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ABSTRACT: Complex [(BDI)VCl(N{SiMe3}2)] (1) (BDI− = [ArNC(CH3)]2CH, Ar = 2,6-iPr2C6H3), a precursor readily prepared 
from metathesis of [(BDI)VCl2] and Na[N{SiMe3}2], can be reduced with Na/NaCl in the presence of white P4 to form a dinu-
clear species containing two VIII centers bridged by a tricyclic [P6]2− scaffold, namely [(BDI)V(N{SiMe3}2)]2(-1:1-P6) (2).  
Coordination of the [P6]2− involves a unique chair-like -1:1 binding mode with a contiguous tricyclic hexa-phosphorus unit 
bridging across the two V centers.  Complexes 1 and 2 have been structurally characterized and the pathway towards the 
formation of  the chair-like tricyclic [P6]2− scaffold in 2 is proposed.

Structural archetypes of P6 are known to bridge across two 
metal ions and such catenated scaffolds offer a variety of co-
ordination modes depending on the metal framework.  Ex-
amples of bridging LnM(P6)MLn involve the more common 
planar geometry with a -6:6 bonding mode (Figure 1A),1 
as well as chair-like -3:3 (Figure 1B),2 bicyclic -3:3 
(Figure 1C),3 -2:2 (Figure 1D),4 and a -2:2 mode which 
is best represented as two P−P coupled triphosphirenes re-
duced each by a powerful NbIII -base5 or the dianionic P−P 
bridged -2:2 complex in the case of AlIII (Figure 1E).6 By 
using a sterically protected vanadium center we now report 
a new bonding mode of P6, which involves a unique -1:1 
arrangement having three contiguous phosphorus rings 
bridging across the two VIII centers in a chair-like fashion 
(Figure 1F). We propose this unusual scaffold to form via 
[2+2]-cycloaddition of two VIII-phosphirenes where sterics 
discourage the formation of the well-established cyclo-P3 
ligand.7, 8  

 Not long ago we reported the synthesis and spec-
troscopic studies of cyclo-P3 complexes of VV.7 The cyclo-P3 
unit can be assembled via the reaction of VII synthons such 
as [(BDI)V(3-Ntolyl2)] (BDI− = [ArNC(CH3)]2CH, Ar = 2,6-
iPr2C6H3; tolyl = 4-MeC6H4)9 and [(BDI)V(OAr)]2(μ2-η1:η1-
N2)10 or a bonafide three-coordinate VII complex 
[(BDI)V(OAr)] with white phosphorus (P4).10 More conven-
iently, the cyclo-P3 framework can be integrated, in one step, 
via 1e– reduction of the VIII halide precursors 
[(BDI)VCl(Ntolyl2)] and [(BDI)VCl(OAr)] in the presence of 
P4.7 Activation of P4 is quite a complex reaction with various 
mechanistic scenarios,11 and it has been shown that steric 
congestion12, 13 is a critical factor that can change the out-
come of the reaction.  For instance, reducing sterics can dis-
favor isolation of a terminal M≡P ligand and push the reac-
tion to form either a bridging M=P=M or M(cyclo-P3) as 
shown in the mechanistic studies by Cummins, Rybak-
Akimova, Hoff and co-workers.13 As such, we reasoned that 
more steric crowding of a low-valent VII ion would discour-
age the formation of the V(cyclo-P3) ligand framework. 

Given that ligands such as −Ntolyl2 and −OAr are known to 
favor cyclo-P3 formation in a VII ion,7 we resorted to using 
the ubiquitous but more sterically encumbering 
[N{SiMe3}2]− ligand with this ion and explored its chemistry 
with P4. 

 Accordingly, treatment of [(BDI)VCl2]14 with one 
equiv of NaN{SiMe3}2 in toluene resulted in a color change 
to dark green over a period of 16 h at room temperature.  
Separation of the salt followed by crystallization of a con-
centrated pentane solution cooled to -35 oC afforded green 
colored crystals of the VIII precursor [(BDI)VCl(N{SiMe3}2)] 
(1) in 64% yield (Scheme 1). Complex 1 is paramagnetic 
based on the broad resonances spread over 77 to -0.5 ppm15 
and a solution state magnetic susceptibility study is con-
sistent with a VIII ion (S = 1) system having two unpaired 

 

Figure 1. Examples of cyclo-P6 ligands bridging two transi-
tion metals (A-C, E) and main group metals (E and D) includ-
ing the work reported here. A: [M] = 5 substituted cyclopen-
tadienyls of V, Nb, Mo, W; B: [Ti] = Cp*Ti; C: [Th] = Th(5-1,3-
tBu2C5H3); D: [Ga] = LGa (L = Dipp(4-(Dipp-imino)pent-2-en-
2-yl)amide; Dipp: 2,6-diisopropylphenyl) E: [M] = 
Nb(OSitBu3)3 and [M] = [K{Al(SiNDipp)}]2 (SiN-
Dipp={CH2SiMe2NDipp}2); F: [V] = V(BDI)(N{SiMe3}2).  



 

electrons (eff = 2.65 , 25 oC, C6D6).  The electronic absorp-
tion spectrum of 1 (0.056 mM in THF) displays intense 
charge transfer bands at 332 nm (ε = 14804 M−1 cm−1), 314 
(ε = 15732 M−1 cm−1), and 268 nm (ε= 14679 M−1 cm−1), as 
well as a very intense LMCT transition at 234 nm (ε = 16804 
M−1 cm−1) (Figure S5). To conclusively establish the connec-
tivity and geometry of 1, an X-ray diffraction study of a sin-
gle crystal (scXRD) was undertaken.  Figure 2 shows the mo-
lecular structure of 1 revealing the VIII center to have a 
pseudo tetrahedral geometry (4 = 0.87 and δ = 0.80).16 
Similar to other four-coordinate VIII systems,9, 10, 14, 17 the V 
center in 1 is out of the NCCCN plane to minimize steric con-
gestion around the coordination sphere, and the V−Namide 
bond distance of 1.931(1) Å is shorter than the V−NBDI bond 
distances of 1.995(1) Å and 1.991(1) Å. Furthermore, the 
two -SiMe3 substituents on the amide ligand are oriented 

perpendicular to the NCCN plane to avoid steric repulsion 
between the isopropyl and trimethylsilyl substituents.  

 Having prepared 1, we then followed a similar pro-
tocol to how the previous VIII halide precursors were re-
duced in the presence of P4. Treatment of 1 with Na/NaCl in 
Et2O/toluene in the presence of P4 at room temperature 
caused a gradual change in color from dark green to brown. 
Workup of the reaction mixture and crystallization of the 

residue from pentane/THF resulted in the formation of 
[(BDI)V(N{SiMe3}2)]2(-1:1-P6) (2) as brown colored 
crystals in 34% yield.  Unlike the known cyclo-P3 complexes 
of vanadium,7, 9 complex 2 shows decreased solubility in 
non-polar solvents. A solid state single crystal XRD (scXRD) 
study allowed us to identify this species to be the dinuclear 
V2III,III system bridged by a P6 unit, namely 
[(BDI)V(N{SiMe3}2)]2(-1:1-P6) (2) (Scheme 1 and Figure 
2). Although various bridging modes for P6 are known (vide 
supra, Figure 1), the structure of 2 does offer quite a few 
surprises. The most salient feature is the geometry of the P6 
framework, which has a chair-like conformation resulting 
from the fusion of 3-4-3 P-based rings to give the tricy-
clo[3.1.0.02,4]hexaphosphane bridging motif. Such a tricyclic 
framework bridges each VIII center via binding through one 
of the P-atoms. Since complex 2 crystallizes in P21/n space 
group, an inversion center at the centroid of the P4 ring sym-
metrically relates the two halves, specifically the fragments 
[(BDI)V(N{SiMe3}2)(1-P3)] (A, Scheme 1) and a mirror 
plane perpendicular to the P4 ring and passing through each 
of the V atoms, relates each half of the molecule within A. 
Each P-atom about the P6 ligand is pyramidalized, with 
P1−P2 and P1−P3 bond distances being 2.1850(7) and 
2.1740(7) Å in accord with single bonds, and P2−P3’ and 
P2−P3 bond distances of 2.2612(7) and 2.2348(8) Å being 
slightly longer than a P−P single bond.18 The P4 square in 
complex 2 with PPP bond angles of 91.7(3)° and the cyclic 
P3 rings with PPP bond angles of 60.3(2)° are linked by a 
slightly obtuse angle of 94.99(3)°. The V−P distance of 
2.4391(6) Å is also in agreement with VIII phosphido-like 
given the similarity to distances found in the four-coordi-
nate VIII [(BDI)V(PHTrip)2] (Trip = 2,4,6-iPr3C6H2; V−Pphos-

phide = 2.383(6) and 2.443(5) Å)19 and other vanadium-phos-
phido and μ2-phosphinidene complexes.20  The geometry of 
the four-coordinate VIII ion (4 = 0.82 and δ = 0.80)16 is quite 
similar to that of precursor 1 and implies an overall similar 
electronic structure of the d2-metal ion.  These features are 
also corroborated by the similar electronic absorption spec-
trum of 2 (0.013 mM in THF) at 372 nm (ε = 44531 
M−1 cm−1), 358 nm (ε = 49077 M−1 cm−1), 272 (ε = 51000 

 

Scheme 1. Synthesis of complex 1 and subsequent reduction 
in the presence of P4 to form the P6 bridged dimer 2. Two 
likely proposed intermediates are shown enroute to 2. 

 

 

 

Figure 2. Molecular structures of 1 (top) and 2 (bottom). 
Thermal ellipsoids are at 50% probability. H-atoms are omit-
ted for clarity.  

 



 

M−1 cm−1), and 228 nm (ε = 76462 M−1 cm−1) (Figure S6). As 
a result, complex 2 is paramagnetic and a solution-state Ev-
ans shows a eff = 3.60  (25 oC, C6D6) in accord with a high-
spin and dinuclear V2III,III. 

The formation of complex 2 is not only structurally 
unique but also interesting in how the tricyclic ring forms 
and binds. Following reduction of 1 to divalent 
[(BDI)V(N{SiMe3}2)],15 P4 is then reductively converted to 
what we speculate to be the phosphirene intermediate A 
(Scheme 1). This reaction in and of itself is quite intriguing 
and complex since it likely operates via a bimolecular path-
way akin to what was originally proposed by Cummins, 
Rybak-Akimova, and Hoff based on a combination of ther-
mochemical, kinetic, and quantum chemical studies using P4 
and [Mo(N[tBu]Ar’)3] (Ar’ = 3,5-Me2C6H3).13 However, the 
steric nature of the [N{SiMe3}2]− in 1 most likely discourages 
further reduction of the P=P motif in A to furnish a more 
thermodynamically stable cyclo-P3 complex 
[(BDI)V(N{SiMe3}2))(cyclo-P3)] (B). We hypothesize that 
the VIII is not a powerful -base hence discouraging for-
mation of a bicyclic scaffold like the one described in Figure 
1E. Likewise, formation of a putative phosphido 
[(BDI)V(P)(N{SiMe3}2)] with extrusion of P2 would not be as 
thermodynamically favored, so the system instead chooses 
to undergo [2+2]-cycloaddition chemistry involving the re-
active P=P bonds to furnish the tricyclic [P6]2− framework in 
2. Examples of such dimerization of phosphirene fragments 
have been reported in the literature.21 

 In conclusion, we have shown how steric tuning of 
a monoanionic ligand in a species such as [(BDI)V(L)] (L− = 
Ntolyl2, OAr, N{SiMe3}2) discourages the formation of the cy-
clo-P3 ligand when L is the bulkier [N{SiMe3}2]− ligand.  This 
feature also hints to the reactive nature of P=P bonds and 
the weaker -basicity of VIII thus allowing us to isolate a new 
archetype of P6.  
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