American Chemical Society 2020, 142 (16), 7555-7566. DOI: 10.1021/jacs.0c01239
(accessed 2022-09-12T15:44:41).

(29) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter,
D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome
approach to accelerating materials innovation. APL Materials 2013, 1 (1), 011002. DOI:
10.1063/1.4812323 (accessed 2022-01-13T21:45:53).

(30) Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database.
Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials
2016, 72 (2), 171-179. DOI: 10.1107/s2052520616003954 (accessed 2022-07-08T19:55:01).

(31) Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank.
Nature Structural & Molecular Biology 2003, 10 (12), 980-980. DOI: 10.1038/nsb1203-980
(accessed 2022-07-08T19:54:40).

(32) Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of
Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. The Journal of Physical

https://grants.nih.gov/policy/compliance.htm
https://www.nsf.gov/bfa/dias/policy/dmp.jsp
https://support.microsoft.com/en-us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://support.microsoft.com/en-us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://doi.org/10.1016/j.acax.2019.100007
https://iupac.org/iupac-endorses-the-chemistry-go-fair-manifesto/

22

Chemistry Letters 2018, 9 (23), 6814-6817. DOI: 10.1021/acs.jpclett.8b02892 (accessed
2022-05-09T21:34:30).

(33) https://github.com/D3TaLES/databases_demo.
(34) Weininger, D. SMILES, a chemical language and information system. 1. Introduction to

methodology and encoding rules. Journal of Chemical Information and Modeling 1988, 28
(1), 31-36. DOI: 10.1021/ci00057a005 (accessed 2022-02-10T14:24:45).

(35) Krenn, M.; Häse, F.; Nigam, A.; Friederich, P.; Aspuru-Guzik, A. Self-referencing embedded
strings (SELFIES): A 100% robust molecular string representation. Machine Learning:
Science and Technology 2020, 1 (4), 045024. DOI: 10.1088/2632-2153/aba947 (accessed
2021-09-08T16:35:05).

(36) Lemahieu, W.; vanden Broucke, S.; Baesens, B. Principles of Database Management: The
Practical Guide to Storing, Managing and Analyzing Big and Small Data; Cambridge
University Press, 2018. DOI: DOI: 10.1017/9781316888773.

(37) Ali, W.; Shafique, M. U.; Majeed, M. A.; Raza, A. Comparison between SQL and NoSQL
Databases and Their Relationship with Big Data Analytics. Asian Journal of Research in
Computer Science 2019, 4 (2). DOI: 10.9734/ajrcos/2019/v4i230108 (accessed 2022-01-
14T15:25:43).

(38) Runtuwene, J. P. A.; Tangkawarow, I. R. H. T.; Manoppo, C. T. M.; Salaki, R. J. A
Comparative Analysis of Extract, Transformation and Loading (ETL) Process. IOP
Conference Series: Materials Science and Engineering 2017, 306. DOI: 10.1088/1757-
899X/306/1/012066 (accessed 2022-01-14T15:50:05).

(39) Goelman, D.; Dietrich, S. W. A Visual Introduction to Conceptual Database Design for All.
In Proceedings of the 49th ACM Technical Symposium on Computer Science Education,
2018-02-21, 2018; ACM. DOI: 10.1145/3159450.3159555.

(40) Razu Ahmed, M.; Arifa Khatun, M.; Asraf Ali, M.; Sundaraj, K. A literature review on
NoSQL database for big data processing. International Journal of Engineering & Technology
2018, 7 (2), 902. DOI: 10.14419/ijet.v7i2.12113 (accessed 2022-01-14T15:25:14).

(41) Cattell, R. Scalable SQL and NoSQL data stores. ACM SIGMOD Record 2011, 39 (4), 12-27.
DOI: 10.1145/1978915.1978919 (accessed 2022-04-05T17:31:51).

(42) Venkatraman, S.; Kaspi, K. F., Samuel; Venkatraman, R. SQL Versus NoSQL Movement
with Big Data Analytics. International Journal of Information Technology and Computer
Science 2016, 8 (12), 59-66. DOI: 10.5815/ijitcs.2016.12.07 (accessed 2022-04-
05T17:41:18).

(43) Boicea, A.; Radulescu, F.; Agapin, L. I. MongoDB vs Oracle -- Database Comparison. In
2012 Third International Conference on Emerging Intelligent Data and Web Technologies,
2012-09-01, 2012; IEEE. DOI: 10.1109/eidwt.2012.32.

(44) MongoDB. https://www.mongodb.com/ (accessed June 25 2022).
(45) Diogo, M.; Cabral, B.; Bernardino, J. Consistency Models of NoSQL Databases. Future

Internet 2019, 11 (2), 43. DOI: 10.3390/fi11020043 (accessed 2022-01-14T15:25:10).
(46) Chauhan, A. A Review on Various Aspects of MongoDb Databases. International Journal of

Engineering Research & Technology 2019, 8 (5). (accessed 2022-10-20T16:43:29).
(47) Abramova, V.; Bernardino, J. NoSQL databases. Proceedings of the International C*

Conference on Computer Science and Software Engineering - C3S2E '13 2013, 14-22. DOI:
10.1145/2494444.2494447.

(48) MySQL. 2022. https://www.mysql.com/ (accessed June 25 2022).
(49) PostgreSQL. 2022. https://www.postgresql.org/ (accessed 25 July 2022).

https://github.com/D3TaLES/databases_demo
https://www.mongodb.com/
https://www.mysql.com/
https://www.postgresql.org/

23

(50) Oracle. 2022. https://www.oracle.com/database/technologies/appdev/sqldeveloper-
landing.html (accessed June 25 2022).

(51) https://github.com/D3TaLES/databases_demo/blob/main/external_resources.md.
(52) The Minerals, M.; Materials, S. Building a Materials Data Infrastructure: Opening New

Pathways to Discovery and Innovation in Science and Engineering; TMS, 2017.
(53) Tanifuji, M.; Matsuda, A.; Yoshikawa, H. Materials Data Platform - a FAIR System for Data-

Driven Materials Science. In 2019 8th International Congress on Advanced Applied
Informatics (IIAI-AAI), 2019-07-01, 2019; IEEE. DOI: 10.1109/iiai-aai.2019.00206.

(54) Blaiszik, B.; Chard, K.; Pruyne, J.; Ananthakrishnan, R.; Tuecke, S.; Foster, I. The Materials
Data Facility: Data Services to Advance Materials Science Research. JOM 2016, 68 (8), 2045-
2052. DOI: 10.1007/s11837-016-2001-3.

(55) Scheffler, C. D. a. M. The NOMAD laboratory: from data sharing to artificial intelligence. J.
Phys. Matter. 2019, 2 (036001). (accessed 2022-01-13T21:46:18).

(56) Himanen, L.; Geurts, A.; Foster, A. S.; Rinke, P. Data‐Driven Materials Science: Status,
Challenges, and Perspectives. Advanced Science 2019, 6 (21), 1900808. DOI:
10.1002/advs.201900808 (accessed 2021-12-07T13:39:54).

(57) Eine, B.; Jurisch, M.; Quint, W. Ontology-Based Big Data Management. Systems 2017, 5 (3),
45. DOI: 10.3390/systems5030045 (accessed 2022-07-01T21:40:49).

(58) Li, H.; Armiento, R.; Lambrix, P. An Ontology for the Materials Design Domain. In Lecture
Notes in Computer Science, Springer International Publishing, 2020; pp 212-227.

(59) EMMO: an Ontology for Applied Sciences. European Materials Modelling Ontology
(EMMO), 2022. https://emmc.info/emmo-info/ (accessed.

(60) Steinbeck, C.; Koepler, O.; Bach, F.; Herres-Pawlis, S.; Jung, N.; Liermann, J.; Neumann, S.;
Razum, M.; Baldauf, C.; Biedermann, F.; et al. NFDI4Chem - Towards a National Research
Data Infrastructure for Chemistry in Germany. Research Ideas and Outcomes 2020, 6. DOI:
10.3897/rio.6.e55852 (accessed 2022-07-26T17:57:45).

(61) Pizzi, G.; Cepellotti, A.; Sabatini, R.; Marzari, N.; Kozinsky, B. AiiDA: automated interactive
infrastructure and database for computational science. Computational Materials Science
2016, 111, 218-230. DOI: 10.1016/j.commatsci.2015.09.013 (accessed 2021-12-
07T14:08:27).

(62) Trisovic, A.; Durbin, P.; Schlatter, T.; Durand, G.; Barbosa, S.; Brooke, D.; Crosas, M.
Advancing Computational Reproducibility in the Dataverse Data Repository Platform. In
Proceedings of the 3rd International Workshop on Practical Reproducible Evaluation of
Computer Systems, 2020-06-23, 2020; ACM. DOI: 10.1145/3391800.3398173.

(63) Curtarolo, S.; Setyawan, W.; Hart, G. L. W.; Jahnatek, M.; Chepulskii, R. V.; Taylor, R. H.;
Wang, S.; Xue, J.; Yang, K.; Levy, O.; et al. AFLOW: An automatic framework for high-
throughput materials discovery. Computational Materials Science 2012, 58, 218-226. DOI:
10.1016/j.commatsci.2012.02.005 (accessed 2022-01-13T21:46:23).

(64) Tremouilhac, P.; Nguyen, A.; Huang, Y.-C.; Kotov, S.; Lütjohann, D. S.; Hübsch, F.; Jung,
N.; Bräse, S. Chemotion ELN: an Open Source electronic lab notebook for chemists in
academia. Journal of Cheminformatics 2017, 9 (1). DOI: 10.1186/s13321-017-0240-0
(accessed 2022-07-26T18:13:19).

(65) Frantzen, A.; Sanders, D.; Scheidtmann, J.; Simon, U.; Maier, W. F. A Flexible Database for
Combinatorial and High-Throughput Materials Science. QSAR & Combinatorial Science
2005, 24 (1), 22-28. DOI: 10.1002/qsar.200420055 (accessed 2021-12-07T14:08:24).

https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html
https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html
https://github.com/D3TaLES/databases_demo/blob/main/external_resources.md
https://emmc.info/emmo-info/

24

(66) Data Repository Guidance. Springer Nature Limited, 2022.
https://www.nature.com/sdata/policies/repositories (accessed July 25 2022).

(67) Software & Data Resources. Designing Materials to Revolutionize and Engineer our Future
(DMREF), 2022. https://dmref.org/tools (accessed July 2 2022).

(68) Brandt, N.; Griem, L.; Herrmann, C.; Schoof, E.; Tosato, G.; Zhao, Y.; Zschumme, P.; Selzer,
M. Kadi4Mat: A Research Data Infrastructure for Materials Science. Data Science Journal
2021, 20. DOI: 10.5334/dsj-2021-008 (accessed 2021-12-07T13:40:15).

(69) Yakutovich, A. V.; Eimre, K.; Schütt, O.; Talirz, L.; Adorf, C. S.; Andersen, C. W.; Ditler,
E.; Du, D.; Passerone, D.; Smit, B.; et al. AiiDAlab – an ecosystem for developing, executing,
and sharing scientific workflows. Computational Materials Science 2021, 188, 110165. DOI:
https://doi.org/10.1016/j.commatsci.2020.110165.

(70) OPTiMaDe. https://www.optimade.org (accessed July 2022).

https://www.nature.com/sdata/policies/repositories
https://dmref.org/tools
https://doi.org/10.1016/j.commatsci.2020.110165
https://www.optimade.org/

	Abstract
	Introduction
	Database Fundamentals
	Why Databases?
	Database Terminology

	Building a Database: Extract, Transform, and Load
	Extract
	Transform
	SQL
	No-SQL
	Selecting a Schema

	Load
	Queries
	Database Longevity

	Challenges
	Conclusions and Outlook
	Data availability
	Acknowledgments
	Notes
	TOC
	References

