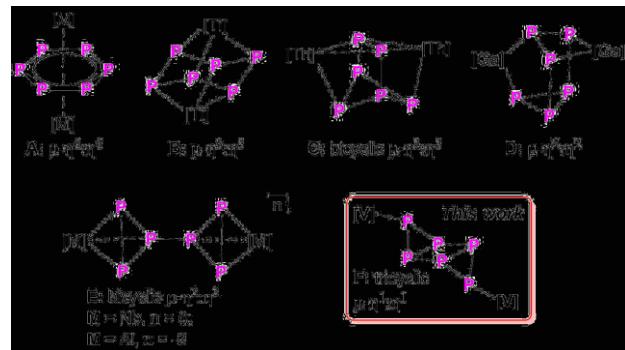


A Contiguous Tricyclic $[P_6]^{2-}$ Framework Spanning Across Two Vanadium(III) Centers.


Shuruthi Senthil, Michael R. Gau, and Daniel J. Mindiola*

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104 (USA).

ABSTRACT: Complex $[(BDI)VCl(N\{SiMe_3\}_2)]$ (**1**) ($BDI^- = [ArNC(CH_3)]_2CH$, $Ar = 2,6'-Pr_2C_6H_3$), a precursor readily prepared from metathesis of $[(BDI)VCl_2]$ and $Na[N\{SiMe_3\}_2]$, can be reduced with $Na/NaCl$ in the presence of white P_4 to form a dinuclear species containing two V^{III} centers bridged by a tricyclic $[P_6]^{2-}$ scaffold, namely $[(BDI)V(N\{SiMe_3\}_2)]_2(\mu-\eta^1:\eta^1-P_6)$ (**2**). Coordination of the $[P_6]^{2-}$ involves a unique chair-like $\mu-\eta^1:\eta^1$ binding mode with a contiguous tricyclic hexa-phosphorus unit bridging across the two V centers. Complexes **1** and **2** have been structurally characterized and the pathway towards the formation of the chair-like tricyclic $[P_6]^{2-}$ scaffold in **2** is proposed.

Structural archetypes of P_6 are known to bridge across two metal ions and such catenated scaffolds offer a variety of coordination modes depending on the metal framework. Examples of bridging $L_nM(P_6)ML_n$ involve the more common planar geometry with a $\mu-\eta^6:\eta^6$ bonding mode (Figure 1A),¹ as well as chair-like $\mu-\eta^3:\eta^3$ (Figure 1B),² bicyclic $\mu-\eta^3:\eta^3$ (Figure 1C),³ $\mu-\eta^2:\eta^2$ (Figure 1D),⁴ and a $\mu-\eta^2:\eta^2$ mode which is best represented as two P-P coupled triphosphirenes reduced each by a powerful Nb^{III} π -base⁵ or the dianionic P-P bridged $\mu-\eta^2:\eta^2$ complex in the case of Al^{III} (Figure 1E).⁶ By using a sterically protected vanadium center we now report a new bonding mode of P_6 , which involves a unique $\mu-\eta^1:\eta^1$ arrangement having three contiguous phosphorus rings bridging across the two V^{III} centers in a chair-like fashion (Figure 1F). We propose this unusual scaffold to form via [2+2]-cycloaddition of two V^{III} -phosphirenes where sterics discourage the formation of the well-established *cyclo-P₃* ligand.^{7,8}

Not long ago we reported the synthesis and spectroscopic studies of *cyclo-P₃* complexes of V^{II} .⁷ The *cyclo-P₃* unit can be assembled via the reaction of V^{II} synthons such as $[(BDI)V(\eta^3-Ntoly_2)]$ ($BDI^- = [ArNC(CH_3)]_2CH$, $Ar = 2,6'-Pr_2C_6H_3$; tolyl = $4-MeC_6H_4$)⁹ and $[(BDI)V(OAr)]_2(\mu_2-\eta^1:\eta^1-N_2)$ ¹⁰ or a bona fide three-coordinate V^{II} complex $[(BDI)V(OAr)]$ with white phosphorus (P_4).¹⁰ More conveniently, the *cyclo-P₃* framework can be integrated, in one step, via $1e^-$ reduction of the V^{III} halide precursors $[(BDI)VCl(Ntoly_2)]$ and $[(BDI)VCl(OAr)]$ in the presence of P_4 .⁷ Activation of P_4 is quite a complex reaction with various mechanistic scenarios,¹¹ and it has been shown that steric congestion^{12,13} is a critical factor that can change the outcome of the reaction. For instance, reducing sterics can disfavor isolation of a terminal $M \equiv P$ ligand and push the reaction to form either a bridging $M=P=M$ or $M(cyclo-P_3)$ as shown in the mechanistic studies by Cummins, Rybak-Akimova, Hoff and co-workers.¹³ As such, we reasoned that more steric crowding of a low-valent V^{II} ion would discourage the formation of the $V(cyclo-P_3)$ ligand framework.

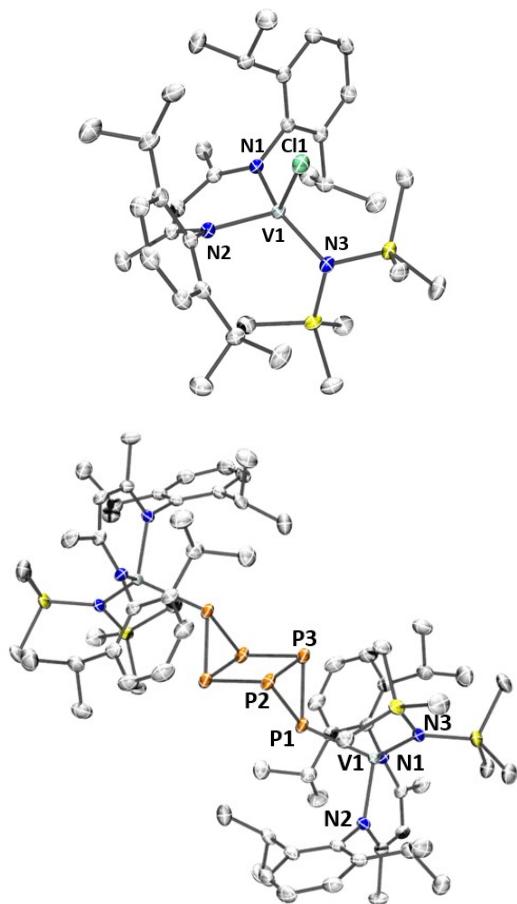


Figure 1. Examples of *cyclo-P₆* ligands bridging two transition metals (**A-C, E**) and main group metals (**D** and **F**) including the work reported here. **A:** $[M] = \eta^5$ substituted cyclopentadienyls of V , Nb , Mo , W ; **B:** $[Ti] = Cp^*Ti$; **C:** $[Th] = Th(\eta^5-1,3-2Bu_2C_5H_3)$; **D:** $[Ga] = LGa$ ($L = Dipp(4-(Dipp-imino)pent-2-en-2-yl)amide$; $Dipp: 2,6$ -diisopropylphenyl) **E:** $[M] = Nb(OSi^3Bu_3)_3$ and $[M] = [K\{Al(SiNDipp)\}]_2$ ($SiNDipp = \{CH_2SiMe_2NDipp\}_2$); **F:** $[V] = V(BDI)(N\{SiMe_3\}_2)$.

Given that ligands such as $Ntoly_2$ and OAr are known to favor *cyclo-P₃* formation in a V^{II} ion,⁷ we resorted to using the ubiquitous but more sterically encumbering $N\{SiMe_3\}_2$ ligand with this ion and explored its chemistry with P_4 .

Accordingly, treatment of $[(BDI)VCl_2]$ ¹⁴ with one equiv of $NaN\{SiMe_3\}_2$ in toluene resulted in a color change to dark green over a period of 16 h at room temperature. Separation of the salt followed by crystallization of a concentrated pentane solution cooled to -35 $^{\circ}C$ afforded green colored crystals of the V^{III} precursor $[(BDI)VCl(N\{SiMe_3\}_2)]$ (**1**) in 64% yield (Scheme 1). Complex **1** is paramagnetic based on the broad resonances spread over 77 to -0.5 ppm¹⁵ and a solution state magnetic susceptibility study is consistent with a V^{III} ion ($S = 1$) system having two unpaired

electrons ($\mu_{\text{eff}} = 2.65 \mu_{\text{B}}$, 25 °C, C₆D₆). The electronic absorption spectrum of **1** (0.056 mM in THF) displays intense charge transfer bands at 332 nm ($\epsilon = 14804 \text{ M}^{-1} \text{ cm}^{-1}$), 314 ($\epsilon = 15732 \text{ M}^{-1} \text{ cm}^{-1}$), and 268 nm ($\epsilon = 14679 \text{ M}^{-1} \text{ cm}^{-1}$), as well as a very intense LMCT transition at 234 nm ($\epsilon = 16804 \text{ M}^{-1} \text{ cm}^{-1}$) (Figure S5). To conclusively establish the connectivity and geometry of **1**, an X-ray diffraction study of a single crystal (scXRD) was undertaken. Figure 2 shows the molecular structure of **1** revealing the V^{III} center to have a pseudo tetrahedral geometry ($\tau_4 = 0.87$ and $\tau_6 = 0.80$).¹⁶ Similar to other four-coordinate V^{III} systems,^{9, 10, 14, 17} the V center in **1** is out of the NCCN plane to minimize steric congestion around the coordination sphere, and the V–N_{amide} bond distance of 1.931(1) Å is shorter than the V–N_{BDI} bond distances of 1.995(1) Å and 1.991(1) Å. Furthermore, the two -SiMe₃ substituents on the amide ligand are oriented

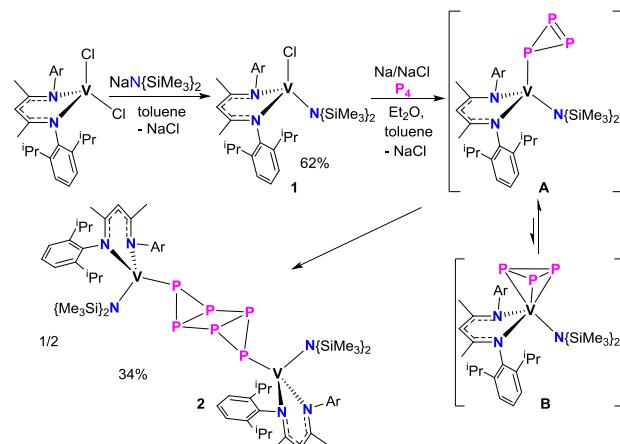


Figure 2. Molecular structures of **1** (top) and **2** (bottom). Thermal ellipsoids are at 50% probability. H-atoms are omitted for clarity.

perpendicular to the NCCN plane to avoid steric repulsion between the isopropyl and trimethylsilyl substituents.

Having prepared **1**, we then followed a similar protocol to how the previous V^{III} halide precursors were reduced in the presence of P₄. Treatment of **1** with Na/NaCl in Et₂O/toluene in the presence of P₄ at room temperature caused a gradual change in color from dark green to brown. Workup of the reaction mixture and crystallization of the

residue from pentane/THF resulted in the formation of $[(\text{BDI})\text{V}(\text{N}(\text{SiMe}_3)_2)]_2(\mu\text{-}\eta^1\text{-}\eta^1\text{-P}_6)$ (**2**) as brown colored crystals in 34% yield. Unlike the known cyclo-P₃ complexes of vanadium,^{7, 9} complex **2** shows decreased solubility in non-polar solvents. A solid state single crystal XRD (scXRD) study allowed us to identify this species to be the dinuclear V₂^{III, III} system bridged by a P₆ unit, namely $[(\text{BDI})\text{V}(\text{N}(\text{SiMe}_3)_2)]_2(\mu\text{-}\eta^1\text{-}\eta^1\text{-P}_6)$ (**2**) (Scheme 1 and Figure 2). Although various bridging modes for P₆ are known (*vide supra*, Figure 1), the structure of **2** does offer quite a few surprises. The most salient feature is the geometry of the P₆ framework, which has a chair-like conformation resulting from the fusion of 3-4-3 P-based rings to give the tricyclo[3.1.0.0^{2,4}]hexaphosphane bridging motif. Such a tricyclic framework bridges each V^{III} center via binding through one of the P-atoms. Since complex **2** crystallizes in P2₁/n space group, an inversion center at the centroid of the P₄ ring symmetrically relates the two halves, specifically the fragments $[(\text{BDI})\text{V}(\text{N}(\text{SiMe}_3)_2)(\eta^1\text{-P}_3)]$ (**A**, Scheme 1) and a mirror plane perpendicular to the P₄ ring and passing through each of the V atoms, relates each half of the molecule within **A**. Each P-atom about the P₆ ligand is pyramidalized, with P1–P2 and P1–P3 bond distances being 2.1850(7) and 2.1740(7) Å in accord with single bonds, and P2–P3' and P2–P3 bond distances of 2.2612(7) and 2.2348(8) Å being slightly longer than a P–P single bond.¹⁸ The P₄ square in complex **2** with PPP bond angles of 91.7(3)° and the cyclic P₃ rings with PPP bond angles of 60.3(2)° are linked by a slightly obtuse angle of 94.99(3)°. The V–P distance of 2.4391(6) Å is also in agreement with V^{III} phosphido-like given the similarity to distances found in the four-coordinate V^{III} $[(\text{BDI})\text{V}(\text{PHTrip})_2]$ (Trip = 2,4,6-ⁱPr₃C₆H₂; V–P_{phos}

Scheme 1. Synthesis of complex **1** and subsequent reduction in the presence of P₄ to form the P₆ bridged dimer **2**. Two likely proposed intermediates are shown *enroute* to **2**.

phide = 2.383(6) and 2.443(5) Å¹⁹ and other vanadium-phosphido and μ^2 -phosphinidene complexes.²⁰ The geometry of the four-coordinate V^{III} ion ($\tau_4 = 0.82$ and $\tau_6 = 0.80$)¹⁶ is quite similar to that of precursor **1** and implies an overall similar electronic structure of the d²-metal ion. These features are also corroborated by the similar electronic absorption spectrum of **2** (0.013 mM in THF) at 372 nm ($\epsilon = 44531 \text{ M}^{-1} \text{ cm}^{-1}$), 358 nm ($\epsilon = 49077 \text{ M}^{-1} \text{ cm}^{-1}$), 272 ($\epsilon = 51000$

$M^{-1} \text{cm}^{-1}$), and 228 nm ($\epsilon = 76462 \text{ M}^{-1} \text{cm}^{-1}$) (Figure S6). As a result, complex **2** is paramagnetic and a solution-state Evans shows a $\mu_{\text{eff}} = 3.60 \mu_{\text{B}}$ (25 °C, C₆D₆) in accord with a high-spin and dinuclear V₂^{III,III}.

The formation of complex **2** is not only structurally unique but also interesting in how the tricyclic ring forms and binds. Following reduction of **1** to divalent $[(\text{BDI})\text{V}(\text{N}\{\text{SiMe}_3\}_2)]$,¹⁵ P₄ is then reductively converted to what we speculate to be the phosphirene intermediate **A** (Scheme 1). This reaction in and of itself is quite intriguing and complex since it likely operates via a bimolecular pathway akin to what was originally proposed by Cummins, Rybak-Akimova, and Hoff based on a combination of thermochemical, kinetic, and quantum chemical studies using P₄ and $[\text{Mo}(\text{N}[\text{'Bu}]\text{Ar}')_3]$ (Ar' = 3,5-Me₂C₆H₃).¹³ However, the steric nature of the $[\text{N}\{\text{SiMe}_3\}_2]^-$ in **1** most likely discourages further reduction of the P=P motif in **A** to furnish a more thermodynamically stable *cyclo-P₃* complex $[(\text{BDI})\text{V}(\text{P})(\text{N}\{\text{SiMe}_3\}_2)](\text{cyclo-P}_3)$ (**B**). We hypothesize that the V^{III} is not a powerful π -base hence discouraging formation of a bicyclic scaffold like the one described in Figure 1E. Likewise, formation of a putative phosphido $[(\text{BDI})\text{V}(\text{P})(\text{N}\{\text{SiMe}_3\}_2)]$ with extrusion of P₂ would not be as thermodynamically favored, so the system instead chooses to undergo [2+2]-cycloaddition chemistry involving the reactive P=P bonds to furnish the tricyclic [P₆]²⁻ framework in **2**. Examples of such dimerization of phosphirene fragments have been reported in the literature.²¹

In conclusion, we have shown how steric tuning of a monoanionic ligand in a species such as $[(\text{BDI})\text{V}(\text{L})]$ (L⁻ = Ntolyl₂, OAr, N{SiMe₃}₂) discourages the formation of the *cyclo-P₃* ligand when L is the bulkier $[\text{N}\{\text{SiMe}_3\}_2]^-$ ligand. This feature also hints to the reactive nature of P=P bonds and the weaker π -basicity of V^{III} thus allowing us to isolate a new archetype of P₆.

ASSOCIATED CONTENT

Supporting Information

Synthetic procedures, NMR and UV-vis spectroscopies. This material is available free of charge via the Internet at <http://pubs.acs.org>.

Accession codes

CCDC structures 2225084 and 2225085 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic DataCentre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

*Daniel J. Mindiola ORCID: 0000-0001-8205-7868
mindiola@sas.upenn.edu

Authors

Shuruthi Senthil ORCID: 0000-0002-5518-3831
Michael R. Gau ORCID: 0000-0002-4790-6980

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank the U.S. National Science Foundation (NSF; Grants CHE-0848248 and CHE-1152123) and the University of Pennsylvania for funding. S.S. acknowledges John Russell for offering some of the starting material and Pavel Zatsepin for insightful discussions related to this project.

ABBREVIATIONS

HMDS: $^-\text{N}\{\text{SiMe}_3\}_2$, *i*Pr: *iso*-propyl, Cp*: pentamethylcyclopentadienyl, Me: methyl, BDI⁻ = $[\text{ArNC}(\text{CH}_3)]_2\text{CH}$, Ar = 2,6-*i*Pr₂C₆H₃

REFERENCES

- (1) (a) Fleischmann, M.; Heindl, C.; Seidl, M.; Balazs, G.; Virovets, A. V.; Peresypkina, E. V.; Tsunoda, M.; Gabbai, F. P.; Scheer, M. Discrete and extended supersandwich structures based on weak interactions between phosphorus and mercury. *Angew. Chem. Int. Ed. Engl.* **2012**, *51* (39), 9918-9921. DOI: 10.1002/anie.201204686. (b) Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. Hexaphosphabenzeno as Complex Ligand. *Angew. Chem. Int. Ed. Engl.* **1985**, *24* (4), 351-353. DOI: 10.1002/anie.198503511. (c) Scherer, O. J.; Vondung, J.; Wolmershäuser, G. Tetraphosphacyclobutadiene as Complex Ligand. *Angew. Chem. Int. Ed. Engl.* **1989**, *28* (10), 1355-1357. DOI: 10.1002/anie.198913551. (d) Herberhold, M.; Frohmader, G.; Milius, W. Phosphorus Complexes Derived from Halfsandwich Vanadium Compounds. *Phosphorus, Sulfur, Silicon Relat. Elem.* **1994**, *93* (1-4), 205-208. DOI: 10.1080/10426509408021817. (e) Reddy, A. C.; Jemmis, E. D.; Scherer, O. J.; Winter, R.; Heckmann, G.; Wolmershäuser, G. Electronic structure of triple-decker sandwich complexes with P₆ middle rings. Synthesis and x-ray structure determination of bis(η^5 -1,3-di-*tert*-butylcyclopentadienyl)(μ - η^6 : η^6 -hexaphosphorin)dinobium. *Organometallics* **2002**, *21* (11), 3894-3900. DOI: 10.1021/om00059a064. (f) Scherer, O. J.; Schwalb, J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Gross, R. Tripeldecker-Sandwichkomplexe mit *cyclo-P₆*-Mitteldeck. *Chem. Ber.* **2006**, *121* (3), 443-449. DOI: 10.1002/cber.19881210309. (2) Scherer, O. J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Kohlmann, S. $[(\eta^5\text{-C}_5\text{Me}_5)_2\text{Ti}_2\text{P}_6]$, a Distorted Dimetallaphosphacubane. *Angew. Chem. Int. Ed. Engl.* **1987**, *26* (11), 1153-1155. DOI: 10.1002/anie.198711531. (3) Scherer, O. J.; Werner, B.; Heckmann, G.; Wolmershäuser, G. Bicyclic P₆ as Complex Ligand. *Angew. Chem. Int. Ed. Engl.* **1991**, *30* (5), 553-555. DOI: 10.1002/anie.199105531. (4) Hennersdorf, F.; Frotschel, J.; Weigand, J. J. Selective Derivatization of a Hexaphosphane from Functionalization of White Phosphorus. *J. Am. Chem. Soc.* **2017**, *139* (41), 14592-14604. DOI: 10.1021/jacs.7b07704. (5) Hulley, E. B.; Wolczanski, P. T.; Lobkovsky, E. B. $[(\text{silox})_3\text{M}]_2(\mu\text{:}\eta^1,\eta^1\text{-P}_2)$ (M = Nb, Ta) and $[(\text{silox})_3\text{Nb}]_2(\mu\text{:}\eta_2,\eta_2\text{-}(\text{tP}_3\text{-P}_3))$ from $(\text{silox})_3\text{M}$ (M = NbPMe₃, Ta) and P₄ (silox = *t*Bu₂SiO). *Chem. Commun.* **2009**, *(42)*, 6412-6414. DOI: 10.1039/b911275h. (6) Hill, M. S.; Mahon, M. F.; McMullin, C. L.; Neale, S. E.; Pearce, K. G.; Schwamm, R. J. White Phosphorus Reduction and Oligomerization by a Potassium Diamidoalumanyl. *Z. Anorg. Allg. Chem.* **2021**, *648* (19), e202200224. DOI: 10.1002/zaac.202200224. (7) Pinter, B.; Smith, K. T.; Kamitani, M.; Zolnhofer, E. M.; Tran, B. L.; Fortier, S.; Pink, M.; Wu, G.; Manor, B. C.; Meyer, K.; et al. Cyclo-P₃ Complexes of Vanadium: Redox Properties and Origin of the ³¹P

NMR Chemical Shift. *J. Am. Chem. Soc.* **2015**, *137* (48), 15247-15261. DOI: 10.1021/jacs.5b10074.

(8) (a) Cossairt, B. M.; Diawara, M. C.; Cummins, C. C. Facile synthesis of AsP₃. *Science* **2009**, *323* (5914), 602. DOI: 10.1126/science.1168260. (b) Tofan, D.; Cossairt, B. M.; Cummins, C. C. White phosphorus activation at a metal-phosphorus triple bond: a new route to cyclo-triphosphorus or cyclopentaphosphorus complexes of niobium. *Inorg. Chem.* **2011**, *50* (24), 12349-12358. DOI: 10.1021/ic2014607.

(9) Tran, B. L.; Singhal, M.; Park, H.; Lam, O. P.; Pink, M.; Krzystek, J.; Ozarowski, A.; Telser, J.; Meyer, K.; Mindiola, D. J. Reactivity studies of a masked three-coordinate vanadium(II) complex. *Angew. Chem. Int. Ed. Engl.* **2010**, *49* (51), 9871-9875. DOI: 10.1002/anie.201005029.

(10) Tran, B. L.; Pinter, B.; Nichols, A. J.; Konopka, F. T.; Thompson, R.; Chen, C. H.; Krzystek, J.; Ozarowski, A.; Telser, J.; Baik, M. H.; et al. A planar three-coordinate vanadium(II) complex and the study of terminal vanadium nitrides from N₂: a kinetic or thermodynamic impediment to N-N bond cleavage? *J. Am. Chem. Soc.* **2012**, *134* (31), 13035-13045. DOI: 10.1021/ja303360v.

(11) (a) Scheer, M.; Balazs, G.; Seitz, A. P₄ activation by main group elements and compounds. *Chem. Rev.* **2010**, *110* (7), 4236-4256. DOI: 10.1021/cr100010e. (b) Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Early-transition-metal-mediated activation and transformation of white phosphorus. *Chem. Rev.* **2010**, *110* (7), 4164-4177. DOI: 10.1021/cr9003709. (c) Caporali, M.; Gonsalvi, L.; Rossin, A.; Peruzzini, M. P₄ activation by late-transition metal complexes. *Chem. Rev.* **2010**, *110* (7), 4178-4235. DOI: 10.1021/cr900349u.

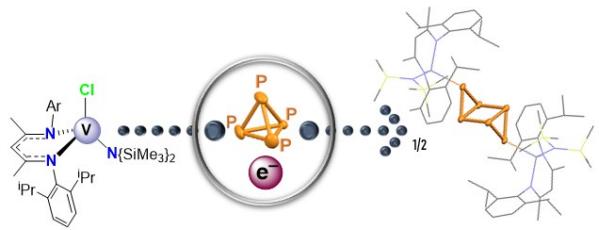
(12) (a) Szilvusi, T.; Veszpremi, T. On the mechanism of the reaction of white phosphorus with silylenes. *Dalton. Trans.* **2011**, *40* (27), 7193-7200. DOI: 10.1039/c0dt01685c. (b) Spitzer, F.; Grassl, C.; Balazs, G.; Zolnhofer, E. M.; Meyer, K.; Scheer, M. Influence of the nacnac Ligand in Iron(I)-Mediated P₄ Transformations. *Angew. Chem. Int. Ed. Engl.* **2016**, *55* (13), 4340-4344. DOI: 10.1002/anie.201510716.

(13) Stephens, F. H.; Johnson, M. J.; Cummins, C. C.; Kryatova, O. P.; Kryatov, S. V.; Rybak-Akimova, E. V.; McDonough, J. E.; Hoff, C. D. Mechanism of white phosphorus activation by three-coordinate molybdenum(III) complexes: a thermochemical, kinetic, and quantum chemical investigation. *J. Am. Chem. Soc.* **2005**, *127* (43), 15191-15200. DOI: 10.1021/ja054253+.

(14) M. Budzelaar, P. H.; van Oort, A. B.; Orpen, A. G. β -Diiminato Complexes of V^{III} and Ti^{III} – Formation and Structure of Stable Paramagnetic Dialkylmetal Compounds. *Eur. J. Inorg. Chem.* **1998**, *1998* (10), 1485-1494. DOI: 10.1002/(sici)1099-0682(199810)1998:10<1485::aid-ejic1485>3.0.co;2-f.

(15) See Supporting Infomation.

(16) (a) Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, $\mathbb{4}$. *Dalton. Trans.* **2007**, (9), 955-964. DOI: 10.1039/b617136b. (b) Reineke, M. H.; Sampson, M. D.; Rheingold, A. L.; Kubiak, C. P. Synthesis and structural studies of nickel(0) Tetracarbene complexes with the introduction of a new four-coordinate geometric index, $\mathbb{4}$. *Inorg. Chem.* **2015**, *54* (7), 3211-3217. DOI: 10.1021/ic502792q.


(17) Tran, B. L.; Pink, M.; Gao, X.; Park, H.; Mindiola, D. J. Low-coordinate and neutral nitrido complexes of vanadium. *J. Am. Chem. Soc.* **2010**, *132* (5), 1458-1459. DOI: 10.1021/ja908303k.

(18) (a) Cossairt, B. M.; Cummins, C. C.; Head, A. R.; Lichtenberger, D. L.; Berger, R. J.; Hayes, S. A.; Mitzel, N. W.; Wu, G. On the molecular and electronic structures of AsP₃ and P₄. *J. Am. Chem. Soc.* **2010**, *132* (24), 8459-8465. DOI: 10.1021/ja102580d. (b) Gutowsky, H. S.; Hoffman, C. J. The Infrared Spectrum of P₄. *J. Am. Chem. Soc.* **2002**, *72* (12), 5751-5752. DOI: 10.1021/ja01168a505.

(19) Basuli, F.; Bailey, B. C.; Huffman, J. C.; Baik, M. H.; Mindiola, D. J. Terminal and four-coordinate vanadium(IV) phosphinidene complexes. A pseudo Jahn-Teller effect of second order stabilizing the V-P multiple bond. *J. Am. Chem. Soc.* **2004**, *126* (7), 1924-1925. DOI: 10.1021/ja0392216.

(20) (a) Graham, T. W.; Udachin, K. A.; Zgierski, M. Z.; Cartt, A. J. Synthesis and Structural Characterization of the First Thermally Stable, Neutral, and Electrophilic Phosphinidene Complexes of Vanadium. *Organometallics* **2011**, *30* (6), 1382-1388. DOI: 10.1021/om100915v. (b) Herberhold, M.; Frohmader, G.; Milius, W. Neue vanadium-komplexe mit substituentenfreien phosphorliganden. *J. Organomet. Chem.* **1996**, *522* (2), 185-196. DOI: 10.1016/0022-328x(96)06305-x. (c) Bartlett, R. A.; Dias, H. V. R.; Power, P. P. The synthesis and characterization of the vanadium diphosphene complex trans-[{V(η^5 -C₅H₅)(CO)₃₂(PMes)₂}]. *J. Organomet. Chem.* **1989**, *362* (1-2), 87-94. DOI: 10.1016/0022-328x(89)85282-9. (d) Piesch, M.; Reichl, S.; Seidl, M.; Balazs, G.; Scheer, M. Ring Contraction by NHC-Induced Pnictogen Abstraction. *Angew. Chem. Int. Ed. Engl.* **2019**, *58* (46), 16563-16568. DOI: 10.1002/anie.201908397. (e) Ho, J.; Breen, T. L.; Ozarowski, A.; Stephan, D. W. Early Metal Mediated P-P Bond Formation in Cp₂M((PR)₂) and Cp₂M((PR)₃) Complexes. *Inorg. Chem.* **1994**, *33* (5), 865-870. DOI: 10.1021/ic00083a007. (f) Arif, A. M.; Cowley, A. H.; Norman, N. C.; Orpen, A. G.; Pakulski, M. Transition-metal phosphinidene complexes: syntheses, structures, and bonding in dinuclear phosphinidene complexes containing 14- and 15-electron metal fragments. *Organometallics* **1988**, *7* (2), 309-318. DOI: 10.1021/om00092a012.

(21) (a) Niecke, E.; Streubel, R.; Nieger, M. Formation of atrans-1,2,4,5-Tetraphosphatricyclo-[3.1.0.02, 4]hexane by [2+2] Cyclodimerization of a 3H-Diphosphirene. *Angew. Chem. Int. Ed. Engl.* **1991**, *30* (1), 90-91. DOI: 10.1002/anie.199100901 (b) Canac, Y.; Bourissou, D.; Baceiredo, A.; Gornitzka, H.; Schoeller, W. W.; Bertrand, G. Isolation of a benzene valence isomer with one-electron phosphorus-phosphorus bonds. *Science* **1998**, *279* (5359), 2080-2082. DOI: 10.1126/science.279.5359.2080. (c) Rottschaefer, D.; Neumann, B.; Stammmer, H. G.; Kishi, R.; Nakano, M.; Ghadwal, R. S. A Phosphorus Analogue of p-Quinodimethane with a Planar P(4) Ring: A Metal-Free Diphosphorus Source. *Chem. Eur. J.* **2019**, *25* (13), 3244-3247. DOI: 10.1002/chem.201805932

