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(Communicated by Tanya Christiansen)

Abstract. Given a matrix pseudodifferential operator on a smooth manifold,
one may be interested in diagonalising it by choosing eigenvectors of its prin-
cipal symbol in a smooth manner. We show that diagonalisation is not always
possible, on the whole cotangent bundle or even in a single fibre. We iden-
tify global and local topological obstructions to diagonalisation and examine
physically meaningful examples demonstrating that all possible scenarios can
occur.

1. Statement of the problem

Diagonalisation is often a useful approach to recasting matrix operators ap-
pearing in analysis and mathematical physics in a form that can be more easily
analysed. Its effectiveness can be already appreciated at the level of operators on
finite-dimensional vector spaces, where it manifests itself in many guises, not least
in the various formulations of the Spectral Theorem.

For partial differential or, more generally, pseudodifferential matrix operators on
manifolds, the problem of diagonalisation can effectively be reduced to the diagonal-
isation of the principal symbol of the operator at hand—a smooth matrix-function
on the cotangent bundle — and more precisely to the existence of globally defined
eigenvectors thereof. Indeed, as soon as one can globally diagonalise the principal
symbol in a smooth manner, many approaches to achieving (block) diagonalisation
in various settings are available in the literature [3, 4, 11–14,19, 26, 30].

However, there are, in general, obstructions of topological nature that prevent
one from choosing smooth global eigenvectors of the principal symbol. Remarkably,
such obstructions may be present even (i) for operators acting on trivial vector bun-
dles and (ii) in the cotangent fibre at a single point of the base manifold. The goal
of the current paper is to examine the issue of topological obstructions and provide
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necessary and sufficient conditions for the diagonalisation of pseudodifferential ma-
trix operators on manifolds, in a way that is self-contained and accessible to a wide
readership, including researchers with a background in the analysis of PDEs.

The issue of diagonalisation of matrix-functions over topological spaces and its
relation with the topology of the underlying space has, of course, been studied
before. For example, in 1984 Kadison [21] provided an explicit 2 × 2 normal con-
tinuous matrix-function on S

4 that is not globally diagonalisable and asked the
question of what topological properties of the underlying space guarantee diagonal-
isability of a 2× 2 normal continuous matrix-function. The same year, Grove and
Pedersen [17] exhibited a rather exotic class of compact Hausdorff spaces on which
the diagonalisability is guaranteed for all normal matrix-valued functions. In the
same paper, they also showed that all normal matrix-valued functions with simple
eigenvalues on a 2-connected compact CW-complex are diagonalisable [17, Theo-
rem 1.4]. More recently, Friedman and Park [16] took Grove and Pedersen’s analysis
further, investigating unitary equivalence classes of normal matrix-functions under
the assumption of simple eigenvalues.

The novelties of our work are as follows: (i) motivated by the pseudodifferential
theory and applications to partial differential operators from mathematical physics
and geometry, we examine the special case of smooth matrix-functions on the cotan-
gent bundle of a manifold M ; (ii) we formulate the problem in an operator-theoretic
framework and in the language of mathematical analysis, thus making the paper
accessible to a readership with little or no topological background; (iii) we discuss
obstructions both to the global diagonalisation and to the diagonalisation in the
cotangent fibre at a single point; (iv) we discuss explicitly numerous physically
meaningful examples, detailing, for each of them, existence or absence of local and
global topological obstructions.

Let M be a connected closed oriented smooth manifold of dimension d ≥ 2.
Local coordinates on M will be denoted by xα, α = 1, . . . , d, and coordinates in
the cotangent fibre T ∗

xM by ξα, α = 1, . . . , d. Throughout the paper we adopt
Einstein’s summation convention over repeated indices.

Let E be a trivial Cm–bundle over M with m ≥ 2. Let A be a pseudodifferential
operator of order s ∈ R acting on the sections of E and let Aprin(x, ξ) be its
principal symbol. This principal symbol is an invariantly defined m × m smooth
matrix-function on T ∗M \ {0}, positively homogeneous of degree s in ξ.

We make Assumptions 1.1 and 1.2.

Assumption 1.1. The principal symbol Aprin(x, ξ) of A is Hermitian.

Assumption 1.2. The eigenvalues of Aprin(x, ξ) are simple for all (x, ξ) ∈ T ∗M \
{0}.
Remark 1.3. Let us emphasise that ellipticity, or indeed self-adjointness, is not
needed to formulate the main results of this paper, as the examples from Sections 3–
5 will demonstrate. Note that Assumption 1.1 is weaker than formal self-adjointness
of A with respect to the inner product on sections of E defined by

(1.1) 〈u, v〉 :=
∫
M

u∗(x) v(x) ρ(x) dx ,

where ρ : M → R is some positive smooth density, the star ∗ indicates Hermitian
conjugation and dx = dx1 . . . dxd. Indeed, formal self-adjointness requires addi-
tional conditions on the lower order terms of the symbol. However, in applications,
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including applications to spectral theory, one often assumes that A is symmetric
(with respect to (1.1)) and elliptic, namely,

detAprin(x, ξ) �= 0, ∀(x, ξ) ∈ T ∗M \ {0}.

In this case, A is automatically self-adjoint in the full operator theoretic sense as
an operator acting from the Sobolev space Hs(M ;E) to L2(M ;E) with respect to
the inner product (1.1). This is a special case to which our results apply, subject
to the validity of Assumption 1.2.

Remark 1.4. Assumptions 1.1 and 1.2 are enough to guarantee that the eigenvalues
of Aprin are smooth functions on T ∗M \ {0}, see, e.g., [2, Section 7] and [23]—this
is not the case if Assumption 1.2 on the simplicity of eigenvalues is dropped.

We denote by h(j)(x, ξ) the eigenvalues of Aprin(x, ξ) and by

J ⊂ Z, #J = m,

the index set for j.1 Let us denote by P (j)(x, ξ) the eigenprojection of Aprin(x, ξ)

associated with the eigenvalue h(j)(x, ξ). It is easy to see that, for each j ∈ J , P (j)

is a uniquely defined rank 1 (in view of Assumption 1.2) smooth matrix-function on
T ∗M \ {0}. Note that the eigenvalues h(j)(x, ξ) and the eigenprojections P (j)(x, ξ)
are positively homogeneous in momentum ξ of degree s and zero, respectively.

It is natural to ask Questions 1 and 2 for each individual j ∈ J .

Question 1. For a given x ∈ M , can one choose an eigenvector v(j)(x, ξ) of
Aprin(x, ξ) corresponding to the eigenvalue h

(j)(x, ξ) smoothly for all ξ ∈ T ∗
xM\{0}?

Question 2. Suppose Question 1 has an affirmative answer. Can one choose
an eigenvector v(j)(x, ξ) of Aprin(x, ξ) corresponding to the eigenvalue h(j)(x, ξ)
smoothly for all (x, ξ) ∈ T ∗M \ {0}?

The goal of our paper is to answer Questions 1 and 2. This will be done in full
generality in Section 2.

In Sections 3–5, we will convert the abstract results of Section 2 into concrete
calculations. We shall provide several explicit physically meaningful examples which
demonstrate that, when it comes to topological obstructions, all possible scenarios
can occur:

(i) Local obstructions—massless Dirac operator (subsections 3.1 and 3.2) and
the operator curl (subsection 3.3) on a closed oriented 3-manifold;

(ii) Global obstructions but no local obstructions—restriction of the massless
Dirac operator to a 2-sphere (subsection 4.1) and an artificial example
(subsection 4.2);

(iii) Neither local nor global obstructions— linear elasticity operator on an ori-
ented Riemannian 2-manifold (subsection 5.1) and the Neumann–Poincaré
operator for 3D linear elasticity (subsection 5.2).

Finally, in Section 6 we will comment on possible generalisations.

1For the purposes of the current paper, the way in which J is chosen is unimportant. There
are, however, circumstances—for example when studying the spectrum of elliptic systems—where
it is convenient to choose the set J in a particular way, see, e.g., [8, Sec. 1], [9, Sec. 1].
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2. Main results

In this section we state and prove our main results. We are using the notation
from the previous section.

Let us begin by observing that, even though the bundle E is trivial, the range of
the eigenprojection P (j) may define a non-trivial line bundle. Clearly, when there
are no topological obstructions to the existence of a global eigenvector v(j), we have

P (j)(x, ξ) =
v(j)(x, ξ) [v(j)(x, ξ)]∗

[v(j)(x, ξ)]∗ v(j)(x, ξ)
.

Note that v(j) is only defined up to a local gauge transformation v(j) �→ z(j)v(j),
where z(j) : T ∗M \ {0} → C∗ is an arbitrary smooth function.2 Irrespective of
whether the eigenvector v(j) is defined globally, we have a well-defined smooth map

(2.1) f (j) : T ∗M \ {0} −→ CPm−1

to the complex projective space, sending (x, ξ) to the complex line through the
origin in C

m spanned by the vector v(j)(x, ξ). This map is positively homogeneous
of degree zero in momentum ξ. Choosing a smooth eigenvector v(j)(x, ξ) then
amounts to finding a smooth lift of this map with respect to the canonical projection

p : C
m \ {0} −→ CPm−1

or, after normalising our eigenvectors to have length one, with respect to the pro-
jection of the canonical circle bundle

(2.2) p : S
2m−1 −→ CPm−1

sending a point on the unit sphere S2m−1 ⊂ Cm \ {0} to the complex line through
that point. The lift in question is the dotted arrow that makes the following diagram
commute:

T ∗M \ {0}

S 2m−1

CPm−1
f (j)

p

Theorem 2.1. One can choose an eigenvector v(j)(x, ξ) smoothly for all (x, ξ) ∈
T ∗M \{0} if and only if either one of the following two equivalent conditions holds:

(1) the map (2.1) induces a zero map H2(CPm−1) −→ H2(T ∗M \ {0}) in
cohomology, or

(2) the Euler class e ∈ H2(CPm−1) of the circle bundle (2.2) pulls back to zero
via (2.1).

Proof. Finding a lift of the map (2.1) is equivalent to finding a section of the
principal circle bundle L over T ∗M \ {0} obtained by pulling back the principal
circle bundle (2.2) via the map f (j). As a principal bundle, L admits a section if
and only if it is trivial, see [20, Chapter 4, Corollary 8.3]. The triviality of L is
in turn equivalent to the vanishing of its Euler class, see [20, Chapter 20, Remark

2In agreement with standard terminology in theoretical physics, here by ‘local’ we mean that
the value of z(j) depends on (x, ξ) ∈ T ∗M \ {0}. The function z(j) itself is defined globally.
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6.2]. The latter class equals the pull-back of the Euler class e ∈ H2(CPm−1) of
the canonical bundle (2.2) via f (j). Since e generates H2(CPm−1), the proof of
the equivalence is complete. It remains only to show that the lift is smooth (the
topological arguments only guarantee a continuous lift); but smoothness follows
from the triviality of E and [2, Section 7], [23]. �

Theorem 2.2. For a fixed point x ∈ M , one can choose an eigenvector v(j)(x, ξ)
smoothly for all ξ ∈ T ∗

xM \ {0} if and only if

(1) either d �= 3, or
(2) d = 3 and the map T ∗

xM \ {0} → CPm−1 obtained by restricting the map
(2.1) to the fibre at x ∈ M is homotopic to a constant map.

Proof. The same argument as in the proof of Theorem 2.1 shows that, for a given
x ∈ M , an eigenvector v(j)(x, ξ) can be chosen smoothly for all ξ ∈ T ∗

xM \ {0} if
and only if the induced map

H2(CPm−1) −→ H2(T ∗
xM \ {0})

is zero (smoothness is obtained a posteriori by arguing as in the proof of The-
orem 2.1). Since T ∗

xM \ {0} has a sphere S d−1 as its deformation retract, the
group H2(T ∗

xM \ {0}) vanishes unless d = 3. In the case of d = 3, one only
needs to show that any map f : S2 −→ CPm−1 inducing a zero homomorphism
H2(CPm−1) → H2(S2) is homotopic to a constant map. By the cellular ap-
proximation theorem [18, Theorem 4.8], f is homotopic to a map h : S2 → CP1

into the 2-skeleton of CPm−1 with its standard cellular structure. In particular,
0 = h∗ : H2(CP1) → H2(S2). Since CP1 = S

2, the result follows from the Hopf
theorem classifying the homotopy classes of maps from a sphere to itself by their
degree; see [18, Corollary 4.25]. �

It is worth emphasising that Theorem 2.2 singles out dimension d = 3 as special.
This is very relevant in applications, as dimension three is the natural setting of a
large number of physically meaningful operators.

Remark 2.3. The existence or absence of obstructions is checked for each eigenvalue
h(j), j ∈ J , independently. Suppose that the eigenvalues h(l) and h(k), l �= k, are
unobstructed. Then the choice of a smooth global eigenvector v(l) is not affected by
and does not affect the choice of a smooth global eigenvector v(k). As soon as one
can choose smooth global eigenvectors v(j) for all j ∈ J , the results from [4] provide
an explicit algorithm for the construction of the full symbol of a pseudodifferential
operator U such that U∗AU is diagonal, i.e., the direct sum of m scalar operators
acting in L2(M), modulo an integral operator with infinitely smooth kernel.

Remark 2.4. Some further comments are in order on the importance of achieving
a global diagonalisation. Indeed, in cases where Question 2 has a negative answer,
one may still pursue a local (or even microlocal) diagonalisation of the operator A.
Unfortunately, most of the time the latter is of little or no use in applications to,
for example, spectral theory. It was shown in [4] that, in the absence of topological
obstructions, the spectrum of an operator A of positive order is asymptotically well
approximated by the union of the spectra of the scalar elliptic operators appearing
on the ‘diagonal’ of U∗AU , up to a superpolynomial error. No such results can
be established by means of mere local diagonalisation. There are, however, limited
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instances where one only needs a local diagonalisation for the spectral analysis, see
for example [27]; this justifies addressing Questions 1 and 2 separately.

When available, diagonalisability of a system substantially simplifies the spec-
tral analysis [28] and the construction of evolution operators [5, 7] by reducing the
system to scalar operators. However, diagonalising a system may not be possible
due to topological obstructions, as is the case for some important physically mean-
ingful operators; see Sections 3–5. For this reason, other approaches to the study
of the spectrum of systems, such as the use of pseudodifferential projections [8, 9],
are perhaps more natural, in that they always work and circumvent topological
obstructions altogether.

3. Examples: Local obstructions

3.1. Massless Dirac operator in 3D. Let (M, g) be a closed oriented Riemann-
ian 3-manifold. We denote by∇ the Levi–Civita connection, by Γα

βγ the Christoffel

symbols, and by ρ(x) :=
√
det gαβ the Riemannian density.

Let {ej}3j=1 be a positively oriented global framing of M , namely, a set of three
orthonormal smooth vector fields on M , whose orientation agrees with that of
M . Recall that such a global framing exists because all orientable 3-manifolds are
parallelizable [22,29]. In chosen local coordinates xα, α = 1, 2, 3, we will denote by
ej

α the α-th component of the j-th vector field. Let

σα(x) :=
3∑

j=1

sj ej
α(x)

be the projection of the standard Pauli matrices

(3.1) s1 :=

(
0 1
1 0

)
= s1 , s2 :=

(
0 −i
i 0

)
= s2 , s3 :=

(
1 0
0 −1

)
= s3

along our framing.
The massless Dirac operator acting on the sections of a trivial C2–bundle over

M is the 2× 2 differential operator defined by

(3.2) W := −iσα

(
∂

∂xα
+

1

4
σβ

(
∂σβ

∂xα
+ Γβ

αγ σ
γ

))
: H1(M ;C2) → L2(M ;C2).

The operator (3.2) is an elliptic self-adjoint differential operator of order 1. Its
principal symbol reads

(3.3) Wprin(x, ξ) = σα(x) ξα.

Furthermore, a straightforward calculation involving elementary properties of Pauli
matrices gives us the eigenvalues

h(±)(x, ξ) = ±
√

gαβ(x)ξαξβ .

Hence, the operator W satisfies Assumption 1.2.

Proposition 3.1. Fix a point x ∈ M . It is impossible to choose eigenvectors
v(±)(x, ξ) of (3.3) smoothly for all ξ ∈ T ∗

xM \ {0}.

Proof. Let us choose geodesic normal coordinates centred at x ∈ M in such a way
that ej

α(0) = δj
α. The latter can always be achieved by a rigid rotation of the

coordinate system.
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Arguing by contradiction, suppose ṽ(+)(ξ) := v(+)(0, ξ) is defined for all ξ in a
smooth manner. The eigenvectors ṽ(+)(ξ) are normalised, [ṽ(+)(ξ)]∗ṽ(+)(ξ) = 1,
and satisfy

(3.4) sαξα ṽ(+) = |ξ| ṽ(+),

where |ξ| is the Euclidean norm. Multiplying (3.4) by [ṽ(+)]�ε from the left, where
ε is the ‘metric’ spinor

(3.5) ε :=

(
0 1
−1 0

)
,

cf. [6, Appendix A.2], we obtain

(3.6) uαξα = 0,

with uα := [ṽ(+)]� εsα ṽ(+). The complex 3-vector u is isotropic,

u�u = 0,

see [10, Chapter III, Section I], has norm

(3.7) ‖u‖ =
√
2

and is invariant under rigid rotations of the normal coordinate system. Put w :=
Reu. Then formulae (3.6)–(3.7) imply

wαξα = 0, ‖w‖ = 1.

This formula provides a nowhere zero tangent vector field w on the 2-sphere |ξ| = 1,
which contradicts the hairy ball theorem; see for instance [18, Theorem 2.28]. �
3.2. A topological proof. The contradiction argument above provides an analytic
proof for the failure of the ‘topological’ condition (2) from Theorem 2.2 for the Dirac
operator in 3D. In this subsection we give an alternative proof of Proposition 3.1
for the special the case M = S3, one relying directly on Theorem 2.2.

View the round S3 as the Lie group SU(2) with the bi-invariant metric and
the unique spin structure. Identify TE(SU(2)) with the Lie algebra su(2) and the
unit sphere SE(SU(2)) ⊂ TE(SU(2)) \ {0} with the conjugacy class of zero-trace
matrices in SU(2). Here E ∈ SU(2) is the identity matrix in the Lie group SU(2).
Every matrix in SE(SU(2)) is of the form

(3.8) B

(
−i 0
0 i

)
B−1

for some B ∈ SU(2) defined uniquely up to the right multiplication by a matrix
in U(1) ⊂ SU(2). This provides for the identification SE(SU(2)) = SU(2)/U(1).
Now, the principal symbol of the Dirac operator at (E, ζ) ∈ SE(SU(2)) is given by
the Clifford multiplication iζ : C2 → C2. It is clear from the above description of
SE(SU(2)) that the eigenvalues of iζ are λ = ±1. Let λ = 1; the case of λ = −1 is
similar. Then the map (2.1) sends the matrix (3.8) to the equivalence class of the
vector

B

(
1
0

)
in CP1. With the identification SE(SU(2)) = SU(2)/U(1), one can easily check
that this map is obtained from the Hopf map SU(2) → CP1 by factoring out U(1) ⊂
SU(2). Therefore, the restriction of (2.1) to SE(SU(2)) is a homeomorphism and,
in particular, (2.1) is not homotopic to a constant map.
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3.3. The operator curl. Let (M, g) be a closed oriented Riemannian 3-manifold.
Let Ωk(M) be the Hilbert space of real-valued k-forms over M , k = 1, 2. We define
the operator curl as

curl := ∗d : Ω1(M) → Ω1(M),

where ∗ is the Hodge dual and d denotes the exterior derivative. Note that T ∗M
is trivial, see second paragraph in subsection 3.1.

The operator curl is formally self-adjoint with respect to the natural inner prod-
uct on Ω1(M), but not elliptic. Indeed, its principal symbol reads

(3.9) [(curl)prin]α
β(x, ξ) = −i Eα

βγ(x) ξγ ,

where the tensor E is defined in accordance with

Eαβγ(x) := ρ(x) εαβγ ,

ρ being the Riemannian density and ε the total antisymmetric symbol, ε123 = +1.
An elementary calculation tells us that (curl)prin has the simple eigenvalues

h(0)(x, ξ) = 0, h(±)(x, ξ) = ±
√

gμν(x) ξμξν =: ±‖ξ‖g(x) .

It follows that

det(curl)prin = 0.

Proposition 3.2. Fix a point x ∈ M . It is impossible to choose eigenvectors
v(±)(x, ξ) of (3.9) smoothly for all ξ ∈ T ∗

xM \ {0}.

Proof. Arguing by contradiction, suppose one can choose normalised eigenvectors
v(±)(x, ξ) of (3.9) smoothly for all ξ ∈ T ∗

xM \ {0},

(3.10) gαβ(x) [v(±)(x, ξ)]α [v(±)(x, ξ)]β = 1.

Here the overline denotes complex conjugation.
Let us begin by observing that (curl)prin is antisymmetric, that is,

gγβ(x) [(curl)prin]α
γ(x, ξ) = −gγα(x) [(curl)prin]β

γ(x, ξ).

It ensues that v(±)(x, ξ) are complex isotropic 3-vectors:

(3.11) gαβ(x) [v(±)(x, ξ)]α [v(±)(x, ξ)]β = 0,

compare with (3.10). Put

w(±)(ξ) := Re v(±)(x, ξ).

Formulae (3.10) and (3.11) imply

(3.12) [w(±)(ξ)]α [w(±)(ξ)]α = 1/2.

Multiplying the eigenvalue equation

−i Eα
βγ(x) ξγ [v

(±)(x, ξ)]β = ±‖ξ‖g(x) [v(±)(x, ξ)]α

for (curl)prin (recall (3.9)) by Eαμνξμ(x)[v
(±)(x, ξ)]ν one obtains

ξβ [v(±)(x, ξ)]β = 0,

which, in turn, yields

(3.13) ξβ [w(±)(ξ)]β = 0.
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Formulae (3.12) and (3.13) imply that w(±) are, modulo scaling, nowhere van-
ishing real vector fields tangent to the 2-sphere. This contradicts the hairy ball
theorem. �

4. Examples: Global obstructions but no local obstructions

4.1. Restriction of the massless Dirac operator to the 2-sphere. Let xα,
α = 1, 2, 3, be the Euclidean coordinates in R

3 and consider the massless Dirac
operator W on R3 associated with the framing ej

α(x) = δj
α, j, α = 1, 2, 3,

(4.1) W = −isα
∂

∂xα
.

Here the sα are the standard Pauli matrices (3.1).
Let W be the restriction of (4.1) to

M = S
2 := {x ∈ R

3 | (x1)2 + (x2)2 + (x3)2 = 1}
equipped with the standard round metric. Throughout this subsection, we use bold
font to denote quantities living in R

3, to distinguish them from quantities living on
S2.

The principal symbol of W can be written explicitly in terms of 3-dimensional
quantities as

(4.2) Wprin(x, ξ) =

(
ξ3 ξ1 − iξ2

ξ1 + iξ2 −ξ3

)
,

where x and ξ are subject to the conditions

(x1)2 + (x2)2 + (x3)2 = 1,(4.3)

x1ξ1 + x2ξ2 + x3ξ3 = 0.(4.4)

Proposition 4.1. It is impossible to choose eigenvectors v(±)(x, ξ) of (4.2) smooth-
ly for all (x, ξ) ∈ T ∗S2 \ {0}.

Proof. Let S∗(S2) ⊂ T ∗S2 \ {0} be the unit sphere bundle cut out by the equation

(4.5) (ξ1)
2 + (ξ2)

2 + (ξ3)
2 = 1.

One can easily see that the eigenvalues of (4.2) on S∗(S2) are h(±)(x, ξ) = ±1. Let
P (±)(x, ξ) be the eigenprojections of Wprin(x, ξ) corresponding to the eigenvalues
±1. Then a straightforward calculation shows that the maps (2.1) are given by

(4.6) T ∗
S
2 \ {0} −→ CP1 = S

2, (x, ξ) �→ tr(sαP (±)(x, ξ)) = ±ξα,

supplemented by conditions (4.3)–(4.5). Because of the symmetry between x and ξ,
the maps (4.6) can be viewed as the bundle projection f : S∗(S2) −→ S

2. By iden-
tifying S∗(S2) with the real projective space RP3, we conclude that H2(S∗(S2)) =
H2(RP3) = Z/2 and the induced map f∗ : H2(S2) −→ H2(S∗(S2)) in cohomology
is the mod 2 homomorphism f∗ : Z → Z/2. The latter can be seen from the Gysin
exact sequence of the circle bundle f : RP3 −→ S

2,

0 −−−−→ H0(S2) −−−−→ H2(S2)
p∗

−−−−→ H2(RP3) −−−−→ 0.

Since S∗(S2) is a deformation retract of T ∗S2\{0} , it follows from Theorem 2.1 that
we have a non-trivial obstruction to the existence of a smooth eigenvector v(j)(x, ξ)
for all (x, ξ) ∈ T ∗

S
2 \ {0}. Note that d = 2 in this case, hence the existence of

v(j)(x, ξ) for any fixed x ∈ S2 is unobstructed by Theorem 2.2. �
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4.2. An artificial example. In the same setting and with the same notation as
in the previous subsection, let us define

P+(x, ξ) :=
1

2
(sαx

α + E),

P−(x, ξ) := −1

2
(sαx

α − E),

where E is the 2×2 identity matrix. Using elementary properties of Pauli matrices
it is easy to see that

P+(x, ξ)P−(x, ξ) = 0 and [P±(x, ξ)]
2 = P±(x, ξ).

Let us consider an elliptic pseudodifferential operator A of order s on S2 with
principal symbol

(4.7) Aprin(x, ξ) := ‖ξ‖s[c+P+(x, ξ) + c−P−(x, ξ)], c+ �= c− , c± �= 0.

Proposition 4.2. It is impossible to choose eigenvectors v(j)(x, ξ), j ∈ J , of (4.7)
smoothly for all (x, ξ) satisfying (4.3)–(4.5).

Proof. Arguing as in the proof of Proposition 4.1, we obtain that the maps (2.1)
are given by

T ∗
S
2 \ {0} −→ CP1 = S

2, (x, ξ) �→ tr(sαP±(x, ξ)) = ±xα,

supplemented by conditions (4.3)–(4.5). These maps, once again, arise from the
cotangent bundle projection T ∗

S
2 \ {0} −→ S

2, only we now project to ‘position’,
as opposed to ‘momentum’. The same proof applies. �

5. Examples: Neither local nor global obstructions

5.1. Linear elasticity in 2D. Let M be the 2-torus T
2 endowed with a Rie-

mannian metric g. The operator of linear elasticity L on vector fields is defined in
accordance with

(5.1) (Lv)α = −μ(∇β∇βvα +Ricα β v
β)− (λ+ μ)∇α∇βv

β ,

where ∇ is the Levi-Civita connection, Ric is the Ricci tensor, and the real scalars
λ and μ are the Lamé parameters. The Lamé parameters are assumed to satisfy
the conditions

(5.2) μ > 0, λ+ μ > 0,

which guarantee strong convexity; see for instance [25]. Formula (5.1) is obtained
by performing an integration by parts in the identity

1

2

∫
M

gαβ v
α(Lv)βρ dx = E(v),

E(v) being the potential energy of elastic deformation

E(v) :=
1

2

∫
M

(
λ(∇αv

α)2 + μ(∇αvβ +∇βvα)∇αvβ
)
ρ dx

and ρ(x) :=
√

det gαβ(x) being the Riemannian density. In the presence of a bound-
ary, the latter supplies appropriate boundary conditions. A detailed derivation can
be found, for example, in [6, 24].

The operator L, which acts on 2-vectors, can be turned into an operator acting
on 2-columns of scalar functions as follows.
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Recall that the torus T2 is parallelizable. Choose a global orthonormal framing
ej , j = 1, 2, on T2 and put

ejα := δjkgαβ ek
β .

Define the operator S,

(Sv)j := ejαv
α ,

which maps 2-vectors to 2-columns of scalar functions. The operator of linear
elasticity acting on 2-columns of scalar functions is defined as

Lscal := SLS−1.

A straightforward calculation gives

(5.3) (Lscal)prin = μh2 I + (λ+ μ)h2 qq�,

where

(5.4) h(x, ξ) :=
√
gαβ(x)ξαξβ , q(x, ξ) :=

1

h(x, ξ)

(
e1

α(x) ξα
e2

α(x) ξα

)
.

Analysing (5.3) we conclude that the eigenvalues of (Lscal)prin are

(5.5) h(1) = μh2, h(2) = (λ+ 2μ)h2

and the corresponding orthonormalised eigenvectors are

(5.6) v(1) = ε q , v(2) = q.

Recall that ε is defined in accordance with (3.5). Note that the eigenvalues (5.5)
are simple; indeed, conditions (5.2) imply h(2)/h(1) > 1.

It ensues that Lscal satisfies Assumptions 1.1 and 1.2 from Section 1. Formulae
(5.4) and (5.6) imply that v(1)(x, ξ) and v(2)(x, ξ) are smoothly defined for all
(x, ξ) ∈ T ∗(T2) \ {0}.

Remark 5.1. Let us point out that this is not a trivial example: there exist systems
of two equations on T2 topologically obstructed as per Theorem 2.1. Indeed, there
exist maps S∗(T2) = T3 → CP1 that induce non-zero homomorphisms H2(CP1) →
H2(T3). To obtain an example, simply compose the projection map T

3 = T
2 ×

S1 −→ T2 with any map T2 −→ CP1 of degree one.

5.2. The Neumann–Poincaré operator for linear elasticity in 3D. Let D
be a bounded connected domain of R3 with smooth closed boundary M and let g
be the Riemannian metric on M induced by the standard Euclidean metric on R

3.
We denote by x = (x1,x2,x3) the standard Euclidean coordinates in R3.

The operator of linear elasticity L acting on vector fields in D is defined in
accordance with

(Lv)α := −μ∂β∂
βvα − (λ+ μ)∂α∂βv

β ,

where the scalars λ and μ, assumed to satisfy the conditions

μ > 0, λ+
2

3
μ > 0,

are the Lamé parameters. Compare with (5.1) and (5.2).
The Kelvin matrix

[K(x,y)]αβ :=
λ+ 3μ

4π μ(λ+ 2μ)

δαβ

|x− y| +
λ+ μ

4π μ(λ+ 2μ)

(x− y)α(x− y)β
|x− y|3
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is related to the fundamental solution E of L as

E(x,y) = 1

2
K(x,y),

see [1, Eqns. (1.23) and (1.28)] (note that the operator of linear elasticity in [1] is
defined to be −L).

We define the Neumann–Poincaré operator to be the zeroth order pseudodiffer-
ential operator acting on vector fields on M by the formula

(5.7) [Bv(x)]α :=

∫
M

δαμ δβν [T (y, ∂y)E(x,y)]νμ vβ(y) dS, x ∈ M,

with

T : uα �→ [T (x, ∂x)u(x)]
α := λnα(x)∂βu

β(x) + μ
(
nβ(x)∂βu

α(x) + nβ(x)∂
αuβ(x)

)
known as the traction. Here n denotes the outer unit normal vector field on M .
The operator B is a singular integral operator, and the integral in formula (5.7) is
to be understood in the sense of Cauchy principal value. Note that B is neither
elliptic nor self-adjoint in L2(M) [25, 28].

Remark 5.2. Let us point out that, in this example, the tangent bundle TM is not
necessarily trivial. Hence, this doesn’t fully align with the framework set out in
the beginning of the paper. Nevertheless, we analyse the issue of obstructions for
the Neumann–Poincaré operator in this slightly more general setting because of its
importance in applications.

Let x = (x1, x2) be an arbitrary local coordinate system onM . Given a point x ∈
D in a neighbourhood of M , we define x3(x) := dist(x,M) to be its distance to M
and x(x) = ΠM (x) to be its orthogonal projection onto M . Then (x = (x1, x2), x3)
defines a coordinate system in a neighbourhood of M . In this coordinate system,
the principal symbol of B reads [1, Eqn. (1.89)]3

(5.8)

Bprin(x, ξ) = − iμ

2(λ+ 2μ)

1√
gμν(x) ξμξν

(
0 −gαγ(x) ξγ
ξβ 0

)
, (x, ξ) ∈ T ∗M \ {0}.

The zero in the upper-left corner of the matrix in (5.8) is a 2 × 2 block of zeros.
The principal symbol (5.8) acts on quantities of the form(

w
f

)
,

where w is a vector field on M and f is a scalar field on M . A straightforward
calculation shows that the eigenvalues of (5.8) are

(5.9) h(0)(x, ξ) = 0, h(±)(x, ξ) = ± μ

2(λ+ 2μ)
.

Theorem 5.3. One can choose linearly independent orthonormal eigenvectors
v(0)(x, ξ) and v(±)(x, ξ) of (5.8) corresponding to the eigenvalues (5.9) smoothly
for all (x, ξ) ∈ T ∗M \ {0}.

3Note that formula (1.89) in [1] has the opposite sign, because the authors there started from
the operator −L as opposed to L.
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Proof. Since dimM �= 3, there are no local obstructions. To sort out global ob-
structions, we will work with the unit sphere bundle S∗M , which is a deformation
retract of T ∗M \ {0}. By direct inspection, the eigenvectors v(±) corresponding to
the non-zero eigenvalues give rise to the maps

(5.10) f (±) : S∗M −→ CP2, (x, ξ) �→ n(x)± iξ.

Formula (5.10), in fact, implies that one has well-defined smooth eigenvectors in S5

and not just in CP2, which yields global existence.
Let us now examine global obstructions for the eigenvector v(0) with zero eigen-

value. Observe that v(0) can be chosen to be real; hence v(0) gives rise to the
map

f (0) : S∗M −→ RP2

sending (x, ξ) to the line L ⊂ TxM perpendicular to ξ ∈ TxM . A choice of complex
structure4 on M gives us a preferred direction of rotation in each tangent plane
TxM , and hence a consistent choice of a specific unit vector on the line L. �

6. Pseudodifferential operators with multiplicities

In conclusion, we wish to mention that there are many pseudodifferential oper-
ators whose principal symbols have multiple eigenvalues. The list of such opera-
tors includes the Neumann–Poincaré operator in higher dimensions, the operator
of linear elasticity in dimensions three and higher, the signature operator, Dirac
operators in higher dimensions etc. It would be interesting to investigate the diag-
onalisation question for these operators; here is a quick outline.

An eigenvalue of multiplicity k ≥ 1 leads as before to a well-defined map T ∗M \
{0} → Grk(C

m) to the Grassmanian of k-dimensional complex planes in Cm. This
map needs to be lifted to the canonical bundle Vk(C

m) → Grk(C
m), where Vk(C

m)
stands for the Stiefel manifold of k-frames in Cm. The case k = 1 corresponds
to the map (2.1) and the canonical bundle (2.2) because V1(C

m) = S
2m−1 and

Gr1(C
m) = CPm−1.

The lifting problem at hand is obstructed by the higher Chern classes c1, . . . , ck.
This is consistent with the k = 1 case because the first Chern class of a complex
line bundle coincides with the Euler class of the same bundle viewed as an oriented
2-plane bundle. Unlike in the k = 1 case, however, the Chern classes do not provide
in general a full set of obstructions: there exist non-trivial complex bundles all of
whose Chern classes vanish. A simple example of that is the U(2) bundle over
S
5 with the clutching function S

4 → U(2) representing the non-trivial element in
π4(U(2)) = Z/2.

The above discussion illustrates that the case of operators with multiplicities is
quite different: one would not be able to obtain as sharp results in full generality
(see also [16, 17] and Remark 1.4), and more of a case-by-case analysis would be
required. Hence, we refrain from analysing operators with multiplicities in this
paper.

4Here we are using the fact that an oriented closed two-dimensional surface is a Riemann
surface, hence it admits a complex structure, see [15, Subsection 2.1].
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