
  

  

Abstract— Existing robotic lower-limb prostheses use 

autonomous control to address cyclic, locomotive tasks, but are 

inadequate in adapting to variations in non-cyclic and 

unpredictable tasks. This study aims to address this challenge by 

designing a novel electromyography (EMG)-driven 

musculoskeletal model for volitional control of a robotic ankle-

foot prosthesis. The proposed controller ensures continuous 

control of the device, allowing users to freely manipulate the 

prosthesis behavior. A Hill-type muscle model was implemented 

to model a dorsiflexor and a plantarflexor to function around a 

virtual ankle joint. The model parameters for a subject specific 

model was determined by fitting the model to the experimental 

data collected from an able-bodied subject. EMG signals 

recorded from antagonist muscle pairs were used to activate the 

virtual muscle models. This model-based approach was then 

validated via offline simulations and real-time prosthesis 

control. Additionally, the feasibility of the proposed prosthesis 

control on assisting the user’s functional tasks was 

demonstrated. The present control may further improve the 

function of robotic prosthesis for supporting versatile activities 

in individuals with lower-limb amputations.  

I. INTRODUCTION 

Lower-limb amputation affects the ability of individuals 
to perform functional tasks, which severely affects their 
quality of life [1,2]. These individuals are prescribed passive 
prostheses which are incapable of restoring much of the 
biological function of the joint [3]. To overcome this problem, 
powered prosthesis are being developed with the aim of being 
lightweight, and generating similar torque and power as that 
of an able-bodied joints [3-7]. These devices generally use a 
finite state controller where the task being performed is 
divided into various states and the device performs a prefixed 
action when the user is in that state, usually by providing 
torque or simulating impedance. These controllers are 
autonomous; meaning they do not incorporate any form of 
human input into the control algorithm. They rely on the 
interaction of the device with the environment to identify the 
user’s locomotion state and execute a preprogrammed set of 
instructions to perform the cyclic locomotion task [6].  Thus, 
new prosthesis behavior (i.e., not already pre-programmed) 
cannot be generated by the user to adapt to ever-changing 
environments (e.g., standing at a crowded bus stop, pushing a 
lawnmower, playing soccer, etc.) and tasks.  

The real world poses many uncertainties present in the 
environment in the form of terrain variations, obstacles, etc. 
Such uncertainties require spontaneous responses from the 
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user to adapt to these changes. The lack of active adaptive 
control of the prosthetic ankle joint leads to poorer stability 
and balance confidence [8]. This lack of balance confidence 
and absence of human intent from these autonomous 
controllers has been a hindrance to these prostheses being 
used in the real world. 

EMG control has seen a lot of popularity recently as a 
method for volitional control of lower limb prostheses [9]. 
The addition of human intent to these controllers has the 
potential to allow amputees to modulate their prosthesis 
mechanics to react to the uncertainties, and volitionally 
perform non-repetitive tasks. There are two popular methods 
that use EMG control: Supervisory EMG control and Direct 
EMG control. Supervisory control is a form of discrete 
control where a pattern classifier is used to identify human 
intent by selecting the appropriate type of locomotion model 
[10-12]. This type of control requires a significant amount of 
training data from the user of the device to train the pattern 
classifiers and is prone to classification errors, which may 
lead to walking instability in prosthesis users. Continuous 
EMG control is another method used where the EMG signal 
is directly related to the force generated by the muscle [13]. 
This type of continuous volitional control mimics the 
biological musculoskeletal systems and places the human in 
direct control making reactionary and non-cyclic tasks 
possible.  

While direct EMG control can restore the ability to adapt 
to various environments it’s unclear whether amputees can 
coordinate residual muscle activations to reproduce 
normative ankle joint function. Recent studies have shown 
that with appropriate training transtibial amputees can regain 
considerable coordination of voluntary residual muscle 
activity [14]. These studies have also evaluated the ability of 
amputee individuals to use this proportional myoelectric 
control to perform typical daily-life tasks and balancing tasks 
[14,15]. They implemented proportional myoelectric control 
on an ankle prosthesis where the muscle behavior was 
achieved using pneumatic artificial muscles also known as 
McKibben actuators. The pneumatic actuators modeled 
muscle behavior while the proportional EMG relayed the 
human intent to the system. Though this type of control has 
shown tremendous success, the need for pneumatic actuators 
that simulate muscle behavior constraints the solution to lab 
applications.  
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The goal of this study was to design a novel EMG-driven 
musculoskeletal (MSK) model for continuous volitional 
control of robotic ankle prosthesis. While MSK model-based 
controllers have been applied to lower limb prosthesis control 
previously, these virtual muscle models capture the 
adaptability of the muscle to generate force depending on the 
state of the muscle but lack volitional (or EMG) control from 
the user. These studies have shown the capability of MSK 
model-based controllers to adapt to walking speeds, incline 
decline walking [16], and also stair climbing and stair descent 
[17]. Though these MSK controllers are more adaptable than 
other autonomous controllers, they are limited to locomotion 
tasks only. EMG-driven MSK model has been successfully 
implemented in upper-limb prosthesis control [18,19]. 
However, we are unaware of an EMG-driven MSK controller 
for motorized lower-limb prosthesis control.  Therefore, this 
study made the following contribution to the field. 1) We 
developed a novel EMG-driven MSK model to determine the 
ankle joint torque based on EMG signals from the tibialis 
anterior (TA) and the gastrocnemius (GAS). 2) For the first 
time, this type of EMG-driven control approach was 
successfully implemented on lower limb wearable robots 
through a motorized robotic ankle prosthesis. 3) We showed 
the feasibility of our proposed control to assist with daily 
activities that did not include cyclic, predictive motion of the 
ankle. 

II. METHODOLOGY 

In this paper, we propose an EMG-driven MSK model-
based controller where we use the EMG from the TA and GAS 
to activate a pair of antagonistic virtual muscles of a 
simplified MSK ankle model. While several muscles 
contribute to the ankle flexion moment in the sagittal plane, 
developing a model that includes all muscles would lead to a 
highly complex model, requiring many parameters and 
multiple EMG inputs [18]. Thus, we modeled the virtual 
muscles as a lumped parameter model, where one muscle was 
used to represent the combined effect of multiple muscles 
responsible for generating the required force. We used this 
virtual muscle model combined with the musculoskeletal 
geometry to predict the ankle joint torque. During real-time 
control, this predicted ankle torque was sent as the reference 
torque command to the VSeM robotic ankle prosthesis [20]. 
Fig. 1 depicts the control layout with the important parts of 
the EMG-driven MSK model, A. Activation Dynamics B.  
Musculoskeletal Geometry, and C. Muscle Contraction 
Dynamics.  

A. Activation Dynamics (EMG to Muscle Activation) 

For real-time control, we placed EMG electrodes (Motion Lab 
Systems, MA 400) on the TA and GAS. We high pass filtered 
(cutoff at 40Hz, 4th Order Butterworth) to get rid of any 
motion artifacts. We then rectified the signal before 
implementing a moving average function with a 100ms 
sliding window to develop the EMG envelope. The 100ms 
sliding window was determined empirically to optimize 
performance without introducing considerable amount of 
delay in the system.  We then normalized the resulting signal 
using the signal value at maximum voluntary contraction 
(MVC) of each muscle. The MVC is obtained at the beginning 
of the trial by averaging the signal obtained from three 
voluntary contraction attempts.  

We used this rectified, normalized, and enveloped EMG 
(𝑒(𝑡)) signal to calculate the corresponding neural activation  
(𝑢(𝑡)), using a discrete version of a second-order differential 
equation used to represent the relation between EMG and 
neural activation [21], 

𝑢(𝑡) = α 𝑒(𝑡 − 𝑑) − β1 𝑢(𝑡 − 1) − β2 𝑢(𝑡 − 2) (1) 

where α =  0.9486 , β1 = −0.056 & β2 = 0.000627 [22]. 𝑑  

represents the electromechanical delay present between the 

onset of the EMG signal and the contraction of the muscle to 

generate force. This delay was determined based on the 

experimental data collected for the training of the model and 

further tuned for real-time control corresponding to the delay 

present in the robotic ankle prosthesis. At lower levels of 

force, this neural activation has a non-linear relationship with 

muscle activation. This relationship was captured through 

eq.2 [22]. 

𝑎(𝑡) =
𝑒𝐴𝑢(𝑡)– 1

𝑒𝐴– 1
(2) 

where A represents the non-linear shape factor, which is 

constrained between, −3 < 𝐴 < 0. 𝑎(𝑡) represents the final 

input that was sent to the virtual muscle model as muscle 

activation. 

B. Musculoskeletal Geometry 

The musculoskeletal geometry defines how the muscle 
attaches to the skeleton. It is used to capture the relationship 
between the change in length of the moment arm with the 
change in joint angle. The joint torque produced is the product 
of the muscle force and the moment arm, 𝜏𝑚 = 𝑟(𝜃)𝐹𝑚. The 
moment arm 𝑟 is a function of joint angle (𝜃) and this relation 
was given by the following equation [23].  

𝑟(θ) = 𝑟𝑚𝑎𝑥  𝑐𝑜𝑠(θ − θ𝑚𝑎𝑥) (3) 

where 𝑟𝑚𝑎𝑥 is the maximum moment arm length and θ𝑚𝑎𝑥  is 
the angle at which, the moment arm is maximum in length. θ 
is the ankle joint angle measured between the shank and the 
foot. This angle was measured using the encoder built into the 
ankle prosthesis when the control was implemented in real-
time on the robotic ankle prosthesis. The length of the muscle 
unit is also a function of the joint angle, it was computed using 
the following relation [23]. 

 

 

Figure 1. EMG-driven MSK model-based controller layout and model 
components - A. Activation Dynamics (EMG to muscle activation),          
B. Musculoskeletal Geometry and, C. Muscle Contraction Dynamics. 
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𝑙𝑚𝑡 = 𝑙𝑜 cos(ϕ𝑟𝑒𝑓) + 𝑙𝑠𝑙𝑎𝑐𝑘– 𝑟 sin(θ𝑚𝑎𝑥  −  θ𝑟𝑒𝑓) 

+𝑟 sin(θ𝑚𝑎𝑥 − θ) (4) 

where 𝑙𝑚𝑡  is the length of the muscle unit, which is defined as 
the length of the entire muscle between the attachment points. 
𝑙𝑜 is the optimal muscle fiber length, which is the length of 
the muscle fiber when the muscle generates peak force. 𝑙𝑠𝑙𝑎𝑐𝑘 
represents the slack length of the tendon unit in the muscle 
model. θ𝑟𝑒𝑓 , ϕ𝑟𝑒𝑓 are the ankle angle and pennation angle 

respectively, when the muscle fiber length (𝑙𝑐𝑒) is equal to the 
optimal muscle fiber length (𝑙𝑜).  

The length of the muscle model can also be expressed as 
the sum of contractile element length (muscle fiber length) 
and series elastic element(tendon) length.   

𝑙𝑚𝑡 = 𝑙𝑐𝑒 cos(ϕ) + 𝑙𝑠𝑒 (5)  

Since a rigid tendon model was assumed, the length of the 
tendon/series elastic element does not change i.e., 𝑙𝑠𝑙𝑎𝑐𝑘 =
𝑙𝑠𝑒. This affects the accuracy of the model but helps to reduce 
the complexity of the problem [24].   

ϕ(𝑡) = 𝑠𝑖𝑛−1 (
𝑙𝑜 sin(ϕ𝑟𝑒𝑓)

𝑙𝑐𝑒

) (6) 

The pennation angle, ϕ, changes with the length of the 
muscle unit and is evaluated using eq. 6 by assuming that the 
muscle fibers maintain a constant thickness and volume 
during muscle contraction was made [19]. 

Eq 4, 5, and 6 and their derivatives were used to compute 
𝑙𝑒𝑛𝑔𝑡ℎ of the contractile element (𝑙𝑐𝑒) and velocity of 
contraction (𝑣𝑐𝑒) , which are the inputs sent to the muscle 
model for calculating the corresponding muscle force. 

C. Muscle Contraction Dynamics 

The Hill-type muscle model consists of an active 
contractile element (responsible for generating the force), a 
parallel passive element, and a series elastic element (tendon). 
As a rigid tendon assumption was made, the series elastic 
element was not included in the model. The force generated 
by the muscle model 𝐹𝑚 was  given by 

𝐹𝑚 = (𝐹𝑐𝑒 + 𝐹𝑝𝑒) cos(ϕ) (7) 

where 𝐹𝑐𝑒 represents the force generated by the contractile 
element and 𝐹𝑝𝑒 denotes the force generated by the parallel 

elastic element. 𝐹𝑐𝑒 is a function of 𝑙𝑐𝑒 , 𝑣𝑐𝑒  and 𝑎 which 
represent the length of the contractile element, the velocity of 
contraction, and muscle activation respectively. 

𝐹𝑐𝑒 = 𝐹𝑚𝑎𝑥𝐹𝑙(𝑙𝑐𝑒)𝐹𝑣(𝑣𝑐𝑒)𝑎 (8) 

𝐹𝑚𝑎𝑥 here represents the maximum isometric force generated 
by the muscle. 𝐹𝑙(𝑙𝑐𝑒)& 𝐹𝑣(𝑣𝑐𝑒)represent the force-length and 
force-velocity relationship for a Hill-type muscle model, 
which are defined as [25], 

𝐹𝑙(𝑙𝑐𝑒) = 𝑒
−(𝑙𝑜−𝑙𝑐𝑒)2

(𝑙𝑜𝑤)2 (9) 

𝐹𝑣(𝑣𝑐𝑒) = {

𝑣𝑚𝑎𝑥 − 𝑣𝑐𝑒

𝑣𝑚𝑎𝑥 + 𝐾𝑣𝑐𝑒

, 𝑣𝑐𝑒 < 0

𝑁 + (𝑁 − 1)
𝑣𝑚𝑎𝑥 + 𝑣𝑐𝑒

7.56𝐾𝑣𝑐𝑒 − 𝑣𝑚𝑎𝑥

, 𝑣𝑐𝑒 ≥ 0
(10) 

w was fixed to a value of 0.56 [25], this parameter adjusts the 
width of the bell-shaped curve representing the force-length 
behavior of the muscle model. In Eq 9. 𝑣𝑚𝑎𝑥 represents the 
maximum contraction velocity of the muscle fiber which was 
set to 10 𝑙𝑜 /𝑠  [26,27]. K is the shape parameter fixed to 5 [25] 
and N is a dimensionless force constant fixed at 1.5 [25]. 𝑣𝑚𝑎𝑥 
, K and N are fixed constants that govern the dynamic force-
length and force-velocity relations of the muscle. The parallel 
elastic element present in the system only contributes to force 
generation if the muscle fibers are stretched beyond the 
optimal fiber length 𝑙𝑜 [25]. 

𝐹𝑝𝑒 = 𝐹𝑚𝑎𝑥 (
𝑙𝑐𝑒 − 𝑙𝑜

𝑙𝑜ϵ𝑝𝑒

)

2

, 𝑙𝑐𝑒 > 𝑙𝑜 (11) 

In Eq 11. ϵ𝑝𝑒 is the reference strain which is fixed at 0.56 

[25]. Combining all of the equations, the net ankle joint torque 
was computed by summing the torque contribution of the 2 
muscles present in the model, 

τ𝑎𝑛𝑘𝑙𝑒 = 𝐹𝑚(𝑑𝑜𝑟𝑠𝑖)𝑟𝑑𝑜𝑟𝑠𝑖(θ)  −  𝐹𝑚(𝑝𝑙𝑎𝑛𝑡)𝑟𝑝𝑙𝑎𝑛𝑡(θ) (12) 

where τ𝑎𝑛𝑘𝑙𝑒  represents the model predicted ankle torque. 
This model predicted torque was sent as the reference 
torque/commanded torque to the robotic ankle prosthesis. 

D. Model Parameter Optimization 

The EMG-driven MSK model consists of many 
parameters that allow it to replicate the dynamic force-
generating behavior of muscles. While some parameters are 
fixed to preserve this dynamic relationship, some parameters 
are responsible for scaling the muscle force according to a 
specific muscle in the body. The optimization problem was 
set up to find a set of parameters that would allow the muscle 
model predictions to best fit the biological ankle torque 
collected during walking tasks. 𝐹𝑚𝑎𝑥, 𝑙𝑜, 𝑟𝑚𝑎𝑥, θ𝑟𝑒𝑓 , θ𝑚𝑎𝑥 

were the physiological parameters chosen for optimization. 
θ𝑟𝑒𝑓  and θ𝑚𝑎𝑥 values were shared by both the muscles; where 

their function was interchanged i.e., θ𝑟𝑒𝑓  for dorsiflexor 

muscle was equal to θ𝑚𝑎𝑥 of the plantar flexor muscle and 
vice versa. This was done to account for the orientation of the 
muscles and to reduce the total number of parameters chosen 
for optimization.  

TABLE I.  NUMERICAL OPTIMIZATION CONSTRAINTS AND OPTIMIZED 

PARAMETER VALUE 

Model 

Parameter 

Min 

Value 

Max 

Value 

Fitted 

Value 

Plantar flexor 

Fmax (N) 500 6000 4800 

lo (m) 0.02 0.06 0.0402 

rmax(m) 0.01 0.065 0.0375 

θref (deg) 60 130 70 

θmax(deg) 70 130 112 

Dorsi flexor 

Fmax (N) 500 4000 1800 

lo (m) 0.02 0.145 0.065 

rmax (m) 0.01 0.065 0.0449 
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MATLAB’s built-in GlobalSearch function was recruited to 
perform the optimization [18].  The goal of this optimization 
was to minimize the sum of squared error between the model 
predicted ankle torque 𝜏𝑎𝑛𝑘𝑙𝑒  and biological ankle torque 𝜏𝑏𝑖𝑜, 
where the error was given by, 

𝑒𝑟𝑟𝑜𝑟 =
1

𝑛
∑ (𝜏𝑎𝑛𝑘𝑙𝑒– 𝜏𝑏𝑖𝑜)2

𝑛

1
(13) 

Where 𝑛  is the length of data used in optimization. Table I. 
depicts the allowable range of the parameters for optimization 
and the parameter values obtained after optimization.  

E. Evaluation Protocol 

We recruited one able-bodied participant (175cm height 
and 75kg weight) for the study with IRB approval and signed 
informed consent. To build and validate a subject-specific 
model, bipolar EMG electrodes were placed on the TA and 
GAS. The muscles were located by palpation and visualizing 
the EMG signal before the data collection. To capture the 
kinematics of the subject, retroreflective markers were placed 
on the subject. A 12-camera motion capture system (Vicon, 
UK) was used to track the marker positions at 100 Hz. The 
ground reaction forces were measured at 1000 Hz using a 
split-belt instrumented treadmill (Bertec, USA). The 
participant was asked to perform various tasks such as 
walking on the treadmill at 1.0m/s, 1.2m/s, and 1.4m/s, 
squatting, standing on their toes, and performing sit-to-stand 
transitions in a non-cyclic or non-periodic manner during data 
collection. Inverse dynamics were performed using the 
collected data to calculate the torque generated at the ankle 
joint when these tasks were performed. EMG signals, ankle 
angle, and the calculated ankle torque during the walking 
tasks were used to establish the MSK model parameters via 
optimization as discussed in the previous section. 

Evaluation of our proposed EMG-driven MSK model 
control included three parts. In the first part, we conducted an 
offline evaluation of the EMG-driven MSK model for 
predicting the ankle joint torque. Separate trial data was used 
in development and evaluation of the model. Next, the EMG-
driven model-based controller was validated in real-world 
scenario using an able-bodied human participant.  The human 
ankle was attached to an able-bodied adaptor to allow able-
bodied subjects to wear and operate the device (as shown in 
the attached supplementary video). Due to the motion 
constraints imposed by the adaptor, the EMG signals were 
recorded from the intact side to provide a better representation 
of muscle activation during functional tasks. This restricted 
testing of the controller to bilaterally symmetrical tasks. In the 
second part of the evaluation, we tested the model-based 
control in an open loop with non-weight bearing posture 
tasks. The subject sat on a chair comfortably and performed 
ankle dorsiflexion and plantarflexion repeatedly on the intact 
limb in a random noncyclic manner. The EMG-driven MSK 
model estimated the intact ankle torque and then applied it to 
the prosthetic ankle. In the third part of the evaluation, we 
aimed to show the feasibility of our proposed control in a 
closed-loop (with a human operator in the loop), using 
weight-bearing tasks. The tasks included standing on toes and 
performing sit-to-stand transitions. Data collected during 
these real-time evaluations was recorded at 1000 Hz. The 

prosthesis-generated ankle torque was measured using a 
loadcell present in the ankle prosthesis [20]. 

H. Data Analysis and Evaluation Metrics 

The optimization was performed in MATLAB 
(Mathworks, Natick, MA). Biological ankle torque was 
calculated using the kinematic joint motion and ground 
reaction forces using an inverse dynamic model. Visual 3D 
(C-motion Inc., USA) was used to perform the inverse 
dynamics calculations. 

In the first part of the evaluation, we used 𝑅2 and 
Normalized Root Mean Square Error (NRMSE) values 
between inverse-dynamic calculated biological ankle torque 
and model predicted ankle torque to assess the accuracy of the 
MSK model. Since all the tested tasks were repeated motions, 
we segmented each repetition, normalized the duration of 
each repetition as % completion of each attempt, and 
averaged all the repetitions across the same task. In the second 
and third parts of the evaluation, NRMSE and 𝑅2 values were 
calculated between the model predicted ankle torque, the 
ankle angle/torque of the prosthesis, and biological ankle 
angle/torque on the intact side. 

III. RESULTS AND DISCUSSION 

A.  Offline Simulations 

Fig 2. compares the ankle torque predicted by the EMG-
driven MSK (blue dashed line) and the biological ankle torque 
calculated by the inverse dynamics (red solid line) for various 
tasks. Table II. lists the NRMSE and 𝑅2  values between 
measured and predicted ankle torque.  

For walking at different speeds (1.0m/s and 1.4m/s) and 
sit-to-stand transitions we observed similar results between 
our offline analysis and biological ankle torque (Fig 2 A., B.  
C.). The prediction accuracy in the case of standing on toes 
and squatting was relatively low which can be seen from Fig 
2 D. & E. and the 𝑅2 and NRMSE values in Table II. This 
reduced prediction accuracy in some tasks might be because 
the model was trained on the experimental data collected 
during the walking task and it couldn’t adapt very well to 
different tasks that have a different range of motion and torque 
requirements.  

B. Real-Time Open-Loop Control in Non-Weight Bearing 

Posture Task 

When the MSK model is used to control prosthesis in an 
open loop, in general, the robotic prosthesis ankle angle can 
follow the intact joint angle (Fig. 3C.). Both motions showed 
qualitative agreement without the presence of significant 
delay between the prosthesis side movement and intact side. 

TABLE II.  ANKLE TORQUE PREDICTION ACCURACY DURING OFFLINE 

SIMULATIONS VIA EMG-DRIVEN MSK MODEL. 

Task NRMSE R2 

Walking 1m/s 0.1173 0.8210 

Walking 1.4 m/s 0.0935 0.8895 

Sit to stand 0.1695 0.7792 

Standing on Toes 0.1656 0.6842 
Squatting 0.1882 0.6205 
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(𝑅2 0.7749 NRMSE 0.1935). The range of motion of the 
device, however, was lower than the intact side (Fig 3C.). This 
was due to the limitations of the device used in testing. This 
control is capable of allowing the user to freely manipulate 
the ankle position. This is a particularly useful ability that can 
allow the users to adjust the ankle angle according to the 
environment, potentially allowing for better obstacle 
avoidance, sitting posture, terrain adaptation, etc.  

C. Real-Time Closed-loop Control in Weight-Bearing 

Symmetric Tasks 

The two tasks that were chosen were - Standing on toes 
and sit-to-stand transitions. Fig -4 and Fig-5 depict the real-
time performance of the control when tasks were performed. 
Table III. compares the NRMSE and 𝑅2 values for averaged 
torque and angles values for the different conditions tested. 

Sit-to-stand transitions and standing on toes were tested as 
they are volitional, non-repetitive tasks, that other 
autonomous controllers cannot perform or assist with. The 
model predicted torque showed a high correlation with the 
intact side torque and the torque generated by the prosthesis, 
which can be seen in Table III (Real-time control with the 
device is shown in the attached supplementary video). 
Interestingly, in both cases, the accuracy of the MSK model 
in ankle torque prediction here was higher than the accuracy 
shown in offline analysis (Table II). Though EMG signals 
used to generate prosthetic ankle torque were obtained from 
the intact limb, the improvement in accuracy may be a result 

of differences between intact and prosthetic limb states (i.e., 
the joint angles were not identical). In the future, we plan to 
shift testing with amputee subjects where their residual 
muscles will be used to drive the robotic prosthetic ankle 
torque. In that case, even though the model estimation has 
errors, the human operator can modify the muscle contraction 
to meet the task goal.  

IV. CONCLUSION 

In this study, we developed a novel EMG-driven MSK model-

based controller for real-time control of a motorized, robotic 

ankle prosthesis. The model prediction accuracy was 

evaluated through offline simulations, where the model 

predicted torque was compared with the biological ankle 

torque, computed via inverse dynamics. The EMG-driven 

MSK model was also implemented for the first time on a 

robotic ankle prosthesis and evaluated online.  The results 

showed that the personalized MSK model can accurately 

 
Figure 2. Comparison of the biological ankle torque calculated by 
inverse dynamics (+ve torque corresponds to dorsiflexion torque and -
ve torque represents the plantarflexion torque) with MSK model 
predicted torque for different tasks: A. walking at 1.0 m/s, B. walking at 
1.4 m/s, C. sit-to-stand transitions, D. standing on toes, E. squatting. The 
solid and dash data represent the averaged curve across multiple 
repetitions. Shaded area denotes +/- one standard deviation.  

 

 
Figure 3. Real-time performance of EMG-driven MSK model-based 
control in open loop. A: Muscle activation of GAS on the intact side; B: 
Muscle activation of TA on the intact side. They were the inputs of the 
control. C: Prosthesis ankle angle was the output of the control. It was 
compared to the intact ankle angle (+ve values-dorsiflexion and -ve 
values-plantarflexion). 

 

 
Figure 4.  Real-time performance for Standing on toes task. A. and B. 
Muscle activation for GAS and TA muscles, respectively. C. Comparison 

of the ankle angle for the intact and prosthetic side (+ve values – 

dorsiflexion, -ve values – plantarflexion). D. Comparison of ankle 
torque of the intact side, the model predicted torque and the torque 

generated by the prosthetic ankle. (+ve values – dorsiflexion torque, -ve 

values – plantarflexion torque). 
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predict the ankle joint torque in various task contexts based 

on the activity of antagonistic ankle muscles. In addition, for 

the first time, we showed the feasibility of design of robotic 

ankle control based on biomimicry principles to enable the 

performance of prosthesis users on tasks that are 

unpredictable and non-cyclic. This study also had limitations. 

As the evaluation was performed with an able-bodied subject 

using the able-bodied adaptor, the real-time tests were 

restricted to only bilaterally symmetric tasks. Our future 

efforts will focus on testing the proposed control on 

individuals with transtibial amputations when performing 

functional activities in daily living. 
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