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Generating an accurate tree geometry in the CDSM is challenging as it 
depends on the density of the point cloud. The correct shape of tree 
crowns is not always obtained, which results in an inaccurate depiction 
of shadows. We recommend the usage of LiDAR data with high point 
density, especially in cities with lots of trees, to ensure the geometries of 
the tree crowns are adequately represented in the CDSM. 

In this research, observations were made under different tree species 
with varying characteristics (leaf area density, canopy size, height, etc.). 
Azcarate et al. (2021) also indicate that transmissivity varies with the 
foliation density of trees. While several transmissivity values were 
explored to minimize RMSE, a single transmissivity value is not valid for 
all trees. Therefore, the TMRT estimates do not match observations well 
under some trees. 

The model performs well for building canyons, given the limited 
information on wall properties and the assumption of a uniform albedo 
for all sites. The building canyon RMSE is well in range according to the 
ISO standards, giving the model more credence. Again, shortwave ra
diation is underestimated, which was also reported by Lau et al. (2016). 

In this research, additional information on the land cover was not 
included in the modeling processes. Previous studies found that ground 
surface characteristics have less influence on TMRT than shading but are 
still relevant (Lindberg et al., 2016; Middel & Krayenhoff, 2019). 
Therefore, including ground surface characteristics will reduce errors in 
the upwelling longwave radiation and reflected shortwave radiation. 

5.2. Assessment of sidewalk shade coverage 

The share of sidewalks that attain the required shade coverage 
throughout the day indicates that most parts of the Phoenix-Tempe area 
are not walkable in the summer. Tracts in Phoenix and Tempe down
town have good shade coverage due to a mix of trees and tall buildings 
that improves shade distribution in cities (Sabrin et al., 2021). Jamei 
and Rajagopalan (2017) suggest that tall buildings could provide more 
shade and reduce TMRT in downtown areas compared to trees. Outside 
the downtown areas, sidewalk shade coverage is poor. The share of tree 
shade is far greater than that of buildings because residential areas in the 
Phoenix area have low-rise buildings, wide roads, and high sky view 
factors (LCZ 6). Thermal comfort could be significantly improved in 
these tracts by street tree planting (Aminipouri et al., 2019; Sabrin et al., 
2021; Tan et al., 2016). Studies have shown that increasing the number 
of street trees could reduce TMRT by as much as 7 ◦C and reduce PET 
significantly (Aminipouri et al., 2019; Gál & Kántor, 2020; Lachapelle 
et al., 2023; Sabrin et al., 2021). A study conducted in a residential 
neighborhood in Freiburg found trees reduce TMRT by 6.6 ◦C, which 
translates into a 3.0 ◦C reduction in PET (Lee et al., 2016). A similar 
effect can be achieved in residential areas; however, the trees would 
have to be mature (Sabrin et al., 2021) and may be water-use intensive, 
which is a trade-off in hot, dry environments (Middel et al., 2021). With 
advancements in computational tools, scenarios involving these tree 
species and other conditions could be simulated beforehand to optimize 
tree-planting campaigns to improve pedestrian thermal comfort (Azca
rate et al., 2021; Tan et al., 2016; Wallenberg et al., 2022). Metrics such 
as the Shade Index used by Aleksandrowicz et al. (2020) could also be 
used in the planning and optimizing phase. Other urban shade sources 
have proven to provide similar TMRT reductions, especially during the 
day (Middel et al., 2021), and could be employed as stopgaps while trees 
are growing. The shade assessments performed for sidewalks can be 
replicated for public spaces such as parks and playgrounds for children 
using the data to assess the thermal comfort at these places, as seen in 
Bäcklin et al. (2021). 

A challenge that could be encountered in adopting our approach for 
other parts of the world would be the unavailability of ready-to-use 
sidewalk polygon data. This can be resolved by following the buffer 
analysis employed in this research, given the street width information. 
Alternatively, machine learning could be employed to extract sidewalk 
polygons from high-resolution aerial images. 

6. Conclusions 

Urban overheating is a significant challenge of the 21st century. 
Heat-related illness and death are preventable if the location of 
vulnerable populations and hyper-local biometeorological conditions 
are known to target heat mitigation interventions. This study advances 
human thermal exposure research by modeling the heat load on the 
human body at 1-m resolution for different exposure types (sun-exposed, 
shaded by trees, shaded by buildings) and urban forms under hot, dry 
conditions. TMRT estimates from SOLWEIG were validated using exten
sive 6-directional field observations, yielding errors close to the ± 5◦C 
acceptable criteria required for ISO7726. To assist local municipalities 
with Cool Corridor Planning, we calculated hourly shade coverage on 
sidewalks for a hot summer day in the Phoenix-Tempe area to identify 
neighborhoods that do not meet the minimum shade coverage recom
mendation of 20% as outlined in the Maricopa Association of Govern
ment’s Active Transportation Plan. Our approach provides essential 
information on current shade coverage that was previously unavailable 
to local governments to make better-informed decisions on human- 
centric cooling strategies. Results will inform municipal plans to opti
mize shade presence, use, and effectiveness. Combined with socio- 
economic and demographic data, our shade and TMRT maps will 
inform heat action plans to make cities in the metropolitan area and 
elsewhere more walkable, liveable, and heat-equitable. In the future, 
fine-scale TMRT will also help assess pedestrian thermal sensation in 
transient environments when combined with individual travel data 
(Dzyuban et al., 2022; Lau et al., 2019; Li et al., 2023). Future works in 
this field should focus on the travel behavior of pedestrians and resulting 
heat exposure integrating fine-scale TMRT data into travel simulation 
models. 
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