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Abstract

We propose a data-driven framework to increase the computational efficiency of the explicit finite
element method in the structural analysis of soft tissue. An encoder-decoder long short-term mem-
ory (LSTM) deep neural network is trained based on the data produced by an explicit, distributed
finite element solver. We leverage this network to predict synchronized displacements at shared
nodes, minimizing the amount of communication between processors. We perform extensive numerical
experiments to quantify the accuracy and stability of the proposed synchronization-avoiding algorithm.
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1 Introduction

A wide range of convergent numerical approaches
with rigorously derived error bounds are avail-
able from numerical analysis for time integration
of ordinary and partial differential equation mod-
els. These methods, combined with the increasing
availability of high performance computational
resources have significantly contributed to the
remarkable realism achievable by modern high-
fidelity numerical models in many fields.

This paper focuses on distributed explicit time
integrators, where time updates are computed
through matrix-vector products and are therefore
highly scalable and amenable to efficient GPU
implementation. Highly scalable GPU solvers for
physics-based modelling are already available in
the literature [3, 20, 29, 34, 53] with GPU-based
accelerated explicit finite element structural sim-
ulations of soft tissues discussed, for example,
in [21, 34, 53, 54]. Unlike implicit time integration,

explicit schemes typically do not need element-
level quantities to be assembled in a global matrix,
leading to memory and runtime savings. However,
explicit schemes are only conditionally stable [3,
4, 11, 19] with time step size a few order of mag-
nitude smaller compared to their implicit coun-
terpart. This difference becomes less pronounced
for the structural analysis of biological soft tissue
where explicit approaches have the potential to be
competitive with respect to implicit time integra-
tion, for example in the context of cardiovascular
modeling.

In explicit schemes, the main cost per time
step relate to the computation of element-level
quantities (mass, stiffness matrix and load vector)
and the cost of communication. While the first
can be mitigated by reduced numerical integra-
tion [45, 57], closed-form representations [37, 51]
or and more recent data-driven methods [22, 23],
the second remains a fundamental bottleneck,
despite several optimized approaches proposed in
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the context of GPU-based distributed computa-
tion [1, 21, 31, 54]. Since synchronization must be
performed at every time step, this problem is also
exacerbated, in explicit solvers, by the small size
of the stable time steps.

To alleviate the cost of synchronization,
recently developed data-driven approaches offer a
possible solution. The expressive power of artificial
neural networks has been widely demonstrated in
the construction of surrogate models for dynami-
cal systems, producing fast emulators that can be
integrated in optimization and UQ design loops.
In this context, extensive recent work include
the use of residual networks (ResNet [16]) for
data-driven generalization of explicit Euler time
integrators [9, 10, 12, 42, 56], showing promising
results for both linear and nonlinear dynamical
systems. Other methods are based, for example,
on physics-informed neural networks [43], deep
operator networks [35] and convolutional net-
works assembled from encoders and decoders [40].
Others incorporate spectral properties of sys-
tem dynamics in the design of data-driven mod-
els, to realize linearization and handle high-
dimensionality [25, 33] or use sparse regression
to construct parsimonious surrogates with model
complexity from an a-priori selected dictionary
(sparse identification of nonlinear dynamics or
SINDy [6, 24, 49]). Note that all the approaches
above aim to create effective data-driven surro-
gate models of dynamical systems, rather than
leveraging new advances in data-driven architec-
tures to further improve the efficiency of numerical
schemes.

In this paper, we combine numerical simula-
tion and data-driven approaches to mitigate the
synchronization bottleneck in explicit distributed
time integration. We equip each processor with an
independent network which models synchronized
displacement solutions for the shared nodes of
the respective partition, in order to reduce syn-
chronization frequency and to increase the degree
of parallelism. Using the proposed approach,
substantial savings are obtained for the cost of
communication without compromising accuracy
and long-term stability. In addition, multiple
networks are employed to predict the displace-
ments for the same shared nodes, providing a
means by which to assess prediction robustness

and to bound approximation error. Our data-
driven framework (built based on the PyTorch

library [41] and publicly available as a GitHub
repository at https://github.com/desResLab/
Synchronization-avoiding-algorithms) uses recur-
rent neural networks (RNN) due to their ability
to handle time series data [5, 7, 13, 50]. However,
since vanilla RNNs are unable to effectively learn
long-term dependence in the data, we employ
long short term memory (LSTM) encode-decoder
networks [17, 36], that have received significant
previous attention in the context of dynamical
systems [15, 18, 36, 39, 55].

This model successfully fits our purpose of
approximating dynamical systems only on a sub-
set (shared nodes) of the entire system. Learning
the partial rather than the full dynamics by a
non-recurrent neural network may require, for
example, the construction of a memory kernel of
the Mori-Zwanzig type [10, 12]. This is, however,
not required for the proposed LSTM recurrent net-
work which inherently holds a temporal memory
due to its sequential input [5, 50]. Additional work
on learning the dynamics of a subset of degrees of
freedom can be found in [2].

This paper is organized as follows. A brief
review of the governing equations for linear elas-
todynamics and their spatial discretization into
finite elements is reported in Section 2.1, followed
by the formulation for our distributed explicit
solver in Section 2.2. The proposed data-driven
method is discussed by first presenting a single
LSTM cell in Section 3.1, followed by an encoder-
decoder layout in Section 3.2, with the details
of network training summarized in Section 3.2.1.
A data-driven synchronization-avoiding algorithm
is proposed in Section 4. Numerical tests are
performed in Section 5, starting with extensive
benchmarks on a simple cantilever problem in
Section 5.1, and a realistic coronary model in
Section 5.2. In Section 6, we discuss a few criteria
to measure the prediction error of our proposed
framework. Performance is assessed in Section 7
for a fixed number of cores and fixed mesh size,
respectively, while Section 8 contains the con-
clusions and addresses possible future research
directions.
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2 Governing equations and
discretization

2.1 Equations of linear

elastodynamics

Strong form - Consider the following initial-
boundary value problem (S) defined over the
domain Ω ∈ R

3 with Lipschitz boundary ∂Ω =
∂Ωd ∪ ∂Ωn and Ω̄ = Ω ∪ ∂Ω (see, e.g., [19])

(S) :





Given fi, gi, hi, d0i, ḋ0i,

find di, i, j = {x, y, z}, s.t.

ρd̈i =
∂σij
∂xj

+ fi in Ω× (0, T ]

di = gi on ∂Ωd × (0, T ]

σijnj = hi on ∂Ωn × (0, T ]

di = d0i in Ω, at t = 0

ḋi = ḋ0i in Ω, at t = 0,

(1)

where the quantity of interest di(x, t) : Ω̄ ×
[0, T ] → R denotes the i-th component of the
displacement field d, ρ is the material density,
fi(x, t) : Ω × (0, T ] → R is the i-th component
of the body force, gi(x, t) : ∂Ωd × (0, T ] → R,
hi(x, t) : ∂Ωn × (0, T ] → R are the i-th compo-
nents of the prescribed Dirichlet and Neumann
boundary conditions on ∂Ωd and ∂Ωn, respec-
tively. In addition, initial values d0i, ḋ0i are set for
the displacement and velocity component.

We also assume a linear, elastic and isotropic
constitutive model in the small strain regime of
the form

σij = 2µǫij + λδijǫkk, i, j, k = {x, y, z}, (2)

where σ = [σij ] is the Cauchy stress tensor, ǫ =
[ǫij ] is the infinitesimal strain tensor, δij is the
Kronecker delta, and the Lamé coefficients µ and
λ are defined as

µ =
E

2(1 + ν)
; λ =

Eν

(1 + ν)(1− 2ν)
, (3)

where E is the material Young’s modulus, ν is the
Poisson ratio.

The infinitesimal strain ǫ is obtained from
the symmetric part of the displacement gradient

tensor

ǫij = d(i,j) =
1

2

(
∂di
∂xj

+
∂dj
∂xi

)
, (4)

leading to an expression of the Cauchy stress in (2)
in terms of displacements as

σij = cijklǫkl = cijkld(k,l), (5)

whereCCC = [cijkl] is a fourth-order elasticity tensor,
defined as (see, e.g., [46])

cijkl = µ(δikδjl + δilδjk) + λδijδkl. (6)

Weak form - A weak or variational formulation
for problem (1) can be written as

(W) :





Given f , g,h,d0, ḋ0, find d(x, t) ∈ D
t,

that for any w ∈ W , s.t.

(
ρd̈,w

)
Ω
+ a
(
d,w

)
Ω
= l
(
w
)
Ω
+ ln

(
w
)
∂Ωn(

ρd(x, 0),w
)
Ω
=
(
ρd0,w

)
Ω(

ρḋ(x, 0),w
)
Ω
=
(
ρḋ0,w

)
Ω

(7)
where

(
·, ·
)
Ω

denotes the standard product in

L2(Ω), and the linear and bilinear forms l
(
·
)
Ω
,

ln
(
·
)
∂Ωn

and a
(
·, ·
)
Ω
are defined, respectively, as

a
(
d,w

)
Ω
=

∫

Ω

w(i,j)cijkld(k,l)dΩ

l
(
w
)
Ω
=

∫

Ω

wifidΩ

ln
(
w
)
∂Ωn

=

∫

∂Ωn

wi hi dA.

(8)

The weak form (7) relaxes the regularity require-
ment of displacement solutions of the strong
form (1) such that the trial and test spaces only
need to satisfy the conditions

D
t :=

{
d(x, t)|di(x, t) ∈ H1(Ω); di(x, t) = gi(x, t),

∀x ∈ ∂Ωd; t ∈ (0, T ]
}

W :=
{
w(x)|wi(x) ∈ H1(Ω); wi(x) = 0, ∀x ∈ ∂Ωd

}
,

(9)
where H1(Ω) is the standard Sobolev space of
order 1.



Discrete matrix form - The solution of (7) by a
Bubnov-Galerkin finite element approach requires
the selection of appropriate discrete subspaces

D
(n)
h ⊂ D t and Wh ⊂ W , such that the projected

solution dh converges to the true solution d in
L2(Ω) with respect to any wh ∈ Wh. We consider

the discrete subspace D
(n)
h spanned by the set of

linear Lagrange polynomials P1, leading to the
following semi-discrete matrix formulation

(M) :




Find d

(n)
h

∈ D
(n)
h

, n ∈ {1, 2, · · · , nT }, s.t.

Md̈
(n)
h +Cḋ

(n)
h +Kd

(n)
h

= f
(n)

(10)

D
(n)
h

:=
{
d
(n)
h

(x)|d
(n)
h,i

(x) ∈ C0(Ωh);

d
(n)
h,i

(x) = g
(n)
h,i

(x), ∀x ∈ ∂Ωh;

d
(n)
h,i

(x)|e ∈ P1(Ωh,e); n ∈ {1, 2, · · · , nT }
}

Wh :=
{
wh(x)|wi(x) ∈ C0(Ωh); whi(x) = 0,

∀x ∈ ∂Ωh; whi(x)|e ∈ P1(Ωh,e)
}
,

(11)
where the subscripts (·)|e, (·)e indicate restric-
tion to a single finite element and nT is the total
number of time steps. The quantities M,C,K,f
denote the mass, damping, stiffness matrices and
loading vector, respectively with element-level
expressions that are standard in the isoparamet-
ric finite element literature (see, e.g., [19]) and
are therefore omitted. In this paper, we consider
mass-proportional damping, i.e., C = αM with
damping factor α ∈ R (see, e.g., [19]).

2.2 A distributed explicit structural

finite element solver

Explicit time integration - The algebraic sys-
tem (10) is discretized in time using a second-order
central difference stencil, where structural accel-
erations and velocities are approximated at every
time point n as

a
(n)
h

= d̈
(n)
h =

d
(n+1)
h

− 2d
(n)
h

+ d
(n−1)
h

∆t2
+O(∆t3),

v
(n)
h

= ḋ
(n)
h =

d
(n+1)
h

− d
(n−1)
h

2∆t
+O(∆t3).

(12)

Consistent mass and damping matrices M and
C are replaced by their lumped counterparts M̊

and C̊, leading to trivial inversion for fully explicit
displacement-based time integrators. To initiate

the time iterations, the quantity d
(−1)
h is com-

puted using a second order Taylor approximation
of d(−∆t), for consistency. Once the initial condi-
tions dh,0, vh,0 are provided for the displacement
and velocity at time t = 0, an initial acceleration
ah,0 is computed by solving the following discrete
system (note the use of consistent matrices)

Mah,0 +C vh,0 +Kdh,0 = f
(0). (13)

The explicit scheme is known to be condition-
ally stable with respect to the choice of ∆t, consis-
tent with the well known Courant-Friedrichs-Lewy
(CFL) condition (see, e.g., [4])

∆t = αs

min
e=1,2,···ne

he

√
E

ρ(1−ν2)

, (14)

where he a characteristic length (here assumed as
the diameter of the circumsphere associated with
each tetrahedral element), ne is the total number
of elements in the mesh, and the safety factor αs ∈
(0, 1) is set to αs = 0.9. The local displacement
solution is updated as shown in (17), introducing

the internal force at step n as f (n),int = Kd
(n−1)
h

and renaming f (n) as f (n),ext, i.e., the exter-
nal force at step n. This is consistent with our
implementation in Algorithm 1.

Remark 1 Application of initial conditions or loads
at t = 0 in explicit structural dynamics may lead to
the excitation of a broad range of frequencies. To pre-
vent this to occur, a ramp is applied to the external
force, through a time-dependent function R(t, tend),
such that

f̃
(n)

(tend) = f
(n)

R(tn, tend). (15)

This allows for a smooth and quasi-static application
of the external loading until time tend. Although many
formulations are available in the literature, we select
a simple linear ramp function

R(tn, tend) =

{
tn/tend tn ≤ tend

1 otherwise.
(16)
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(M̃) :






Given initial conditions: dh,0,vh,0,ah,0 and time step size ∆t

Find d
(n)
h

∈ D
(n)
h

, for every discrete step n ∈ {1, 2, · · · , nT } s.t.

d
(n)
h

= (M̊+
∆t

2
C̊)−1

[
∆t2f (n) − (∆t2K− 2M̊)d

(n−1)
h

− (M̊−
∆t

2
C̊)d

(n−2)
h

]

= (M̊+
∆t

2
C̊)−1

[
∆t2(f (n),ext − f

(n),int) + 2M̊d
(n−1)
h

− (M̊−
∆t

2
C̊)d

(n−2)
h

]

d
(0)
h

= dh,0

d
(−1)
h

= dh,0 −∆tvh,0 +
∆t2

2
ah,0

(17)

Distributed solver - The pseudo-code in Algo-
rithm 1 illustrates how our displacement-based
parallel finite element elastodynamics solver is
implemented based on element-level computation
and communication operations [3, 4, 19]. We
consider a computational mesh partitioned and
distributed over nc processors, labeled as i =
1, · · · , nc, each containing ne,[i] finite elements.

The steps in Algorithm 1 emphasized using
boxes denote CPU-to-CPU (or GPU-to-CPU and
vice versa) synchronization tasks. These ensure
equilibrium to be satisfied within each local parti-
tion at every time step, based on communicating
internal and external force information at the
shared nodes (i.e., nodes belonging to multiple
mesh partitions). However, synchronization con-
stitutes one of the main factors responsible for
performance degradation in distributed structural
analysis codes. This is particularly true for fully
explicit time integration, where shared node infor-
mation needs to be communicated to the root pro-
cessor at every time step, and therefore millions
or tens of millions of times during one simulation.
Thus, development of effective synchronization-
avoiding strategies would boost the performance
of explicit distributed finite element codes, par-
ticularly in the context of ensemble multi-GPU
finite element solvers, discussed in our previous
work [34].

Remark 2 The procedure in Algorithm 1 generalizes
different types of structural problems by forming ele-

ment stiffness matrix Ke and external loading f
(n),ext
e

at every time step. For isotropic linear elastodynamics
and constant external loading, it is instead sufficient
to generate the local stiffness matrix and loading vec-
tor only once, before the beginning of the time loop,
and re-use them at every time step. We refer to this
practice as “element pre-assembly”.

Artificial mass scaling - Explicit time inte-
gration schemes are stable under condition (14)
on ∆t, where the small time steps increase the
computational cost for long-term or steady state
simulations, and the frequency of synchronization
tasks. In practice, artificial mass scaling is a widely
adopted pre-processing technique to increase ∆t,
for situations where the choice of the time step
size is dictated by a few small elements in the
mesh. The pseudo-code for a typical implemen-
tation is shown in Algorithm 2 with more recent
approaches discussed, for example, in [38, 52].

The price to pay for a larger time step is a
non-physical increase in the mass of the system
that may potentially affect the system dynamics.
Therefore, the scaling factor β has to be care-
fully selected not to alter the structural response.
In this paper, we consider Algorithm 2 applied
to the most expensive numerical experiment in
Section 5.2.

3 Data driven model

In this section, we introduce data driven mod-
els based on artificial neural networks designed
to learn the dynamics of discrete systems gener-
ated through the finite element method, specifi-
cally focusing on LSTM networks. Hochreiter and
Schmidhuber introduced the LSTM deep neural
network in their 1997 seminal paper [17] to over-
come the problems with vanishing and exploding
gradients in vanilla RNN.

In what follows, we will drop the subscript (·)h
since only discrete solutions will be considered. In



Algorithm 1 Displacement-based distributed linear elastodynamics solver.

Communicate the Dirichlet boundary conditions and initial conditions to each processor
Form and communicate the global lumped mass and damping matrices M̊, C̊ to each processor
for n = 1, 2, · · · , nT do ⊲ Time loop

Initialize local internal and external forces f (n),int,f (n),ext as zero vectors
for e = 1, 2, · · · , ne,[i] do ⊲ Element loop

Form element stiffness matrix Ke and external force f (n),ext
e

Calculate element internal force: f (n),int
e = Ked

(n−1)
h,e

Update local forces f (n),int,f (n),ext by f (n),int
e and f (n),ext

e based on global element label e

end for

Send local forces f (n),int,f (n),ext to the root processor

Update local forces f (n),int,f (n),ext based on contributions from the shared mesh nodes

Send updated local forces f (n),int,f (n),ext back to each processor

Update local solution d
(n)
h using (17)

Strongly enforce Dirichlet boundary conditions
end for

Algorithm 2 Artificial mass scaling.

Loop through all elements to determine ∆t by equation (14)

Set a target time step ∆̂t = β∆t, β > 1
Initialize the artificial density vector ρ̂ρρ
for e = 1, 2, · · · , ne do ⊲ Element loop

Calculate the element time step size ∆te = αshe/
√

E
ρ(1−ν2)

if ∆te < ∆̂t then

ρ̂ρρ[i] = E∆̂t
2
/α2

sh
2
e(1− ν2)

else

ρ̂ρρ[i] = ρ
end if

Recompute the mass matrix M̂ based on ρ̂ρρ
end for

Compute the total percent mass increase mr

addition, we also introduce the notation

‖v‖2 =

√√√√
n∑

i=1

|vi|2, v ∈ R
n

‖V ‖F =

√√√√
n∑

i=1

m∑

j=1

|Vij |2, V ∈ R
n×m.

3.1 LSTM cell model

As illustrated in Figure 1, a classical LSTM cell
consists of a hidden state h, a cell state c, an input
d, the activation functions σ1, · · · , σ5 and the
component-wise operations ⊗ and ⊕. In each cell,
the feedback control feature of the deep recurrent
neural network is further reinforced by bringing a
number of gated flow controls.
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q
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q
(np)
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(np)
E,k

· · ·

· · ·

· · ·

q
(0)
E,k, r

(0)
E,k

d̂
(np+1)

d̂
(np+2)

h
(2)
D , c

(2)
D

h
(1)
D , c

(1)
D

...

...

d̂
(np+nf )h

(nf )
D , c

(nf )
D

Encoder

Decoder

Dense

Dense

Dense

concatenate

Fig. 2: Schematic representation of the LSTM encoder-decoder model. The Encoder is a stacked bi-
directional LSTM network. The Decoder is a single layer uni-directional LSTM network with dense output
layers.

a LSTM cell (Figure 1) while having hidden and
cell states coming from two opposite directions.

We use expressions h
(i)
E,j and c

(i)
E,j to represent the

hidden and cell states in the direction 1 → np

(solid arrow) and q
(i)
E,j and r

(i)
E,j along np → 1

(dashed arrow), where j = 1, · · · , k is the layer
index. At the final encoder layer, hidden and cell
states from two directions are concatenated sepa-
rately and provided to the decoder model as initial

states h
(0)
D and c

(0)
D .

The decoder then receives the final item d(np)

in X and recursively produce the predictions

d̂
(np+j)

, j = 1, · · · , nf in Ŷ . At each decoding
step, the previous prediction will be forwarded to
the next step as an input, with a dense neural
network bridging the different size between the
hidden state and model output.

During training (and validation) we use a
Mean Squared Error (MSE) loss function built

from the predicted output Ŷ and true numerical

solution Y as

L(Y , Ŷ ) =
1

nf · ndof

nf∑

j=1

‖Y j − Ŷ j‖
2
2

=
1

nf · ndof

nf∑

j=1

ndof∑

i=1

|Yij − Ŷij |
2

=
1

nf · ndof
‖Y − Ŷ ‖2F ,

(24)

and perform gradient-based updates for the train-
able parameters Θ.

3.2.1 Network training and evaluation

We tailor the training and evaluation of the pro-
posed network to the specific application of inter-
est, i.e., dynamical systems simulated through
explicit numerical solution algorithms in time. In
the structural analysis of soft biological tissue, the
time step ∆t is usually in the range 1 × 10−6 ∼
1 × 10−3 due to the stability condition (14). As
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a result, to completely describe the full dynamic
response, we might need millions of data points.

Such small time step will also lead to lim-
ited changes between displacement solutions at
two successive time steps, and therefore almost
identical model input X and true output Y . How-
ever, for effective training, we would like each of
our training sample to contain enough information
of the underlying dynamics. In other words, the
input X and output Y should be sufficiently dif-
ferent for the network to learn a relevant mapping
and not just an identity operator, typical of mere
steady state conditions (See additional discussion
in Section 5.1.3).

This is accomplished through a so-called
sample-refill strategy during the training and eval-
uation stages, respectively. First, as illustrated in
Figure 3, instead of using the full dataset, we only
pick a displacement solution every ns steps (oper-
ation Sns

). This sampled data is what we group,

Fig. 3: The sample pre-processing step.

batch and feed into the deep neural network at
training and validation stages. Upon successful
training, as described in Figure 2, the network
will take np displacement solutions in the past
and use them to predict nf future steps. Because
of the pre-processing, the time lag between each
predicted solution will still be ns.

To fill these gaps, we leverage a refill opera-
tion during the evaluation (or prediction) stage.
Given enough steps computed in the past, we use
the model ns times to produce ns · nf predic-
tions. After the first time, the input X is shifted
ns − 1 times forward such that the model can
generate the missing displacement predictions at
all shared mesh nodes, as illustrated in Figure 4
(operation Rns

). More details of the refill task can
be found in Algorithm 3 below. The sample-refill

strategy can adequately improve the training effi-
ciency, since less training examples will be used
for an increasing sample size ns.

4 A data-driven
synchronization-avoiding
algorithm

We propose a data-driven methodology to min-
imize synchronization in distributed, explicit in
time, finite element structural analysis, which
starts with data preparation. This consists in run-
ning Algorithm 1 in parallel, and gathering the
sequential displacement solutions for each of the
nc processors. We then identify all degrees of free-
dom associated with the shared nodes and form a
training dataset using samples spaced by ns time
steps. Next, we train nc independent replicas of
the LSTM network illustrated in Figure 2, pro-
ducing a set of optimally trained network models
NΘ,[j], j = {1, 2, · · · , nc}. We finally apply Algo-
rithm 3 where the synchronized displacements at
the shared nodes are modeled by the network
at each processor instead of being communicated
across partitions.

The parameter ncri in Algorithm 3 is used
to switch between the synchronization process
and using displacement predicted by the net-
work for all shared degrees of freedom. Clearly
ncri is expected to be set as low as possible to
attain the most speedup but it cannot be less
than np · ns + 1 since the model requires the
first np · ns steps to start. For additional clarity,
we sketch the sample-refill approach in Figure 5
for nc = 2, highlighting the training, valida-
tion and prediction stages. We further distinguish
between an Offline and an Online prediction stage
in Section 5.1.2. Offline prediction are performed
only on the shared nodes, while both shared and
internal node displacements are updated in the
online prediction stage.

Further note that the previously mentioned
refill stage (see Section 3.2.1) is realized by index-
ing every intermediate steps as lists Ni

p and Ni
f

such that the model inputs are properly shifted for
continuous predictions. For large computational
models, compared with synchronization costs, exe-
cution times for evaluating pre-trained network
models at every time step are negligible.



Fig. 4: Schematic illustration for the refill task. The whole operation starts at step i and requires np ·ns

steps of previously computed solutions to produce nf · ns predictions

.

Algorithm 3 A synchronization-avoiding algorithm for distributed linear elastodynamics.

Step 1: Partition the mesh over nc processors and compute ∆t
Step 1a: If needed, apply mass scaling following Algorithm 2
Step 2: Identify Dirichlet nodes and initial conditions for each processor
Step 3: For the generic j-th processor, set t = ∆t, n = 1, ncri, np, nf , ns

while t ≤ T do

if n ≤ ncri then

Apply Algorithm 1 to compute d(n)

t = t+∆t
n = n+ 1

else

for i = 1, 2 · · · , ns do ⊲ refill step
Ni

p = [i+ n− npns − 1 : ns : i+ n− ns − 1] ⊲ Index set of NN model input

Ni
f = [i+ n− 1 : ns : i+ n+ nfns − ns − 1] ⊲ Index set of NN model output

Forward pre-trained NN model: d(Ni
p)[shared]

NΘ,[j]−−−−→ d̂
(Ni

f )
[shared]

end for

Gather all predictions on shared nodes: d̂
(Nf )

[shared] = {d̂(Ni
f )
[shared], i = 1, 2, · · · , ns}

for m = n, n+ 1, · · · , n+ nsnf − 1 do

Apply Algorithm 1 to compute d(m) without “boxed” steps (synchronization)

Update d(m) at shared nodes by the corresponding modeled values in d̂
(Nf )

[shared]
end for

Impose Dirichlet boundary conditions to d(Nf )

t = t+ nsnf∆t
n = n+ nsnf

end if

end while

5 Numerical Examples

5.1 Cantilever model

To test the proposed computational framework,
we use a simple cantilever beam model contain-
ing only 110 vertices and 256 tetrahedral elements.
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Fig. 5: Top: Flow chart of the data-driven
synchronization-avoiding method. Bottom:
Training-validation-testing dataset decomposition
and sample-refill operation.

Specifically, we focus on the under-damped oscil-
latory regime using a mass proportional damping
with factor α. As shown in Figure 6, the can-
tilever has fully fixed restraints d|x=0 = 0 at one
end, and external load f consists of a ramp of 1s
(see Remark 1), followed by a constant distributed
body force equal to fz=0.5 dynes/cm3 in the
z-direction, i.e., f = [0, 0,−fz]

T . Further, homo-
geneous initial conditions are considered here as
d(0) = v(0) = 0, and geometric and material
model parameters are listed in Table 1.

The time step size is set to 2.48 × 10−4 via
equation (14). The mesh partitioning is realized
by mgmetis [8] based on the ParMETIS library [26],
and parallel computations are managed through
the Message Passing Interface (MPI). Initially we
consider a distributed mesh on 2 processors, with
8 shared mesh nodes each. The result of mesh
partitioning is shown in Figure 7.

Fig. 6: Simple cantilever beam model.

5.1.1 Hyperparameters and network

training

In our numerical experiments, we optimize over
a number of selected hyperparameter realizations

Length (L) 25 (cm)
Width (W ) 1 (cm)
Height (H) 1 (cm)
Young’s modulus (E) 1 × 106 (dynes/cm2)
Density (ρ) 1 (g/cm3)
Poisson’s ratio (ν) 0.3

Table 1: Geometric and material parameters for
the cantilever beam model.

Fig. 7: Coarse mesh partitioned over 2 CPUs,
labelled 0 and 1, respectively.

by performing a grid search on the mini-batch size
nB , the hidden unit size nH and the initial learn-
ing rate η0. In addition, we utilize an exponential
learning rate scheduler, where η(x) = η0γ

x for
a given epoch x. In the search of a good initial
learning rate η0, we set a minimum learning rate
ηmin = 5 × 10−7 and keep the decay rate fixed
at γ = 0.9995. As a result, the total number of
epochs nepoch can be calculated as:

nepoch = ⌊logγ(
ηmin

η0
)⌋. (25)

The selected grid of hyperparameter realizations
includes nB = 5, 10, 20, 50, nH = 20, 50, 100 and
η0 = 5×10−3 (nepoch = 18416), 5×10−4 (nepoch =
13812), 5 × 10−5 (nepoch = 9208), leading to 36
cases in total.

In terms of how to pick the best combina-
tion of nB , nH and η0, we introduce the following
criterion, rather than simply looking at the loss
curves produced by MSE (24) during training and



validation

Emse =
1

N · nf · ndof

i+N ·nf−1∑

j=i

‖d(j) − d̂
(j)

‖22

=
1

N · nf · ndof

( i+nf−1∑

j=i

‖d(j) − d̂
(j)

‖22

+

i+2nf−1∑

j=i+nf

‖d(j) −
̂̂
d
(j)

‖22 + · · ·

)

,

(26)

that is, after the network is trained, starting from
step i, we go ahead and use the trained network
model NΘ for N times. This is referred to as the
testing phase. Then, by definition, Emse quanti-
fies a MSE error of displacement predictions on all
shared nodes overN ·nf steps (note that a lag of ns

time steps is still present between a collection of nf

successive shared nodes predictions in the testing
phase, and this gap is only “refilled” at the offline
and online prediction stages (see Section 5.1.2.)
Note that during the calculation of Emse, after the
first time (N = 1), we no longer have exact inputs.

In other words,
̂̂
d is the model output (N = 2)

with model input d̂, predicted from the last step.

Here we abuse the notation (̂·) to avoid stacking
multiple “hats”. Trivially, (26) collapses to (24)
when N = 1.

Using Emse is more consistent with our objec-
tive, in the prediction stage, to use previously
predicted displacements as inputs to predict syn-
chronized displacements at future times. A stan-
dard MSE loss (24) on the other hand, would
only account for the performance of a single model
application (nf steps), thus delivering less infor-
mation about accuracy and stability on a longer
time horizon. Note that alternative ways to ensure
robust long-term predictions for non-recurrent
networks are proposed in [9, 10, 44], where either
a recurrent loss function similar to (26) was used
in the context of ResNet network training, or
the artificial random-walk noise was added to the
input data to counter error accumulation, in graph
neural network training.

In practice, we set N = 45 and calculate
the square root of Emse as a measure of accu-
racy per degree of freedom and per prediction.
All the results are reported in Figure 8, where
the lowest learning rate η0 = 5 × 10−5 provides
the worst accuracy. In addition, we train a num-
ber of networks equal to the number of mesh

partitions (two in this case, see Figure 7), so
we can quantify the variability in the prediction
accuracy produced by multiple network replicas,
and favor models producing robust predictions
across processors. This observation penalizes net-
works with a larger learning rate η0 = 5 ×
10−3, characterized by large inter-processor vari-
ability. The optimal hyperparameter combination
(marked by “△” in Figure 8c) is finally selected as
nB = 5,nH = 100, η0 = 5× 10−4, since it offers
the best compromise between a moderate train-
ing cost, a sufficient accuracy and limited model
discrepancy. It is worth noting that one could fur-
ther refine this choice by expanding the number of
hyperparameter combinations in the grid search.
For example, we expect better accuracy for even
smaller mini-batch size nB when η0 = 5×10−4 via
the observation of a roughly monotonic behavior.
However, the selected accuracy metric

√
Emse is

already close to 1×10−5, regarded as satisfactory.
We also study the effects of the sequence

lengths np, nf , the training set size nts and the
sample size ns in section 5.1.3. The parameters
np, nf specify the amount of past and future dis-
placement observations used in training, whereas
the training set size nts controls the total amount
of pre-computed numerical solutions fed into the
network, i.e., temporally speaking, we use nts (and
later sampled by ns) of all finite element solutions
at each partition to train our surrogate models in
parallel. The sample size ns > 1 is also regarded as
a hyperparameter that may be dependent on the
time step size ∆t, problem type, etc., where larger
ns are associated with increasing cost savings dur-
ing training. In the experiments shown in Figure 8,
these parameters are fixed as np = nf = 20,
nts = 50%, ns = 100.

Further, our training is performed through
the Adam optimizer [28], shuffling the order and
choice of the mini-batches at each epoch.

5.1.2 Offline and online data-driven

model evaluation

We proceed to define two ways to use our data-
driven model. First, as discussed in Section 4, we
train several network models in parallel based on
the shared degrees of freedom at each partition.
Next, we inspect whether displacement evolution
on each set of shared nodes are ideally learned,
which we refer to as the offline prediction stage,





we start to combine the pre-trained neural net-
work surrogates with the distributed finite element
solver. This inevitably causes the error of data-
driven model to propagate from share nodes to
other nodes during each explicit update, due to a
non-diagonal stiffness matrix K.

In Figure 10 we plot the online predicted dis-
placement dynamics at two non-shared nodes, one
for each partition. The predictions appear accu-
rate and stable such that the previously mentioned
error propagated from shared nodes to non-shared
nodes does not grow unbounded. A l2 error is
shown in Figure 11 with its definition at time t as

e
(t)

l2
= ‖d(t) − d̂

(t)
‖2. (27)

From Figure 11, we observe an initial increase in
the error once we start to use the trained surro-
gate model. As time evolves, el2 gradually reduces
before the vertical bar due to the increasingly
smaller oscillation amplitude. After the vertical
bar, el2 increases again due to the lack of famil-
iarity of the data unseen during training, but
eventually drops, suggesting a stable prediction of
the steady state.

In the current cantilever problem, small-valued
predictions in the lateral directions (x, y) would
be more susceptible to get polluted by an error of
the magnitude shown in Figure 11, as we can see
from the following sections. However, this should
be of less concern since the error remains bounded
and the dynamics is governed by the dominant
z-component.

Remark 3 The vertical bar shown in Figure 10 and
in many other figures in this paper indicates the end
of the training-validation period for the shared dofs.
However, we often plot the dynamics of internal (non-
shared) dofs to show how they are affected by the
propagation of errors.

5.1.3 Network performance tests

Input-output sequence length - We investi-
gate the effects produced on the network accuracy
by changing the parameters np and nf , indicating
the number of time steps included in the net-
work input and output, respectively. We consider
three symmetric cases with an increasing number
of steps np = nf = (5, 20, 50) and an asymmet-
ric case with np = 20 and nf = 5. As shown
in Figure 12, the best results are obtained for an

intermediate number of steps either symmetric or
asymmetric while an excessive or limited number
of steps seems to reduce the flexibility of the net-
work predictions. A sufficient number of inputs
in the past is required for accurate long-term
predictions. However, for np = nf = 50, the non-
optimal performance is due to an insufficiently
complex model, since learning a much longer
input-output dependence would require more hid-
den units, deeper encoder etc. Therefore, without
making unnecessary model refinements, a choice
of np = nf = 20 should suffice for the current
dynamical system.

Finally, it is also worth mentioning that np, nf

also affect the overall speedup of our data-driven
framework, since a smaller nf means more net-
work usage. This is the reason why we prefer
np = nf = 20 over np = 20, nf = 5, although their
resulting accuracy seems comparable.

Training set size - In this section we perturb
the hyperparameter nts, to see how the total
number of training examples affects the accu-
racy of the network predictions. As expected (see
Figure 13), accuracy improves for longer training
periods and approximately three cantilever oscil-
lations are needed to accurately learn the damped
response in the z-direction.

Sample size - In this section, we explore the
performance of our approach for varying sample
size ns. The results are presented in Figure 14,
where a reduced accuracy is observed, with respect
to ns = 100, for sparser (ns = 200) or denser
(ns = 50, 10) training datasets.

Another side effect of a smaller ns is the pro-
liferation of training examples, which reduces the
training efficiency. As shown in Figure 14, a larger
sample size ns = 200 could still produce sta-
ble and accurate predictions for the (dominant)
z-component response. Therefore, in general, we
prefer to select ns as large as possible.

As discussed above, we conjecture that the
poor performance under a small ns is due to
the limited variation of adjacent solutions pro-
duced by the explicit FEA solver. This might be
amplified by using single precision in the neu-
ral network computations. However, experiments
using double precision data types did not produce
any improvements in Figure 15.

Refined mesh with additional processors -
Next, we extend our data-driven framework to a































29

to minimize the training cost, while preserving
accuracy mostly on quantities associated with
the dominant structural response. In this con-
text, we re-trained the skewed forcing test case for
the coarse cantilever model with hyperparameters
nB = 10, nH = 50, ns = 200, γ = 0.998 using only
6% of the original training time (∼30 minutes ver-
sus ∼5 hours). In the results shown in Figure 47
the displacements in the y-z plane remain com-
parable to those in Figure 18 and the solution
remains stable even on a long time horizon.

8 Conclusions and future work

In this paper, we have developed a novel data-
driven approach to speed up the structural anal-
ysis of soft biological tissue. Our approach mini-
mizes the amount inter-processor communication
by replacing shared node synchronization tasks
with predictions from an optimally trained arti-
ficial neural network. As verified through exten-
sive numerical experiments, the LSTM encoder-
decoder network model proposed in this study
accurately approximates the displacement values
at the shared nodes and maintains stability and
accuracy even for long integration times.

The proposed network significantly reduces
synchronization times in large scale simulations.
This is demonstrated in Section 5.2 using a realis-
tic coronary artery model used in previous studies
for fluid-structure interaction problems. In addi-
tion, when modified to include conditional pre-
dictions and trained accordingly, our model is
robust to the choice of initial condition and exter-
nal loading. Note that this conditional structure
can also be extended to material proprieties, e.g.
predicting shared node dynamics under arbitrary
elastic modulus, Poisson ratio and, in future work,
constitutive laws.

Reduction of synchronization times is crucial
for ensemble distributed finite element solvers
where multiple realizations of geometry, bound-
ary conditions or material properties are solved
simultaneously. An explicit-in-time multi-GPU
implementation of an ensemble solver has been
proposed in our previous work [34], where GPU-
to-CPU synchronization represents a challenging
computational bottleneck. Therefore, the pro-
posed approach represents an interesting accel-
eration, particularly for the periodic response of
cardiovascular models.

In addition, the well known poor bending
performance of constant strain tetrahedral ele-
ments may significantly degrade the reliability
of patient-specific cardiovascular structural mod-
els. To overcome this problem, we will explore
recently proposed stabilized and variational mul-
tiscale finite element formulations [46]. Finally,
future work we will be devoted to apply the
proposed approach in the context of non-linear
problems.
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