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Abstract— Existing robotic lower-limb prostheses use
autonomous control to address cyclic, locomotive tasks, but are
inadequate in adapting to variations in non-cyclic and
unpredictable tasks. This study aims to address this challenge by
designing a  novel electromyography (EMG)-driven
musculoskeletal model for volitional control of a robotic ankle-
foot prosthesis. The proposed controller ensures continuous
control of the device, allowing users to freely manipulate the
prosthesis behavior. A Hill-type muscle model was implemented
to model a dorsiflexor and a plantarflexor to function around a
virtual ankle joint. The model parameters for a subject specific
model was determined by fitting the model to the experimental
data collected from an able-bodied subject. EMG signals
recorded from antagonist muscle pairs were used to activate the
virtual muscle models. This model-based approach was then
validated via offline simulations and real-time prosthesis
control. Additionally, the feasibility of the proposed prosthesis
control on assisting the wuser’s functional tasks was
demonstrated. The present control may further improve the
function of robotic prosthesis for supporting versatile activities
in individuals with lower-limb amputations.

I. INTRODUCTION

Lower-limb amputation affects the ability of individuals
to perform functional tasks, which severely affects their
quality of life [1,2]. These individuals are prescribed passive
prostheses which are incapable of restoring much of the
biological function of the joint [3]. To overcome this problem,
powered prosthesis are being developed with the aim of being
lightweight, and generating similar torque and power as that
of an able-bodied joints [3-7]. These devices generally use a
finite state controller where the task being performed is
divided into various states and the device performs a prefixed
action when the user is in that state, usually by providing
torque or simulating impedance. These controllers are
autonomous; meaning they do not incorporate any form of
human input into the control algorithm. They rely on the
interaction of the device with the environment to identify the
user’s locomotion state and execute a preprogrammed set of
instructions to perform the cyclic locomotion task [6]. Thus,
new prosthesis behavior (i.e., not already pre-programmed)
cannot be generated by the user to adapt to ever-changing
environments (e.g., standing at a crowded bus stop, pushing a
lawnmower, playing soccer, etc.) and tasks.

The real world poses many uncertainties present in the
environment in the form of terrain variations, obstacles, etc.
Such uncertainties require spontaneous responses from the
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user to adapt to these changes. The lack of active adaptive
control of the prosthetic ankle joint leads to poorer stability
and balance confidence [8]. This lack of balance confidence
and absence of human intent from these autonomous
controllers has been a hindrance to these prostheses being
used in the real world.

EMG control has seen a lot of popularity recently as a
method for volitional control of lower limb prostheses [9].
The addition of human intent to these controllers has the
potential to allow amputees to modulate their prosthesis
mechanics to react to the uncertainties, and volitionally
perform non-repetitive tasks. There are two popular methods
that use EMG control: Supervisory EMG control and Direct
EMG control. Supervisory control is a form of discrete
control where a pattern classifier is used to identify human
intent by selecting the appropriate type of locomotion model
[10-12]. This type of control requires a significant amount of
training data from the user of the device to train the pattern
classifiers and is prone to classification errors, which may
lead to walking instability in prosthesis users. Continuous
EMG control is another method used where the EMG signal
is directly related to the force generated by the muscle [13].
This type of continuous volitional control mimics the
biological musculoskeletal systems and places the human in
direct control making reactionary and non-cyclic tasks
possible.

While direct EMG control can restore the ability to adapt
to various environments it’s unclear whether amputees can
coordinate residual muscle activations to reproduce
normative ankle joint function. Recent studies have shown
that with appropriate training transtibial amputees can regain
considerable coordination of voluntary residual muscle
activity [14]. These studies have also evaluated the ability of
amputee individuals to use this proportional myoelectric
control to perform typical daily-life tasks and balancing tasks
[14,15]. They implemented proportional myoelectric control
on an ankle prosthesis where the muscle behavior was
achieved using pneumatic artificial muscles also known as
McKibben actuators. The pneumatic actuators modeled
muscle behavior while the proportional EMG relayed the
human intent to the system. Though this type of control has
shown tremendous success, the need for pneumatic actuators
that simulate muscle behavior constraints the solution to lab
applications.
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The goal of this study was to design a novel EMG-driven
musculoskeletal (MSK) model for continuous volitional
control of robotic ankle prosthesis. While MSK model-based
controllers have been applied to lower limb prosthesis control
previously, these virtual muscle models capture the
adaptability of the muscle to generate force depending on the
state of the muscle but lack volitional (or EMG) control from
the user. These studies have shown the capability of MSK
model-based controllers to adapt to walking speeds, incline
decline walking [16], and also stair climbing and stair descent
[17]. Though these MSK controllers are more adaptable than
other autonomous controllers, they are limited to locomotion
tasks only. EMG-driven MSK model has been successfully
implemented in upper-limb prosthesis control [18,19].
However, we are unaware of an EMG-driven MSK controller
for motorized lower-limb prosthesis control. Therefore, this
study made the following contribution to the field. 1) We
developed a novel EMG-driven MSK model to determine the
ankle joint torque based on EMG signals from the tibialis
anterior (TA) and the gastrocnemius (GAS). 2) For the first
time, this type of EMG-driven control approach was
successfully implemented on lower limb wearable robots
through a motorized robotic ankle prosthesis. 3) We showed
the feasibility of our proposed control to assist with daily
activities that did not include cyclic, predictive motion of the
ankle.

II. METHODOLOGY

In this paper, we propose an EMG-driven MSK model-
based controller where we use the EMG from the 74 and GAS
to activate a pair of antagonistic virtual muscles of a
simplified MSK ankle model. While several muscles
contribute to the ankle flexion moment in the sagittal plane,
developing a model that includes all muscles would lead to a
highly complex model, requiring many parameters and
multiple EMG inputs [18]. Thus, we modeled the virtual
muscles as a lumped parameter model, where one muscle was
used to represent the combined effect of multiple muscles
responsible for generating the required force. We used this
virtual muscle model combined with the musculoskeletal
geometry to predict the ankle joint torque. During real-time
control, this predicted ankle torque was sent as the reference
torque command to the VSeM robotic ankle prosthesis [20].
Fig. 1 depicts the control layout with the important parts of
the EMG-driven MSK model, A. Activation Dynamics B.
Musculoskeletal Geometry, and C. Muscle Contraction
Dynamics.

A. Activation Dynamics (EMG to Muscle Activation)

For real-time control, we placed EMG electrodes (Motion Lab
Systems, MA 400) on the 74 and GAS. We high pass filtered
(cutoff at 40Hz, 4" Order Butterworth) to get rid of any
motion artifacts. We then rectified the signal before
implementing a moving average function with a 100ms
sliding window to develop the EMG envelope. The 100ms
sliding window was determined empirically to optimize
performance without introducing considerable amount of
delay in the system. We then normalized the resulting signal
using the signal value at maximum voluntary contraction
(MVC) of each muscle. The MVC is obtained at the beginning
of the trial by averaging the signal obtained from three
voluntary contraction attempts.

A. Activation Dynamics

Gastrocnemius Muscle Virtual Muscle Model

= Raw EMG
Muscle Activation

Muscle Activation

Tibialis Anterior Muscle

Muscle
Lengthstfee)

Ankle

Muscle ¢,

Angle (6) L \'ulucincs[! )
Moment - i
Amms_(7(9))] C. Musele Contraction

Dynamics

B. Musculoskeletal Geometry

Figure 1. EMG-driven MSK model-based controller layout and model

components - A. Activation Dynamics (EMG to muscle activation),

B. Musculoskeletal Geometry and, C. Muscle Contraction Dynamics.

We used this rectified, normalized, and enveloped EMG

(e(t)) signal to calculate the corresponding neural activation
(u(t)), using a discrete version of a second-order differential
equation used to represent the relation between EMG and
neural activation [21],

u(t) =ae(t—d) - B ut-1D-But-2) (@D

where o = 0.9486, 3; = —0.056 & 3, = 0.000627 [22].d
represents the electromechanical delay present between the
onset of the EMG signal and the contraction of the muscle to
generate force. This delay was determined based on the
experimental data collected for the training of the model and
further tuned for real-time control corresponding to the delay
present in the robotic ankle prosthesis. At lower levels of
force, this neural activation has a non-linear relationship with
muscle activation. This relationship was captured through
eq.2 [22].

eAu(t)_ 1

ed-1

where A represents the non-linear shape factor, which is
constrained between, —3 < A < 0. a(t) represents the final

input that was sent to the virtual muscle model as muscle
activation.

a(t) = (2)

B. Musculoskeletal Geometry

The musculoskeletal geometry defines how the muscle
attaches to the skeleton. It is used to capture the relationship
between the change in length of the moment arm with the
change in joint angle. The joint torque produced is the product
of the muscle force and the moment arm, t,,, = r(6)FE,,. The
moment arm 7 is a function of joint angle (6) and this relation
was given by the following equation [23].

7(0) = Tinax €0S(0 — B0x) 3)

where 73,4, 1S the maximum moment arm length and 6,,,,, is
the angle at which, the moment arm is maximum in length. 6
is the ankle joint angle measured between the shank and the
foot. This angle was measured using the encoder built into the
ankle prosthesis when the control was implemented in real-
time on the robotic ankle prosthesis. The length of the muscle
unit is also a function of the joint angle, it was computed using
the following relation [23].

12262

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 27,2023 at 20:02:33 UTC from IEEE Xplore. Restrictions apply.



lmt = lo Cos(q)ref) + lslack_r Sin(emax - ere'f)
+7rsin(0,,4, — 0) 4)

where L,,,; is the length of the muscle unit, which is defined as
the length of the entire muscle between the attachment points.
l, is the optimal muscle fiber length, which is the length of
the muscle fiber when the muscle generates peak force. lg,cr
represents the slack length of the tendon unit in the muscle
model. 8¢, ¢per are the ankle angle and pennation angle
respectively, when the muscle fiber length (I, ) is equal to the
optimal muscle fiber length (I,).

The length of the muscle model can also be expressed as
the sum of contractile element length (muscle fiber length)
and series elastic element(tendon) length.

lne = Lee COS(d)) + lge (5)

Since a rigid tendon model was assumed, the length of the
tendon/series elastic element does not change i.e., Ly, =
l;.. This affects the accuracy of the model but helps to reduce
the complexity of the problem [24].

I, sin(d)ref))

lce

o) = Sin'1< (6)

The pennation angle, ¢, changes with the length of the
muscle unit and is evaluated using eq. 6 by assuming that the
muscle fibers maintain a constant thickness and volume
during muscle contraction was made [19].

Eq 4, 5, and 6 and their derivatives were used to compute
length of the contractile element (l.,) and velocity of
contraction (v,,), which are the inputs sent to the muscle
model for calculating the corresponding muscle force.

C. Muscle Contraction Dynamics

The Hill-type muscle model consists of an active
contractile element (responsible for generating the force), a
parallel passive element, and a series elastic element (tendon).
As a rigid tendon assumption was made, the series elastic
element was not included in the model. The force generated
by the muscle model F,,, was given by

By = (Fce + Fpe) C05(¢) (7

where F,, represents the force generated by the contractile
element and F,, denotes the force generated by the parallel
elastic element. F,, is a function of [.,, v, and a which
represent the length of the contractile element, the velocity of
contraction, and muscle activation respectively.

Foe = FnaxFi(lce) Fy(vee)a 8

Fax here represents the maximum isometric force generated
by the muscle. F;(l..)& FE, (v, )represent the force-length and
force-velocity relationship for a Hill-type muscle model,
which are defined as [25],

=(lo=lce)?
Filee) = ¢ Gow? )
Umax — Vee
Vmax t KVce

Umax + UCE
N+N-1)—-—"i——,
( ) 7.56KV00 — Vigy ¢

y Ve <0

E;(vce) = (10)

=0

w was fixed to a value of 0.56 [25], this parameter adjusts the
width of the bell-shaped curve representing the force-length
behavior of the muscle model. In Eq 9. v,,,, represents the
maximum contraction velocity of the muscle fiber which was
setto 10 1, /s [26,27]. K is the shape parameter fixed to 5 [25]
and N is a dimensionless force constant fixed at 1.5 [25]. vy, 0x
, K'and N are fixed constants that govern the dynamic force-
length and force-velocity relations of the muscle. The parallel
elastic element present in the system only contributes to force
generation if the muscle fibers are stretched beyond the
optimal fiber length [, [25].

lce - lo 2
Fpeszax dee > 1
loepe

(11

In Eq 11. €, is the reference strain which is fixed at 0.56
[25]. Combining all of the equations, the net ankle joint torque
was computed by summing the torque contribution of the 2
muscles present in the model,

Tankle = m(dorsi)rdorsi(e) - Fm(plant)rplant(e) (12)

where Ty, represents the model predicted ankle torque.
This model predicted torque was sent as the reference
torque/commanded torque to the robotic ankle prosthesis.

D. Model Parameter Optimization

The EMG-driven MSK model consists of many
parameters that allow it to replicate the dynamic force-
generating behavior of muscles. While some parameters are
fixed to preserve this dynamic relationship, some parameters
are responsible for scaling the muscle force according to a
specific muscle in the body. The optimization problem was
set up to find a set of parameters that would allow the muscle
model predictions to best fit the biological ankle torque
collected during walking tasks. Frax, Lo, Tmax> Orefs Omax
were the physiological parameters chosen for optimization.
Oy¢r and 0,4, values were shared by both the muscles; where
their function was interchanged i.e., 8, for dorsiflexor
muscle was equal to 0,,,, of the plantar flexor muscle and
vice versa. This was done to account for the orientation of the
muscles and to reduce the total number of parameters chosen
for optimization.

TABLE I. NUMERICAL OPTIMIZATION CONSTRAINTS AND OPTIMIZED

PARAMETER VALUE
Model Min Max Fitted
Parameter Value Value Value
Plantar flexor
Foax (N) 500 6000 4800
Lo (m) 0.02 0.06 0.0402
Pinax(M) 0.01 0.065 0.0375
Orer (deg) 60 130 70
Onax(deg) 70 130 112
Dorsi flexor
Fouax (N) 500 4000 1800
Lo (m) 0.02 0.145 0.065
Pmax (M) 0.01 0.065 0.0449
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MATLAB?’s built-in GlobalSearch function was recruited to
perform the optimization [18]. The goal of this optimization
was to minimize the sum of squared error between the model
predicted ankle torque 7, and biological ankle torque 7;,,
where the error was given by,

1 5
error = o (Tankie= Trio)
1

Where n is the length of data used in optimization. Table I.
depicts the allowable range of the parameters for optimization
and the parameter values obtained after optimization.

(13)

E. Evaluation Protocol

We recruited one able-bodied participant (175cm height
and 75kg weight) for the study with IRB approval and signed
informed consent. To build and validate a subject-specific
model, bipolar EMG electrodes were placed on the 74 and
GAS. The muscles were located by palpation and visualizing
the EMG signal before the data collection. To capture the
kinematics of the subject, retroreflective markers were placed
on the subject. A 12-camera motion capture system (Vicon,
UK) was used to track the marker positions at 100 Hz. The
ground reaction forces were measured at 1000 Hz using a
split-belt instrumented treadmill (Bertec, USA). The
participant was asked to perform various tasks such as
walking on the treadmill at 1.0m/s, 1.2m/s, and 1.4m/s,
squatting, standing on their toes, and performing sit-to-stand
transitions in a non-cyclic or non-periodic manner during data
collection. Inverse dynamics were performed using the
collected data to calculate the torque generated at the ankle
joint when these tasks were performed. EMG signals, ankle
angle, and the calculated ankle torque during the walking
tasks were used to establish the MSK model parameters via
optimization as discussed in the previous section.

Evaluation of our proposed EMG-driven MSK model
control included three parts. In the first part, we conducted an
offline evaluation of the EMG-driven MSK model for
predicting the ankle joint torque. Separate trial data was used
in development and evaluation of the model. Next, the EMG-
driven model-based controller was validated in real-world
scenario using an able-bodied human participant. The human
ankle was attached to an able-bodied adaptor to allow able-
bodied subjects to wear and operate the device (as shown in
the attached supplementary video). Due to the motion
constraints imposed by the adaptor, the EMG signals were
recorded from the intact side to provide a better representation
of muscle activation during functional tasks. This restricted
testing of the controller to bilaterally symmetrical tasks. In the
second part of the evaluation, we tested the model-based
control in an open loop with non-weight bearing posture
tasks. The subject sat on a chair comfortably and performed
ankle dorsiflexion and plantarflexion repeatedly on the intact
limb in a random noncyclic manner. The EMG-driven MSK
model estimated the intact ankle torque and then applied it to
the prosthetic ankle. In the third part of the evaluation, we
aimed to show the feasibility of our proposed control in a
closed-loop (with a human operator in the loop), using
weight-bearing tasks. The tasks included standing on toes and
performing sit-to-stand transitions. Data collected during
these real-time evaluations was recorded at 1000 Hz. The

prosthesis-generated ankle torque was measured using a
loadcell present in the ankle prosthesis [20].

H. Data Analysis and Evaluation Metrics

The optimization was performed in MATLAB
(Mathworks, Natick, MA). Biological ankle torque was
calculated using the kinematic joint motion and ground
reaction forces using an inverse dynamic model. Visual 3D
(C-motion Inc., USA) was used to perform the inverse
dynamics calculations.

In the first part of the evaluation, we used R? and
Normalized Root Mean Square Error (NRMSE) values
between inverse-dynamic calculated biological ankle torque
and model predicted ankle torque to assess the accuracy of the
MSK model. Since all the tested tasks were repeated motions,
we segmented each repetition, normalized the duration of
each repetition as % completion of each attempt, and
averaged all the repetitions across the same task. In the second
and third parts of the evaluation, NRMSE and R? values were
calculated between the model predicted ankle torque, the
ankle angle/torque of the prosthesis, and biological ankle
angle/torque on the intact side.

III. RESULTS AND DISCUSSION

A. Offline Simulations

Fig 2. compares the ankle torque predicted by the EMG-
driven MSK (blue dashed line) and the biological ankle torque
calculated by the inverse dynamics (red solid line) for various
tasks. Table II. lists the NRMSE and R? values between
measured and predicted ankle torque.

For walking at different speeds (1.0m/s and 1.4m/s) and
sit-to-stand transitions we observed similar results between
our offline analysis and biological ankle torque (Fig 2 A., B.
C.). The prediction accuracy in the case of standing on toes
and squatting was relatively low which can be seen from Fig
2 D. & E. and the R? and NRMSE values in Table II. This
reduced prediction accuracy in some tasks might be because
the model was trained on the experimental data collected
during the walking task and it couldn’t adapt very well to
different tasks that have a different range of motion and torque
requirements.

B. Real-Time Open-Loop Control in Non-Weight Bearing
Posture Task

When the MSK model is used to control prosthesis in an
open loop, in general, the robotic prosthesis ankle angle can
follow the intact joint angle (Fig. 3C.). Both motions showed
qualitative agreement without the presence of significant
delay between the prosthesis side movement and intact side.

TABLE II. ANKLE TORQUE PREDICTION ACCURACY DURING OFFLINE
SIMULATIONS VIA EMG-DRIVEN MSK MODEL.

Task NRMSE R’
Walking 1m/s 0.1173 0.8210
Walking 1.4 m/s 0.0935 0.8895
Sit to stand 0.1695 0.7792
Standing on Toes 0.1656 0.6842
Squatting 0.1882 0.6205
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Figure 2. Comparison of the biological ankle torque calculated by
inverse dynamics (+ve torque corresponds to dorsiflexion torque and -
ve torque represents the plantarflexion torque) with MSK model
predicted torque for different tasks: A. walking at 1.0 m/s, B. walking at
1.4 m/s, C. sit-to-stand transitions, D. standing on toes, E. squatting. The
solid and dash data represent the averaged curve across multiple
repetitions. Shaded area denotes +/- one standard deviation.

(R? 0.7749 NRMSE 0.1935). The range of motion of the
device, however, was lower than the intact side (Fig 3C.). This
was due to the limitations of the device used in testing. This
control is capable of allowing the user to freely manipulate
the ankle position. This is a particularly useful ability that can
allow the users to adjust the ankle angle according to the
environment, potentially allowing for better obstacle
avoidance, sitting posture, terrain adaptation, etc.

C. Real-Time Closed-loop Control
Symmetric Tasks

in Weight-Bearing

The two tasks that were chosen were - Standing on toes
and sit-to-stand transitions. Fig -4 and Fig-5 depict the real-
time performance of the control when tasks were performed.
Table III. compares the NRMSE and R? values for averaged
torque and angles values for the different conditions tested.

Sit-to-stand transitions and standing on toes were tested as
they are wvolitional, non-repetitive tasks, that other
autonomous controllers cannot perform or assist with. The
model predicted torque showed a high correlation with the
intact side torque and the torque generated by the prosthesis,
which can be seen in Table III (Real-time control with the
device is shown in the attached supplementary video).
Interestingly, in both cases, the accuracy of the MSK model
in ankle torque prediction here was higher than the accuracy
shown in offline analysis (Table II). Though EMG signals
used to generate prosthetic ankle torque were obtained from
the intact limb, the improvement in accuracy may be a result

A. GAS activation

1 2 3 s s 5
Time(sec)
B. TA activation

' 2 3 . s B
Time(sec)

C. Ankle Angle (Deg)

Time(sec)
—Intact Side Ankle Angle
—Prosthesis Ankle Angle

Figure 3. Real-time performance of EMG-driven MSK model-based
control in open loop. 4: Muscle activation of GAS on the intact side; B:
Muscle activation of 74 on the intact side. They were the inputs of the
control. C: Prosthesis ankle angle was the output of the control. It was
compared to the intact ankle angle (+ve values-dorsiflexion and -ve
values-plantarflexion).

of differences between intact and prosthetic limb states (i.e.,
the joint angles were not identical). In the future, we plan to
shift testing with amputee subjects where their residual
muscles will be used to drive the robotic prosthetic ankle
torque. In that case, even though the model estimation has
errors, the human operator can modify the muscle contraction
to meet the task goal.

IV. CONCLUSION

In this study, we developed a novel EMG-driven MSK model-
based controller for real-time control of a motorized, robotic
ankle prosthesis. The model prediction accuracy was
evaluated through offline simulations, where the model
predicted torque was compared with the biological ankle
torque, computed via inverse dynamics. The EMG-driven
MSK model was also implemented for the first time on a
robotic ankle prosthesis and evaluated online. The results
showed that the personalized MSK model can accurately

A. GAS activation

T\n|é(sen)

B. TA activation

Time(sec)
—Intact Side Ankle Angle
—Prosthesis Ankle Angle’

C. Ankle Angle(geg)

Standing on toes

Standing on toes
o8 .

Timétsec)

D. Ankle Torque(Nm)

Time(sec)
—— Intact Side Ankle Tarque
——Model Predicted Ankle Torque
- = -Prosthesis Ankle Torque

Figure 4. Real-time performance for Standing on toes task. A. and B.
Muscle activation for GAS and 74 muscles, respectively. C. Comparison
of the ankle angle for the intact and prosthetic side (+ve values —
dorsiflexion, -ve values — plantarflexion). D. Comparison of ankle
torque of the intact side, the model predicted torque and the torque
generated by the prosthetic ankle. (+ve values — dorsiflexion torque, -ve
values — plantarflexion torque).
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predict the ankle joint torque in various task contexts based
on the activity of antagonistic ankle muscles. In addition, for
the first time, we showed the feasibility of design of robotic
ankle control based on biomimicry principles to enable the
performance of prosthesis users on tasks that are
unpredictable and non-cyclic. This study also had limitations.
As the evaluation was performed with an able-bodied subject
using the able-bodied adaptor, the real-time tests were
restricted to only bilaterally symmetric tasks. Our future
efforts will focus on testing the proposed control on
individuals with transtibial amputations when performing
functional activities in daily living.
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