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ABSTRACT

We analyze the regression accuracy of convolutional neural networks assembled from encoders, de-
coders and skip connections and trained with multifidelity data. Besides requiring significantly less
trainable parameters than equivalent fully connected networks, encoder, decoder, encoder-decoder or
decoder-encoder architectures can learn the mapping between inputs to outputs of arbitrary dimen-
sionality. We demonstrate their accuracy when trained on a few high-fidelity and many low-fidelity
data generated from models ranging from one-dimensional functions to Poisson equation solvers
in two-dimensions. We finally discuss a number of implementation choices that improve the relia-
bility of the uncertainty estimates generated by Monte Carlo DropBlocks, and compare uncertainty
estimates among low-, high- and multifidelity approaches.

1 Introduction

Analyzing physical phenomena through their mathematical or numerical modeling is a common practice in engineer-
ing and science, providing the analyst with the ability to predict the behavior of a system outside of a limited number
of observations. Simulation of complex phenomena, for example characterized by multiple interacting physics, may
require a substantial computational effort, and the availability of sufficient resources may be a key factor in the ability
to answer the scientific questions of interest. However, it is often possible to combine accurate but expensive high-
fidelity simulations with lower-fidelity simulations that provide approximations at a reduced cost, in order to optimize
efficiency while retaining accuracy.

This study focuses on generating multifidelity (MF) surrogate models designed to combine information from a few
high-fidelity (HF) model solutions and many low-fidelity (LF) approximations of varying accuracy. More specifically,
we focus on data-driven multifidelity surrogates in the machine learning context. Previous work considered student-
teacher networks with the ability to handle datasets with variable annotation quality [1], surrogates trained using
transfer learning between two model fidelities [2], and fully connected neural networks combining three sub-networks
designed to learn a LF representation, the correlation between a LF and a HF representation, and to minimize a
physics-based residual loss [3]. Other approaches utilize Bayesian neural networks [4], or combine convolutional and
fully connected networks to learn the discrepancy between increasingly fine discretizations of a given PDE solution,
projected on a common mesh [5].

Our approach is inspired by the recent successes in image classification and segmentation tasks shown by deep convo-
lutional encoder-decoder networks (see, e.g., [6, 7]). While multifidelity data fusion has been mainly demonstrated for
fully connected networks or for ensembles of hybrid convolutional and fully connected networks [5], no approach has
focused on convolutional networks assembled from encoders, decoders and skip connections, where the model fideli-
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ties are learned simultaneously, following an all-at-once training paradigm. Convolutions are essential to reduce the
number of weights with respect to fully connected networks when the input, the output or both are high-dimensional,
as discussed in our recent work [8, 9].

We also focus on quantifying the predictive uncertainty in the network outputs, i.e., we want to characterize the
variability of the predicted quantities of interest, a paradigm commonly referred to as “UQ for ML”, analyzing the
uncertainty in predictions that are inherent when using a machine-learned surrogate model. We consider this as a model
form uncertainty that relates to how the information flows through the selected multifidelity network, as opposed to
other paradigms where a deterministic machine learning model is employed as an inexpensive surrogate for uncertainty
quantification studies (referred to as “ML for UQ”).

Many different approaches have been proposed in the literature to quantify predictive uncertainty in neural network
outputs [10, 11, 12]. Among these, dropout layers [13] offer a simple and computationally appealing solution to drop
neurons at random, providing, at the same time, regularization and variance estimates. Their interpretation in terms of
an ensemble of network architectures has also been investigated in the literature [14, 15]. However, their performance
has been mainly assessed on neural networks with fully connected layers. In this study, we use DropBlocks [16],
i.e., adaptations of dropout layers showing improved performance on convolutional architectures. This study extends
previous results from our research group in two directions. In [8, 9], we focused on two separate questions, i.e., the
problem of identifying network hyperparameters leading to optimal accuracy, and the problem of understanding the
effect of hyperparameter selection on the variability of network predictions. Here we unify these two perspectives by
studying networks providing the best trade off between accuracy and uncertainty. In addition, we show new results for
the characterization of uncertainty in the one-dimensional and low- to high-dimensional test cases.

This paper is organized as follows: Section 2 introduces the problems of interest including one-dimensional function
approximation from MF datasets, and prediction of high-dimensional responses from computational fluid dynamics
solvers. Section 3 introduces the convolutional network architectures used in the study. Uncertainty estimates through
Monte Carlo DropBlock are discussed in Section 3.4. Results are summarized in Section 4, while conclusions and
future work are finally discussed in Section 5. For the interested reader, implementation details are reported in the
appendix.

2 Problem description

We study the approximation performance of multifidelity networks on three different problem instances. We begin with
function approximation, where we show how a convolutional architecture can be designed to accurately learn a map
between inputs and outputs, even in a single dimension. We then consider dense regression problems where inputs and
outputs are images of the same size (i.e., having equal dimensionality). Finally, we present a multifidelity architecture
for low- to high-dimensional regression, where a high-dimensional output is predicted from a low-dimensional input.
For all these cases, we examine how low-fidelity representations can be leveraged to accelerate training and improve
the accuracy of high-fidelity predictions from limited data.

2.1 One-dimensional multifidelity function approximation

We consider two examples, each consisting of two correlated LF and HF functions, with very few available HF and
relatively more LF training examples [3]. The first example consists of two linearly correlated continuous functions,
defined as

yL(x) = (1/2)(6x− 2)2 sin(12x− 4) + 10(x− 1/2)− 5 (1)

yH(x) = (6x− 2)2 sin(12x− 4), (2)

where 11 and 4 samples, are provided for yL and yH , respectively, as shown in Fig. 1(a). In the second example, we
consider two linearly correlated discontinuous functions expressed as

yL(x) =

{

l(x) = 0.5(6x− 2)2 sin(12x− 4) + 10(x− 0.5)− 5 0 ≤ x ≤ 0.5

3 + l(x) 0.5 < x ≤ 1
(3)

yH(x) =

{

h(x) = 2yL(x)− 20x+ 20 0 ≤ x ≤ 0.5

4 + h(x) 0.5 < x ≤ 1,
(4)

with 38 and 5 training samples for yL and yH , respectively, as shown in Fig. 1(b). We only consider linear corre-
lations in these examples, since these suffice to show the performance of the proposed network for one-dimensional
problems and provide a point of comparison with existing literature [3]. However, this is not explored further, since
fully-connected and convolutional architectures contain a similar number of weights for one-dimensional regression
problems, and therefore convolutional networks provide no practical computational advantage.
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the geometry and velocity distribution in a Hagen-Poiseuille flow, as shown in Fig. 2(b). In other words, this case
represents the surrogate construction for a random field (the pressure) given only two input parameters. This low-
to-high dimensional regression problem may not be easy to solve for traditional surrogate-based approaches. For
example, techniques like generalized polynomial chaos (gPC [19]) could be used to obtain scalar pressure estimates at
each pixel in the fluid domain, but additional structure (e.g. modes informed from dimensionality reduction algorithms)
would need to be specified to account for the spatial correlation of the resulting pressure field.

(a) (b) (c)

Figure 2: Example of Poiseuille flow. Velocity profile (a). Test case parameterization in terms of the fluid region
radius and maximum velocity (b). Pressure result (c).

3 Network architectures

For all problems discussed above, we employ a network architecture assembled from convolutional encoders, decoders
and skip connections. A convolutional encoder [20] is composed of alternating layers of convolutions and pooling
(i.e., downsampling), generating a compressed feature representation. A convolutional decoder, on the other hand, is
composed of alternating layers of convolutions and upsampling. Skip connections are finally added to mitigate the
loss of information due to downsampling, and counteract the vanishing gradient problem (see, e.g. [21]). For dense
regression problems, the encoder and decoder are symmetric, and padding is applied so that the number of pixels in
the network input and output is the same.

In the next sections, we describe the three specific network architectures used to address the problems presented in
Section 2.1, Section 2.2 and Section 2.3, respectively. Section 3.4 provides an overview of DropBlock layers and their
use in uncertainty quantification. In addition, Section 3.5 discusses how the information from low- and high-fidelity
models is assembled in a network.

3.1 Decoder-encoder architecture for one-dimensional regression

For one-dimensional regression (Section 2.1), a single LF predictor (as opposed to multiple LF predictors for the
networks discussed in the next sections) is generated by the network. Denote z as the concatenation between the LF
predictor and its x coordinate. The HF predictor is obtained by summing two contributions

1. a convolution applied to z, designed to capture the linear correlation between the HF and LF outputs; and

2. the convolution of z in two layers which are separated by a nonlinear activation, designed to capture the
nonlinear correlation between the HF and LF outputs.

Additive skip connections are used to facilitate the exchange of information between the decoder and the encoder. The
network layout is illustrated in Fig. 3. Additional details are included, for the interested reader, in the appendix.

3.2 Encoder-decoder architecture for dense regression

This architecture resembles the popular U-Net [22] that has shown remarkable performance in terms of accuracy
and training speed for segmentation tasks, even under limited training data [23]. We consider both input and output
images with 64 × 64 pixels, where the input is characterized by three channels (one concentration and two velocity
components) and the output by a single channel (the pressure). A simple identity replaces the ReLU activation after
the final convolution layer.
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Similar to the network in the previous section, a LF prediction is generated at each decoder stage, ordered as LF1,
LF2, LF3, HF, i.e., from the coarsest to the finest resolution, respectively. For the interested reader, additional details
on this network are included in the appendix.

Figure 5: Multifidelity convolutional decoder architecture for low- to high-dimensional regression.

3.4 DropBlock layers for regularization and prediction uncertainty

Dropout layers [13] are a widely used form of regularization for artificial neural networks, designed to avoid overfit-
ting. These layers operate by dropping neurons at random during training, so the learned representation relies only
weakly on the correlations between neurons. This continuous change in network connectivity can be interpreted as
the simultaneous training of an ensemble of architectures at a fraction of the computational cost of processing them
individually. However, dropout layers are ineffective for convolutional neural networks due to the spatial correlation
present in images, where relevant details consist of multiple correlated pixels. For this reason, DropBlock [16] layers
are designed to drop a continuous group of pixels.

As these layers are still parameterized in terms of drop probability p, the relation between p and the actual ratio of
features being dropped should be first clarified. A Bernoulli mask is generated in [16], using a probability γ expressed
as

γ =
pF d

bd(F − b+ 1)d
, (7)

where p is the drop probability, F and b are the feature and block size, respectively, and d is the feature space di-
mensionality. Note that the drop probability p may not represent the actual percentage of elements dropped due to
overlapping between blocks. As discussed in the appendix, the actual drop ratio is closest to p when F = b (assuming
no partial blocks are considered at the edges of the feature map); otherwise, we typically see a lower drop ratio due to
overlapping blocks. In [16], a distinction is made between the DropBlock mask being independent or shared across
feature channels; we considered both approaches and chose the one producing the best accuracy for each test case; we
also compared the implications of both choices in Section 4.4.

When used during the evaluation of an optimally trained network, DropBlock layers can also be used to inject stochas-
ticity in the network predictions, and, combined with Monte Carlo sampling, provide a tool to quantify output uncer-
tainty. We refer to this technique as MC DropBlock, which is similar, in principle, to the MC dropout approach
discussed in [15]. In this study, we consider network output ensembles of size NUQ = 1000. As noted in Section 1,
it is important to emphasize that this notion of uncertainty reflects the variability introduced in the network by the
hyper-parameters (in this case changes in the network architecture induced by randomly dropping groups of features)
and not the impact of any uncertainty either in the network weights (as in Bayesian neural networks, see [4, 24]) or its
inputs.

We also wanted our network to promote accuracy in each MC-DropBlock realization rather than only on their mean.
To do so, we activated DropBlock layers both in training and when evaluating the network (e.g. when calculating the
validation loss). This is in contrast with the practice of keeping these layers off (i.e., drop probability p = 0) when
generating network outputs, commonly adopted when using DropBlocks for mere regularization purposes. Keeping
p = 0 during network evaluation leads to accurate mean predictions, but nothing prevents a single dropout sample from
being inaccurate or having large oscillations, resulting in a significant increase in the prediction uncertainty. Except

6
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for DropBlock layers, no other form of regularization was used for all the networks discussed in this work. Additional
details on the implementation and hyperparameter selection for DropBlock layers are reported in the appendix.

3.5 High- to low-fidelity representation coupling

For each of these three networks, we consider an implicit and an explicit coupling between the LF and the HF represen-
tations. In the first implicit case, the LF predictors are not directly propagated towards the network output, as shown
in Fig. 3, 4 and 5, where the black dotted arrows are omitted. However, forcing the upstream stages to learn accurate
coarse pressure representations clearly affects the accuracy of the high-fidelity prediction. Propagation of information
through the dotted arrows is instead allowed for the explicit feedback mechanism, meaning that the LF predictions
are propagated through the following stages of the decoder. When the HF and LF truths belong to the same space
and are correlated, an explicit connection helps in capturing the relationship between the LF and HF, such as in the
two one-dimensional regression problems discussed in Section 2.1. However, it is unclear that an explicit connection
would be beneficial for dense and low- to high-dimensional regression, since the LFs and HF live on different spaces.
Since the LFs are of lower dimensionality than the HF, no bijective mapping exists between their respective spaces.
In such a case, as it will be discussed in Section 4.2, our results seem to indicate the tendency of the network between
two successive LFs to learn a discrepancy between their corresponding feature maps, ultimately leading to improved
HF predictions.

4 Results

4.1 One-dimensional regression

We first trained the network only with LF data, to ensure there was no detriment to using a convolutional network as
opposed to a fully-connected network (as in [3]) for one dimensional regression. After obtaining accurate predictions
for the LF functions, we focused on multifidelity datasets. The explicit network outperformed the implicit network,
which seems reasonable given the significant correlation between the LF and HF models.

The multifidelity network is able to correctly leverage the LF data to influence the HF prediction to more closely
resemble the true HF function, as shown in Fig. 6(b), compared to the predictions from the network trained with HF
data only in Fig. 6(a). Similarly, in Fig. 7, the multifidelity network is able to capture the discontinuity by extracting
this information from the LF data, since this feature could not be learned from the limited HF data. Equally accurate
predictions in Fig. 6(a) and Fig. 7(a) result from different initial choices for the weights and biases (see appendix).

Including the spatial coordinate x as an additional input downstream of the LF predictor was a necessary adjustment
needed to separate the LF into a linear and a non linear contribution, facilitating their combination into an optimal HF
predictor; in this regard, note that in Eq. (4), yH(x) = αyL(x)+Fl(x), where α is a constant and Fl(x) = −20x+20
is linear in x.

Although similar, the two problem sets for one-dimensional regression differ in one important aspect, i.e., the x
coordinate for the HF samples is shared across fidelities for Eq. (1) and (2), whereas these locations are different for
Eqs. (3) and (4). In this latter case, and in the absence of sufficient regularization, spikes may appear in the multifidelity
network predictions at the locations of the HF data, produced by the LF predictor without altering the loss at the LF
training locations (see, e.g., Fig. 16). Inclusion of multiple DropBlock layers provide sufficient regularization to
prevent this behavior. This does not happen when using the same x values for the LF and HF datasets, since a spike
reducing the HF loss would necessarily increase the LF loss.

Finally, although [4] reported robust results, their network required the regularization penalty and the network size to
be carefully selected to capture the true underlying HF-LF correlation. Since no validation set was included, choosing
the regularization penalty and network size would require some degree of manual tuning. This operation might not be
possible in a realistic application, since HF data may not be readily available. Therefore, the sensitivity of our network
to the regularization penalty or other forms of regularization (e.g. DropBlock), for the example in Fig. 1(b), does not
appear to be a limitation of this specific architecture.

In principle, the nonlinear convolutional sub-network in Fig. 3 could also capture linear correlations, under sufficient
regularization. Under limited data, a linear kernel enforces this regularization without tuning regularization penalties to
ensure that the simplest relationship is captured between the LF and HF. Additionally, for datasets with both nonlinear
and linear correlations, excessive regularization on the kernels between the LF and HF predictors would result in only
capturing the linear correlation. For the given set of hyperparameters, removing the linear kernel produces significantly
less accurate HF predictions outside of the training points; however, decreasing the number of kernels in the nonlinear
correlation results in accurate HF predictions even in the absence of the linear kernel.

7
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lower accuracy near the boundary (see, e.g., [25]). This effect is magnified in our case as the boundary, which is
associated with the (random) diameter, changes with every sample. The original U-Net architecture overcomes this
through reflection padding on the input layer and no padding on any subsequent layers [22] (whereas we zero pad
each convolutional layer), although other approaches have been proposed in the convolutional network literature to
overcome this limitation (see, e.g., [25]).

4.2.1 Effect of bias in low-fidelity predictor

To explore to some extent the limitations of this network with regards to the accuracy of the low-fidelity data, we
perform an additional test where the LF3 is biased. We choose the LF3 since we expect this data to have the most
significant effect on the HF prediction due to its proximity in the network. Specifically, we add a constant bias
r · [maxj,k LF3(j, k) −minj,k LF3(j, k)]) where the bias ratio is r = 0.01, 0.05, to all of the LF3 data. We first use
the hyperparameters chosen in Table 6. As shown in Table 2, most of the accuracy values are similar to those found
in the absence of biased low-fidelity data (i.e. Table 1), except a single outlier for the MF additive explicit feedback.
However, after the selection of more appropriate hyperparameters, the accuracy for this test case is again similar to the
case without bias (see updated accuracy in parenthesis). This seems to suggest the ability of the network to counteract
excessive bias or inaccuracy in the LF predictors, but further analysis is required.

Skip Conn. Network Type MF Feedback HF/LF R2 Normalized R2

Concat MF Explicit 32/116 0.9326 3.250e-06
Add MF Explicit 32/116 0.9372 3.266e-06

Concat MF Implicit 32/116 0.9672 3.370e-06
Add MF Implicit 32/116 0.9541 3.325e-06

Concat HF - 32/0 0.9284 7.083e-06
Add HF - 32/0 0.9047 6.902e-06

Concat HF - 116/0 0.9408 1.980e-06
Add HF - 116/0 0.9257 1.948e-06

Table 1: Comparison of HF and MF network performance for dense regression. The normalized accuracy is R2/C
where C is the cost (see Section C.2). The terms Concat and Add refer to how the information from a skip connection
is assembled into the decoder.

4.3 Low- to high-dimensional dense regression

The results from the low- to high-dimensional decoder architecture reported in Table 3 show competitive test set
accuracy for the MF 32/116 network with respect to the HF 116/0 network. In addition, both MF networks perform
better than the HF 32/0 network, as shown in Fig. 11.

4.4 Uncertainty quantification of network predictions

In this section, we analyze the uncertainty estimates from MC DropBlock, or, in other words, we quantify the variabil-
ity from an ensemble of predictions obtained by feeding the same input to the network NUQ = 1, 000 times.

Bias ratio Skip Conn. Network Type MF Feedback HF/LF R2

0.01 Concat MF Explicit 32/116 0.944853
0.05 Concat MF Explicit 32/116 0.933174
0.01 Add MF Explicit 32/116 0.198742 (0.935613*)
0.05 Add MF Explicit 32/116 0.92367

0.01 Concat MF Implicit 32/116 0.95079
0.05 Concat MF Implicit 32/116 0.960783
0.01 Add MF Implicit 32/116 0.942729
0.05 Add MF Implicit 32/116 0.949461

Table 2: Accuracy of multifidelity networks in Table 1, when trained with biased LF3. (*) Validation accuracy obtained
by re-optimizing the network hyperparameters.
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Figure 9: Dense regression network. Mean predictions from HF 32/0 on two pressure configurations from the test
set (a,c). Mean predictions from MF 32/116 on the same test examples (b,d). Both network setups lead to accurate
predictions with limited absolute and relative errors.

located before the LF prediction, HF prediction uncertainty is propagated identical from the LF representation. ReLU
tends to spike to a larger value within a small interval, which may relate to its unbounded property.

Addition of LF training data leads to a reduction in the estimated uncertainty, but preliminary tests suggest a re-
calibration of the hyperparameters to be essential for this to occur.

4.4.2 Dense regression

Uncertainty estimates for the pressure along the centerline of the fluid region from NUQ realizations are shown in
Fig. 19. As is most evident in Fig. 19(b), we see that the HF 32/0 produces less accurate predictions and wider
uncertainty intervals.
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Figure 11: Predictions from the decoder network for the low- to high-dimensional regression test case. (a,c) Mean
prediction from HF 32/0 network. (b,d) Mean prediction from MF 32/116 network.

one-dimensional function approximation and produce a consistently accurate performance for high-dimensional in-
puts/outputs.

In this context, using two test cases in one-dimensional functional approximation and the solution of the pressure
Poisson equation, respectively, we show that multifidelity networks produce, at a reduced cost, a validation accuracy
comparable to that of networks trained from a much larger number of high-fidelity realizations. Use of datasets
containing examples from multiple fidelities also accelerates training, leading to significant loss reductions early on
during the training process.

We also focus on quantifying the variability in the network predictions using DropBlocks. Using DropBlock layers
not only during training, but also during testing and validation (and also investigating the impact of their locations
and count) improves the accuracy of each MC-DropBlock realization, leading to more robust uncertainty estimates
and reduced variability. We also investigated how the location and the number of DropBlock layers affect prediction
uncertainty. Adding multiple DropBlocks after each convolutional layer, while still providing a shared parameteriza-
tion across all fidelities, appear to maximize the uncertainty due to variability in the network architecture. However,
this was found to produce excessive regularization and reduced accuracy for the decoder-encoder network used for
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Fidelity Skip LR LR scheduler steps Drop scheduler steps Drop probability

Explicit Concat 1× 10−2 200 None 0.1

Explicit Add 5× 10−2 200 None 0.3

Implicit Concat 1× 10−2 500 300 0.1

Implicit Add 1× 10−2 1000 300 0.3

HF 32/0 Concat 2× 10−2 1000 None 0.3

HF 32/0 Add 1× 10−2 1000 None 0.1

HF 116/0 Concat 5× 10−2 500 None 0.1

HF 116/0 Add 2× 10−2 200 300 0.1

Table 6: Dense regression network. Hyperparameters producing the best validation accuracy on the mean prediction
for each HF and MF model, for the case where DropBlocks are independent across channels.

Fidelity Skip LR LR scheduler steps Drop scheduler steps Drop probability

Explicit Concat 1× 10−2 200 None 0.1

Explicit Add 1× 10−2 200 300 0.3

Implicit Concat 1× 10−2 500 None 0.1

Implicit Add 1× 10−2 200 300 0.5

HF 32/0 Concat 2× 10−2 500 300 0.3

HF 32/0 Add 1× 10−2 200 None 0.5

HF 116/0 Concat 1× 10−2 1000 300 0.3

HF 116/0 Add 1× 10−2 200 300 0.5

Table 7: Dense regression network. Hyperparameters producing the best validation accuracy on the mean prediction
for each HF and MF model, for the case where DropBlocks are shared across channels.

Component Layers Kernels per convolution layer Kernel

Decoder 3 CBRD-CBRD-U, 3 CBR-CBR-U, 1 CBR-C 128 128 64 64 32 32 16 16 8 8 4 4 4 1 3x3-s1-p1
Low-fidelity outputs CBR-C 4 1 3x3-s1-p1

Table 8: Number of convolutional layers and channels for low- to high-dimensional regression network in Figure 5.
The notation nxn-sm-pk indicates a square kernel of size n with stride of m pixels and padding of k pixels.

B Implementation details for DropBlock layers

We observed how the increased regularization produced by additional DropBlock layers could act as a valid substitute
for ℓ1 or ℓ2 regularization applied directly to the loss function. This was found particularly useful for the dataset in
Eqs. (3) and (4), characterized by a lack of overlap between the LF and HF training locations.

Some additional constraints have to be considered in the selection of suitable locations for DropBlock layers, in order
to maintain a shared parameterization for all HF and LF outputs. We choose not to include DropBlock layers at
locations which would induce stochasticity only to a subset of the HF or LF predictors, i.e. we omit DropBlock after
any convolution layers following the LF network outputs. Consistent with these constraints, we apply the same binary
mask both prior to the skip connection and prior to the pooling layer at each stage of the encoder of the network in
Fig. 4.

B.1 One dimensional regression

We consider DropBlocks after the first eight convolution layers (see Fig. 3), since these layers precede the LF predic-
tion. However, since these result in very inaccurate predictions, we exclude as few of the dropout layers as results in
accurate dropout realizations; for the dataset in Eq. (2), we use DropBlock layers 3-8 and for the dataset in Eq. (4),
we use DropBlock layers 5-8 (Fig. 3). For the DropBlock layers, we use a drop probability of 0.1 and a block size
of 1, due to the low dimensionality of the layers. A block size of 1 would be equivalent to a dropout layer, since
γ = p from Eq. (7) and single pixels in the feature map are dropped independently. We use no scheduler for the drop
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Fidelity LR LR scheduler steps Drop scheduler steps Drop probability Filters

Explicit 2× 10−2 500 300 0.1 6

Implicit 1× 10−2 1000 None 0.3 4

HF 32/0 2× 10−2 500 None 0.5 5

HF 116/0 2× 10−2 1000 300 0.1 4

Table 9: Decoder network. Hyperparameters producing the best validation accuracy on the mean prediction for each
HF and MF model.

probability. The DropBlock mask is independent across feature channels due to the small dimensionality of the layers.
Each convolutional layer is followed by a tanh activation, with the exception of the final layer where we use a linear
activation.

b p F γ Actual drop ratio b p F γ Actual drop ratio

3 0.2 3 0.2 0.203 5 0.2 8 0.08 0.183
3 0.9 3 0.9 0.901 5 0.9 8 0.36 0.631

3 0.2 4 0.133 0.19 5 0.2 16 0.053 0.184
3 0.9 4 0.6 0.718 5 0.9 16 0.24 0.609

3 0.2 8 0.089 0.186 7 0.2 8 0.114 0.196
3 0.9 8 0.4 0.652 7 0.9 8 0.514 0.701

3 0.2 16 0.076 0.186 7 0.2 16 0.046 0.178
3 0.9 16 0.343 0.652 7 0.9 16 0.206 0.589

Table 10: Dropout probability vs. the average ratio of features dropped. This latter is computed across 1000 DropBlock
realizations and averaged. This is evaluated for a one-dimensional layer, where there are 8 channels, and masks are
independent across feature channels. The feature size F represents the number of dimensions in each channel. We
exclude all partial blocks to be more consistent with [16].

B.2 Dense regression

We investigated DropBlock layers that are shared or independent across feature channels. Although shared masks
were found to work well when only using a single DropBlock layer, in this work we focus on independent masks, with
some uncertainty results related to shared masks. Additionally, DropBlock layers use a block size of 3, in combination
with a linear scheduler for the drop probability, with parameters as specified in Table 6 and 7. DropBlock layers are
included after the first ten convolution layers, preceding the LF1 output, as shown in Fig. 4.

B.3 Low-to-high dimensional regression

For low- to high-dimensional regression, we apply DropBlocks after the first six convolution layers of Fig. 5 preceding
the LF1 output. We use block sizes of 1, 1, 1, 1, 3, 3, respectively, from the first to the last DropBlock layer and no
linear scheduler for the drop probability.

C Additional implementation details

C.1 Hyperparameter search

The results in Section 4 are obtained using combinations of hyperparameters producing minimal validation losses.
These hyperparameters include the learning rate, step size of the learning rate scheduler, number of filters, regulariza-
tion penalty, weight initialization scheme, batch size, optimizer, DropBlock location and drop probability.
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C.2 Accuracy metric

Prediction accuracy is evaluated on the test dataset and reported as the coefficient of determination R2, within the true
fluid region,

R2 = 1− RSE = 1−

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − ȳ)2

, (8)

where RSE is the relative squared error, yi the true pixel value with mean ȳ, ŷi the network mean prediction (mean over
NUQ = 1, 000 DropBlock realizations), and N is calculated across the entire test set (i.e., the number of pixels in the
fluid across all test samples). We also report a normalized accuracy with respect to the cost of generating the training
data set, quantified, in this study, as the total number of pixels in the data. Thus, 116 HF images with resolution 64×64
have an equivalent cost of 475, 136 pixels, while 32 HF images have an equivalent cost of 131, 072 pixels (a cost ratio
of 0.276 to the 116 HF case). The multifidelity dataset with 32 HF images and 116 images for each LF would instead
result in a cost of 286, 976 pixels (a cost ratio of 0.604 to the 116 HF case).

C.3 One-dimensional network

C.3.1 Dataset preprocessing

We use the same training data as detailed in [3] and a test set consisting of 101 equally spaced points in the interval
[0, 1]. Since a validation set does not exist, we also optimize for the best fit over the training set. In addition, the
functions are rescaled to the range [0, 1] based on the maximum and minimum value in the training set, which allows
for a consistent use of the same optimizer across functions.

C.3.2 Regularization

In [8], we carefully selected the ℓ2 regularization penalty to constrain the relationship between the LF and HF and
therefore, in general, its value may depend on the dataset. However, in this paper, the use of extra DropBlock layers
precluded the necessity of applying ℓ2 regularization.

C.3.3 Weight optimization and batch size

Training is performed using the Adam optimizer [28] utilizing a step learning rate scheduler with decay 0.9, where
the step size and initial learning rate is determined by optimizing for the best fit of the given training dataset. We use
a learning rate of 9× 10−4 and a step size of 450. A batch size of 1 was used, since gradient updates based on a small
batch size were found to significantly improve prediction accuracy.

C.3.4 Weight initialization

The network weights are initialized from a a uniform distribution U(−s, s), with s = nk0k1, n being the number of
input channels, and k = (k0, k1) being the kernel shape.

C.4 Two-dimensional networks

C.4.1 Dataset preprocessing

For the dense and low- to high-dimensional cases, the dataset consists of two-dimensional slices from a Hagen-
Poiseuille flow in a cylindrical fluid domain Ωf . The solution is axisymmetric and therefore equal with respect to
any plane that includes the cylinder axis; therefore a two-dimensional slice is sufficient to fully describe the flow.

C.4.2 Single- and multifidelity dataset selection

The Hagen-Poiseuille flow dataset (denoted as HF 116/0) consists of 116 HF realizations corresponding to random
values of the maximum velocity and cylinder radius parameters (see Fig. 2). Training, validation and testing datasets
are obtained using 60/20/20 split ratios, resulting in 116, 49 and 35 HF images, respectively. For each sample, we gen-
erate a uniformly random floating point, which determines to which set that sample belongs based on their respective
probabilities; therefore, exact ratios are not preserved. A second dataset (HF 32/0) was also generated by randomly
subsampling 32 of the 116 HF realizations.

The multifidelity training dataset consists of the 32-sample HF dataset combined with 116 samples from each of three
LF resolutions. These resolutions result from subsampling the 116 HF images using dimensions 32x32, 16x16, and
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8x8. This results in a total of 116 · 3 + 32 = 380 images. For each coarse representation LFi, i ∈ {1, 2, 3}, we
add uniform random noise from U(0, 0.05 · [maxj,k LFi(j, k) − minj,k LFi(j, k)]). After training, every dataset’s
accuracy is evaluated on the same validation and test sets described above, i.e., 49 and 35 HF images, respectively.
Final accuracy results are reported for predictions on the test set, using the model with the lowest validation loss during
training.

C.4.3 Multifidelity loss

The training loss consists of the integral of the Mean Square Error (MSE), assembled from equal contributions (penalty
1/4) of all four fidelities. The integral here is obtained by multiplying each pixel’s contribution to the MSE by its size,
and it is used to compensate for the different number of pixels present at different fidelities. We also tested a loss
formulation where larger penalties were applied to the high-fidelity samples. While this showed some improvements
in the final high-fidelity accuracy, the results were not consistently better than with equal penalties across different
network weight initializations.

C.4.4 Weight optimization and batch size

Training is performed using the Adam optimizer with a step learning rate scheduler, which decays by a factor 0.9
every s epochs (where s is the LR scheduler step size), with a batch size of 16. Hyperparameters selected are shown
in Table 6 and 7.

C.4.5 Weight initialization

We utilize the Xavier initialization scheme [29], where weights are generated using realizations from a normal distri-
bution, with no significant changes in the results.
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