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Abstract

Approximating probability distributions can be a challenging task, particularly when

they are supported over regions of high geometrical complexity or exhibit multiple

modes. Annealing can be used to facilitate this task which is often combined with

constant a priori selected increments in inverse temperature. However, using constant

increments limit the computational efficiency due to the inability to adapt to situ-

ations where smooth changes in the annealed density could be handled equally well

with larger increments. We introduce AdaAnn, an adaptive annealing scheduler that

automatically adjusts the temperature increments based on the expected change in the

Kullback-Leibler divergence between two distributions with a sufficiently close anneal-

ing temperature. AdaAnn is easy to implement and can be integrated into existing

sampling approaches such as normalizing flows for variational inference and Markov

chain Monte Carlo. We demonstrate the computational efficiency of the AdaAnn sched-

uler for variational inference with normalizing flows on a number of examples, including

density approximation and parameter estimation for dynamical systems.

1 Introduction

One of most fundamental challenges in statistics and machine learning is the ability to learn
a posterior distributions from its pointwise evaluations. In this context, Markov chain Monte
Carlo (MCMC) sampling is a popular paradigm to provide empirical approximations of dis-
tributions and has given rise to a large family of sampling procedures such as the Metropolis
Hasting algorithm [10, 27], the Gibbs sampler [8], and slice sampling [29], among others.
However, MCMC can be computationally expensive and may fail to capture complicated
posterior distributions, leading to poor approximations.

Recently, optimization-based approaches using variational inference (VI) [5, 6, 13, 37] have
emerged which aim to provide a more efficient alternative to sampling-based methods with
the ability to support distributions with complex shapes such as multi-modality in high-
dimensional settings [32]. More recent, VI approaches based on normalizing flows (NFs) [33],
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a type of generative model, are able to characterize even complex dependence in multivariate
distributions. They offer a flexible framework by transforming a base distribution through
a composition of invertible mappings until the desired complexity has been attained.

There are many different types of NFs such as planar flows [33], radial flows [33], real-
NVP [7], autogressive flows that include inverse autoregressive flow (IAF) [17] and masked
autoregressive Flow (MAF) [30], and glow [16], among others. An introduction to the fun-
damental principles of NFs including their expressive power and computational trade-offs,
together with a review of a wide verity of flow formulations are provided in [19, 30]. They
have been applied in various settings for VI such as density estimation and sampling since
their introduction. For example, NFs are used to formulate Gaussian processes as function
priors [26] while [21] introduces NFs to the setting of graph neural networks for prediction
and generation. In [40], NFs are applied to 3D point cloud generation; [23] apply NFs to
approximate the latent variables in Bayesian neural networks. Recent applications of NFs
include semi-supervised learning [12], coupling with surrogate modelling for inference with
computationally expensive models [38], and solving inverse problems [39], among others.

In this study, we focus on VI via NFs, specifically on situations where the target distribution
to be approximated is supported over a geometrically complex subset of the parameter
space or has multiple modes. Rather than designing new types of NFs offering improved
representations of multimodal densities, we choose instead to approximate a collection of
intermediate smoother posteriors generated through a parameterization defined in terms of
an annealing temperature.

Annealing or tempering of probability density functions is used in optimization (e.g., simu-
lated annealing [18] and simulated tempering [25]) and MCMC sampling to generate realiza-
tions from complex and multimodal distributions (e.g. tempered transition [28] and parallel
tempering [9]). Tempering is also used in Bayesian statistics to study theoretical properties
and concentration rates for posterior distributions [4]. This has been extended in [2] to
analyze the concentration of VI approximations of (tempered) posteriors while [11] develops
an annealed version of the objective functions in VI to improve inferential explorability. In
the setting of NFs, [33] applies an annealed version of the free energy for VI via NFs by ap-
proximating a series of tempered distributions with slowly decreased temperature to provide
better results on the final approximated target distribution.

Various temperature cooling schedules have been proposed to improve computational effi-
ciency in simulated annealing such as simple linear schedules [18], exponential multiplicative
cooling [18], and logarithmic multiplicative cooling [1], among others. There also exists work
on adaptive cooling where the temperature at each state transition depends on an adaptive
factor based on the difference between the current solution and the best achieved solution of
an objective function, including some recent work [14, 24]. Outside the realm of simulated
annealing, annealing strategies and cooling schedules have received little attention.

We use a simple instance of NFs, namely, planar flows [33], to motivate our methodological
development for an annealing scheduler in the settings of VI via NFs. Planar flows are
shown to be a universal approximator in L1 for one-dimensional problems in theory [20], but
have been sometimes associated with a limited approximation power and more complex flow
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formulations have often been preferred in applications, limiting the analysis of this flow in
the literature, particularly for higher dimensional latent spaces and complicated posterior
distributions. We outline cases where planar flows alone fail to capture the structure of a
multimodal density but the combination with annealing leads to successful approximations.

Our main contribution is AdaAnn (Adaptive Annealing), a novel scheduler that adaptively
selects the change in temperature during the annealing process by tracking the Kullback-
Leibler divergence between successive temperature changes. Through five examples, we
demonstrate that AdaAnn helps NFs converge to the target posterior and leads to significant
computational savings compared to a linear scheduler for both univariate and multivariate
cases. In addition, we show how planar flows with AdaAnn achieve better approximation to
the target distribution compared to more expressive flows but without using annealing.

The remainder of the paper is organized as follows. Section 2 provides necessary background
information regarding NFs and VI. Section 3 describes AdaAnn, our new adaptive annealing
schedule for VI via NFs. Five examples are presented in Section 4 which demonstrate the
superior performance of using annealing for VI via NFs, and the computational advantage
of AdaAnn over linear annealing schedulers. We conclude with a discussion in Section 5.

2 Background

2.1 Normalizing Flows

Normalizing flows are compositions of invertible and differentiable mappings used to trans-
form samples from a base probability density function (pdf) q0, e.g., a standard Gaussian,
into samples from a desired distribution and vice-versa. Consider a single layer of a normal-
izing flow with a bijection f : Rd → R

d that maps a set of N sample points {z(i)
0 }

N
i=1 where

z
(i)
0 ∼ Z0, i = 1, . . . , N , from the base density to {z(i)

1 }
N
i=1 wherez

(i)
1 = f(z

(i)
0 ), i = 1, . . . , N ,

and d is the dimension of Z0 and Z1. Given Z0 ∼ q0, the density of the transformed vari-
ables Z1 ∼ q1 can be computed using the change of variables formula and the properties of
inverse functions, namely

q1(Z1) = q0(f
−1(Z1)) ·

∣

∣

∣
det

(∂f−1

∂Z1

)∣

∣

∣
= q0(Z0) ·

∣

∣

∣
det

( ∂f

∂Z0

)∣

∣

∣

−1

. (1)

One can easily generalize this to L layers of transformations so that the initial set of sample
points are transformed to

z
(i)
L = fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1(z

(i)
0 ), i = 1, . . . , N, (2)

and the corresponding pdf is given by

qL(ZL) = q0(Z0) ·
L
∏

ℓ=1

∣

∣

∣
det

( ∂fℓ
∂Zℓ−1

)∣

∣

∣

−1

. (3)

To simplify the computation, a desirable property of flow fℓ is that the Jacobian determinant
is easy to compute, e.g., through the product of the diagonal entries, as in lower triangu-
lar Jacobian matrices. Many different formulations of NFs have been investigated in the
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literature. In this paper, we use planar flows and the real-valued Non Volume Preserving
(realNVP) flows to demonstrate our proposed methodology, which are summarized next.

Planar flows [33] are one of the simpler instances of NFs where each layer transforms a set
of samples with expansions or contractions perpendicular to a d-dimensional hyperplane. A
planar flow f : Rd

×R
2d+1 → R

d consists of an activation function h : R→ R and parameters
φ = {u ∈ R

d,w ∈ R
d, b ∈ R} such that:

f(Z;φ) = Z + u · h(wT
Z + b). (4)

When u
T
w ≥ −1, this flow is invertibile [33] and its Jacobian determinant is equal to

∣

∣

∣
det

( ∂f

∂Z

)∣

∣

∣
= | det

(

I + u (wh′(wT
Z + b))T

)

| = |1 + u
T
wh′(wT

Z + b)|, (5)

where h′ is the derivative of h. With L layers, the transformed random variable

ZL = fL(•;φL) ◦ fL−1(•;φL−1) ◦ · · · ◦ f2(•;φ2) ◦ f1(Z0;φ1) (6)

has corresponding pdf

qL(ZL) = q0(Z0)
L
∏

ℓ=1

|1 + u
T
ℓ wℓ · h

′(wT
ℓ Zℓ−1 + bℓ)|

−1. (7)

To enhance the expressiveness of NFs while maintaining a linear complexity in the com-
putation of the Jacobian determinant, dependencies between different components of latent
vectorsZℓ, ℓ = 1, . . . , L, can be introduced through autoregressive transformations. A widely
used auto-regressive flow is realNVP, defined as

Zℓ+1,j=

{

Zℓ,j, for j = 1, . . . , c,

Zℓ,j exp(ask(Zℓ,1, . . . , Zℓ,c))+atk(Zℓ,1, . . . , Zℓ,c) for j=c+1, . . . , d, k=j−c,
(8)

where Zℓ+1,j denotes the jth component of Zℓ+1 in layer ℓ + 1, and ask and atk are scale
and translation functions in layer k, respectively, and are usually implemented as neural
networks. The components in Z are divided into two groups in Eq. (8). The variables in the
first group are copied directly into the next layer whereas the remaining variables go through
an autoregressive transformation. The roles of the two groups are reversed (or the variables
are randomly scrambled) after every layer. Since the cth component of Zℓ+1 in layer ℓ + 1
depends only on the components 1, . . . , c of Zℓ, the Jacobian matrix is lower triangular and
its determinant is simply the product of the diagonal entries

∏d−c

k=1 ak(Zk−1). In particular,
realNVP is efficient and has the same computational complexity for sampling and density
estimation [7]. Even if the mappings as and at are not invertible, the transformation in
Eq. (8) is still invertible since

Zℓ,j=

{

Zℓ+1,i, for j = 1, . . . , c,

[Zℓ+1,j−atk(Zℓ,1, . . . , Zℓ,c)] exp(−ask(Zℓ,1, . . . , Zℓ,c)) for j=c+ 1, . . . , d, k=j−c.
(9)
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2.2 Variational Inference via Normalizing Flows

Variational inference is a common method for statistical inference and machine learning that
approximates probability densities by minimizing their Kullback-Leibler (KL) divergence
from a target distribution. In particular, VI provides an effective alternative to sampling-
based approaches for density approximation such as MCMC. It is based on optimization and
designed to offer improved computational efficiency. Additionally, one of the major applica-
tions of NFs is VI. Without loss of generality, we illustrate the application of NFs for VI in
approximating the posterior distribution p(Z|X) of the model parameters Z given observed
data X. Such an approximation is obtained by minimizing the free energy F , the negative of
which is a lower bound to the marginal log-density function log p(X) (a.k.a., the evidence).
Due to the analytical difficulty in maximizing the marginal log-density function, the min-
imization of the free energy is often used in VI. If qφ(Z|X) is the variational distribution
with parameters φ that approximates the true posterior p(Z|X), the free energy is

F(X, φ) = D[qφ(Z|X) ‖ p(Z)]− Eqφ [log p(X|Z)]

= Eqφ [log qφ(Z|X)− log p(Z,X)]
(10)

where D[·‖·] denotes the KL divergence between two distributions. Following the notation
in Section 2.1, we express the density qφ(Z|X) as qL(ZL) and apply the change of variables
formula in Eq. (7) to Eq. (10) to obtain

F(X, φ) = Eq0 [log qL(ZL)− log p(X,ZL)]

= Eq0 [log q0(Z0)]− Eq0

[

L
∑

ℓ=1

log

∣

∣

∣

∣

det
∂fℓ
∂zℓ−1

∣

∣

∣

∣

]

+ Eq0 [log(p(X,ZL))].
(11)

Minimization of the free energy F with respect to the parameters φ is often achieved through
gradient-based optimization, e.g., stochastic gradient descent, RMSprop [35], Adam [15], and
others. The expectations in Eq. (11) are often replaced by their Monte Carlo estimates by
using N realizations from the base distribution q0. For planar flows, Eq. (11) becomes

F(X, φ)≈
1

N

N
∑

i=1

[

log(q0(z0,i))−log(p(zL,i,X))−
L
∑

ℓ=1

log
∣

∣1+u
T
ℓ wℓ h(w

T
ℓ zℓ−1,i+bℓ)

∣

∣

]

. (12)

2.3 Annealing

Annealing is a useful technique when sampling from complicated distributions. Coupled with
MCMC techniques or VI, annealing can help improve sampling efficiency and accuracy. Dur-
ing the application of annealing, the annealing temperature 1/t continuously decreases with

pt(Z,X) = pt(Z,X), for t ∈ (0, 1]. (13)

In practice, a discrete version of Eq. (13) is used by generating a sequence of functions

pk(Z,X) = ptk(Z,X), for k = 0, . . . , K (14)
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This relatively large number of iterations is rather typical with linear annealing schedulers
to reach a variational approximation of a target distribution with satisfactory accuracy. The
large number of iterations is due to the typical small steps of constant size characterizing
linear annealing schedulers (e.g., 10−4 in the above example). An exceedingly large tempera-
ture step during the annealing process could lead to a sub-optimal approximation that does
not capture the main structural features of the target distribution (e.g., missing a mode in
a multi-modal distribution).

In the following, we propose a new annealing strategy that can significantly cut down the
number of iterations in NFs for VI without sacrificing the quality of the final approximation.

3 Method

The following proposes the AdaAnn scheduler, a new adaptive annealing scheduler, that uses
an adjustable step size ǫk = ǫk(t) > 0, k = 1, . . . , K, designed to reduce the number of steps
K as much as possible while providing accurate distributional approximations in VI via NFs.

3.1 AdaAnn Scheduler

Intuitively, small temperature changes are desirable to carefully explore the parameter spaces
at the beginning of the annealing process, whereas larger changes can be taken as tk increases
after annealing has helped the approximate distribution to capture important features of the
target distribution (e.g., locating all the relevant modes). In VI, the KL-based loss function
in Eq. (10) can be used as a metric to adjust the annealing temperature increment. In this
context, the proposed AdaAnn scheduler determines the increment ǫk that approximately
produces a pre-defined change in the KL divergence between two distributions tempered
at tk and tk+1 = tk + ǫk, respectively. In particular, the KL divergence between these two
distributions is given by

D[ptk(Z)||ptk+ǫk(Z)] =

∫

c(tk) p
tk(Z) log

(

c(tk) p
tk(Z)

c(tk + ǫk) ptk+ǫk(Z)

)

dZ, (17)

where c(s) = 1/
∫

ps(Z) dZ denotes the normalizing constant associated with ps(Z). A
Taylor series expansion of the right hand side of Eq. (17) leads to the following.

Theorem 1. For two tempered pdfs ptk and ptk+ǫk with annealing step ǫk, the KL diver-
gence is

D[ptk(Z)‖ptk+ǫk(Z)] =
ǫ2k
2
Vptk [log p(Z)] +O(ǫ3k) ≈

ǫ2k
2
Vptk [log p(Z)]. (18)

Letting the KL divergence equal a constant τ 2/2, where τ is referred to as the KL divergence
tolerance, the step size ǫk becomes

ǫk =
τ

√

Vptk [log p(Z)]
. (19)
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Proof. For simplifying the presentation, we avoid using subscripts. From the definition of
KL divergence, we have

D[pt(Z)||pt+ǫ(Z)] =

∫

c(t) · pt(Z) · log

(

c(t) · pt(Z)

c(t+ ǫ) · pt+ǫ(Z)

)

dZ

=

∫

c(t) · pt(Z) · log

(

c(t)

c(t+ ǫ)
· p−ǫ(Z)

)

dZ.

The Taylor expansion of c(t)/c(t+ ǫ) has the form

c(t)

c(t+ ǫ)
= c(t)

∫

pt+ǫ(Z) dZ = c(t)

∫

pt(Z)

[

1 + ǫ log p(Z) +
[ǫ log p(Z)]2

2
+ . . .

]

dZ

= c(t)

∫

pt(Z) dZ + c(t)

∫

pt(Z) ǫ log p(Z) dZ + c(t)

∫

pt(Z)
[ǫ log p(Z)]2

2
dZ+ · · ·

= 1 + ǫEpt [log p(Z)] +
ǫ2

2
Ept [log

(

p(Z)2
)

] +O(ǫ3)

and its logarithm is

log

(

c(t)

c(t+ ǫ)

)

= log

(

1 + ǫ · Ept [log p(Z)] +
ǫ2

2
Ept [log

(

p(Z)2
)

] +O(ǫ3)

)

= ǫEpt [log p(Z)] +
ǫ2

2
Ept [(log p(Z))2]−

ǫ2

2
Ept [log p(Z)]2 +O(ǫ3)

= ǫEpt [log p(Z)] +
ǫ2

2
Vpt [log p(Z)] +O(ǫ3).

Putting everything together with log p−ǫ(Z) = −ǫ log p(Z), we have

D[pt(Z)||pt+ǫ(Z)] =

∫

c(t)pt(Z)

{

ǫEpt [log p(Z)]+
ǫ2

2
Vpt [log p(Z)]+O(ǫ3)−ǫ log p(Z)

}

dZ

= ǫEpt [log p(Z)] +
ǫ2

2
Vpt [log p(Z)]− ǫEpt [log p(Z)]

=
ǫ2

2
Vpt [log p(Z)] +O(ǫ3).

The quantity Vptk [log p(Z)] in Theorem 1 can be approximated using a Monte Carlo (MC) es-

timate with samples from qtkL ≈ ptk available from NFs at a given temperature tk. Specifically,

we draw M samples, z
(i)
L , i = 1, . . . ,M , and compute the sample variance of {log p(z(i))}Mi=1.

This MC approximation also provides the following intuitive interpretation of the AdaAnn
scheduler from Theorem 1.

At the beginning of the annealing process, t0 is small and the tempered distribution pt0

is rather flat, therefore samples from this distribution cover almost equally well the high
density regions in the support of p and its tails leading to a large variance of log(p). The
combination of a large variance of log(p) with the given constant τ (see Eq. (19)) results in
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a small annealing increment ǫk. As t increases, p
t becomes closer and closer to the target p,

leading to most of the samples from qtL falling in high-density regions of the target p. This
causes the variance of log(p) to shrink, resulting in larger increments ǫk.

In summary, the mathematical formulation in Eq. (19) reflects the sensitivity of the annealing
process in capturing the shape of the target distribution. In particular, t should increase
slowly at the beginning of the annealing process due to rapid changes in the KL divergence at
high temperatures, whereas the tempered distribution becomes less sensitive to temperature
changes as it becomes increasingly similar to the target distribution.

Algorithm 1 summarizes the implementation of the AdaAnn scheduler with NFs. Source
code is available at https://github.com/ercobian/AdaAnn-VI-NF.

Algorithm 1 AdaAnn Scheduler

input: initial temperature t−1
0 , target distribution p, number of iterations T0 at t0, number

of iterations T1 at t = 1, number of iterations T for t ∈ (t0, 1), number of NF samples
N for t ∈ [t0, 1), number of NF samples N1 for t = 1, number of MC samples M for
calculation of ǫ, KL divergence tolerance τ , a prespecified NF structure with L layers of
transformation.
output: approximated distribution qL for p.
t← t0; ǫ← 0
while t+ ǫ < 1 do

t← t+ ǫ
Obtain an empirical approximation qt to pt with N samples with NF for the specified

number of iterations at t (T0 for t = t0 and T for t ∈ (t0, 1));
Calculate the MC estimate of Vpt [log p(Z)] in Eq. (19) using z

(i) ∼ qt, i = 1, . . . ,M :

S2 = (M−1)−1
∑M

i=1(log p(z
(i))− log p(z))2, where log p(z) = M−1

∑M

i=1 log p(z
(i));

ǫ← τ/S
end while
t← 1
(Optional) Refine at t = 1 by running the NFs for T1 iterations to obtain a final approxi-
mation q to p with N1 samples.

4 Numerical Examples

The following summarizes applying AdaAnn to five examples: three synthetic cases and two
applications in dynamical systems. We first compare AdaAnn with linear schedulers in one-
dimensional settings with bimodal distributions. We then examine two-dimensional bimodal
densities and compare the performance of a planar flow with AdaAnn and of a flow with
greater approximation power (i.e., realNVP). For the two applications in dynamical systems,
we obtain posterior variational inference of the parameters of a Lorenz attractor and a non-
linear dynamical system simulating HIV viral dynamics, respectively, via NFs with AdaAnn.
For all examples, unless otherwise noted, we use hyperbolic tangent activation functions in
planar flows and optimize the free energy loss function in VI via NFs using Adam.
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efficiency. For example, at µ = 0.5, the median number of parameter updates is 2,575,
with the 5th and 95th percentiles being 2,485 and 2,748 parameter updates, respectively, for
AdaAnn compared to 10,401 for the linear schedule.

4.4 Example 4: Lorenz Attractor

After considering closed-form distributions in the first three examples, we investigate the
ability of VI via NFs with annealing to solve inverse problems involving dynamical systems.
In such cases, evaluating the posterior distribution at a single realization of the input parame-
ters (up to a constant) necessitates the numerical solution of a system of ordinary differential
equations (ODEs). Specifically, in this section we consider the Lorenz attractor [22]:











ẋ = s(y − x)

ẏ = x(r − z)− y

ż = xy − bz.

(22)

This system of ODEs results from a simplified representation of Rayleigh-Bénard convection
and is derived from a Galerkin projection of a system of coupled Navier-Stokes and heat
transfer equations with thermal convection and buoyancy. It models convection between two
horizontal plates with the lower plate uniformly warmer than the upper plate. Described by
this system, x is proportional to the intensity of the convective motion, y is proportional to
the temperature difference between ascending and descending currents, and z is proportional
to the discrepancy between the vertical temperature distribution in the model and a linear
profile [22]. Restricted to positive values, s is the Prandtl number, r is the Rayleigh number,
and b is a geometric factor, i.e., the aspect ratio of the convection vortices [22, 34]. The
system is unstable for σ > (b+1) and r > rc ≈ 24.74. In particular, for s = 10, b = 8/3, and
r = 28, it follows a chaotic butterfly-like dynamics revolving around two strange attractors.
Starting from almost identical initial conditions, the system is known to generate chaotic
trajectories for t > 15 [36].

The parameters s, b, and r in Eq. (22) are often of inferential interest given a set of observa-
tions on x, y, and z. We use VI via NFs to estimate s, b, and r in a Bayesian framework with
a regime where the stable trajectories do not negatively affect the identifiability of the pa-
rameters. Specifically, we simulate observations given s = 10, b = 8/3, and r = 28 as follows.
Using a fourth order Runge-Kutta method (RK4) with initial conditions x0 = y0 = z0 = 1,
the Lorenz equations are integrated in time from t = 0 to t = 1.5 with step size ∆t = 0.025.
From this solution [(xi, yi, zi)]

60
i=1, we choose n = 30 equally spaced data points and add

Gaussian noise N (µ = [0, 0, 0],Σ = σ2 · I3) with σ2 = 0.001 and σ2 = 0.2, generating two
sets of noisy (x, y, z) realizations as shown in Figure 9.

The following is the posterior distribution of the parameters θ = {s, b, r} with a non-
informative uniform prior on the parameters and Gaussian likelihood function:

p(θ|(x, y, z)) ∝
1

√

(2πσ2)D·n
exp

(

−
1

2σ2

n
∑

i=1

∥

∥(xi, yi, zi)
T −Gi(θ)

∥

∥

2

2

)

. (23)

The operator G outputs the RK4 solution of the Lorenz equations with respect to the input
parameters θ, D = 3 is the dimension of the output, and n = 30 as above.
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