2022 IEEE 18th International Conference on e-Science (e-Science) | 978-1-6654-6124-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/ESCIENCE55777.2022.00065

2022 IEEE 18th International Conference on e-Science (e-Science)

Application of Edge-to-Cloud Methods Toward
Deep Learning

Khushi Choudhary*', Nona Nersisyan*!, Edward Lin*', Shobana Chandrasekaran*¥, Rajiv Mayani*
Loic Pottier*, Angela P. MurilloT, Nicole K. Virdone*, Kerk Keei, Ewa Deelman™
*Information Sciences Institute, University of Southern California, CA, USA
{khushich, nnersisy, eddiel} @usc.edu {schand, mayani, lpottier, virdone, deelman} @isi.edu
fSchool of Informatics and Computing, Indiana University, IN, USA
apmurill@iu.edu
Texas Tech University, TX, USA
kerk. kee @ttu.edu

Abstract—Scientific workflows are important in modern com-
putational science and are a convenient way to represent complex
computations, which are often geographically distributed among
several computers. In many scientific domains, scientists use
sensors (e.g., edge devices) to gather data such as CO2 level
or temperature, that are usually sent to a central processing
facility (e.g., a cloud). However, these edge devices are often
not powerful enough to perform basic computations or machine
learning inference computations and thus applications need the
power of cloud platforms to generate scientific results. This work
explores the execution and deployment of a complex workflow
on an edge-to-cloud architecture in a use case of the detection
and classification of plankton. In the original application, images
were captured by cameras attached to buoys floating in Lake
Greifensee (Switzerland). We developed a workflow based on
that application. The workflow aims to pre-process images
locally on the edge devices (i.e., buoys) then transfer data from
each edge device to a cloud platform. Here, we developed a
Pegasus workflow that runs using HTCondor and leveraged the
Chameleon cloud platform and its recent CHI@Edge feature
to mimic such deployment and study its feasibility in terms of
performance and deployment.

Index Terms—Scientific Workflows, Workflow Management
Systems, Edge Computing, Pegasus, Zooplankton, Machine
Learning.

I. INTRODUCTION

This paper proposes a method of carrying out experiments
that rely on edge and cloud computing in order to make
the experimental process more streamlined and efficient. To
experiment with the system, we have chosen an existing
application [1] that classifies lake zooplankton.

By analyzing plankton, it is possible to learn about the
health of ecosystems and how they may be affected by
environmental changes. This is important in today’s world
as we face many climate-related challenges. The experiment
run will classify plankton images into 35 different classes
that will reveal information about the state of the surrounding
ecosystem.

In this work, we build the data classification workflow and
show how the execution of such a workflow can be automated

"Undergraduate student, equal contribution
9 Graduate student, equal contribution

by leveraging existing technologies. Running an experiment
on both edge and cloud devices provides automation and
improves performance. When programs are only run in the
cloud, latency exists because data processing is happening far
from the user. With edge devices, data processing or running
workflows can happen on devices that are located closer to
the user, thereby improving performance, but only if the edge
devices are powerful enough for a given application.

II. SYSTEMS USED

In this work, we used the Chameleon testbed, the Pegasus
workflow management system, and HTCondor for job man-
agement.

Chameleon Cloud Site. The Chameleon Cloud Site [2] is
an NSF-funded testbed system primarily used for computer
science experimentation. This testbed is designed to be re-
configurable. Chameleon utilizes a Python library that allows
users to work with the testbed and Jupyter notebooks. For
our project, we utilized CHI@TACC, CHI@Edge, and the
Jupyter Interface. CHI@TACC was used for the cloud site
and CHI@Edge was used for the edge site. We used Jupyter
notebooks to configure our projects, create execution sites, and
execute the workflow created.

Pegasus Workflow Management System. Pegasus [3] is a
workflow management system. Scientific workflows allow
users to execute computational tasks that often have multiple
steps. A workflow is "an abstraction used by scientists to ex-
press an ensemble of complex, computational operations” [3].
Pegasus is responsible for managing the execution of the
workflow (see Figure 1).

HTCondor. HTCondor [4] is a job management system that
allows reliable execution of many jobs on the behalf of the
user. By doing so, HTCondor is able to do large amounts of
work and computation without any user intervention.

III. APPROACH

Cloud Site. First, the cloud site was established. We configured
a CHI project and set the site to CHI@TACC. We then used

978-1-6654-6124-5/22/$31.00 ©2022 IEEE 415
DOI 10.1109/eScience55777.2022.00065
Authorized licensed use limited to: University of Southern California. Downloaded on May 27,2023 at 21:32:18 UTC from IEEE Xplore. Restrictions apply.

Floating IP of Cloud instance
must be set in config of
HTCondor prior to startup so
connect back to Central
Manager can be made

A)

- Pegasus
- HTCondor roles

- Central Manager

- Submit
- Execute

Chameleon VM
(GPU)

CHI@Edge Device

Floating ip: XXX.XXX.XXX.XXX

EDGE CLOUD

B) Pegasus Workflow

Edge: Examine the
images we took from our
cameras from in the lake.

Cloud: What types of
and how many planktons
did we find?

Figure 1: Global architecture of the project.

Chameleon’s Python API to create a lease with a reservation
for 1 node and 1 floating IP. Once the lease was created, we
launched a bare metal instance to start a virtual machine.
To do so, a server was created with the "Ubuntu 18.04"
image. On this virtual machine, a floating IP address was then
associated. We then installed and configured the HTCondor
and Pegasus software. The software was installed by creating
a .sh file where we wrote a script that installed HTCondor, set
the submit, execute, and central manager roles, and installed
Pegasus. Once the software was installed and configured, we
performed checks to ensure it was installed and configured
correctly and using the correct versions of the software. They
were configured correctly if it was able to successfully show
96 available computing slots.

Edge Site. We then moved to CHI@Edge to begin creating the
edge site. Once again, the Chameleon Python API was utilized
to create a lease with a reservation for one Raspberry Pi.
Once the lease was created, a container containing the planki-
fier ML model (rajivmayani/condor8-arm64-plankifier-worker)
was started. After, the software was configured. This was
done through another .sh file. Within this .sh file, HTCondor’s
execute node role was configured. Once again, checks were
performed. Specifically, the command condor_status was
used. We knew it was configured correctly if this command
showed that there were now 97 compute slots available.

Workflow and Execution. To write the workflow, we took the
original bash script and converted it to a Pegasus workflow
using the Pegasus Python API. For each execution site, a job
was created. Jobs are used for commands that need to be run.
This includes command line arguments that need to be passed,
input files, or even output files that will be outputted after the
job is done. After each job, a transformation catalog entry was
also created. Transformation catalogs are used to find locations
of the executable that are used by the jobs in the workflow.
First, a job for the edge site was created. For the edge job,
arguments that were used were added and stored in an output
file. Then, a transformation catalog entry for the edge job was

416

created. For the cloud job, arguments that were needed were
added alongside an input file and an output file. The input
file took the output file that was created in the edge job. Once
again, a transformation catalog entry was created for the cloud
job. Lastly, the workflow was executed, and we were able to
successfully output the results.

IV. CONCLUSION

As a result of our project, we found 26 types of zooplankton.
This could have been done manually, but it would have taken a
lot of time and effort and would be error-prone. Modern-day
technology helps us classify things faster than ever before.
This was done by using a cloud site and an edge site. We
established a connection between the two, and as a result
of the workflow, we were able to find the different types of
zooplankton. In the future, we plan to apply this workflow to
data collected from other lakes, retraining the models for new
zooplankton classification. This would enable other ecologists
to benefit from these automated tools.

ACKNOWLEDGMENTS

This project was conducted as part of the CI Compass Stu-
dent Fellowship Program supported by the National Science
Foundation award #2127548.

REFERENCES

[1] S. Kyathanahally, T. Hardeman, E. Merz, T. Kozakiewicz, M. Reyes,
P. Isles, F. Pomati, and M. Baity-Jesi, “Data for: Deep learning classifi-
cation of lake zooplankton,” 2021. [Online]. Available: https://opendata.
eawag.ch/dataset/deep-learning- classification- of- zooplankton-from-lakes
K. Keahey et al., Chameleon: A Scalable Production Testbed for Com-
puter Science Research. CRC Press, 05 2019, pp. 123-148.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and
K. Wenger, “Pegasus: a Workflow Management System for Science
Automation,” Future Generation Computer Systems, vol. 46, pp. 17-35,
2015, funding Acknowledgements: NSF ACI SDCI 0722019, NSF
ACI SI2-SSI 1148515 and NSF OCI-1053575. [Online]. Available:
http://pegasus.isi.edu/publications/2014/2014-fgcs-deelman.pdf

D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in Prac-
tice: the Condor Experience,” Concurrency and computation: practice and
experience, vol. 17, no. 2-4, pp. 323-356, 2005.

Authorized licensed use limited to: University of Southern California. Downloaded on May 27,2023 at 21:32:18 UTC from IEEE Xplore. Restrictions apply.

