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ABSTRACT. In this paper, we give formulas that allow one to move
between transfer function type realizations of multi-variate Schur,
Herglotz and Pick functions, without adding additional singular-
ities except perhaps poles coming from the conformal transfor-
mation itself. In the two-variable commutative case, we use a
canonical de Branges-Rovnyak model theory to obtain concrete
realizations that analytically continue through the boundary for
inner functions which are rational in one of the variables (so-called
quasi-rational functions). We then establish a positive solution
to McCarthy’s Champagne conjecture for local to global matrix
monotonicity in the settings of both two-variable quasi-rational
functions and d-variable perspective functions.
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1. INTRODUCTION

1.1. Overview. Colloquially, realizations are ways of representing struc-
tured classes of functions using operators on a Hilbert space; these
bridges between rich operator-theoretic results and concrete function
theory have led to a myriad of important breakthroughs. Classic
realizations-type formulae include the Nevanlinna representations for
Pick functions (holomorphic functions mapping the upper half plane
IT to II) and the transfer function realizations for Schur functions
(holomorphic functions mapping the unit disk D to D).

In [2], J. Agler extended such one-variable formulae from systems en-
gineering into functional analysis in several variables; this heralded in
a period of rapid development for function theory on the bidisk D? and
polydisk D¢, including extensions of Pick interpolation, the infinites-
imal Schwarz lemma, Lowner’s theorem, and the Julia-Carathéodory
theorem [1, 37, 4, 5, 50]. Realization theory has also been extended to
noncommutative functional analysis, an area that has seen an explo-
sion of activity in the last decade. Specifically, J. Williams developed
a realization theory in the free probability setting in [63]. In the free
analysis setting, realizations for free Pick functions were developed in
[54, 51], which is part of a large body of recent and ongoing work in
various noncommutative contexts [18, 9, 13, 38, 55, 56, 46, 45, 11, 12].
As in the commutative case, these realizations can be used to gen-
eralize classical theorems of complex analysis to functions of several
noncommuting variables.

This paper investigates three foundational questions that one can
ask about general realizations:

Q1: When do the regularity properties of a realization exactly mimic
those of the represented function?

Q2: How does one move between realization formulae without sac-
rificing fine behavior?

Q3: Are there settings where realizations possess identifiable con-
crete formulae?

In this paper, we use functional analysis on the bidisk to answer (Q1)
and (Q3) for classes of two-variable Schur functions. We also develop a
more general algebraic approach to (Q2), which yields a chain of oper-
ator expressions that relates Schur, Herglotz, and Pick-type structures
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and is applicable to the noncommutative setting. We then provide
applications in the context of several variable functional analysis.

1.2. Background. To motivate this investigation, consider the one-
variable setting, and recall that Pick functions f : II — II can be
written uniquely in the following form, called a Nevanlinna repre-

sentation,
141tz

f(z)za—i—bz—l—/ .

R —Z

du(t)

for some a € R,b € R=%, and p a positive finite Borel measure on R
(47, 42]. The complement of the support of u is exactly the set where
f analytically continues to be real valued, and thus through the real
line via the Schwarz reflection principle. A similar fact holds for the
earlier classical Herglotz integral representation for functions from the
disk to the right half plane [34, 59]. Nevanlinna and Herglotz functions
have a number of applications, for example to the study of finite rank
perturbations of self-adjoint operators; see the survey papers [43, 44],
book [36] and references within.

Similarly, Schur functions ¢ : D — D possess a transfer function
realization (or TFR); i.e. they can be written in form®

#(2) = A+ B(1 — zD)'2C  for z €D,

7=le ol ) L

is a contraction on a Hilbert space C & M, see [33]. The operator U

where

can be chosen to be isometric, coisometric, or unitary; in each case,
the choice is unique up to certain minimality assumptions and unitary
equivalence, and there are concrete function theory interpretations for
the canonical Hilbert spaces M and the operators A, B, C, D, see [25,
16, 8]. Under minimality assumptions, the set of 7 € T where 1 —7D is
invertible is exactly the set where ¢ analytically continues with modulus
1 and can therefore be analytically continued via the reflection principle
on the disk.

Here and throughout the paper, “1” denotes the identity operator on an ap-
propriate Hilbert space that should be clear from the context. The notation “I” is
reserved for an interval or open set.
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The pioneering work of Agler in [2] (part of which was independently
established by Kummert in [41]) implies that each Schur function ¢ :
D? — D has a two-variable TFR and hence can be written as

¢(z) = A+ B(1 - E.D)'E.C for z € D?,

“=le ol ) L

is a contraction on a Hilbert space C & M and can be chosen to be

where

unitary, isometric, or coisometric. Here M decomposes as M; & Mo
and F, = 21 P, + 2P, where each P; is the projection onto M;.

While Agler’s initial proof was nonconstructive, influential work by
Ball, Sadosky, and Vinnikov in [19] used minimal scattering systems
(for example, the so-called de Branges-Rovnyak model associated to
¢) and concrete Hilbert space geometry to produce and analyze more
specific TFRs. They continued this seminal work with Kaliuzhnyi-
Verbovetskyi in [17], which includes an exhaustive analysis of TFRs
and connections between the geometric scattering structure and asso-
ciated formal reproducing kernel Hilbert spaces. Ball and Bolotnikov
conducted additional insightful work on canonical TFRs in [15, 16].
Many of these references also include results for the more general Schur-
Agler class on D%, and we refer the reader to [32] for interesting related
results concerning general Schur functions on D9,

If a Schur function ¢ is inner, i.e. if

: _ 2
}}}% |p(r7)| =1 for a.e. 7€ T7,

then the Hilbert space geometry from [19] simplifies dramatically. In-
deed, in [23, 24], the first author and G. Knese constructed particu-
larly simple coisometric TFRs for two-variable inner functions using the
Ball-Sadosky-Vinnikov machinery from [19]. This methodology yielded
explicit formulae for the (reproducing kernel) Hilbert space M, regular-
ity properties of the functions in M, and information about A, B, C, D.
If ¢ is both rational and inner, then its TFRs come directly from sums
of squares decompositions of related stable polynomials, i.e. polyno-
mials that do not vanish on D?; see [23, 41, 31, 38, 64]. In this case,
¢ possesses a minimal TFR in the sense that if the degree of ¢ in z;
is m;, then M can be chosen so dim M = m; 4+ my. The proof of
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this minimality result is embedded in Kummert’s work [41], and an
extension with particularly clear exposition can be found in [39].

The above minimality result was a key tool in [5]. In this ground-
breaking paper, Agler, McCarthy, and Young characterized multivari-
ate monotone matrix functions via two types of monotonicity, a
global condition and a local condition. Specifically, a real-valued func-
tion f is globally matrix monotone on an open set £ C R? if for
any positive integer n and any pair of d-tuples of commuting n x n
self-adjoint matrices A = (A;,...,Ay), B = (By,...,Bq) with each
A; < B; and joint spectrum in E, one has f(A) < f(B). Meanwhile,
f is called locally matrix monotone on F if the previous-described
relation holds on positively-oriented paths in the variety of commuting
self-adjoint matrices. As the exact notation of local matrix monotonic-
ity is cumbersome and not required in the current discussion, we refer
the reader to [5, 50| for details.

The work in [5] with later minor refinements in [50] yields the fol-
lowing characterization of local matrix monotonicity:

Theorem 1.1. [5]. Let E be an open set in RY. A function f : E — R
1s locally matriz monotone on E if and only if f analytically continues
to 114 as a map f: E U = 1I in the Pick-Agler class.

When d = 1 or d = 2, the Pick-Agler class is exactly the Pick class,
i.e. the set of analytic functions mapping I1¢ to II. More generally, the
Pick-Agler class is the set of Pick functions that satisfy von Neumann’s
inequality after being converted to Schur functions via conformal map-
pings. The two-variable von Neumann inequality is known as Ando’s
inequality [10] and fails in more than two variables [48, 62]. For d > 2,
this failure implies that the Pick-Agler class is a strict subset of the
Pick class. For additional information about Pick-Agler functions and
their structure, we refer the reader to [5].

In the two-variable rational case, Agler, McCarthy, and Young used
the minimality of TFRs for rational inner functions to characterize
global matrix monotonicity on rectangles.

Theorem 1.2. [5]. If E C R? is a rectangle and f : E — R is rational,
then f s globally matriz monotone on E if and only if f analytically
continues to I1? as a map f : EUII? — II in the Pick-Agler class.
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The question of whether real-valued restrictions of Pick-Agler func-
tions to convex sets in R? are always global matrix monotone functions
has colloquially become known as the McCarthy Champagne conjec-
ture:

(MCCQC): Every d-variable Pick-Agler function that
analytically continues across an open convex set £ C R is
globally matrix monotone when restricted to E.

As is discussed further below, we establish the MCC in two impor-
tant cases, giving compelling evidence for the overall validity of the
conjecture.

1.3. Summary of results. The bulk of this paper addresses the re-
alization questions (Q1)-(Q3). In Section 2, we let ¢ be a two-variable
inner function, review the particularly simple TFRs from [23, 24], and
further develop their properties. For example, in Theorem 2.2, we ex-
tend the analysis from [24] to answer (Q3) and provide explicit formulae
for each of A, B,C, D.

This allows us to address (Q1) for quasi-rational functions in Section
3. Here, we say that a two-variable Schur function ¢ is quasi-rational
with respect to an open I C T if ¢ is inner and extends continuously
to T x I with |[¢(7)] = 1 for 7 € T x I. Quasi-rational functions
were previously studied by Ahern in [7], who proved that intuitively,
they are inner functions that are rational in one of the variables. The
analysis from both Section 2 and [23, 24] allows us to establish this key
regularity property:

Theorem. 3.2. If ¢ is quasi-rational with respect to I and D is from
Theorem 2.2, then 1 — E.D is invertible for all 7 € T x I.

It is worth noting that this question of when operators of the form
(1 — E.D) are invertible is also connected to the study of robust sta-
bilization in control engineering, see [5, 26].

Section 4 addresses (Q2) and shows how to move between realiza-
tions on different canonical domains while preserving delicate regularity
behavior; see Theorems 4.1 and 4.2. Specifically, we show that on the
level of algebra, the set of definition of a realization is the same as that
when the domains have been conformally transformed, excepting ob-
vious obstructions. In the noncommutative case, the results we obtain
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are completely clean, “minimal” realization formulae that are canoni-
cal and therefore have maximal domain, similar to the results in [52].
Section 5 contains an application of these theorems; we use the canon-
ical realization from Theorem 2.2 for inner Schur functions on D? to
obtain canonical representations for real Pick functions on IT2.

Section 6 addresses our progress on the McCarthy Champagne con-
jecture. We first combine the machinery from Section 4 with Theorem
3.2 to establish

Theorem. 6.1. If f arises from a two-variable quasi-rational function
¢, then the MCC holds for f.

For the exact details of the statement, including the domain where
f is globally matrix monotone as well as the connection between f
and its associated quasi-rational function ¢, see Section 6. In that sec-
tion, we also study a class of d-variable Pick-Agler functions known as
commutative perspective functions, which appear in the operator
means literature [40, 28, 27, 29]. We show that the noncommutative
Léwner theorem from [53] implies that

Theorem. 6.2. If f is a d-variable commutative perspective function,
then the MCC holds for f.

One surprising aspect of the precise statement of Theorem 6.2 is
the following: it only assumes that f is locally matrix monotone on
a positive cone C' C (0,00)¢ but concludes that f must actually be
globally matrix monotone on all of (0, co).

2. TWO-VARIABLE REALIZATION FORMULAE

We begin with the technical setup for the de Branges-Rovnyak canon-
ical model theory for two variable inner functions from [23, 24]. Through-
out this section, let ¢ : D?> — D be a two variable inner function.

Denote by H?> = H?(D?) the Hardy space on the bidisk. First, we
record some useful facts about the action of multiplication operators
on H?. For j = 1,2, let M, denote multiplication by z; in H* and
recall that the adjoints are the backward shift operators defined by

o e = LA TIC0) ) TR = 102)

29 21
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for all f € H? and so we have

(2.1) f(2) = 2(M, f)(2) + f(21,0),

(2.2) f(2) = 21(MZ f)(2) + £(0, 22).
Evaluating (2.2) at z = 0 gives

(2.3) f(21,0) = 21(MZ, f)(21,0) + £(0,0),
which can be plugged into (2.1) to produce the formula
(2.4) f(2) = 22o(MZ, )(2) + 21(MZ, f)(21,0) + £(0,0).

We now define the enveloping reproducing kernel Hilbert space for

¢ and the structured subspaces upon which the Agler model equation
will be built.

e Let Ky be the reproducing kernel Hilbert space
1 — ¢(2)¢(w)

(1 = z1w1) (1 — 2w3)

Ks=H = H?© ¢gH?

o S"™ = the maximum subspace of K, invariant under M., ;

o SN = Ky & Sprax;
Here H(K') denotes the Hilbert space of functions with reproducing
kernel K. In [19], Ball, Sadosky, and Vinnikov showed that with these
definitions, S is invariant under M,,. We can then define these key
Hilbert spaces:

o H(K[™) = ST g 2 ST,

o H(KF™) = S & 2S5,
where z; is shorthand for M. . As Ky = ST & S5, their reproducing
kernels satisfy the question

L= 6()0w)  _ Kr(w) | K3 w)

(1—zm)(1 — 2wz) 11— z07 1 — zowy

This immediately gives the associated Agler model equation
(25) 1= 6(2)6(w) = (1 — 2T KF™(z,w) + (1 — 273 KI™ (2, w).
Set

Hy = H(KZ™) & H(K™),

so that each f € Hy can be written uniquely as f = f; + fo for
fi € H(K¥D), f, € H(K™). Note that in contrast to Agler’s original
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approach in [2], here we have explicit kernel structures to work with,
which will allow direct calculations involving functions in H.

Using the now-standard lurking isometry argument (see [3, 14, 20]
for its development and additional information), one can use (2.5) to
derive a realization formula for ¢. Specifically define an operator V' so
that for all w € D2,

1 ¢(w)
Vwikyn | e | kg |
Wo k2 s

where k"2* = K"(-,w) and k3 = K3*(-,w). Then standard ar-
guments combined with an analysis of the particular Hilbert spaces
H(KP"), H(K™>) can be used to show that V extends to a unique
isometry on C @ H(K¥") & H(K™X). For the argument details, see
24, pp. 6316-6318]. The novelty in [24] is that, unlike in earlier lurking-
isometry arguments, the underlying Hilbert space does not need to be
enlarged to guarantee that the resulting V' is isometric. Now write

(2.6) V= E g] | [SJ ~ Li] |

Then for all z € D?,
(2.7) ¢(z) = A+ B(1 — E.D)'E.C,

where E, = M., Py|y, + M., Py|y,, where Py, P; are defined as follows:
Py is the projection of Ky onto H(K™) and P is the projection of Ky
onto H(K{).

One can take advantage of the explicit structure of the model setup
to derive concrete formulae for the blocks of the coisometry V*. Parts
of this analysis appear in [16] and [24]. For the ease of the reader, in
the following remark, we record some salient results from Remark 5.6
in [24] (altered slightly so that the labeling of A, B, C, D matches that
in this paper), as they will be used in our later analysis.

fi
f2

Az =¢(0)x and Bf = (fi + f2)(0).

Remark 2.1. For all x € C and f = [ } € Hy, A and B are given by
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For C' and D, we first simplify notation by writing their components
from H(KP") and H(KP*) separately as follows:

_ |(Cz) _ (D
o=l =a0r={(5h)
Then (Df), and (Cz)y are the unique functions in H (K ) satisfying
_ J1(0, 2) — f1(0) + f2(0, 22) — f2(0)

z2

(Df)2(0, 22)

0, 2z9) — &(0
(Cx)z(O,ZQ) _ ¢( 2) (b( ).CC,
22
for all z € D\ {0}. Similarly, (Df); and (Cz), are functions in

H(KIm) given by the fomula
(D) () = 1) = 1O+ o) = fo(0) = 22(Df)a(2)

21

(Cx)i(2) = (p(2) — ¢(0))x — zQ(Cx)2(Z)7

21
for all z € D? with 27 # 0. See [24, Remark 5.6] for the proofs.

In this current work, we improve on that remark by finding exact
formulae for C'and D. For notational ease, we record all of the formulae
for A, B, C, D in the following theorem.

Theorem 2.2. Let ¢ be a two-variable inner function with concrete
realization (2.7). Then the following formulas hold:

(1) For allz € C, A is given by
Ax = ¢(0)z.
2) For all f € Hy, B is given by
¢

B [f ] — (i + 12)(0)

f2
(3) For all z € C, C is given by
M ﬂ
Cx = 1
LD1M§2¢

(4) For all f € Hg, D is given by

D {ﬁ} _ {PQM;(fl + fz)}
Jo PIME (fi+ f2)]
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Proof. The formulas for A and B are given in [23, Remark 5.6]. The
formulas for C' and D are proved in Lemmas 2.5 and 2.6 below. 0

Remark 2.3. The more general class of so-called weakly coisometric
realizations for d-variable Schur-Agler functions (Schur functions that
also satisfy von Neumann’s inequality) and their associated A, B, C, D
formulas were studied earlier in [16]. Specifically, Definition 3.1 and
Theorem 3.4 in [16] also establish the formulas for A and B above and
imply that C' and D must each satisfy a so-called structured Gleason
problem.

The concrete function theory interpretations for C' and D in Theorem
2.2 are also related to the technical and extensive work in [17]. In
particular, in Theorem 5.9, the authors assume that a given d-variable
Schur-Agler function ¢ possesses a so-called minimal augmented Agler
decomposition and use it to construct a specific unitary realization for
@ via the theory of scattering systems and formal reproducing kernel
Hilbert spaces. The A, B,C, D formulas that they obtain are quite
similar to those of the cosimetric realization in Theorem 2.2 above.

The following lemma will simplify later computations. Part of it
appears as Proposition 3.5 in [21], but we include the simple proof here
for completeness.

Lemma 2.4. Let ¢ be a two-variable inner function with associated
Hilbert spaces defined as above. Then M}, ¢ € ST"* and M} ¢ € Siin,
Furthermore M Hy C ST and M; Hy C SE™.

Proof. As S is invariant under M,,, it follows easily that S is
invariant under MZ. Thus, M H(KP™>) C ST, Now rewrite the
model equation (2.5) as the following equality of positive kernels:

1 KTz w)  9(2)o(w) | K7™ (z, w)
- — Kmll’l -1 =
1-2’1?1]1 2 1—21?1}_1 1—le_1+ 2 (Z7w>+ 1—21U)_1
This shows that ¢ and each f € H(KY") can be written as g(z;) +
zh(z) where g € H?*(D) and h € SP"™. Then the definition of M}
immediately implies MZ ¢ € ST and MZH(Ky™) C S, which
establishes the S inclusions. The SH" inclusions follow from an

analogous argument. U

We can now establish the formulae for C' and D.
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Lemma 2.5. Let ¢ be a two-variable inner function with concrete re-
alization (2.7). Then

T A [PaM(fy +fz)}
forall f = {fj €My, D {fj N |:P1M;2(f1+f2) .

Proof. Make the decomposition D f = [Eggl} . We first establish the
2
formula for (D f), and then consider (D f);.

By Remark 2.1, (Df)s is the unique function in H(K***) satisfying

(f1 + [2)(0, 29) — (f1 + f2)(0)

29

(Df)2(0, 22) =

= M;(fl + f2>(0722)'

By Lemma 2.4, we have M} (f1 + f2) € ST"*. Thus, we can write

MZ(fi+ f2) = PIME, (fir + f2) + (1= PO)MZ (fi1 + fo),

where (1 — Py) projects ST"* onto z;S7"*. As (1 — P)M; (fi1 + f2) is
thus divisible by z;, we have

MZ,(f1+ f2)(0, 22) = PLMZ, (f1 + £2)(0, 22)

and so by uniqueness, (Df), = PiM (f1 + f2).
To establish the formula for (D f);, note that by Remark 2.1, (Df);
is the unique function in H(K"") satisfying

(fi+ f2)(z) = (fi + f2)(0) — 22(Df)2(2)‘

21

(2.8) (Df)i(z) =

By the formula in (2.4), we have

(f1 + f2)(2) = M7, (fr + f2)(2) + 20 M7, (fr + f2) (21, 0) + (1 + f2)(0),



CONCRETE REALIZATIONS AND THE MCC 13

and so

(D)2 = B S0 210) = 2D
_ M (fi 4 £)(2) + 2 M7 (fL + f2)(21,0) — 22PIME (F + f2)(2)
Mt o) 0) + P1>Mzé‘f<f1 + £)(2)

= M, (fr + f2)(21,0) + 22 M, (1 = P)M, (fi + fo)(2)
— M [(f1+ f2)(21,0) + 20(1 = POMZ(f + f2)(2)]

= M7 [(fi + f2)(21,0) + 22 M7 (f1 + f2)(2) — 22PL M (f1 + f2)(2)]

= M;, [(fi + f2)(2) = 2 PIMZ (fL + f2)(2)] (by (2.1))
= M (1= 2 PIM ) (f1 + f2)(2),

where we again used the fact that (1 — Py)MZ (fi + f») is divisible by
z1. So, we have

(Df)r =M (1= M,PIM.)(f1+ [2)
= P, M (f1 + f2) + PaM, M PL M (fi + fa),

since (Df); € H(K$™). By Lemma 2.4, M} PiM: (fi + f2) € S5
Thus, M., M; PiM; (fi 4+ f2) € 255" and so, is annihilated by P».
This implies (Df), = P,M; (f1 + f2), and establishes the claim. O

Lemma 2.6. Let ¢ be a two-variable inner function with concrete re-
alization (2.7). For all x € C, C' is given by

RMe
o= [PlM;; A

Proof. The proof is similar to the argument for D in Lemma 2.5, so we
give a sketch of the idea but omit some of the finer details. By linearity,
we can let x = 1. By Remark 2.1, (C1), is the unique function in
H(K{*) with
(C1)2(0, 22) = (MZ,6)(0, 22).

By Lemma 2.4, M} ¢ € Si"** and then the same rationale as in the
proof of Lemma 2.5 implies that (C1), = PiM} ¢. To handle (C1)y,
write

(2) = oM, ¢(2) + 21M7 ¢(21,0) + ¢(0).
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Then Remark 2.1 implies that (C'1); satisfies

(2.9) 21(C1)1(2) + 22(Cl)2(z) = &(2) — ¢(0).

Substituting the formulas for ¢ and (C1)y into (2.9) and solving for
(C1); yields

2 M 0(2) — P M, ¢(2)

22

(C1)1(2) = M ¢(21,0) +

Z1
= M, 6(21,0) + M, (22MZ,0 — 22PAM,9) (2)
= M:1¢(z) - Z2M:1P1M:2¢(Z)’

where we used the fact that M2 ¢ € SP™. As (C1); € H(KM™),
(C1); = PM? ¢ — PyM., M? P M.

1 1
Then Lemma 2.4 implies that M Py M ¢ € Sy and so, M., M} PiM: ¢

is annihilated by P. This implies (C1); = P,M} ¢ and completes the
proof. O

We now show that the operator D exhibits additional behavior re-
sembling that of the backward shift M .

Proposition 2.7. Let ¢ be a two-variable inner function with concrete
realization (2.7). Then for all w € D?

kmin w—lkmin . PQM* d)
D 2w — 2,w . F h F = 21 )
] = o]~ e = [0

1w

Proof. By Lemma 2.4, M7, (k*+k5h) € SP*. Rearranging the model

2w

equation (2.5) and applying the operator Py M}, to each side gives

PyME KPS + KS5) = Pz M2 kY + ek — o(w) M ¢

(2.10) = waky," — ¢(w)PLM, ¢,

min
2w

since 21 M7 ky')t € 2157 and hence, is annihilated by P;. Similarly,

Py M R + k;?j;] =P, [w—lkgji;“ + W M KT — ¢(w) M ¢

(2.11) = wiky'y — o(w) P M, ¢,

kmin
2w

omasx and
1w

using the expressions in (2.10), (2.11) gives the desired formula. O

1

since 2o M7 k"3 € 2,55"™. Now applying Lemma 2.5 to D [
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3. BOUNDARY BEHAVIOR OF QUASI-RATIONAL FUNCTIONS

As in the last section, let ¢ be a two-variable inner function on D2
We now examine the behavior of the concrete realization of ¢ from
(2.7) at points on the distinguished boundary T?. The goal is to show
that if ¢ extends continuously at part of the boundary, then so does the
realization. Equivalently, we want to show that the operator 1 —FE, D is
invertible on some open set of boundary points where ¢ is well behaved.

This problem is generally intractable via current methods, so we
restrict to a special class of inner functions. Specifically, we say that a
Schur function ¢ is quasi-rational with respect to an open I C T if ¢ is
inner and extends continuously to T x I with |¢(7)| =1 for 7 € T x I.
To get a sense of the definition, recall that every one-variable inner
function that extends continuously to T is a finite Blaschke product.
Thus, if ¢ is quasi-rational, then for each 7 € I, the one-variable
function ¢(-, 72) must be a finite Blaschke product.

Remark 3.1. Indeed, quasi-rational functions are intuitively inner func-
tions that are rational in one of the variables. While we do not require
the exact details here, Ahern characterized the structure of quasi-
rational functions in Theorem 3 in [7]. We also refer the interested
reader to work by Sawyer in [61], especially Theorem 1.4, which exam-
ined similar functions in a more general (not necessarily inner) setting.

One should note that the set of quasi-rational functions is quite
large. To generate examples, let p € Cl[z1, 23] be a polynomial of

degree (my,my) that does not vanish on D? and let ¢ = §> where

p(z) = 21" 25"p(1/21,1/25). Without loss of generality, we can assume
that p, p have no common factors. Then ) is a rational inner function
(and all rational inner functions have this form, see [60]) and we can

define the set
Jy ={m € T : there exists 7y € T with p(m, ) =0},

which contains at most mi;ms points. Now let § be any one-variable
inner function that extends continuously to an open set J C T. Let
I C J be any open set such that 6(1) C T\ J,. Then the two-variable
function ¢ defined by

P(z) = 1 (21,0(22)),
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is quasi-rational with respect to /. Furthermore, it is immediate that
the set of quasi-rational functions with respect to I is closed under
finite products.

The class of quasi-rational functions with respect to I is also closed
in a stronger sense. Specifically, assume that (¢,) is a sequence of
quasi-rational functions on I that converges to some function ¢ both
in the H%(D?) norm and locally uniformly on D? U (T x I). The first
condition implies that the limit function ¢ is inner and the second
condition implies that ¢ extends continuously to T x I. Thus, ¢ is
quasi-rational with respect to 1.

Then for quasi-rational functions, we prove the following result:

Theorem 3.2. Let ¢ be quasi-rational with respect to an open I C T.
Then in the concrete realization (2.7), the operator 1— E. D is invertible
forallTeTx 1.

For the proof, we will use known connections between the boundary
regularity of an inner function ¢ and the boundary regularity of its
associated Hilbert spaces H(K*) and H(K™). The needed connec-
tions were established in [23] and are encoded in the following theorem,
which follows immediately from Theorem 1.5 in [23] and is basically a
special case of that result.

Theorem 3.3. Let ¢ be a two-variable inner function on D? and let
X be an open subset of T%. Define

E={zeC:|z| > 1}
Xy ={x; €T:3 9 €T with (x1,25) € X}
Xo={ao€T:3 21 €T with (x1,25) € X}
S={(1/2,1/%) € E?: ¢(z, 20) = 0}.
Then the following are equivalent:

a. The function ¢ extends continuously to X.

b. The elements of H(K™) and H(K™") extend continuously to
X.

c. There is a domain €2 containing

D*UXU(X; xD)U (D x X5)U (E*\ 9)
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on which ¢ and the elements of H(K™>) and H(KI™) extend
to be analytic. Furthermore, point evaluation in ) is bounded
on these spaces, so the kernels K" and K™ extend to be
sesqui-analytic on €2 x €.

This theorem has immediate implications for quasi-rational functions
and their associated Hilbert spaces. We encode the crucial facts in the
following observation.

Observation 3.4. Let ¢ be quasi-rational with respect to an open
I C T, so that in Theorem 3.3 above, we can take X = T x [. Then
the theorem implies that there is an open set {2 containing

D?*U (D x I)U (T x D)

on which ¢ and all functions in H(K*) and H(K"") extend to be an-
alytic. Furthermore, point evaluation in €2 is bounded on these spaces,
and the kernels K"® K extend to be sesqui-analytic on € x €.

Observe that for 7 € I, the one-variable inner function ¢,, = ¢(-, 72)
is well defined and possesses an associated one-variable reproducing
kernel Hilbert space defined by

1 - ¢Tz<zl>‘¢m<wl>] |

1—21'11}_1

o=

which is a subspace of the one-variable Hardy space H*(D). We con-
nect these Ky to the subspaces associated to our realizations via the
following lemma.

Lemma 3.5. Let ¢ be quasi-rational with respect to an open I C T.
Then the map J, : H(KS™) — Ky, defined by J,f = f(-,72) is

unitary for all 7, € 1.

Proof. This proof uses ideas from the proofs of [23, Theorem 1.6] and
[22, Theorem 2.2]. For this proof, one should recall that H (K1) is a
subspace of H*(D?) and Ky, is a subspace of H*(D).

We first claim that for 7, € I, the restriction map J,, : H(KP") —
H?(D) preserves inner products. Fix functions f,g € H(K¥"). Then
for almost every z; € T, f(-, 22), g(+, 22) € L*(T) and we can define

(3.1) Fyg(z2) = (f (- 22), 9(++ 22)) o) -
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Let o denote normalized Lebesgue measure. Then by Holder’s inequal-
ity, we obtain

/T Fygz2)ldo(z2) < / 17 22) Lz 9 2l emydor(z2) < 1 el e,
which implies Fj, € L'(T). Since f,g € H(KF™) and H(KP™) Lye
2oH (K™, we have

f L2 2)g for all j € Z/{0}.

Then the Fourier coefficients of Fy, for j € Z/{0} are given by

Fro(=i) = [ AFa(2) o) = [ 725G dotz) =0,
T T
and so it is straightforward that

ny(ZQ) = Ff7g<0) - <f, g>7—[(K5nm) fOI" a.e. 22 E T
By Observation 3.4, f and ¢ are analytic on an open set () containing
D x I, which implies both that for every 7, € I, f(-,7), g(-, 72) € H?*(D)
and the formula for Fy, in (3.1) is well defined and continuous on I.
This immediately gives

(f(72), 90 7)) ooy = Fro(m2) = Ff,g( ) =([:9)x (Kpin)

so the restriction map preserves inner products for each 7 € I.

To finish the proof, we need to show .J;, maps onto K4, . By Obser-
vation 3.4, for any m € I, we can let 25, wy — 75 in the model equation
(2.5) to obtain

- ngQ (Zl)¢7'2 (wl)
1 — zwy
To show the range of J, is in Ky,_, assume that f € H(Ky™) and
I f L Ky, in H 2(D). Since J,, preserves inner products, this implies
that for all w, € D

0= <f(7 7-2)7 ZH,IEE)LTQ)( )>H2 (D) <f kmlzl T2) >H(K5nin) = f(w177—2)-

Since J;, preserves norms, f =0 and so J;, maps into Ky4_ .

= K3"((21,72), (w1, 7)) = Ty (K5 (y ) (21)-

Finally, as .J;, preserves norms and its range contains all of the re-
producing kernel functions of Ky, , Jr, must be surjective. O

We are now ready to prove the main theorem.
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Proof of Theorem 3.2. Fix (11,72) € T x I. The proof has two parts.
We start by showing that the operator (1 — E.D) has dense range and
then we will show (1 — E; D) is bounded below.

First, proceed by contradiction and assume that (1 — £, D) does not
have dense range. Recall that Proposition 2.7 implies

kmin (1 _ le—1>kmin
3.2 1 —E.D M} - { “ M} + 3(w)E.F,
32 a-ep)[EE] - [T o

where F' is defined in Proposition 2.7. Then there must exist some
non-trivial g € H4 orthogonal to all functions with the form given in
(3.2). Writing

g= H for g € HUEP™), and gy € H(KP™),

g2

we can compute

0= <g, (1-E,D) {’,{fi}w} >
1w Hy

= (L =7w)gi(w) + (1 = T2wa)g2(w) + d(w) (g, Er Fyy, |
for all w € D?. By Observation 3.4, we can take w — 7 and reduce
this to
0=¢(7) (g, E-F)y,
and so (g, E-F);, = 0. Then

(3.3) (1 =7rwi)gi(w) = —(1 = Tow;)ga(w)

and in particular, by Observation 3.4, we can take limits to points in
D x I to conclude g;(z1,7) = 0 for all z; € D. Since g; € H(KM™), an
application of Lemma 3.5 implies that

”gl”?-t(Kg‘i“) = Hgl<'77—2)HIC¢72 =0.

Thus ¢g; = 0, and by (3.3) we also have g = 0. Then g = 0, which is a
contradiction. We conclude that (1 — E; D) has dense range.

Now we show that (1 — E,D) is bounded below. Proceeding by
contradiction, assume that (1 — E.D) is not bounded below. Then
there is a sequence of functions {¢"} C H, such that || g"H% =1 and
lim,, 00 [|(1 — ETD)g"H% =0.

Let I be a closed interval in [ containing 75 in its interior. By Ob-
servation 3.4 and the uniform boundedness principle, point evaluation
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in ‘H, is uniformly bounded on K := D x I. That is, there is a C' > 0
so that

(3.4) ]f(z)]ﬁCHfH% for all z € K, f € Hy.
Furthermore, for ¢ = 1, 2, this implies that for z € K,
|2i(Dg")i(2) = Tizigi' (2)| = |2:(1 = E-Dg")i(2)| < C[|(1 = E-Dg")|ln,-
By (2.8), we can conclude that
91 (2) = 712197 (2) + 95 (2) — Tazag5 (2) — g1'(0) — g5 (0)]

= [21(Dg")1(2) = Tz g7 (2) + 22(Dg")a(2) — Taz205 (2)]
<2C|(1 - E:D)g"||n, forallze K.

Setting z = 7, we have |¢7(0) + g5 (0)| < 2C|(1 — E-D)g" %, and so
(1 =T21)g7 (2) + (1 = T222)g5 ()| < 4C|[(1 = E-D)g" ||,

for all z € K. In particular, setting zo = 75 gives

(3.5) (1 =7iz1)g7 (21, 72)| < 4C[[(1 = E-D)g" |3,

for all z; € D. We can use this to deduce that ||g}'[j3, — 0. First, fix
a small € > 0 and letting ¢ denote normalized Lebesgue measure on
T (or T?, depending on the context) choose a compact interval X C T
centered at 7 such that o(K) = e. Then dist(T \ K, 7) = ¢/2. Then
by Lemma 3.5 and equations (3.4), (3.5), we have

g7 13, = llgr (-, 72) 172

1—7F n 2
= [ ot mfao( + /T\,C e e

|Zl—71|2

16C*
dlSt(T \ IC, 7'1)

< o(K)C?|lg I3, + ;11 = E-D)g"3,

64C*

€2

<eC?+ I(1 = E-D)g" |3,

Choose N such that for all n > N, the latter term is less than e. This
shows ||g7(|#, — 0.

Now, consider ¢g}. By our original assumptions and the fact that
9712, — 0, we can conclude that

g2 {17, =1 and [[(1 = E-D)g3 |3, — 0.
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Examining the first component in the second limit yields
I71(Dg5)1lln, — 0, and so [[M, (Dgy)ills2 — 0
and similarly, examining the second component yields
lg5 = 72(Dg5)2lln, — 0, and so [ M-, (Tagy — (Dg3)2) > — 0.
Thus (2.8) implies that
(A=, 72)95 =95 (0) |2 = Mz, (Dg3)1+M-, (Dgs — T2g3)2) |2 — 0.

From earlier in the argument, we know that |¢7(0) + ¢5(0)] — 0 and
llg7 ||z — 0. This implies that g5(0) — 0 and so,

(3.6) 11 = M, 72)g5 || > — 0.

We claim that this implies ||g5 /3, — 0. To see this, fix a small ¢ > 0
and K C I a compact interval centered at 7, with o(K) = e. Note
that such a K exists for e sufficiently small. Then dist(T \ K, 72) = €/2.
Then by (3.4) and (3.6),

o8l = [ lote)Pdotz) + 2 4ot
TxK Tx (T\K) |29 — 7o
1 =\ 7|2
Tt (TN K,y 1 27k e

< a(K)C?|l 9513, +

4 —\ n
< eC? + 5101 =M., 7)g; [

Choose N such that for all n > N, the latter term is less than e. This
shows ||g3(|#, — 0, a contradiction, which completes the proof. O

It seems plausible that Theorem 3.2 should hold if ¢ is inner and
extends continuously to I x Iy for open sets I, I, C T. While we have
not been able to prove this, we can show that the operators (1 — E. D)
have dense range.

Proposition 3.6. Let ¢ be an inner function on D? and assume ¢
extends continuously to I; X Iy for open sets Iy, I C T. Then, for each
T € Iy X Iy, the operator (1 — E;D) has dense range.

Proof. Fix (11, 73) € I} x I5. As in the proof of Theorem 3.2, assume
that g € H, is orthogonal to the range of 1 — £, D. Write

g = {gl} for gy € H(KF™), and g, € H(K™).
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Then one can basically follow the proof of Theorem 3.2, but directly
apply Theorem 3.3, to conclude that
(1 =7rwi)gi(w) = —(1 — Tows)ga(w)

for all w € Q, where € is an open set containing D U (I; x D) U (D x
I,) U (I x I3) and all elements of H, extend to be holomorphic. on (2.
For w € €2 wherever the expression makes sense, define a function f by

flw) = g1(w) _ —ga(w)

1 —7_'21112 a 1 —’7_'111}1.
The first formula says f is holomorphic on Q\ {(wy, ws) : we = 72}, and

the second formula says f is holomorphic on Q\ {(wy,ws) : wy = 7 }.

This implies that f is holomorphic on ©\ {7}. Holomorphic functions
on open sets in C? cannot have isolated singularities and so, f must
be holomorphic on . To show that f € H?*(ID?), choose compact sets
K1, Ky C T containing 71 and 75 respectively such that Ky x Ky C I7 X I
and dist(T \ ICj,7;) > 0 for j = 1,2. Then since K3 x ICy C Q, f is
bounded on i x K9 and we have:

2
a(z
1= [ 1f)Pdat) + | 1) 4oe)
K1 xKs Tx(T\K) | 1 — T222
+/ 92(;2) do(z) < 0.
(T\K1)xT =Tz
Furthermore, observe that for each N € N,
N, N gi(w)

flw) = ——— Zgl w)Twy + 7

w
1—7'2'11}2 2 1—’7'2’11)2

Since ¢g; € H(KI™), we know g, L g2 whg; for all n > 0 and so the
functions in the first sum are orthogonal to each other. This implies

N-1
> g(w)mws
n=0 H2

1/2
_ ZHngl nm) e
Z\/_H91HH2—HfHH2-

Since this holds for all N, it follows that g; = 0 and thus g, = 0, which
proves the claim. O

>
[ £l = T2 W2 T Fya

H?2
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However, as discussed in the following remark, the proof showing
that the (1 — E.D) operators are bounded below does not translate to
this setting.

Remark 3.7. Numerous times, the proof of Theorem 3.2 uses the uni-
form boundedness of point evaluations delineated in (3.4). For example,
this is used to deduce that

(3.7) / () o() S 7(K)

for IC C I a small set containing 75.

It is not clear how to obtain such bounds if ¢ only extends contin-
uously to a more general product set I; x I5. To see how we might
obtain this inequality using other means, recall that point evaluations
on D x I, are bounded on H,. Then

2
| @Rt = [tk ),
TxK
n max 2
< N / i [,y 5 o).
TxK "
Then (3.7) would follow if

: max 2
/]I‘xlCll/r% Hk 'I"Zl,ZQ)||H2 dO'(Z) S J(IC)

do(2)

But, a straightforward computation using the model equation (2.5) and
the one-variable Julia—Carathéodory theorem gives

: max — |¢(’I"2172’2)|2
i 28 o2 = iy 21
where 0z1¢(z1, 29) is the non-tangential derivative of ¢(-, z3) at 2z,
which is defined as long as [[k5Y, ) || 472 is bounded as r 1. Then
the desired equality becomes

|t el o)~ [ (om0 zldo ) S ol)
TxKC

r, 1

~ |0210(21, 22)]

This uniform H! derivative bound certainly forces ¢(+, 29) to be a finite
Blaschke product for a.e. 25 € Iy and likely imposes even more stringent
regularity conditions on ¢. Therefore, new techniques would be needed
to show that the (1 — E.D) operators are bounded below for ¢ that
possess weaker regularity than that assumed in Theorem 3.2.
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4. SOME ALGEBRAIC IDENTITIES

In this section, we collect some algebraic identities satisfied by gen-
eral noncommutative indeterminants which will allow us to convert
between various representation formulae.

Algebraic realizations of noncommutative Schur-type functions are
called Fornasini-Marchesini realizations, after the pioneering work in
[30]. We introduce a new algebraic version of the usual noncommu-
tative Herglotz realization (as in [57]), the so-called Herglotz-Nouveau
formula. Finally, we refer to the noncommutative Nevanlinna realiza-
tion [51, 49, 52].

4.1. The block 2 by 2 matrix inverse formula. In what follows,
we will need formulas for inverses of block 2 x 2 matrices with operator
entries. For the ease of the reader, we include those here. Specifically,
let X be the following 2 x 2 block matrix with operator entries

Q R

X = :

S v

Provided that certain related operators are invertible, this partition

yields useful formulas for X ~!. For example, if Q and V — SQ~'R are
invertible, then so is X and X! is given by

Q'+ Q 'RV —-SQ'R)TISQT! —Q7'R(V — SQT'R)™!
[ —(V-8SQ'R)"'SQ™! (V—-8SQ™'R)™ ] '

Similarly, if V and Q — RV 1S are invertible, then X! exists and is
given by the formula
(Q — RV-19)~! —(Q — RV1S)"tRV-!
—~V18(Q - RVIS)™t V4 VTIS(Q — RVTIS) IRV
These block inversion formulas are well known; see for example, [35, p.

18]. Indeed, the fact that the diagonal entries in the two inverse expres-
sions given above are often equal, e.g. under appropriate assumptions,

Q—-RV'S) ' =Q '+ Q 'R(V -SQ'R)'SQ ™,

basically follows from an application of an important matrix identity
known as the Woodbury formula.
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4.2. Between Fornasini-Marchesini and Herglotz-Nouveau for-
mulae.

Theorem 4.1. Let A, B,C,D,Z be operators taking various Hilbert
spaces to other various Hilbert spaces such that the expression

®=A+B(1-2ZD)'zC

15 well defined and 1 — ® is invertible. Let

1+ @
O=—.

1-o
A B

ZC ZD

w o[l ([ A (-l 2D

Proof. By hypothesis, 1 — ZD is invertible and (1 — ®)~!, which is
1—A -B
—ZC 1-27D

Then the expression <1 — [ }) 18 an invertible operator and

the Schur complement of 1 — ZD in [ ] , exists as 1 — @

A B
.o Bl on. This imoli hat 1 — .
is invertible by assumption 1S 1mplies that [ 70 7 D} 1S an

invertible operator.
Applying the inverse formula for a block two by two matrix, we get

1-A -B ] [S SB(1-ZzD)?
—7C 1-2zD| |« x

where

(4.2) S=(1-A-B(1-D2)'zC)'=(1-&)",
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and * denotes some quantity that will be immaterial to our calculation.
On substitution into (4.1), we get

] (- 22]) (e [z 2] [
BT
1+ A}
ZC
=S(1+A)+SB(1-2ZD)'zZC

=S(1+A+B(1-2D)'Z0)
1+

11—’

=[S SBu.—ZDyJ}[

which proves the claim. U

4.3. Between Herglotz-Nouveau and Nevanlinna formulae.

A B
c D} be a block operator such that 1 — U

18 1nwvertible. Let Z be an operator such that 1 — Z 1is invertible and

Theorem 4.2. Let U = [

w o[ (- ) (e[ A

is well defined. Let W = z% so Z = %12, let

T_uyumu—mA—{ﬂlﬂﬂ,

T21 T22

and let W = i©. Then the expression (W +Tay) is an invertible operator
and

U =T, — T (W+ T22)_1T21-
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Proof. For ease of notation, set a = [(1)] . The formula for © gives

1

ooear iy 2] (41

-1

1

([ wa-oefp aro) (|

Recalling that T'= (1 + U)(1 — U)™!, we have

1

N (R Ry

-1

0

:m*({é W0+Z}_L1) Wo—z} U) (Ll) Wi

0
w

1 0
0w

7]

v |
<]

0 0

0

b o)
0w J U> )

](1+U) {8 ﬂ (1—U))a.

1)it-om

The expression ({1 0} + {O 0} T> is the conjugation of a well

0w 01

defined expression from the original equation by invertible operators,

and thus remains well defined. Then note that

0

(6wl ) <[ win]

which implies that the expression W + T, is invertible.

Now, writing

ER e A R (R A E R

gives

U=a*(1-U)"'T(1~-

(E]+Bﬂ)T

00
01

} (1+T*(1 - U)a

= a'Ta — o ([o }+{O J T) 1{8 ﬂ (1+T*(1—-U)a.

Observe that

1+TH1-U)=(1-U)P?-1+0U)»)1-U)"
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and by the inversion formula for 2 x 2 block operators, since 1 and
T5s + W are both invertible, we have

o BT B -8 wia) T

1 0 } {O O}
(W Tye) My (W4 Te)7 Y] [0 1

[0 0 0
— = W+Ty) [0 1].
0 W+ T22)1} M (WA Te) [0 1
Then, using the definition of «, the equation simplifies to

0

U="Ty+4(1 qa—m*L

hw+nyﬂquu—m*E}

Further, observe that
T=i(l-U+2001-U)"'=i+2U(1-U)", so 2U0(1-U)' = —iT —1,
T=iU-1+2)(1-U)"=—=i+2i(1-U)", so2(1-U)"'=—iT+1.
Those formulas imply that

ﬂlﬂﬂ—UYﬂﬂ:—WQMMQW ﬂUﬂ—m*B}zﬁﬂl

and so, the formula for ¥ becomes
U = T11 - Tlg(W + T22)71T217

which is what we were trying to show. 0

5. CONCRETE NEVANLINNA FORMULAE

We can use Theorem 4.2 to translate the concrete realizations for
inner functions on D? from Section 2 to realizations for Pick functions
on I12.

First, assume that ¢ is an inner function on D?. Then ¢ has a model
representation as in (2.7), where the realization operator

v [o 5]l el

has block formulas given in Theorem 2.2. Define

2 and o' 11 — D by o H(w) = .
-z w+1

1
a:D—)Hbya(z):il
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Then ¢ = aogoa~! is an inner Pick function on I12, where inner means
that ¢ is real valued for almost every point in R2 Here, we should
mention that the notation ¢ o a™! is short-hand for ¢ o (™!, a~!) and
will be used throughout the rest of the paper.

If (1 —U) is invertible, then Theorem 4.2 implies that if

Tll T12:|

T=i1+0)1-0)"= [Tzl T

on C @ Hy, then

Y(w) =Ty — Tia(Ey + T22)71T21

for w € I1%. If ¢ has sufficient regularity at (1, 1), then one can deduce
the following explicit formulas for 771, T2, and T5;.

Theorem 5.1. Let ¢ and v be as above. Assume that ¢ extends con-
tinuously to a neighborhood of (1,1) on T? with ¢(1,1) # 1 and (2.7)
extends to (1,1). Then by Theorem 3.3, f(1,1) exists for all f € Hy
and there is a ki € Hy such that f(1,1) = (f, ki), for all f € Hy.
Then:

i. For all x € C, Ty, is given by

ii. For all x € C, Ty is given by
2ip(1,1)
1—¢(1,1)
iii. For all f € Hy, Tio is given by
21
Tof =———
vl = 1o o(1,1)

It follows from the proof that weaker regularity conditions are needed
to obtain the formulas for 77, and 75;.

Tle = k1$.

f(1,1).

Proof. To obtain formulas for 7', we require a formula for (1 — U)~'.
Let ¢; := (1 — ¢(1,1))~*. Using the second formula in Section 4.1 and
the fact that ¢(1,1) = A+ B(1 — D)~'C, one can obtain

-1 _ C1 ClB(l N D)il
=00 = 0=D)'c (1-D)" +ea(1— D) 'CBA - D)
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Using T =i(14+U)(1—U) !, block matrix multiplication, and straight-
forward simplification gives

Ty =ici(1+A+ B(1— )10)_z ig“g

T =i(1+ A)e B(1 — D)’l +iB(1 — D) +ic;B(1— D) 'CB(1 - D)™!
= 1= ¢(1 1)B(1 - D) 1;

Too =i(1+D)(1—D) ' +ci(1+(1+D)(1—-D)")CB(1—D)™!
=i(1+ D)1= D)™+ =2p(1 = D)"'CB(1 - D).
The formula for T7; is immediate. To obtain the formula for 75, set
ke = Kl 4 K
Then by Proposition 2.7,
(5.1) Dk, = Egky — ¢(w)F,

where F'is a function defined in Proposition 2.7 and by Theorem 2.2,
Cz = Fz for all z € C. By Theorem 3.3, as w — (1,1) with w € D?
kw — ki weakly in Hy. One can use this to show

Dky =k, — ¢(1,1)F, which implies (1 — D) 'F = ¢(1,1)k;

It follows immediately that for x € C,

Tow = 2iey(1 = D)~ Cx = 2iey (1 - D)~ P = 2200 k.

To study T and Ths, recall that we assumed ¢ continuously extends
to a neighborhood of (1,1). This implies that linear combinations of
the functions (1 — E)k,, are dense in H,. To see this, assume that
g=9g1+ g2 € Hg and for all w € D?,

0= {9, (1 = Ep)ku)n, = (1 —wi)g1(w) + (1 — wz)ga(w).

Then the arguments in the proof of Proposition 3.6 imply that g = 0.
Thus it suffices to find a linear formula for T35 on functions of the form
(1 = Eg)ky.

To that end, note that (5.1) implies that

(1= Eg)kw = kw — Dky — (W) F.
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Then by Theorem 2.2 and the formula (2.5),

Tia(1 — Ep)ky = —2-—B(1 — D)™ <k:w ~ Diy — Mzr)

1-¢(1,1)

— 2 B(k, — 6(0)o(1, k)

= =2y (ku(0) = B(w)(1, Dk (0))

— 2y (1 = 8{w)6(0,0)) — S(w)o(1, 1)(1 = 6(1, 1)(0,0))

= (i) <1 — d(w)e(1, 1))
= #(11’1)(1 - Eﬂ))kw(lv 1)7

which establishes the formula for T3 and completes the proof of this
theorem. U

6. THE McCARTHY CHAMPAGNE CONJECTURE

In this section, we establish the MCC for two-variable Pick func-
tions arising from quasi-rational functions and for d-variable perspec-
tive functions.

6.1. Quasi-rational functions. As in Section 5, let o : D — II de-
note the Cayley transform given by «a(z) =i (}i’—z) . Then as a direct
result of Theorem 3.2 combined with Theorem 4.2, we can establish

the MCC for Pick functions arising from quasi-rational functions.

Theorem 6.1. Let I C T be open, let ¢ be a nonconstant two-variable
quasi-rational function on T x I, and define a Pick function f by f =
aopoat. Then f is globally matriz monotone on every open rectangle
E CR x a(l) such that ¢ does not attain the value 1 on a™'(E).

Proof. Let E' = J; x J, be a finite open rectangle with E/ C E. Since
E' is arbitrary, it suffices to show f is globally matrix monotone on E’.
Let = (1, f2) be a pair of conformal self maps of II such that

B(E") C (0,00)* and (0,00)* U (00, 00) C B(E)

and furthermore f(87!(00,00)) € R. Define F = fo3~!. Observe that
each 3; is a one variable matrix monotone function. Thus, to show f is
globally matrix monotone on E’, we need only show that F' is globally

matrix monotone on (0, 00)?%.

)
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To that end, observe that ' = cvo ® o o™ !, where ® = ¢ oy and
v = (71,72) 1s a pair of conformal self maps of D defined by v; = o™t o
B;'oa. Then ® is quasi-rational on T x I', where I' = 5, ' (I). Tracing
through the assumptions about ¢, E, and § shows that (1,1) € T x I,
®(1,1) # 1, the set a1((0,00)?) C T x I, and ® does not attain the
value 1 on a1((0, 00)?).

Let U = V* be the coisometry from Theorem 2.2 associated to ®
and defined in (2.6). Then

(6.1) ®(z)=A+B(1-E.D)'E.C

for 2 € D? and by Theorem 3.2, (1 — E,D)~! exists for all 7 € T x I'.
This implies that (6.1) extends to all 7 € T x I’, including (1,1). As
®(1,1) # 1 and (1 — D) ! exists, standard information about inverses
for block 2 x 2 operators, see Section 4.1, implies that 1—U is invertible.
Since U is a co-isometry and 1—U is invertible, the von Neumann-Wold
decomposition implies that U is unitary.

Fix any w € IT1* U (0,00)?, so that w = a(z) for some z € D? U
a™1((0,00)?). Then we can apply Theorems 4.1 and 4.2 with Z = E,
and W = E,, to conclude that

(62) F(w) = Tll — Tlg(TQQ —|— Ew)_1T217

where T'= (1 + U)(1 — U)~!. Since U is unitary, T is self-adjoint and
since (Ty + E,) 7! exists for w € (0,00)2, Ty must be positive semi-
definite. Observe that (6.2) has a natural extension to a map sending
all pairs of matrix inputs with positive imaginary part to outputs with
positive imaginary part.

That is, for a pair of n by n positive definite matrices W = (Wy, W5)
one defines:

6.3) FW)=(Tu®1L,) — (Tia® L) (Toe @ I,) + Eyw) (T, ® I,),

where Ey = P, @ W, + PL @ W,. (Note Eyy itself must be positive
definite.) Note if Wy, Wy are positive definite, so is (Toy ® I) + Ey,
and, thus, the expression is invertible. That is, since Ty is positive
semidefinite, (6.2) extends further to all pairs of positive matrices as
inputs for wy, wy. Moreover, since the resolvent is analytic in the entries
of W1 and Wy for positive definite inputs, the induced noncommutative
function is real analytic. As the cone of pairs of positive matrices
is a free, convex set, the noncommutative Lowner theorem, see [53,
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Theorem 1.7] as well as [49, 58, 52], implies that F' is globally matrix
monotone on (0, 00)?%.

We remark that one could also deduce global matrix monotonicity
using elementary arguments based on (6.3); specifically, given that the
derivative of the natural extension in positive-definite directions is pos-
itive semidefinite, ' must be globally monotone. Thus, one need not
actually appeal to the noncommutative Lowner theorem or noncom-
mutative function theory directly at all. 0

6.2. Perspective functions. Define a commutative perspective
function f to be a locally matrix monotone function on an open cone
C C (0,00)? such that f(tz) = tf(z) when t € RT. Perspective func-
tions appear in the work of Ando and Kubo in the context of monotone
functions and operator means via Lowner’s theorem, and in the convex
optimization regime in a series of papers by Effros, Hansen, and others.
In particular, Effros and Hansen prove that convex non-commutative
perspectives arise from convex commutative perspectives. See, e.g.
40, 28, 27, 29].

Theorem 6.2. If f is a commutative perspective function on an open
cone C C (0,00)%, then f is globally matriz monotone on (0, 00)%.

Proof. By the Theorem 1.1 (the commutative Léwner theorem), f has
an analytic continuation as a Pick-Agler function f on the poly upper
half plane I1¢. Since C' C R? is open, the identity theorem implies
that this analytic continuation is unique on II%. For any t € R*, con-
sider the Pick-Agler function g(z) = tf(z/t). Because f is positively
homogenous on C, f = g on C' and by the uniqueness of the exten-
sion, f = g on II%. Thus, f is positively homogeneous on II¢, which
immediately implies that the non-tangential value of f at 0 is 0.

Now we show that f has a useful Nevanlinna representation. To do
so, we need to show that f is sufficiently well behaved at 0 (that is,
f has a carapoint at 0 in the language of [6]). Let H(z) = f(—1/2).
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Then

liminfy |H (iy, ..., iy)]
Y—00

_ . . .l .l

= hyrr_lglfy f(zy,...,zy)

= liminf | f(4,...,7)]
y—00

< 00.

Given this, Theorem 1.6 in [6] says that there must exist a Hilbert space
‘H, a densely-defined self-adjoint operator A on H, positive semidefinite
contractions Y7,...,Y,; summing to 1 on H, and a vector v € H so that
for all z € 117,

H == A— ZY; ! 5
(2) = (A=Y =¥)'nr)
Therefore, the same objects give a representation of f by
— A -_1Y; -1
f&) = ((A+ YY) )
for all z € I1%. So, since f(z) = tf(z/t),
f) = A+ Y 7Y = ((GA+ )= Y) v

By letting t — oo, we can assume A = 0. Then since (3. z; 'Y;)7! is
well defined for all d tuples of positive matrices, the noncommutative
Lowner theorem [53] implies that f is globally matrix monotone on

(0,00). O
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