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Abstract

Approximating probability distributions can be a challenging task, particularly when
they are supported over regions of high geometrical complexity or exhibit multiple
modes. Annealing can be used to facilitate this task which is often combined with
constant a priori selected increments in inverse temperature. However, using constant
increments limit the computational efficiency due to the inability to adapt to situ-
ations where smooth changes in the annealed density could be handled equally well
with larger increments. We introduce AdaAnn, an adaptive annealing scheduler that
automatically adjusts the temperature increments based on the expected change in the
Kullback-Leibler divergence between two distributions with a sufficiently close anneal-
ing temperature. AdaAnn is easy to implement and can be integrated into existing
sampling approaches such as normalizing flows for variational inference and Markov
chain Monte Carlo. We demonstrate the computational efficiency of the AdaAnn sched-
uler for variational inference with normalizing flows on a number of examples, including
density approximation and parameter estimation for dynamical systems.

1 Introduction

One of most fundamental challenges in statistics and machine learning is the ability to learn
a posterior distributions from its pointwise evaluations. In this context, Markov chain Monte
Carlo (MCMC) sampling is a popular paradigm to provide empirical approximations of dis-
tributions and has given rise to a large family of sampling procedures such as the Metropolis
Hasting algorithm [10, 27|, the Gibbs sampler [8], and slice sampling [29], among others.
However, MCMC can be computationally expensive and may fail to capture complicated
posterior distributions, leading to poor approximations.

Recently, optimization-based approaches using variational inference (VI) [5, 6, 13, 37] have
emerged which aim to provide a more efficient alternative to sampling-based methods with
the ability to support distributions with complex shapes such as multi-modality in high-
dimensional settings [32]. More recent, VI approaches based on normalizing flows (NF's) [33],



a type of generative model, are able to characterize even complex dependence in multivariate
distributions. They offer a flexible framework by transforming a base distribution through
a composition of invertible mappings until the desired complexity has been attained.

There are many different types of NFs such as planar flows [33], radial flows [33], real-
NVP [7], autogressive flows that include inverse autoregressive flow (IAF) [17] and masked
autoregressive Flow (MAF) [30], and glow [16], among others. An introduction to the fun-
damental principles of NF's including their expressive power and computational trade-offs,
together with a review of a wide verity of flow formulations are provided in [19, 30]. They
have been applied in various settings for VI such as density estimation and sampling since
their introduction. For example, NFs are used to formulate Gaussian processes as function
priors [26] while [21] introduces NF's to the setting of graph neural networks for prediction
and generation. In [40], NFs are applied to 3D point cloud generation; [23] apply NFs to
approximate the latent variables in Bayesian neural networks. Recent applications of NF's
include semi-supervised learning [12], coupling with surrogate modelling for inference with
computationally expensive models [38], and solving inverse problems [39], among others.

In this study, we focus on VI via NFs, specifically on situations where the target distribution
to be approximated is supported over a geometrically complex subset of the parameter
space or has multiple modes. Rather than designing new types of NF's offering improved
representations of multimodal densities, we choose instead to approximate a collection of
intermediate smoother posteriors generated through a parameterization defined in terms of
an annealing temperature.

Annealing or tempering of probability density functions is used in optimization (e.g., simu-
lated annealing [18] and simulated tempering [25]) and MCMC sampling to generate realiza-
tions from complex and multimodal distributions (e.g. tempered transition [28] and parallel
tempering [9]). Tempering is also used in Bayesian statistics to study theoretical properties
and concentration rates for posterior distributions [4]. This has been extended in [2] to
analyze the concentration of VI approximations of (tempered) posteriors while [11] develops
an annealed version of the objective functions in VI to improve inferential explorability. In
the setting of NF's, [33] applies an annealed version of the free energy for VI via NFs by ap-
proximating a series of tempered distributions with slowly decreased temperature to provide
better results on the final approximated target distribution.

Various temperature cooling schedules have been proposed to improve computational effi-
ciency in simulated annealing such as simple linear schedules [18], exponential multiplicative
cooling [18], and logarithmic multiplicative cooling [1], among others. There also exists work
on adaptive cooling where the temperature at each state transition depends on an adaptive
factor based on the difference between the current solution and the best achieved solution of
an objective function, including some recent work [14, 24]. Outside the realm of simulated
annealing, annealing strategies and cooling schedules have received little attention.

We use a simple instance of NFs, namely, planar flows [33], to motivate our methodological
development for an annealing scheduler in the settings of VI via NFs. Planar flows are
shown to be a universal approximator in L; for one-dimensional problems in theory [20], but
have been sometimes associated with a limited approximation power and more complex flow



formulations have often been preferred in applications, limiting the analysis of this flow in
the literature, particularly for higher dimensional latent spaces and complicated posterior
distributions. We outline cases where planar flows alone fail to capture the structure of a
multimodal density but the combination with annealing leads to successful approximations.

Our main contribution is AdaAnn (Adaptive Annealing), a novel scheduler that adaptively
selects the change in temperature during the annealing process by tracking the Kullback-
Leibler divergence between successive temperature changes. Through five examples, we
demonstrate that AdaAnn helps NFs converge to the target posterior and leads to significant
computational savings compared to a linear scheduler for both univariate and multivariate
cases. In addition, we show how planar flows with AdaAnn achieve better approximation to
the target distribution compared to more expressive flows but without using annealing.

The remainder of the paper is organized as follows. Section 2 provides necessary background
information regarding NFs and VI. Section 3 describes AdaAnn, our new adaptive annealing
schedule for VI via NFs. Five examples are presented in Section 4 which demonstrate the
superior performance of using annealing for VI via NFs, and the computational advantage
of AdaAnn over linear annealing schedulers. We conclude with a discussion in Section 5.

2 Background

2.1 Normalizing Flows

Normalizing flows are compositions of invertible and differentiable mappings used to trans-
form samples from a base probability density function (pdf) qo, e.g., a standard Gaussian,
into samples from a desired distribution and vice-versa. Consider a single layer of a normal-
izing flow with a bijection f : R? — R? that maps a set of N sample points {zo Y| where
20 ~ Zy,i=1,...,N, from the base density to {z\"}2V, wherez\” = f(z{"),i=1,..., N,
and d is the dlmenswn of Zy and Z;. Given Z, ~ ¢, the density of the transformed vari-
ables Z; ~ ¢ can be computed using the change of variables formula and the properties of
inverse functions, namely

o (1)
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One can easily generalize this to L layers of transformations so that the initial set of sample
points are transformed to

2= frofi 00 frofi(2?), i=1,...,N, (2)

and the corresponding pdf is given by
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To simplify the computation, a desirable property of flow f, is that the Jacobian determinant
is easy to compute, e.g., through the product of the diagonal entries, as in lower triangu-
lar Jacobian matrices. Many different formulations of NFs have been investigated in the
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literature. In this paper, we use planar flows and the real-valued Non Volume Preserving
(realNVP) flows to demonstrate our proposed methodology, which are summarized next.

Planar flows [33] are one of the simpler instances of NFs where each layer transforms a set
of samples with expansions or contractions perpendicular to a d-dimensional hyperplane. A
planar flow f : R x R?¥t! — R? consists of an activation function & : R — R and parameters
¢ ={u € R w € R b € R} such that:

f(Z;¢0)=Z +u-h(w'Z+b). (4)
When u”w > —1, this flow is invertibile [33] and its Jacobian determinant is equal to
8f / T T T / T
‘det (a—Z)‘ = [ det (I +u (wh'(w” Z +b)7)| = 1+ uT wh'(w" Z+b), (5

where b’ is the derivative of h. With L layers, the transformed random variable

Zy, = fr(e;¢r) 0 fr1(e;¢0r1) 00 fo(®d2) o fi1(Zo; 1) (6)
has corresponding pdf
L
0L(Z1) = qo(Zo) [ [ 11 + wfwe - 1 (w] Zoy + b)| 7" (7)
=1

To enhance the expressiveness of NFs while maintaining a linear complexity in the com-
putation of the Jacobian determinant, dependencies between different components of latent

vectors Zy,, ¢ = 1,..., L, can be introduced through autoregressive transformations. A widely
used auto-regressive flow is realNVP, defined as
Ly i, fory=1,...,c,
Zopr;=4" . . (8)
Zyjexplas,(Zoa, - Zuoe))+vay, (Zea, ..., Zee) for j=c+1,....d, k=j—c,

where Z,;; denotes the j*" component of Z;y; in layer £ + 1, and a,, and a,, are scale
and translation functions in layer k, respectively, and are usually implemented as neural
networks. The components in Z are divided into two groups in Eq. (8). The variables in the
first group are copied directly into the next layer whereas the remaining variables go through
an autoregressive transformation. The roles of the two groups are reversed (or the variables
are randomly scrambled) after every layer. Since the ¢! component of Z,,; in layer ¢ + 1
depends only on the components 1, ..., c of Z,, the Jacobian matrix is lower triangular and
its determinant is simply the product of the diagonal entries HZ;? ax(Zy—1). In particular,
realNVP is efficient and has the same computational complexity for sampling and density
estimation [7]. Even if the mappings as and a; are not invertible, the transformation in
Eq. (8) is still invertible since

(9)
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2.2 Variational Inference via Normalizing Flows

Variational inference is a common method for statistical inference and machine learning that
approximates probability densities by minimizing their Kullback-Leibler (KL) divergence
from a target distribution. In particular, VI provides an effective alternative to sampling-
based approaches for density approximation such as MCMC. It is based on optimization and
designed to offer improved computational efficiency. Additionally, one of the major applica-
tions of NFs is VI. Without loss of generality, we illustrate the application of NFs for VI in
approximating the posterior distribution p(Z|X) of the model parameters Z given observed
data X. Such an approximation is obtained by minimizing the free energy F, the negative of
which is a lower bound to the marginal log-density function log p(X) (a.k.a., the evidence).
Due to the analytical difficulty in maximizing the marginal log-density function, the min-
imization of the free energy is often used in VI. If ¢4(Z|X) is the variational distribution
with parameters ¢ that approximates the true posterior p(Z|X), the free energy is

F(X,9) = Dgs(Z|X) || p(Z)] — Eqy [log p(X|Z)]

_E,, [log 0(Z|X) — log p(Z, X) (10)

where D[||-] denotes the KL divergence between two distributions. Following the notation
in Section 2.1, we express the density ¢4(Z|X) as ¢1.(Z;) and apply the change of variables
formula in Eq. (7) to Eq. (10) to obtain

F(X,0) = Eq, logqr(ZL) —logp(X, Z1)]

L
Z log

(=1

Afe (11)
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= Eq, [log qo(Zo)] — Ey, det + Egy[log(p(X, Z1))]-

Minimization of the free energy F with respect to the parameters ¢ is often achieved through
gradient-based optimization, e.g., stochastic gradient descent, RMSprop [35], Adam [15], and
others. The expectations in Eq. (11) are often replaced by their Monte Carlo estimates by
using N realizations from the base distribution ¢q. For planar flows, Eq. (11) becomes

F(X, qﬁ)%%z[log(qo(zovi))—log(p(z,;i,X))—Zlog}l%—u?wg h('weTze—l,mee)ﬂ- (12)
i=1 =1

2.3 Annealing

Annealing is a useful technique when sampling from complicated distributions. Coupled with
MCMC techniques or VI, annealing can help improve sampling efficiency and accuracy. Dur-
ing the application of annealing, the annealing temperature 1/t continuously decreases with

p(Z,X)=p"(Z,X), for t € (0,1]. (13)
In practice, a discrete version of Eq. (13) is used by generating a sequence of functions

m(Z,X)=p"*(Z,X), fork=0,...,K (14)



where 0 < ty < --+ < tx < 1 is an annealing scheduler and pi(Z, X) is the annealed
or tempered distribution. A commonly used annealing schedule is linear [33] of the form
ti=to+j(1 —1ty)/K for j =0,..., K with constant increments € = (1 — ¢;)/ K. For exam-
ple, when combining annealing with VI and planar flows, the free energy F in Eq. (12) is
L N L
Flw, 6)= > [log(an(20.)) — e log(p(zrs X))~ Y log [ L+ uf weh(w] ze-1:-+b)] |- (15)

i=1 =1

2.4 A Motivating Example
Consider sampling from the pdf p: R — R where

p(Z) =0.954 - ¢ 11273, (16)

Hence, p(Z) is a bimodal distribution with peaks at Z = —2 £ /3 which is the “target” in
Figure 1. Consider its variational approximation q;(Z) =~ p(Z) obtained by transforming a
base distribution N(u = 0,0% = 4) using a composition of L = 50 planar flow layers with
hyperbolic tangent activation. We use Adam optimizer with a learning rate of 0.005 and
train 8,000 iterations consisting of N = 100 sample points each. In our experiment, the
outcome yields Figure 1(a) which suggests that the optimal ¢; without annealing is only
able to capture a single mode. Using the same planar flow but with annealing as given in
Eq. (15), our experiment showed that both modes were captured as shown in Figure 1(b).

—— Target 1.2 1 —— Target
Optimized Optimized

T T T T T 0.0 T T T T T
-5 —4 -3 —2 —1 0 1 -5 —4 -3 —2 —1 0 1
A A
(a) No Annealing (b) Linear Annealing Scheduler

Figure 1: Variational approximation for bimodal density p(Z) with and without annealing.

The annealing strategy used in Figure 1(b) had a schedule with an initial inverse temperature
of tg = 0.01 that increases with a constant step size of € = 107%. The Adam optimizer ran
for 500 iterations at to' and one iteration afterwards throughout the annealing process. In
addition, 8,000 additional iterations were run when the temperature reaches ¢ = 1, indicated
as the refinement training phase.? All together, a total of 10,400 iterations were run through
NFs before the annealing temperature reached 1.

since the basic distribution may be significantly different than the first annealed distribution, we used a

larger number of iterations at ¢g.
2This phase allows for a more refined approximation to p(Z) through an increased number of iterations
and sample points.



This relatively large number of iterations is rather typical with linear annealing schedulers
to reach a variational approximation of a target distribution with satisfactory accuracy. The
large number of iterations is due to the typical small steps of constant size characterizing
linear annealing schedulers (e.g., 10~ in the above example). An exceedingly large tempera-
ture step during the annealing process could lead to a sub-optimal approximation that does
not capture the main structural features of the target distribution (e.g., missing a mode in
a multi-modal distribution).

In the following, we propose a new annealing strategy that can significantly cut down the
number of iterations in NF's for VI without sacrificing the quality of the final approximation.

3 Method

The following proposes the AdaAnn scheduler, a new adaptive annealing scheduler, that uses
an adjustable step size € = €x(t) > 0,k =1,..., K, designed to reduce the number of steps
K as much as possible while providing accurate distributional approximations in VI via NF's.

3.1 AdaAnn Scheduler

Intuitively, small temperature changes are desirable to carefully explore the parameter spaces
at the beginning of the annealing process, whereas larger changes can be taken as t;, increases
after annealing has helped the approximate distribution to capture important features of the
target distribution (e.g., locating all the relevant modes). In VI, the KL-based loss function
in Eq. (10) can be used as a metric to adjust the annealing temperature increment. In this
context, the proposed AdaAnn scheduler determines the increment ¢, that approximately
produces a pre-defined change in the KL divergence between two distributions tempered
at tp and tp, 1 = tr + €, respectively. In particular, the KL divergence between these two
distributions is given by

D22 = [ ettt (@yog (EEL Yag )

where ¢(s) = 1/ [p*(Z)dZ denotes the normalizing constant associated with p*(Z). A
Taylor series expansion of the right hand side of Eq. (17) leads to the following.

Theorem 1. For two tempered pdfs p'* and p™** with annealing step €, the KL diver-
gence 1s

€ €
DI (2) [ (2)] = E Vg flogp(Z)] + O() ~ FV,flogp(Z). (1)
Letting the KL divergence equal a constant 72 /2, where T is referred to as the KL divergence
tolerance, the step size €, becomes

= oaloen2)] (19)




Proof. For simplifying the presentation, we avoid using subscripts. From the definition of
KL divergence, we have

D[p'(Z)||p"(2)] = /C(t) pH(Z) - log ( c(t) - p'(Z) ) iz

c(t +e)-pte(2)

_ / c(t).pt(Z).log( (t) -p_E(Z)> iz.

c(t+¢€)

The Taylor expansion of ¢(t)/c(t + €) has the form

c(j(j—)e) - c(t)/pt+e(Z) dZ = c(t)/pt(z) [1 +elogp(Z) + M +] iz
_ c(t)/pt(Z) dZ + c(t)/pt(Z)e logp(Z)dZ + c(t)/pt(Z)—[dogg(Z)]Q dZ+ -

=1+ cEy[logp(Z)] + ;Ept log(p(Z)?)] + O(€?)

and its logarithm is
2

log <C(§(_T_)€)> = log(l +e-Eyflogp(Z)] + %Ept log (p(2)?)] + 0(63))

— B, loap(2)] + S By (ozp(2))] - S Epllozp(Z)] + O(E)

= cE,[logp(Z)] + %th logp(Z)] + O(€®).

Putting everything together with logp=“(Z) = —elogp(Z), we have

DYZ)(2)] = [ e (2) {cEplop(2)]+ 5 Vllow 2]+ 0()—clogp(2)} a2
=eE,[logp(Z)] + ;th logp(Z)] — eE[logp(Z)]

62

— Eth log p(Z)] + O(€®).

]

The quantity V,, [log p(Z)] in Theorem 1 can be approximated using a Monte Carlo (MC) es-
timate with samples from q?“ ~ p'* available from NFs at a given temperature t;. Specifically,
we draw M samples, z(Li), i=1,..., M, and compute the sample variance of {logp(z®)}M,.
This MC approximation also provides the following intuitive interpretation of the AdaAnn
scheduler from Theorem 1.

At the beginning of the annealing process, t; is small and the tempered distribution p'
is rather flat, therefore samples from this distribution cover almost equally well the high
density regions in the support of p and its tails leading to a large variance of log(p). The
combination of a large variance of log(p) with the given constant 7 (see Eq. (19)) results in

8



a small annealing increment €. As ¢ increases, p' becomes closer and closer to the target p,
leading to most of the samples from ¢} falling in high-density regions of the target p. This
causes the variance of log(p) to shrink, resulting in larger increments ¢y.

In summary, the mathematical formulation in Eq. (19) reflects the sensitivity of the annealing
process in capturing the shape of the target distribution. In particular, ¢ should increase
slowly at the beginning of the annealing process due to rapid changes in the KL divergence at
high temperatures, whereas the tempered distribution becomes less sensitive to temperature
changes as it becomes increasingly similar to the target distribution.

Algorithm 1 summarizes the implementation of the AdaAnn scheduler with NFs. Source
code is available at https://github.com/ercobian/AdaAnn-VI-NF.

Algorithm 1 AdaAnn Scheduler

input: initial temperature 5, target distribution p, number of iterations Ty at to, number
of iterations 77 at t = 1, number of iterations T for ¢ € (tg, 1), number of NF samples
N for t € [tg,1), number of NF samples N; for ¢ = 1, number of MC samples M for
calculation of €, KL divergence tolerance 7, a prespecified NF structure with L layers of
transformation.
output: approximated distribution ¢, for p.
t<t1p; e+ 0
while t +€ <1 do
t<t+e¢
Obtain an empirical approximation ¢* to p* with N samples with NF for the specified
number of iterations at ¢t (T for t =ty and T for ¢ € (¢, 1));
Calculate the MC estimate of V:[logp(Z)] in Eq. (19) using 2@ ~ ¢',i=1,..., M:
S? = (M—1)"" 3 (log p(z™) —log p(2))?, where log p(z) = M~ "M log p(2?);
e+ 71/S
end while
1«1
(Optional) Refine at ¢ = 1 by running the NF's for 7} iterations to obtain a final approxi-
mation ¢ to p with /Ny samples.

4 Numerical Examples

The following summarizes applying AdaAnn to five examples: three synthetic cases and two
applications in dynamical systems. We first compare AdaAnn with linear schedulers in one-
dimensional settings with bimodal distributions. We then examine two-dimensional bimodal
densities and compare the performance of a planar flow with AdaAnn and of a flow with
greater approximation power (i.e., realNVP). For the two applications in dynamical systems,
we obtain posterior variational inference of the parameters of a Lorenz attractor and a non-
linear dynamical system simulating HIV viral dynamics, respectively, via NFs with AdaAnn.
For all examples, unless otherwise noted, we use hyperbolic tangent activation functions in
planar flows and optimize the free energy loss function in VI via NF's using Adam.



4.1 Example 1: One-dimensional Bimodal Distribution

We apply AdaAnn to the bimodal density in Eq. (16) and compare with the linear annealing
scheduler in Section 2.4. The same planar flow as specified in Section 2.4 was employed.
We use Algorithm 1 with the following hyperparameters: ty = 0.01 (identical to the linear
scheduler), Ty = 500, T'= 2, T} = 8,000, 7 = 0.01 and M = 1,000. For the Adam optimizer,
we applied the same learning rate schedule as in Section 2.4. The number of points in each
iteration increases from N = 100 to N; = 1,000 during the refinement stage at ¢ = 1.

The final optimized variational distribution via the planar flow with AdaAnn is presented
in Figure 2, which shows an accurate approximation of the target distribution. Though
both AdaAnn and the linear scheduler (Figure 1) perform well in approximating the target
distribution in this example, the computational cost associated with the linear scheduler is
much higher. The linear schedule performed 9,902 steps with a total of 18,400 parameter
updates in 12.50 minutes whereas AdaAnn required 354 steps with the total number of 9,204
parameter updates in 6.51 minutes as summarized in Figure 3. The rate of change in #; in
AdaAnn is slow when ¢, is small and increases with ¢;; this adaptive behavior helps drive
the computational cost down for AdaAnn. These computations were performed on a laptop
using a 1.80 GHz Intel Core i7-10510U processor.

1.2 4 —— Target
Optimized

Figure 2: Variational approximation of p(Z) in Example 1 with the AdaAnn scheduler.

We also examine how the choice of 7 in AdaAnn affects the approximation quality and com-
putational complexity. Toward that end, we set the KL divergence tolerance 7 at 4 different
values (1, 0.1, 0.01, 0.001) and obtained the final approximate distribution to the target in
each case. The results are presented in Figure 4. For a tolerance as large as 7 = 1, the
optimized density at ¢ = 1, after taking only 10 incremental temperature steps, is evidently
biased toward one of the modes. Continuing to train from this point, the approximation con-
verges to a single mode. The next three smaller tolerance choices manage to maintain the
bimodal structure. For 7 = 0.1, the annealing phase completes in 56 temperature incremen-
tal steps but still needs a decent number of refinement steps to provide a good approximation
for the target density; 7 = 0.01 takes 355 steps; and 7 = 0.001 takes 2,929 steps in the an-
nealing phase. While 7 = 0.001 provides a slightly better approximation than = = 0.01, it
takes significantly more steps (8.25 folds more) without significantly improving the quality
of the resulting approximation.
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Figure 3: (a) AdaAnn annealing schedule and (b) comparison between the AdaAnn and a
linear schedule for density approximation in Example 1.
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Figure 4: Comparison of optimized distributions from NF's with AdaAnn at ¢ = 1 for various
KL tolerances 7.

In summary, this example illustrates that while AdaAnn and the linear annealing schedule
lead to favorable approximations to the target distribution, AdaAnn significantly reduces the
number of steps needed to the final approximation and ultimately reduces the computational
time. In addition, the choice of the KL divergence tolerance 7 is critical for the accuracy of
the variational approximation: too large a 7 value can be too crude to capture important
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characteristics of a distribution (e.g., multi-modality) and too small a 7 value may incur
additional computational costs without significantly improving the approximation.

4.2 Example 2: One-dimensional Mixture Gaussian Distribution

We consider a mixture of two Gaussian distributions in this example, namely

p(Z) = 1 678(Z+u1)2+ 1 e 8(Z+n)? (20)

2¢/7/8 2/7/8

Here, p(Z) depends upon two parameters, p; and po, which are varied to investigate how
the distance between the two modes of p(Z) and their location relative to the mode of the
base distribution gy = N(p = 0,02 = 16) impact the accuracy of the optimal variational
approximation. We examine two cases of p(Z): (1) when the two modes are symmetrically
located around 0, the mode of go; that is, u; = —pus, and (2) when one of the modes is fixed
at 0. We refer to these two cases as the symmetric and asymmetric case, respectively, and
use a single parameter p to denote the distance between the two modes in both cases. For
the symmetric case, we set pu; = p/2 and py = —p/2 while, for the asymmetric case, p; = p
and po = 0. An example for each of the two cases is provided in Figure 5.

1.0 =2 1.0 w=1
n = 4 w =
0.8 0.8
—~ —~
N 0.6 1 N 0.6 7
— —
Se Se
0.4 1 0.4 4
0.2 0.2 4
0.0 T |J T k| T 0.0 T |J T T T
—4 —2 0 2 4 —4 —2 0 2 4
Z

Figure 5: Illustration of symmetric and asymmetric bimodal distributions in example 2.

We vary p from 1 to 16 in the symmetric case and 1 to 8 in the asymmetric case. For each
value of p, we run 50 trials without annealing, with a linear annealing schedule, and with
the AdaAnn scheduler to approximate the target distribution for VI via NFs. The number
of layers for the planar flow is L = 50 for the symmetric and L = 75 for the asymmetric case.
For the case without annealing, we also vary the number of layers and consider L = 25,50, 75
and train the planar flow for 8,000 iterations with N = 100 samples per iterations. We set
ty = 0.01, 7 = 0.005, M = 1,000, T, = 500, T'= 15, and N = 100 for AdaAnn (Algorithm 1)
with e = 1074, T = 1, N = 100 for the linear scheduler. For the purposes of this example, we
do not be further refining the solution at ¢ = 1, but rather indicating whether the optimized
distribution contains a bimodal structure. The learning rates for the Adam optimizer are
reported in Table 1.

We examine the number of repetitions where the approximated distributions of VI via NF's
that captures the bimodal structure in p(Z). The results are summarized in Figure 6. We
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Table 1: Learning rate for the Adam optimizer for different values of p in example 2.

symmetric case (p; = p/2, pp = —p/2) asymuetric case (p; = pt, o = 0)
" 1 2 3 4 516 8 10 12 14 16 1 2 3 4 5 6 7 8
0.02 | 0.02 | 0.001 0.0005 0.01 | 0.01 | 0.002 0.001

also compared the computational time required by NF's without annealing, by the proposed
AdaAnn scheduler, and by a linear scheduler (the computations were performed on a Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50GHz Haswell processors with 256 GB of RAM). The results

in the symmetric case at ;1 = 2 are presented in more detail in Table 2.
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Figure 6: Percentage of approximate distributions from VI via NFs which capture the bi-
modal target structure out of 50 trials in Example 2.

First, for the symmetric case with p = 4, an increasing number of planar flow layers is
associated with a higher likelihood to capture the target bimodal structure without annealing,
but at higher computational cost (Table 2). Second, without annealing, the symmetric modes
are well recovered for p > 1; for the asymmetric case, the two modes are captured 100%
of the time only when p = 1, independent on the number of layers, and the percentage
decreases with p, until reaches 0 for ¢ > 3. Third, with annealing, the target distributions
can be accurately approximated for all the examined values of i in both the symmetric and
asymmetric cases. Considering the symmetric case without annealing, there is a large drop
in the percentage of recovered bimodal distributions near ¢ = 4 for L = 25 and 50. When
the modes of the target distribution are connected, i.e., not separated by a segment of zero
probability, NFs easily captures both modes. When the modes become separated, NFs no
longer capture both modes consistently. This is indicative of a rough loss landscape where
the optimizer is unable to determine the global minimum. As these modes become further
separated, NFs improve in capturing both modes, likely indicating the loss landscape has
become smoother and the global minimum is easier to attain. Though both the linear and
AdaAnn annealing schedules are able to produce bimodal approximations of similar accuracy,
AdaAnn requires significantly fewer parameter updates than a linear scheduler (Table 2).

In summary, the results suggest that, for NFs without annealing, (1) the relative location of
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Table 2: Computational time (in minutes) required for VI-NF with and without annealing,
applied to the symmetric case at p = 4 in Example 2

NF procedure 5th-Percentile Median 95th-Percentile
No annealing (L = 25) 2.80 2.84 2.97
No annealing (L = 50) 5.63 5.71 6.24
No annealing (L = 75) 10.87 11.28 11.98
Linear schedule (L 50) 6.45 7.23 7.75
AdaAnn (L = 50) 3.04 3.25 3.81

the base distribution with respect to the locations of the modes of the target distribution may
affect the accuracy of the variational approximation and (2) when the location of the base
distribution is strongly biased toward one of the modes of the target distribution, successful
approximation may only occur when the modes are not separated (x < 1 in this example).
Annealing helps to mitigate both problems.

4.3 Example 3: Two-dimensional Bimodal Distribution

In the third example, we compare the density approximation performance between planar
flows coupled with AdaAnn and a more expressive flow such as realNVP. The target distri-
bution is a mixture of two bivariate Gaussian densities expressed as

p(Z1, Zs) = %616 [(Z1tp+1)? H(Z2—p)?] + %616 [(Z1—p=1)*+(Z2—1)?] (21)

Here, p(Z,, Z3) depends upon a parameter p which is used to move the modes. In particular,
this density is similar to the bimodal symmetric density from Section 4.2 and has narrow
modes equally spaced from the origin. As p increases, the modes will move diagonally up
and away from the origin resulting in a larger separation, as seen in Figure 7.

n

-2 -1 0 1 2

21 Z1 Z1

(a) p=0 (b) p=0.5 (c) p=1

Figure 7: Bivariate Gaussian mixture densities for increasing values of i in Example 3.

To approximate the target distribution p(Z;, Z,), we transform gy = N(p = [0,0], X = 41,)
using four different configuations: (1) three planar flows consisting of L = 50, 75, 100 layers
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without annealing; (2) a planar flow with L = 75 layers combined with the AdaAnn scheduler
(t =0.01, M = 1,000, t, = 0.01, Ty = 500, T = 5, no refinement at ¢t = 1); (3) a planar flow
with a linear scheduler (ty = 0.01,¢ = 1074, Ty = 500, 7 = 1, no refinement at ¢ = 1); and
(4) realNVP without annealing. For realNVP, the scale and translation function as and
a;, respectively, consist of fully connected neural networks with two neurons for both the
inputs and output layers, two hidden layers with H hidden neurons, and the ReLLU activation
function. A hyperbolic tangent activation function is applied right before the output layer
on the scale function a;. We examined three cases for H, namely 10, 25, and 100. We
examined two scenarios of coupling layers, namely 6 and 12, and use alternating masking
that switches the variables being updated at each coupling layer. We trained the realNVP
for 5,000 iterations. For the Adam optimizer, we used a batch size of N = 100 and the
learning rates are shown in Table 3.

Table 3: Learning rates for different values of i used for Example 3.
7 | 0.0 05 1.0 1.5 2.0 2.5

learning rate for adam optimizer ‘ 0.001 0.0008 0.0005 0.0005 0.0005 0.0002

For each i and each NF setup, we conducted 50 trials and recorded how many times the bi-
modal structure of the target distribution is captured in the final optimized distribution. The
results are summarized in Figure 8. In particular, both of the annealing methods capture the
bimodal structure in all 50 trials at every p, outperforming the planar flows without anneal-
ing, which is consistent with the results from Examples 1 and 2. RealNVP, despite having
a more complicated structure than planar flow, still fails to capture both modes in a con-
siderable number of repetitions, suggesting that the approximation accuracy resulting from
planar flow plus an annealing schedule may not be achieved by a more expressive flow alone.

n n
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Figure 8: Rate of successful distribution reconstruction in Example 3.

Both annealing methods with planar flows achieve the same accuracy, but AdaAnn has signif-
icantly fewer parameter updates during the annealing phase yielding superior computational
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efficiency. For example, at ¢ = 0.5, the median number of parameter updates is 2,575,
with the 5 and 95 percentiles being 2,485 and 2,748 parameter updates, respectively, for
AdaAnn compared to 10,401 for the linear schedule.

4.4 Example 4: Lorenz Attractor

After considering closed-form distributions in the first three examples, we investigate the
ability of VI via NFs with annealing to solve inverse problems involving dynamical systems.
In such cases, evaluating the posterior distribution at a single realization of the input parame-
ters (up to a constant) necessitates the numerical solution of a system of ordinary differential
equations (ODEs). Specifically, in this section we consider the Lorenz attractor [22]:

i = s(y — )
y=a(r—2)—y (22)
z=uxy— bz.

This system of ODEs results from a simplified representation of Rayleigh-Bénard convection
and is derived from a Galerkin projection of a system of coupled Navier-Stokes and heat
transfer equations with thermal convection and buoyancy. It models convection between two
horizontal plates with the lower plate uniformly warmer than the upper plate. Described by
this system, x is proportional to the intensity of the convective motion, y is proportional to
the temperature difference between ascending and descending currents, and z is proportional
to the discrepancy between the vertical temperature distribution in the model and a linear
profile [22]. Restricted to positive values, s is the Prandtl number, r is the Rayleigh number,
and b is a geometric factor, i.e., the aspect ratio of the convection vortices [22; 34]. The
system is unstable for o > (b+1) and r > r. ~ 24.74. In particular, for s = 10, b = 8/3, and
r = 28, it follows a chaotic butterfly-like dynamics revolving around two strange attractors.
Starting from almost identical initial conditions, the system is known to generate chaotic
trajectories for ¢ > 15 [36].

The parameters s, b, and r in Eq. (22) are often of inferential interest given a set of observa-
tions on z, y, and z. We use VI via NF's to estimate s, b, and r in a Bayesian framework with
a regime where the stable trajectories do not negatively affect the identifiability of the pa-
rameters. Specifically, we simulate observations given s = 10, b = 8/3, and r = 28 as follows.
Using a fourth order Runge-Kutta method (RK4) with initial conditions zg = yo = 29 = 1,
the Lorenz equations are integrated in time from ¢ = 0 to ¢ = 1.5 with step size At = 0.025.
From this solution [(z;,v:, 2;)]%;, we choose n = 30 equally spaced data points and add
Gaussian noise N'(u = [0,0,0],2 = 02 - I3) with 0% = 0.001 and 02 = 0.2, generating two
sets of noisy (x,y, z) realizations as shown in Figure 9.

The following is the posterior distribution of the parameters @ = {s,b,r} with a non-
informative uniform prior on the parameters and Gaussian likelihood function:
1 1 < 2

0|(z,y, T (—— Vi z) — Gi(0 > 23

P(Ol(.y.2)) o e o 2Uggllw v )" — Gi(0)|; (23)

The operator G outputs the RK4 solution of the Lorenz equations with respect to the input
parameters 0, D = 3 is the dimension of the output, and n = 30 as above.
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Figure 9: Trajectories of the Lorenz system and observations (x,y, z).

Starting with a base gg = N (pu = [10,10,10], = 413), we use planar flow with L = 250
layers and apply the AdaAnn scheduler in Algorithm 1 with the following hyperparameters:
=05, M =100, N =100, ty = 0.05, T, = 500, T' =5 and 77 = 5,000. The learning rate
for the Adam optimizer at £ < 1 is 0.0005; during the refinement phase at ¢ = 1, the batch
size is increased to N7 = 200 and a step learning rate scheduler is applied with a reduction
of v = 0.75 every 500 training iterations. The AdaAnn schedules are shown in Figure 10,
which took 778 steps and 140 steps for 02 = 0.001 and o2 = 0.2, respectively.

The resulting variational approximation ¢ (s,b,r|X) is shown in Figure 11. The marginal
histogram for each of the 3 parameters and the pairwise scatter plots are depicted in Fig-
ure 12. The inferred distributions agree well with the true parameter values. The MC es-
timates for the marginal means and standard deviations (SD) of the posterior distributions
are computed from the final optimized approximate distribution g;, using 10,000 samples and
reported in Table 4. For each parameter, its true value is within one SD of the corresponding
estimated parameter value.
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Figure 10: Annealing schedules from AdaAnn in example 4 (Lorenz attractor)
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Figure 11: Approximate posterior distribution of parameters (s, b, r) for the Lorenz attractor
obtained by VI-NF with AdaAnn

Table 4: Posterior mean and standard deviation for the parameters of the Lorenz attractor,
based on 10,000 samples obtained by VI via NFs with AdaAnn.

true 0% =0.001 02 =0.2
Parameter posterior mean posterior SD posterior mean posterior SD
s =10 10.0021 0.0057 10.0925 0.0635
b=38/3 ~ 2.6667 2.6676 0.0012 2.6852 0.0125
r =28 27.9980 0.0055 27.9283 0.0557
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Figure 12: Marginal posterior distributions and pairwise scatter plots of parameters (s, b, r)
for the Lorenz attractor with o = 0.001 and o2 = 0.2.

4.5 Example 5: ODE system for HIV dynamics

This example infers the parameters of a system of ODEs that models the HIV dynamics [3]
based on the original system [31]:

X1 = p1 — D221 — P3X123, To = P3T1T3 — Pala, T3 = P1PaT2 — P53,

(24)
Y = 3.
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In this system, 2 is the number of C'D4" T-cells that are susceptible to being infected by the
HIV-1 virus and x5 is the number of productively infected C'D4% T-cells. The concentration
of HIV-1 free virus, z3, is measured in HIV-1 RNA per mL of plasma. The dynamics of
the system are driven by the following five parameters: p; is the rate of target cells being
produced from a source, ps is the rate of target cells dying, ps is the rate of target cells being
infected by the HIV-1 virus, p, is the death rate of productively infected cells x5, and p5 is
the clearance rate of infectious HIV-1 virus particles from the body.

We use VI via NFs to estimate the parameters p; and p, along with the initial condition xy,,.
The remaining parameters and initial conditions are considered known and fixed. The pos-
terior distribution of p; and p; may have a multimodal structure if this system has an iden-
tifiability degree greater than one [3]. In fact, for this problem, the identifiability degree is 2
indicating two sets of parameter values producing an identical output, namely {p;, ps, x2,}
and {—p1, p2, —x2, }, generating the same observed trajectory on output y(t) = x3(¢).

The system (24) is numerically integrated using RK4 until time ¢ = 2 months with step size
of At = 0.05 months using the parameters and initial conditions in Table 5. Synthetic data
were generated using n = 40 equally spaced data points from y = x3 and adding Gaussian
errors N' (= 0,02 = 0.0005) to the output solution z3, as shown in Figure 13.

Unknown Parameters Known Parameters Fixed Initial Conditions

pp=12 p3 = 4.1 T, = 0
D2 = 0.8 Py = 10.2 T3, = 1
Xoy = 1.5 Ps = 2.6

Table 5: Parameter values and initial conditions in the HIV dynamics ODE system.
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/ \ Noisy Observations
1.50
\\
1.25
o \
S 1.00 \\
0.75 - .
R
0.50 \\\
\\.\‘-
0.25 T T T T .
0.0 0.5 1.0 1.5 2.0
Time

Figure 13: Trajectory of the output x3 in units 10* HIV RNA per mL of plasma over 2
months along with noisy data in example 5.

The posterior distribution of parameters @ = {p1, p2, ¥2,} given n observed data points on x3
is p(0)x3) o (2m0?) 2 exp (02 301, (x5 — G4(0))?) given the Gaussian likelihood function
and a uniform prior on 8. To approximate this posterior, we transform a base distribution
N(p = [0,0,0],X = 4I3) using a composition of L = 250 planar flows with hyperbolic
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tangent activation functions. We run AdaAnn with {5 = 0.00005, 7 = 0.005, T, = 1,000,
T =5, N = 100, and M = 100. The learning rate for the Adam optimizer is 0.0005.
Once we reach t = 1, we refine the posterior approximation by training for an additional
T7 = 5,000 iterations, increasing the batch size to Ny = 200, and adopting a step learning
rate scheduler for the Adam optimizer (with learning rate reduced by a factor of v = 0.75
after 1,000 training iterations).

The AdaAnn schedule is depicted in Figure 14 with a total of 4,645 steps. The resulting
approximation ¢; captures the bimodal structure of the target posterior distribution, as
presented in Figure 15. For comparison, we also run the planar flow without annealing for
20,000 iteration. The resulting q; inconsistently converges to either a unimodal or bimodal
approximation. Since only the mode with positive parameters is biologically relevant, con-
verging to one with negative parameters may lead to the conclusion that the model is unable
to reproduce the observed behavior with physically sound parameters.

1.0 A

0.8 4

0.6 4
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0.0 +
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Steps
Figure 14: AdaAnn schedule in Example 5 (the HIV dynamics ODE system)
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Figure 15: Approximate posterior distributions without annealing versus with AdaAnn in
Example 5

The marginal distributions are also shown in Figure 16. Since the left mode is not biologically
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meaningful due to negative parameter values, we also included the marginal distributions
for the right mode plotted against the true parameter values in Figure 17. The true model
parameters are accurately inferred by combining VI and NFs with the proposed adaptive
annealing schedule. The posterior marginal means and standard deviations are computed
using 10,000 samples and displayed in Table 6.
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Figure 16: Marginal distributions for the HIV dynamics ODE system.

true parameter Biologically unadmissible Biologically admissible
Posterior mean Posterior SD Posterior Mean Posterior SD

pr =12 -1.2014 0.0249 1.2019 0.0274

p2 = 0.8 0.8485 0.2001 0.8609 0.2196

To, = 1.5 -1.5067 0.0412 1.5060 0.0452

Table 6: Posterior mean and standard deviation of the parameters for the HIV dynamics
ODE system (Example 5).

4.6 Summary of the Examples

The target distributions in these fives examples are of varying degrees of complexity and
AdaAnn produces distinct annealing schedules that are well adapted to the complexity of
the underlying posterior distribution. This is evident from Figure 18 that illustrates the
evolution of the inverse temperature generated by AdaAnn for Examples 1, 4 and 5. A fast
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Figure 17: Marginal distribution of the biologically admissible mode for the HIV dynamics
ODE system.

schedule with a limited number of small temperature increments is produced for the approx-
imation of the one-dimensional bimodal density. A larger noise variance in the data for the
Lorenz system (i.e., 0% = 0.2) leads to a wider posterior distribution that AdaAnn is able
to approximate in few, mainly large, steps. A reduced variance (o2 = 0.001) corresponds
instead to a more sharply peaked posterior which requires more small increments near the
beginning. For the bimodal HIV dynamics posterior in 3D, characterized by two well sepa-
rated peaks, AdaAnn requires significantly more steps and a smaller initial temperature, as
expected. It is also interesting to observe that, in the schedule for the HIV dynamical system
example, €, is reduced after ~ 4,500 iteration, producing a small but visible “kink” in the
temperature schedule and it appears consistently in multiple runs. Further investigation is
needed to better understand this phenomenon and what features of the target distribution
or the approximate distribution at ¢ causes the annealing process to slow down.

The relevant hyperparameters for AdaAnn (Algorithm 1) in the five examples are summa-
rized in Table 7. One may also want to allow for more gradient updates to be performed for
each t¢; so that NFs can provide a better approximation of p'*(Z, X), especially for more
complex or higher dimensional densities. Except for the motivating example in Section 4.1
where we perform two gradient updates per temperature increase (linear scheduler), we use 5
updates in all of the other examples. At the target temperature of ¢t = 1, it is also desirable
to perform additional iterations to refine the approximation of the target distribution. For
the Lorenz and HIV dynamical system, 5,000 appears to be a reasonable number of iterations
leading to an accurate posterior. At ¢ = 1, we also typically increase the the batch size (e.g.,
Examples 1, 4 and 5).
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Figure 18: Comparison of annealing schedules for one-dimensional bimodal density (example
1), the Lorenz attractor (example 4), and HIV dynamical system (example 5).

Example Description T to To T T N N M
1 1D bimodal 0.01 0.01 500 2 8,000 100 1,000 1,000
2 1D Parametric bimodal 0.005 0.01 500 5 - 100 - 1,000
3 2D bimodal density 0.01 0.01 500 5 - 100 - 1,000
4 Lorenz attractor 0.5 0.05 500 5 5,000 100 200 100
5 HIV model 0.005 0.00005 1,000 5 5,000 100 200 100

Table 7: Summary of the AdaAnn hyperparameters used in all 5 examples.

5 Discussion

We introduced AdaAnn, an adaptive scheduler that automatically suggests changes in the
annealing temperature when using NF's for VI. This scheme has third-order accuracy and is
obtained from a Taylor series expansion of the KL divergence between two annealed densities
which differ by a sufficiently small inverse temperature increment.

AdaAnn requires two main parameters to be defined: the initial temperature ¢,* and the
KL divergence tolerance 7. The choice of ¢, is dependent on the separation and width of the
modes in the target distribution. As observed for the HIV dynamical system in Section 4.5,
a posterior with very narrow or separated modes requires a smaller tj, leading to a more
uniform initial density. Regarding the KL divergence tolerance, an exceedingly large 7 can
provide a poor approximation that misses relevant features in the target distributions, e.g.,
could miss one of the modes in a multimodal posterior. Conversely, a too small 7 may
result in unnecessary incremental steps and added computational cost yielding no edge in
computational efficiency over linear schedulers.

AdaAnn is simple to implement and can lead to significant computational saving compared to
a priori selected annealing schedules. We demonstrate the application of AdaAnn in planar
flows for distribution approximation and variational inference, but no problem is foreseen in
applying AdaAnn with other types of flows or other algorithms for the solution of inverse
problems (e.g., MCMC).
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