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Topological metals are conducting materials with gapless band structures and nontrivial edge-
localized resonances. Their discovery has proven elusive because traditional topological classification
methods require band gaps to define topological robustness. Inspired by recent theoretical develop-
ments that leverage techniques from the field of C∗-algebras to identify topological metals, here, we
directly observe topological phenomena in gapless acoustic crystals and realize a general experimental
technique to demonstrate their topology. Specifically, we not only observe robust boundary-localized
states in a topological acoustic metal, but also re-interpret a composite operator—mathematically
derived from the K-theory of the problem—as a new Hamiltonian whose physical implementation
allows us to directly observe a topological spectral flow and measure the topological invariants. Our
observations and experimental protocols may offer insights for discovering topological behaviour
across a wide array of artificial and natural materials that lack bulk band gaps.

INTRODUCTION

Over the past two decades, immense progress has been
made in predicting and observing topological phases of
matter and their associated boundary-localized states in
insulators [1–5] and semi-metals [6–18]. These develop-
ments have been predicated upon the spectral isolation
of the topological phenomena in these classes of sys-
tems; although materials such as Dirac semimetals [6–8],
Weyl semimetals [9–15], and nodal line/ring semimet-
als [16–18] generally do not possess complete gaps in
their band structures, the topological phenomena that
manifest in these systems nevertheless appear within in-
complete band gaps, allowing their boundary-localized
states to be uniquely identified at some energy and quasi-
momentum. In contrast, the lack of band gaps (or, more
generally, mobility gaps) in metals and other types of
gapless systems has made their topological analysis ex-
tremely challenging and presently there are concentrated
efforts in this direction [4]. While previous works have
studied the bulk properties of topological metals, such
as their topological responses and their relation to the
geometry and topology of the Fermi surface [19–23], the
focus of our work is on topological bulk-boundary cor-
respondence in metals. As such, for the purposes of
this study, we are using ‘topological metal’ to specifi-
cally refer to systems that exhibit a bulk-boundary cor-
respondence that can be predicted using an invariant
determined in the system’s bulk, but whose topologi-
cally protected boundary-localized states or resonances
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are always degenerate in both energy and wave vector
with bulk states. (In contrast, topological states in insula-
tors and semimetals exhibit a range of energies and wave
vectors where no bulk states exist.) From a theoretical
perspective, the absence of spectral or dynamical gaps
essentially precludes the use of topological band theory
to identify the invariants of these systems, and prohibits
such theories from predicting a measure of topological
protection. Moreover, any boundary-localized phenom-
ena in gapless systems will generally hybridize with the
degenerate bulk states to create boundary-localized res-
onances, which complicates their experimental observa-
tion. Thus, despite the enormous advances that have
been made in topological materials, the study of topo-
logical metals has remained almost entirely unexplored.

Recently, a general theoretical method for evaluat-
ing the topology of metallic and gapless systems was
put forward, opening new opportunities for discover-
ing topology in this class of systems that could not be
previously explored [24]. This theoretical framework is
rooted in the system’s spectral localizer, which makes
use of the system’s real-space description and yields lo-
cal invariants (synonymous with local markers) that are
protected by local gaps [25–27]. The key concept that
links traditional band theoretic approaches to this lo-
cal understanding of a system’s topology stems from a
dual description of atomic limits, i.e., the limit where a
complete basis of spatially localized Wannier functions
exists. In band theoretic approaches, a group of bands
is topologically trivial if they can be continued to an
atomic limit without closing the band gap or breaking
a symmetry; any obstruction to this continuation mani-
fests as a non-trivial invariant [28–31]. From a real-space
operator perspective, an atomic limit’s complete set of
Wannier functions each have both a well-defined posi-
tion and energy (in crystals they can be expressed as
a flat band [32]). Thus, a d-dimensional atomic limit’s
Hamiltonian, H(AL), commutes with its position opera-
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tors, X
(AL)
j

, [H(AL),X
(AL)
j

] = 0, for all j ∈ 1, . . . , d. Using

this mathematical observation, the spectral localizer as-
certains a system’s topology by determining whether
there is an obstruction in continuing its H and X j to be
commuting (given similar restrictions as before), an anal-
ysis that can be performed using recent developments
from the study of C∗-algebras [25, 33]; any obstruction
to continuing the system to possess commuting matrices
yields a non-trivial invariant.

If a system’s topology is instead linked to its multiple
inequivalent atomic limits (e.g. as is common in systems
with chiral- or crystalline-based topology), a system is
only considered trivial if it can be continued to a cho-
sen trivial atomic limit. Such cases are automatically
handled by the spectral localizer, where it is necessary to
explicitly specify the system’s boundary and the grading
operator that defines the chiral or crystalline symmetry
to evaluate the possibility of continuation. This pair of
choices effectively fixes which atomic limit is considered
to be trivial, and the spectral localizer ascertains whether
there is an obstruction to continuing a given system to
this trivial atomic limit. Altogether, by recasting the de-
termination of a system’s topology to real space, and
not relying upon a bulk band gap to be the measure of
topological protection, the spectral localizer is equally
applicable to insulators and metals—meaningful local
gaps that protect non-trivial topology can be found in
both cases [24]. However, despite the prediction that
the local topological invariants of gapless systems can
be robust against system perturbations, robust topologi-
cal metals that possess a bulk-boundary correspondence
have not been previously identified in any platform.

Here, we theoretically develop and experimentally re-
alize robust boundary-localized states protected by a
bulk topological invariant in a gapless acoustic crys-
tal. Unlike the forms of topology that can be found
in semi-metals, the topological states we observe are
degenerate with bulk states in both energy and wave
vector. Our design is based on coupling a topologically
gapped acoustic crystal to a gapless one, yielding a sys-
tem that full-wave simulations show possesses a gapless
resonant spectrum. Nevertheless, when domain bound-
aries are introduced, both simulations and experimental
observations reveal that this two-layer system possesses
boundary- and domain-localized states, and the topolog-
ical origins of these states can be proven using the spec-
tral localizer. To confirm the topological origin of these
localized states, we develop an experimental protocol
that treats the system’s spectral localizer as the Hamilto-
nian of a related system, enabling the direct observation
of the underlying system’s spatially resolved K-theory,
i.e., its local topology. Taken together, these measure-
ments demonstrate that we have realized a topological
metal. Given the generality of our experimental method-
ologies, these findings open opportunities to discover
gapless topological phenomena across a broad range of
natural and artificial materials.

RESULTS

Gapless topological phononic crystal

To realize our proof-of-principle topological metal,
we use a phononic crystal, as this platform has been
proven to be straightforward to fabricate and reconfig-
ure (see Fig. 1a,b) [12–15, 34–47]. Heuristically, our aim
for demonstrating such a phononic topological metal is
to start with a topological insulator, couple it to a sec-
ond lattice such that the combined system is gapless,
and then probe it to observe boundary-localized states.
For our specific design, we take the initial topological
insulator to be a Su–Schrieffer–Heeger (SSH) lattice [48],
whose gapped spectrum is shown in Fig. 1c. The sec-
ond lattice is chosen to be a 1D monatomic lattice with
uniform couplings, whose gapless spectrum is shown in
Fig. 1d. Here, we are enforcing the resonator geome-
try and spacing to be the same for both lattices and we
are displaying the monatomic lattice’s band structure as
folded in to the same Brillouin zone as that of the SSH
lattice. Finally, the two lattice layers are uniformly cou-
pled together, resulting in a system with four resonators
per unit cell that full-wave simulations show to exhibit a
gapless spectrum, see Fig. 1e. We refer to this two-layer
lattice as an acoustic metallized SSH lattice. Note that
the choice of lattice layer couplings (and identical res-
onator geometry) ensures that the full system respects
chiral symmetry, which is necessary to allow for the pos-
sibility of topological states at mid-spectrum that are
associated with this local symmetry classification. (As
our 1D lattice has real coupling coefficients, it is in class
BDI of the Altland–Zirnbauer symmetry classification,
which possesses an integer invariant in 1D [32, 49, 50].)

Our phononic crystals consist of acoustic cavities cou-
pled together via grooved channels in the system’s base
and also via direct bridges (see Fig. 1a,b). The geometry
of the cavities is designed so that their fundamental ax-
ial pressure modes are well-separated in frequency from
the rest of the resonant spectrum. The coupling strength
between adjacent resonators is controlled through the
width of the channels. The base of the system is laser-
cut, while the dimmers of bridged resonating cavities
are fabricated by 3D printing UV-curing resin. In par-
ticular, a bipartite single-layer metamaterial consisting
of identical resonators and alternating coupling chan-
nel groove widths yields an accurate acoustic realization
of the SSH lattice [48] (see Supplementary Note 1). By
designing a metamaterial with a domain boundary be-
tween two topologically distinct SSH insulating phases
(without the added monatomic layer), and trivial outer
edges, both simulation and experimental observations
confirm that the system possesses a single topological
resonant mode localized at the domain boundary, whose
frequency is in the middle of the system’s bulk band gap
(see Fig. 2). Moreover, this topological mode’s mid-gap
frequency serves as implicit confirmation that the exper-
imental platform can accurately reproduce chiral sym-
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FIG. 1. Designing a phononic topological metal. a Simulated acoustic eigen-pressure field p for a single acoustic block resonator
at the first elementary resonance mode with its geometry parameters, 20 mm by 20 mm by 40 mm. p is shown in normalized units.
b 3D-printed acoustic dimer consisting of one resonator belonging to the SSH layer and one resonator belonging to the metal layer,
with the pair connected by an acoustic 3D printed bridge (red arrow points to one entrance to this bridge). The coupling bridge,
parameterized by tc, has width 3 mm, height 3 mm, and length 6 mm. c,d,e,f,g,h Schematics (c,d,e) and full wave simulations
of the band structure (f,g,h) of the acoustic SSH lattice (c,f), acoustic metal lattice (d,g), and acoustic metallized SSH lattice (e,h).
Band structures are shown in units of frequency squared to emphasize the symmetric spectrum due to chiral symmetry. The wave
vector k lies in the first Brillouin Zone, which ranges from −π/a to π/a, where a = 52 mm is the lattice constant. The couplings in
the SSH lattice tin and tout are defined by channels with widths 15 mm (tin) and 5 mm (tout), and the same height 3 mm, and length
6 mm. The metal layer’s coupling tM stems from a channel with dimensions width 7 mm, height 3 mm, and length 6 mm.

metry. To facilitate identification of the effects of chiral
symmetry in our data we show squared frequencies, as
these are the eigenvalues of the acoustic wave equation
that are equivalent to energy in the Schrödinger equa-
tion.

The phononic topological metal is experimentally re-
alized by adding a layer of identical acoustic resonators,
with uniform intra-layer coupling strength tM, to the
SSH layer and coupling the two layers together via uni-
form nearest-neighbor couplings tc, see Fig. 3a,b,c. In
doing so, we are preserving the domain-wall bound-
ary in the SSH layer and its trivial edge terminations,
but there is no alteration to the monatomic layer at the
domain boundary. Even so, this still yields a domain-
wall in the combined system. Despite the full system’s
gapless spectrum, both full-wave numerical simulations
(Fig. 3d) and experimental observations (Figs. 3e,f) show
that this metamaterial possesses edge- and domain wall-
localized resonant states, whose appearance is linked
to the relative strength of the coupling coefficients. In
particular, this system exhibits four boundary-localized
states in total, two that are approximately localized at the

system’s domain wall, and one at each edge, see Fig. 3f,g.
Moreover, we note that the phononic topological metal
has many more topological states than one might initially
expect—by itself, the SSH layer has topologically trivial
edges (there are no edge-termination-localized states in
Fig. 2c) and a single domain-wall-localized state.

However, it is not possible to use topological band
theories to predict the appearance of the four boundary-
localized states seen in Fig. 3f,g. Attempts to define a
winding number (or another similar integer invariant
for 1D chiral-symmetric systems) based on this crystal’s
bulk structure cannot work; the lack of a bulk band gap
would require a path of matrix determinants that tried
to characterize this winding to intersect the origin, mak-
ing the winding number undefined [51]. Moreover, the
topology of the observed boundary-localized resonances
in the finite system cannot be understood from the pres-
ence of low-dimensional degeneracies in the periodic
gapless system’s spectrum, as is the case for topological
semimetals. For a d-dimensional semimetal, its topology
is connected to features in its band structure with dimen-
sion≤ d−2, and results in states on its (d−1)-dimensional
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FIG. 2. Observation of a phononic SSH lattice with a do-
main wall. a Schematic of the domain wall in the phononic
SSH lattice. Both edges of the lattice have topologically trivial
terminations. b Full wave simulations of the system’s eigenfre-
quencies with 41 lattice sites in total. c Measured local density
of states (LDOS), assembled from microphone readings on 41
resonators of the acoustic SSH system. The observed pressure
amplitude |p| is shown in normalized units.

A bulk band gap can be identified and the resonant mode in
the bulk band gap is the domain boundary mode.

surfaces that can be identified within an incomplete band
gap. In contrast, our 1D periodic phononic topologi-
cal metal (Fig. 1e) cannot possess such low-dimensional
band features, and upon introducing an edge or domain
wall completely lacks any such kind of incomplete band
gap (Fig. 3c,d). Likewise, as the observed boundary-
localized states are at mid-spectrum, we seek a topolog-
ical classification that predicts and protects this spectral
location, which precludes crystalline invariants [28].

Altogether, standard theories of topology are unable
to distinguish between the two bulk phases in this sys-
tem and identify whether these localized states are of
topological origin, or provide a measure of topological
protection.

Theory of the spectral localizer

Instead, to prove that the observed localized states are
of topological origin and that their existence can be tied
to a bulk-boundary correspondence, we use the spectral
localizer as this approach can be applied to systems that
lack a bulk band gap [24]. In general, a system’s spectral
localizer combines its Hamiltonian and position opera-
tors using a non-trivial Clifford representation. How-
ever, as our acoustic metamaterial is a 1D chiral sym-
metric system in which all of the couplings are real (i.e.,
its effective Hamiltonian is real-symmetric), its spectral
localizer can be written in a reduced form as (see Sup-
plementary Note 2)

L̃(x,E)(X,H) = κ(X − xI)Π+H − iEΠ. (1)

Here, the spectral localizer can be evaluated at any choice
of parameters x,E ∈ R (inside or outside of the system’s
spatial and spectral extent), κ is a tuning parameter that
also ensures that the terms have compatible units, Π is
the system’s chiral operator, HΠ = −ΠH, and I is the
identity matrix. Although the spectral localizer is basis
independent, if H is written in a tight-binding basis, X
is simply a diagonal matrix whose entries correspond to
the coordinates of each lattice site.

The spectral localizer (of appropriate dimension) can
be used to both construct the relevant local topologi-
cal invariant for a system in any symmetry class, as
well as define the associated local gap. For the two-
layer phononic topological metal considered here (or any
other 1D system in class BDI), its local invariant is given
by [25],

νL(x) = 1
2 sig
(

L̃(x,0)(X,H)
)

∈ Z, (2)

where sig is the signature of a matrix, i.e., its number of
positive eigenvalues minus its number of negative ones.
Note, νL(x) is only defined for E = 0, which reflects the
fact that chiral symmetry can only protect states at the
middle of the system’s spectrum. Similarly, the local gap
µ(x,E) is given by the smallest singular value of L̃(x,E),

µ(x,E)(X,H) = σmin(L̃(x,E)(X,H)). (3)

More generally, µ(x,E) is used to define the Clifford pseu-
dospectrum of (X,H) [52].

Together, νL(x) and µ(x,0) yield a complete picture of
a system’s topology. Rigorously, νL(x) is ascertaining
whether the matrices H and X − xI can be continued to
the chosen trivial atomic limit while preserving both op-
erators’ real-symmetric form and chiral symmetry, and
without closing the associated local gap, i.e., µ(x,0) > 0
during the entire continuation process; if νL(x) = 0, such
a continuation is possible. (Here, the limit that is con-
sidered trivial is specified by the choice of Π in Eq. (1).)
Moreover, this picture of topology is entirely local, dif-
ferent choices of x can yield different invariants—for x
sufficiently far outside of the system’s spatial extent, one
expects to see a system with trivial local topology, while
x in the bulk of the system may reveal non-trivial local
topology. At the domain boundary between these two
regions, x0, where νL(x0) changes, the local gap must
close µ(x0,0) = 0, which is a direct manifestation of bulk-
boundary correspondence [33] and is an indication that
there are eigenstates or resonances of H near x0 at E = 0
[52].

When the Hamiltonian itself displays a global spectral
gap, the topological invariant supplied by the spectral lo-
calizer coincides with the traditional 1D winding num-
ber [51] (or, more generally, even/odd Chern numbers
or Z2 invariants, depending on the dimensionality and
symmetry of the system [26, 27]). In the absence of such
a gap, νL(x) has no analogue in the traditional way of ap-
plying K-theory: The spectral localizer simply pushes
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FIG. 3. Experimental demonstration of phononic topological metal. a Photograph of the fully assembled acoustic metallized
SSH lattice consisting of block resonators and coupling bridges. b Photograph of the inner structure, with all coupling bridges
visible. The 3D-printed resonators are open at the bottom and are coupled through the 3D printed bridges and grooves in the
black base when assembled. The acoustic resonators are embedded in the transparent acrylic plate (top) that sits above the black
base (bottom). The red dotted squares indicate how the acoustic resonator dimers are mounted on the black base. c Schematic
of the phononic metallized SSH lattice showing the domain wall. The SSH layer is terminated in the same manner as Fig. 2. d
Full-wave eigenfrequencies of the metallized SSH system consist of 41 dimers. e Measured local density of states, assembled from
microphone readings on the 41 dimers of the metallized SSH system. The observed pressure amplitude |p| is shown in normalized
units.

LDOS is resolved by the dimer index. The data from the SSH resonator and the data from the metal resonator with the same
dimer index are summed together. f Measured acoustic pressure field distribution at 4560 Hz for the domain boundary- and

edge-localized modes. g Simulated acoustic eigenpressure fields of the four domain boundary- and edge-localized states. The
colored dots in this panel correspond to those marked in c. The color indicates the absolute acoustic pressure |p|, which is

displayed in normalized units.

the applicability of the K-theoretic methods to previ-
ously unclassifiable systems and, in the present context,
provides the means to formulate a bulk-boundary cor-
respondence principle involving interface resonances as
opposed to infinitely lived bound states. By a mecha-
nism somewhat similar to one in complex scaling [53],
the spectral localizer pushes away the continuum spec-
trum of H by opening a gap at locations away from the

position being probed x, allowing for the study of spec-
tral flows and their associated topology.

Applying the spectral localizer to a tight-binding
approximation of the acoustic metallized SSH model
proves that the localized states observed in this lattice
are connected to a bulk topological invariant (see Sup-
plementary Note 6). In particular, we numerically ob-
serve the local invariant νL(x) in this system to change a
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few times, both at the system’s boundaries and twice at
the domain wall within the lattice’s interior. Moreover,
despite the fact that this lattice does not possess a bulk
band gap, for most values of x we find that the localizer
L̃(x,E)(X,H) does have a reasonable spectral gap at E = 0
that protects the bulk topological invariant.

Using the localizer as a system Hamiltonian

Beyond numerically calculating the phononic topo-
logical metal’s local invariant and associated strength of
protection, the form of the spectral localizer at E = 0 also
inspires an experimental approach to verify the system’s
topology directly. In particular, because the reduced
spectral localizer Eq. (1) is Hermitian at E = 0, it can be
reinterpreted as a set of Hamiltonians itself, with

H̃x ≡ L̃(x,0)(X,H) = κ(X − xI)Π+H, (4)

in which κ(X − xI)Π is now an on-site potential with
a sign that is sublattice-dependent (i.e., a modification
of the central frequencies of each resonator), and the
choice of x re-centers this potential at a different lattice
site (or anywhere in between lattice sites). Thus, by
simulating and observing the spectrum of H̃x, we are
directly measuring the spectrum of L̃(x,0), which, through
Eqs. (2) and (3), determines the topology and associated
protection of the underlying system described by H at x.

In practice, this reinterpretation presents a challenge,
as ‖X − xI‖ can become arbitrarily large as the lattice’s
size increases, but it is not possible to alter a resonator’s
geometry to yield arbitrarily large or small resonance
frequencies. Instead, we can circumvent this challenge
by using the substitution

κ(X − xI)Π→ κ
[

tanh
(

X − xI

α

)]

Π, (5)

such that

H̃x = κ
[

tanh
(

X − xI

α

)]

Π +H. (6)

As this bounded operator is linear in the vicinity of x = 0
(the range of approximate linearity is set by α), one can
prove that it preserves the necessary information for de-
termining the system’s topology using Eq. (2) (see Sup-
plementary Note 3). Moreover, this choice of alteration
to the system’s resonators can be experimentally realized
for lattices of any size (see Fig. 4).

We directly confirm the topological behavior of the
phononic topological metal described by the Hamilto-
nian H by numerically and experimentally observing the
properties of its spectrally localized counterpart given
by H̃x at many different choices of x (a realization for a
single x is shown in Fig. 5a). In particular, the sublattice-
dependent on-site potential is realized by modifying all
of the resonator heights by up to 2 mm, which preserves
their well-separated fundamental axial mode but yields

b

� = -11

� = 0

� = 9

a Domain boundary` and a bcde fghijk l

Dimer index

mnopq rstuvw x yz{ |} ~ ��� ��
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FIG. 4. Experimental protocol for observing the spectral local-
izer. a Schematic of the spectrally localized phononic metama-
terial with the domain wall shown. The two sublattices of the
system are indicated in magenta and cyan, which correspond
to entries of +1 and −1 in Π, respectively. b The configura-
tions of the system when the localizer is centered at x = −11,
x = 0, and x = 9. The height of each resonator above 38 mm is
indicated by the color scale. As the underlying phononic topo-
logical metal in Fig. 3 uses resonators that are 40 mm tall, and
small changes to the resonator volume change its frequency
without changing its couplings, this coloration is effectively
showing the on-site potential added in Eq. (6).

a shift their frequency (i.e., a different on-site potential).
First, full-wave simulations of the localized metamate-
rial, H̃x, demonstrate that there are four x locations in
the underlying system where the local invariant changes
and the local gap closes (Fig. 5b,c,d), two locations at
the outer edges of the system, and two next to the do-
main boundary. As locations where µ(x,0) = 0 predict
the presence of states of H, the localized states seen in
the original phononic topological metal (Fig. 3f,g) are a
direct manifestation of bulk-boundary correspondence
and are necessarily of topological origin. Thus, despite
the absence of a bulk band gap in the system, these topo-
logical states are protected by the non-zero local gap
µ(x,0) ≈ 0.1 kHz2 surrounding the locations where these
states appear. In other words, chiral-preserving pertur-
bations to the system H → H + δH cannot alter the local
topology at x so long as ‖δH‖ < µ(x,0). Furthermore, we
note that these states possess additional protection due
to a relatively large secondary gap ≈ 0.4 kHz2, see and
Fig. 5e and Supplementary Note 4. Heuristically, every
gap in the localizer can be associated with an element
in a K-theory group, and thus can provide some form
of topological protection [54]. Although most such gaps
are too small for the resulting topology to be physically
robust, for this particular system the secondary gap is
relatively large and thus provides strong protection for
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FIG. 5. Observation of topology using a spectrally localized acoustic metamaterial. a Photograph of the fully assembled
spectrally localized metamaterial with the added sublattice-dependent on-site energies to the underlying metallized SSH lattice.
The resonators that comprise this system can be re-assembled to realize different choices of the center of the localized potential
x in Eq. (6). b COMSOL simulated resonant spectrum of the spectrally localized metamaterial as the position of the localized
potential’s center x is varied, demonstrating the existence of the two bands in the dynamical localization gap. c,d,e Localizer index
(c), localizer gap (d), and secondary gaps (e) derived from the full-wave simulated spectrum. The localizer index and gap are
calculated using the mid-spectrum frequency indicated in b (blue arrow on right), and the two frequencies chosen for calculating
the secondary gaps are similarly indicated (cyan and magenta arrows on right). f Experimental mapping of the local density
of states as the localized potential’s center is moved (constructed from microphone readings on the dimer where the localized
potential is centered x), confirming the existence of the two central eigenvalues for varying x seen in b. α = 2.5a and κ = 1.85
kHz2 in Eq. (6) were used in our simulations and experiments, where a is the lattice constant. The observed pressure amplitude
|p| is shown in normalized units. g Measured pressure in normalized units for the spectrally localized system’s bulk eigenvalues
constructed from the microphone readings on the bulk resonators at least 3 resonators away from the localized potential center.
The gray lines in f and g are showing that the spectrally localized system’s two central sets of eigenvalues are well separated from
the system’s remaining eigenvalues. h Experimentally measured mode profiles at 4760 Hz and 4860 Hz when x = 0 using the
same color map as f. The red and blue triangles in b and f correspond to the frequency and localized potential center chosen for
observing these data.

one of the two states at the domain boundary at the sys-
tem’s center.

Moreover, we experimentally realize the localized
metamaterial, and directly characterize the changes in
the underlying system’s local K-theory (Fig. 5f,g,h). In
particular, the simulated resonance spectrum is repro-
duced with high fidelity by experimental measurements,
confirming the topological properties of our phononic
topological metal. Likewise, the two central bands (Fig.
5f) are observed to be well separated from the remain-
der of the spectrally localized system’s bulk bands (Fig.
5g). Although different choices of x in H̃x yield distinct

physical systems (see Fig. 4b), our acoustic metamaterial
is re-configurable, and thus we do not need to fabricate
a new system for each choice of x shown in Fig. 5. The
discrepancies between simulation and experiment are
likely the result of fabrication imperfections and vari-
ations, as well as measurement errors. However, the
discrepancy observed in Fig. 5 is still of a similar mag-
nitude to those observed both Figs. 2 and 3. In particu-
lar, the observed discrepancy in the SSH lattice (Fig. 2)
shows that these differences are standard to the acoustic
metamaterial platform, and are not substantially larger
or smaller for our metallic (Fig. 3) or spectrally localized
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systems (Fig. 5).
Thus, altogether, our experimental results, coupled

with our full-wave simulations, prove that our underly-
ing phononic metamaterial (Fig. 3) is a gapless topolog-
ical material.

The underlying K-theory

The relative simplicity of the equations of the spectral
localizer and the local topological invariants it provides
tends to obscure the K-theory that it rests on. Thus, to
show how our experimental protocol for altering a sys-
tem to directly observe its topology stems from K-theory,
we provide a brief discussion for an interested reader
aimed at illuminating the spectral localizer’s mathemat-
ical foundation.

A traditional form of K-theory, topological K-theory
[55, 56], works with continuous functions that map from
a given topological space to a space of structured ma-
trices. These spaces of structured matrices are called
classifying spaces, as they can be used to compute all 10
K-theory groups associated to the original given space.
(Classifying spaces for classes of real or complex vec-
tor bundles would be special cases associated with this
mapping.) A newer, more powerful form of K-theory is
the K-theory of C∗-algebras [57], which still applies when
one has momentum space but also applies when momen-
tum space is lost. Here, we work with modified forms of
C∗-algebra K-theory [25, 58–63] that are more directly ap-
plicable to finite systems. Moreover, these newer forms
of K-theory lead to efficient numerical algorithms and
are adaptable to different symmetry classes. The main
speedup of these approaches comes from avoiding spec-
tral flattening, as numerically, operations like projecting
into an occupied subspace tend to produce dense matri-
ces even when the original system can be described with
sparse matrices.

Following Ref. [32], we briefly review how classical
topological K-theory arises in the case of a periodic 1D
system in class BDI. The position operator is used to
define momentum space, which is a copy of the circle
T1. The chirality of the Hamiltonian means

H(k) =

[

0 U(k)
U†(k) 0

]

. (7)

If we have taken the optional step of spectrally flatten-
ing H, we find that U(k) is unitary. Thus, the topol-
ogy in class BDI arises from attempting to classify the
ways in which continuous functions can map from the
circle to the classical groups of unitary matrices; that
is, homotopy classes of elements of C(T1,U(n)). Time-
reversal symmetry manifests itself as U∗(k) = U(−k). As
Kitaev explains [32], homotopy classes in C(T1,U(n))
can be used to form a group, one of the classic groups
in topological K-theory [56]. Finally, the K-theory group
element determined by H(k) can be calculated using a
winding number.

For non-periodic, finite 1D systems in class BDI, we
use the form of K-theory that associates groups to certain
algebras. The relevant algebra isA =M2n(C), treated as
a graded, real C∗-algebra, and 2n is the number of sites
in the system. The grading is determined by Π and we
use the standard reality structure (real matrix means real
entries). The zeroth group of K-theory for this algebra
K0(A) is built out of out of homotopy classes of 2n-by-
2n unitary matrices U that also satisfy ΠUΠ = U† and
U⊤ = U [60]. However, if we want to avoid spectral
flattening, we can instead look at homotopy classes of
invertible matrices M such that ΠMΠ = M† and M⊤ =

M. Finally, the element of K0(A) determined by M is
calculated using half the signature of MΠ.

To apply this general discussion to the spectral local-
izer, consider the full 1D spectral localizer at E = 0

L(x,0)(X,H) =

[

0 κ(X − xI) − iH
κ(X − xI) + iH 0

]

, (8)

which at most positions x will contain two invertible
matrices, Mx = κ(X − xI) + iH and its adjoint. Notice
that MxΠ is Hermitian (but not real), and thus we can
determine the underling physical system’s topology by
calculating sig(MxΠ). In [25] it was established that in
the BDI symmetry class MxΠ is unitarily equivalent to
the real symmetric matrix κ(X − xI)Π + H (i.e., Eq. (4)),

and thus sig(MxΠ) = sig
(

H̃x

)

, which is what is used in

Eq. (2).
Altogether, a more standard approach to topological

materials would consider the unitary Ux that is derived
from Mx by spectral flattening (that is, Ux is the unitary
polar factor of Mx). Then one can apply the graded trace,
which is more familiar in pure math than the graded
signature. However, since

tr (UxΠ) = sig (MxΠ) = sig
(

H̃x

)

(9)

we have many mathematically equivalent formulas to
choose from to determine the underlying system’s topol-
ogy. In particular, the latter two of these formula can be
immediately recognized from the invertible matrix form
of C∗-algebra K-theory that underpin the spectral local-
izer. From the perspective of numerical efficiency, the
formula involving Ux would be the slowest, assuming
one actually performs the spectral flattening. The for-
mula involving H̃x will be the fastest, as this matrix will
be real, symmetric, and (usually) sparse.

Thus, as H̃x is the Hamiltonian for the localized sys-
tem (Fig. 5) that we realize to observe the topology of the
underlying phononic topological metal (Fig. 3), our ex-
perimentally methodology is inextricably linked to the
K-theory of C∗-algebras.

DISCUSSION

In conclusion, we have demonstrated a topological
metal in an acoustic metamaterial and directly observed



9

its boundary-localized states despite its lack of a bulk
band gap. To do so, we have used the spectral localizer,
a local theory of topological materials that is able to pre-
dict topological phenomena, and a measure of topolog-
ical protection, even in the absence of a bulk band gap.
Moreover, we have introduced an experimental protocol
that uses a system’s spectral localizer as its Hamiltonian,
providing a direct probe of the underlying system’s local
K-theory. Here, it is worth emphasizing that this proto-
col can be applied to any topological system. Although
our specific demonstration has leveraged the system’s
symmetries to yield a real-symmetric spectral localizer,
the spectral localizer for any system is, by definition,
Hermitian, and as such, it can always be adapted to be
an observable system. Thus, the overall methodology
that we have introduced may enable the prediction and
observation of topological metals across a broad array
of systems, including materials that exhibit higher-order
topology and those whose topology is determined by its
crystalline symmetries. Finally, as the spectral localizer
takes an operator-based, rather than eigenstate-based,
approach to topology, it is potentially broadly applicable
to interacting systems, a class of systems that traditional
band theories of topology have had difficulty gaining
traction with.

METHODS

Fabrication

Our fabrication process is modular and the acoustic
crystals are assembled from parts that are independently
manufactured with different automated process. This
approach enables a high throughput of acoustic crystals,
which can be disassembled and stored after use.

One leg of the process is the manufacturing of the
supporting bases, which consist of two layers of 3-mm
thick black acrylic plates (Fig. 3b) and one top layer of 1.5-
mm thick transparent acrylic plates (Fig. 3a,b), of which
the top transparent layer and middle black layer have
through holes, laser-cut at specific geometries with the
Boss Laser-1630 Laser Engraver. The middle layer with
3mm deep through channels provides coupling channels
between the dimers. The top transparent layer with
through square holes holds the dimers in place.

The resonators were manufactured using an Anycu-
bic Photon 3D printer, which uses UV resin and has
47 µm XY-resolution and 10 µm Z-resolution. The thick-
ness of their walls is 2 mm, to ensure a good quality
factor and to justify rigid boundaries in our numerical
simulations. The inner dimensions of the resonators are
supplied in Fig. 1a,b. For the metallized-SSH system, the
resonators are 3D printed as dimers with identical nar-
row channels connecting the resonators. To implement
the spectral localizer, the resonators were printed with
different heights according to the algorithm Eq. (6) and
were made ready for the assembling.

The resonators were mounted and coupled through
the channels grooved in the acrylic plates of the base.
Let us specify that the resonators are interchangeable so
that they can be move around and acoustic crystals with
different probe positions can be generated, as described
in the main text. Finally, we note that although the col-
oration of the resonators is not uniform in either of the
structures shown in Fig. 3a,b or 5a, this is simply an arti-
fact of the fabrication process, and these color differences
do not impact their behavior in any way.

Experimental protocols

The protocol for the acoustic measurements reported
in Fig. 3 and Fig. 5 was as follows: Sinusoidal signals
of duration 1 s and amplitude of 0.5 V were produced
with a Rigol DG 1022 function generator and applied
on a speaker placed in a porthole opened in a resonator.
A dbx RTA-M Reference Microphone with a Phantom
Power was inserted in a porthole opened in the same
resonator where the speaker was inserted and acquired
the acoustic signals. The signals were read by a custom
LabVIEW code via National Instruments USB-6122 data
acquisition box and the data was stored on a computer
for graphic renderings.

The local densities of states reported in Fig. 3d and
Fig. 5f,g were obtained by integrating the local density
of states acquired from resonators whose index are the
same as the position of the probe. Same instrumentation
was used. The measurements were repeated with mov-
ing the position of the probe. For each measurement,
the frequency was scanned from 4200 Hz to 5200 Hz in
10 Hz steps.

Simulation

The simulations reported in Figs. 1, 2, 3, and 5 were
performed with the COMSOL Multiphysics pressure
acoustic module. The wave propagation domains shown
in Fig. 1 were filled with air with a mass density 1.3 kg/m3

and the sound’s speed was fixed at 343 m/s, appropri-
ate for room temperature. Because of the huge acoustic
impedance mismatch compared with air, the 3D printing
UV resin material was considered as hard boundary.

DATA AVAILABILITY

All the data generated in this study have
been deposited in the Zenodo database
https://zenodo.org/record/7765335#.ZB3G-nbMLD6.

https://zenodo.org/record/7765335#.ZB3G-nbMLD6
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CODE AVAILABILITY

The computer codes used in this study
have been deposited in the Zenodo database
https://zenodo.org/record/7765335#.ZB3G-nbMLD6.
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[19] P. Hořava, Stability of Fermi Surfaces and K Theory,
Phys. Rev. Lett. 95, 016405 (2005).

[20] A. Alexandradinata, C. Wang, W. Duan, and L. Glaz-
man, Revealing the Topology of Fermi-Surface Wave
Functions from Magnetic Quantum Oscillations,
Phys. Rev. X 8, 011027 (2018).

[21] S. Sun, Z. Song, H. Weng, and X. Dai, Topo-
logical metals induced by the Zeeman effect,
Phys. Rev. B 101, 125118 (2020).

[22] N. F. Q. Yuan and L. Fu, Topological met-
als and finite-momentum superconductors,
Proceedings of the National Academy of Sciences 118, e2019063118 (2021).

[23] C. L. Kane, Quantized nonlinear conductance in ballistic
metals, Phys. Rev. Lett. 128, 076801 (2022).

[24] A. Cerjan and T. A. Loring, Local invariants
identify topology in metals and gapless systems,
Phys. Rev. B 106, 064109 (2022).

[25] T. A. Loring, K-theory and pseudospectra for topological
insulators, Annals of Physics 356, 383 (2015).

[26] T. A. Loring and H. Schulz-Baldes, The
spectral localizer for even index pairings,
J. Noncommut. Geom. 14, 1 (2020).

[27] T. A. Loring and H. Schulz-Baldes, Finite
volume calculation of K-theory invariants,
New York J. Math. 23, 1111 (2017).

[28] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane,
and R.-J. Slager, Topological Classification of Crys-
talline Insulators through Band Structure Combinatorics,
Phys. Rev. X 7, 041069 (2017).

[29] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang,
C. Felser, M. I. Aroyo, and B. A. Bernevig, Topological
quantum chemistry, Nature 547, 298 (2017).

[30] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-
based indicators of band topology in the 230 space groups,
Nat. Commun. 8, 50 (2017).

[31] J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. G. Vergniory,
C. Felser, M. I. Aroyo, and B. A. Bernevig, Building blocks
of topological quantum chemistry: Elementary band rep-
resentations, Phys. Rev. B 97, 035139 (2018).

[32] A. Kitaev, Periodic table for topolog-
ical insulators and superconductors,
AIP Conference Proceedings 1134, 22 (2009).

[33] M. B. Hastings and T. A. Loring, Topological insula-
tors and C∗-algebras: Theory and numerical practice,
Ann. Phys. July 2011 Special Issue, 326, 1699 (2011).

[34] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen,
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