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Abstract

We propose a data-driven framework to increase the computational efficiency of the explicit finite
element method in the structural analysis of soft tissue. An encoder-decoder long short-term mem-
ory (LSTM) deep neural network is trained based on the data produced by an explicit, distributed
finite element solver. We leverage this network to predict synchronized displacements at shared
nodes, minimizing the amount of communication between processors. We perform extensive numerical
experiments to quantify the accuracy and stability of the proposed synchronization-avoiding algorithm.
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1 Introduction

A wide range of convergent numerical approaches
with rigorously derived error bounds are avail-
able from numerical analysis for time integration
of ordinary and partial differential equation mod-
els. These methods, combined with the increasing
availability of high performance computational
resources have significantly contributed to the
remarkable realism achievable by modern high-
fidelity numerical models in many fields.

This paper focuses on distributed explicit time
integrators, where time updates are computed
through matrix-vector products and are therefore
highly scalable and amenable to efficient GPU
implementation. Highly scalable GPU solvers for
physics-based modelling are already available in
the literature [3, 20, 29, 34, 53] with GPU-based
accelerated explicit finite element structural sim-
ulations of soft tissues discussed, for example,
in [21, 34, 53, 54]. Unlike implicit time integration,

explicit schemes typically do not need element-
level quantities to be assembled in a global matrix,
leading to memory and runtime savings. However,
explicit schemes are only conditionally stable [3,
4, 11, 19] with time step size a few order of mag-
nitude smaller compared to their implicit coun-
terpart. This difference becomes less pronounced
for the structural analysis of biological soft tissue
where explicit approaches have the potential to be
competitive with respect to implicit time integra-
tion, for example in the context of cardiovascular
modeling.

In explicit schemes, the main cost per time
step relate to the computation of element-level
quantities (mass, stiffness matrix and load vector)
and the cost of communication. While the first
can be mitigated by reduced numerical integra-
tion [45, 57], closed-form representations [37, 51]
or and more recent data-driven methods [22, 23],
the second remains a fundamental bottleneck,
despite several optimized approaches proposed in



the context of GPU-based distributed computa-
tion [1, 21, 31, 54]. Since synchronization must be
performed at every time step, this problem is also
exacerbated, in explicit solvers, by the small size
of the stable time steps.

To alleviate the cost of synchronization,
recently developed data-driven approaches offer a
possible solution. The expressive power of artificial
neural networks has been widely demonstrated in
the construction of surrogate models for dynami-
cal systems, producing fast emulators that can be
integrated in optimization and UQ design loops.
In this context, extensive recent work include
the use of residual networks (ResNet [16]) for
data-driven generalization of explicit Euler time
integrators [9, 10, 12, 42, 56], showing promising
results for both linear and nonlinear dynamical
systems. Other methods are based, for example,
on physics-informed neural networks [43], deep
operator networks [35] and convolutional net-
works assembled from encoders and decoders [40].
Others incorporate spectral properties of sys-
tem dynamics in the design of data-driven mod-
els, to realize linearization and handle high-
dimensionality [25, 33] or use sparse regression
to construct parsimonious surrogates with model
complexity from an a-priori selected dictionary
(sparse identification of nonlinear dynamics or
SINDy [6, 24, 49]). Note that all the approaches
above aim to create effective data-driven surro-
gate models of dynamical systems, rather than
leveraging new advances in data-driven architec-
tures to further improve the efficiency of numerical
schemes.

In this paper, we combine numerical simula-
tion and data-driven approaches to mitigate the
synchronization bottleneck in explicit distributed
time integration. We equip each processor with an
independent network which models synchronized
displacement solutions for the shared nodes of
the respective partition, in order to reduce syn-
chronization frequency and to increase the degree
of parallelism. Using the proposed approach,
substantial savings are obtained for the cost of
communication without compromising accuracy
and long-term stability. In addition, multiple
networks are employed to predict the displace-
ments for the same shared nodes, providing a
means by which to assess prediction robustness

and to bound approximation error. Our data-
driven framework (built based on the PyTorch
library [41] and publicly available as a GitHub
repository at https://github.com/desResLab/
Synchronization-avoiding-algorithms) uses recur-
rent neural networks (RNN) due to their ability
to handle time series data [5, 7, 13, 50]. However,
since vanilla RNNs are unable to effectively learn
long-term dependence in the data, we employ
long short term memory (LSTM) encode-decoder
networks [17, 36], that have received significant
previous attention in the context of dynamical
systems [15, 18, 36, 39, 55].

This model successfully fits our purpose of
approximating dynamical systems only on a sub-
set (shared nodes) of the entire system. Learning
the partial rather than the full dynamics by a
non-recurrent neural network may require, for
example, the construction of a memory kernel of
the Mori-Zwanzig type [10, 12]. This is, however,
not required for the proposed LSTM recurrent net-
work which inherently holds a temporal memory
due to its sequential input [5, 50]. Additional work
on learning the dynamics of a subset of degrees of
freedom can be found in [2].

This paper is organized as follows. A brief
review of the governing equations for linear elas-
todynamics and their spatial discretization into
finite elements is reported in Section 2.1, followed
by the formulation for our distributed explicit
solver in Section 2.2. The proposed data-driven
method is discussed by first presenting a single
LSTM cell in Section 3.1, followed by an encoder-
decoder layout in Section 3.2, with the details
of network training summarized in Section 3.2.1.
A data-driven synchronization-avoiding algorithm
is proposed in Section 4. Numerical tests are
performed in Section 5, starting with extensive
benchmarks on a simple cantilever problem in
Section 5.1, and a realistic coronary model in
Section 5.2. In Section 6, we discuss a few criteria
to measure the prediction error of our proposed
framework. Performance is assessed in Section 7
for a fixed number of cores and fixed mesh size,
respectively, while Section 8 contains the con-
clusions and addresses possible future research
directions.



2 Governing equations and
discretization

2.1 Equations of linear
elastodynamics

Strong form - Consider the following initial-
boundary value problem (S) defined over the
domain Q € R?® with Lipschitz boundary 99 =
003 U 08, and Q = QU 9N (see, e.g., [19])

Given fi, g;, hi, doi, doi,

find d;, 4,7 = {x,y, 2}, s.t.
I

pdi = 79 4 fin Q% (0,T)
(5): 023 (1)

d; = g; on 90y x (0,7

gijng = h; on 0y X (O,T]
d; = do; inQ att=0
dz:d.Qi inQ, att=0,

where the quantity of interest d;(x,t) : Q x
[0,7] — R denotes the i-th component of the
displacement field d, p is the material density,

fi(z,t) : Q x (0,7] — R is the i-th component
of the body force, g;(x,t) : 0024 x (0,7] — R,
hi(z,t) : 9, x (0,T] — R are the i-th compo-

nents of the prescribed Dirichlet and Neumann
boundary conditions on 9Q; and 02,, respec-
tively. In addition, initial values dy;, do; are set for
the displacement and velocity component.

We also assume a linear, elastic and isotropic
constitutive model in the small strain regime of
the form

045 = 2/’Lelj + A(sijekk7 i7j7k = {xayaz}> (2)

where o = [0y;] is the Cauchy stress tensor, € =
[€;;] is the infinitesimal strain tensor, d;; is the
Kronecker delta, and the Lamé coefficients p and
A are defined as

E FEv
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where E is the material Young’s modulus, v is the
Poisson ratio.

The infinitesimal strain e is obtained from
the symmetric part of the displacement gradient

tensor

od;  0d;
=d, ) = ( 9z + 8%) : (4)

leading to an expression of the Cauchy stress in (2)
in terms of displacements as

Tij = Cijki€ki = Cijkld(k,1)s (5)

where C = [¢;;x:] is a fourth-order elasticity tensor,
defined as (see, e.g., [46])

Cijit = 1(0ik0j1 4 0310 1) + X0ijOp. (6)

Weak form - A weak or variational formulation
for problem (1) can be written as

Given f, g, h,do,do, find d(z,t) € 2,
that for any w € #/, s.t.
(W) § (pd.w), + a(dw), = ), + I (w)
(pd(x,0),w)q = (pdo, w)
(pd(,0), w), = (pdo, w),,

n

(7)

where (-,-), denotes the standard product in
L?(Q), and the linear and bilinear forms l( . )Q,
ln( . )89 and a(-7 )Q are defined, respectively, as

a(d,w)Q = /Q w(i,j)cijkld(k,l)dg
(), [ g .
l”(w)aﬁn = /69 w; h; dA.

The weak form (7) relaxes the regularity require-
ment of displacement solutions of the strong
form (1) such that the trial and test spaces only
need to satisfy the conditions

7' ={d(@.b)|di(@.1) € H'(Q); di(w,1) = gi(w.1),
Vo € 90y; t € (O,T]}

W i={w(@) wilw) € H'(©Q); wi(z) =0, Yo € 004,

(9)
where H'(Q) is the standard Sobolev space of
order 1.



Discrete matrix form - The solution of (7) by a
Bubnov-Galerkin finite element approach requires
the selection of appropriate discrete subspaces
9,5") C 2% and #}, C W, such that the projected
solution d;, converges to the true solution d in
L?(Q) with respect to any wy, € #},. We consider
the discrete subspace .@,(1") spanned by the set of
linear Lagrange polynomials P!, leading to the
following semi-discrete matrix formulation

Find d\” € 2\, n e {1,2,-- ,ng}, st.
Md)” + ca) + Kdl™ = £
(10)

7 ={af @)l (@) € (@)
d") (@) = gf") (), Y& € 0Qy,;
d;(,?i)(ac)\e € P (Qne); ne{l,2, - 7”T}}
Y, ¢:{wh(w)|wi(w) € C%Qp); whilz) =0,

Va € 0Qy; wpi(x)|e € Pl(Qh,e)}v

(11)
where the subscripts (-)|e, (-)e indicate restric-
tion to a single finite element and np is the total
number of time steps. The quantities M, C, K, f
denote the mass, damping, stiffness matrices and
loading vector, respectively with element-level
expressions that are standard in the isoparamet-
ric finite element literature (see, e.g., [19]) and
are therefore omitted. In this paper, we consider
mass-proportional damping, i.e., C = aM with
damping factor o € R (see, e.g., [19]).

2.2 A distributed explicit structural
finite element solver

Explicit time integration - The algebraic sys-
tem (10) is discretized in time using a second-order
central difference stencil, where structural accel-
erations and velocities are approximated at every
time point n as

(n+1) (n (n—1)
(n) _ d}(ln) _ dhn — th 1) + dhn

N +0(At),
(n+1) (n—1)
(n) d —-d
”E:l) O % +O(A).

(12)

Consistent mass and damping matrices M and
C are replaced by their lumped counterparts M
and C, leading to trivial inversion for fully explicit
displacement-based time integrators. To initiate
the time iterations, the quantity d,(L_l) is com-
puted using a second order Taylor approximation
of d(—At), for consistency. Once the initial condi-
tions dp, 0, vp,0 are provided for the displacement
and velocity at time ¢ = 0, an initial acceleration
ayp o is computed by solving the following discrete
system (note the use of consistent matrices)

May o+ Copo+Kdyo = 0. (13)

The explicit scheme is known to be condition-
ally stable with respect to the choice of At, consis-
tent with the well known Courant-Friedrichs-Lewy
(CFL) condition (see, e.g., [4])

min A,
e=1,2,--n.

E b)
\ -7

where h, a characteristic length (here assumed as
the diameter of the circumsphere associated with
each tetrahedral element), n. is the total number
of elements in the mesh, and the safety factor ag €
(0,1) is set to as = 0.9. The local displacement
solution is updated as shown in (17), introducing
the internal force at step n as "t = Kd;l"_l)

and renaming £ as et e the exter-
nal force at step m. This is consistent with our
implementation in Algorithm 1.

At = ag (14)

Remark 1 Application of initial conditions or loads
at t = 0 in explicit structural dynamics may lead to
the excitation of a broad range of frequencies. To pre-
vent this to occur, a ramp is applied to the external
force, through a time-dependent function Z(t,tend),
such that

}.(n) (tcnd) = f(n)'%(tnv tcnd)° (15)

This allows for a smooth and quasi-static application
of the external loading until time ¢.,q. Although many
formulations are available in the literature, we select
a simple linear ramp function

tn/tend tn < tend

) (16)
1 otherwise.

%(t’ﬂu tcnd) = {
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Distributed solver - The pseudo-code in Algo-
rithm 1 illustrates how our displacement-based
parallel finite element elastodynamics solver is
implemented based on element-level computation
and communication operations [3, 4, 19]. We
consider a computational mesh partitioned and
distributed over n. processors, labeled as i =
1,--+ ,nc, each containing n, [; finite elements.

The steps in Algorithm 1 emphasized using
boxes denote CPU-to-CPU (or GPU-to-CPU and
vice versa) synchronization tasks. These ensure
equilibrium to be satisfied within each local parti-
tion at every time step, based on communicating
internal and external force information at the
shared nodes (i.e., nodes belonging to multiple
mesh partitions). However, synchronization con-
stitutes one of the main factors responsible for
performance degradation in distributed structural
analysis codes. This is particularly true for fully
explicit time integration, where shared node infor-
mation needs to be communicated to the root pro-
cessor at every time step, and therefore millions
or tens of millions of times during one simulation.
Thus, development of effective synchronization-
avoiding strategies would boost the performance
of explicit distributed finite element codes, par-
ticularly in the context of ensemble multi-GPU
finite element solvers, discussed in our previous
work [34].

Remark 2 The procedure in Algorithm 1 generalizes
different types of structural problems by forming ele-
ment stiffness matrix K¢ and external loading fén)’CXt
at every time step. For isotropic linear elastodynamics
and constant external loading, it is instead sufficient
to generate the local stiffness matrix and loading vec-
tor only once, before the beginning of the time loop,
and re-use them at every time step. We refer to this
practice as “element pre-assembly”.

_ (M + %é)fl [AtQ(f(n)’EXt . f(n),int) + 21\"/Id}(Ln—I) _ (1\"/[ . %é)d(n—%]

Given initial conditions: dj, o, v}, 0, ap,0 and time step size At

Find dén) S @,(ln), for every discrete step n € {1,2,---

,np} s.t.

At o

&)t [Atzf(") — (APK —2vn)d(" Y — (M - 7c:)dfl”*)]

(17)
h

Artificial mass scaling - Explicit time inte-
gration schemes are stable under condition (14)
on At, where the small time steps increase the
computational cost for long-term or steady state
simulations, and the frequency of synchronization
tasks. In practice, artificial mass scaling is a widely
adopted pre-processing technique to increase At,
for situations where the choice of the time step
size is dictated by a few small elements in the
mesh. The pseudo-code for a typical implemen-
tation is shown in Algorithm 2 with more recent
approaches discussed, for example, in [38, 52].

The price to pay for a larger time step is a
non-physical increase in the mass of the system
that may potentially affect the system dynamics.
Therefore, the scaling factor 8 has to be care-
fully selected not to alter the structural response.
In this paper, we consider Algorithm 2 applied
to the most expensive numerical experiment in
Section 5.2.

3 Data driven model

In this section, we introduce data driven mod-
els based on artificial neural networks designed
to learn the dynamics of discrete systems gener-
ated through the finite element method, specifi-
cally focusing on LSTM networks. Hochreiter and
Schmidhuber introduced the LSTM deep neural
network in their 1997 seminal paper [17] to over-
come the problems with vanishing and exploding
gradients in vanilla RNN.

In what follows, we will drop the subscript (-)
since only discrete solutions will be considered. In



Algorithm 1 Displacement-based distributed linear elastodynamics solver.

Communicate the Dirichlet boundary conditions and initial conditions to each processor
Form and communicate the global lumped mass and damping matrices M, C to each processor

forn=1,2,--- ,nr do > Time loop
Initialize local internal and external forces f (™)™t £0)ext a9 zero vectors
fore=1,2,--- ,n.[ do > Element loop
Form element stiffness matrix K. and external force f (™

Calculate element internal force: f{-mt = Ked,(f;l)

Update local forces fm)int gnhext po pm)int opq pext hased on global element label e

end for

Send local forces f (™t fmext 4 the root processor

Update local forces f (™t £m)ext hased on contributions from the shared mesh nodes

Send updated local forces f (™)t £(m)ext pack to each processor

Update local solution d,(ln) using (17)

Strongly enforce Dirichlet boundary conditions
end for

Algorithm 2 Artificial mass scaling.

Loop through all elements to determine At by equation (14)

Set a target time step At = BAt, B> 1

Initialize the artificial density vector p

fore=1,2,--- ;n. do > Element loop

Calculate the element time step size At, = ash./ ﬁ

if At, < At then
—2
pli] = EAt [azhZ(1—v?)

else
plil=p
end if .
Recompute the mass matrix M based on p
end for

Compute the total percent mass increase m,

addition, we also introduce the notation 3.1 LSTM cell model
n As illustrated in Figure 1, a classical LSTM cell
lvll2 = Z|Ui|2’ veR" consists of a hidden state h, a cell state ¢, an input
=1 d, the activation functions oq,---,05 and the
n_m component-wise operations ® and @. In each cell,
IVilr = Z Z|Vij|27 vV eR™™. the feedback control feature of the deep recurrent
=1j=1 neural network is further reinforced by bringing a

number of gated flow controls.
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Fig. 1: Schematic representation of LSTM cell.

The Forget gate learns how information from
the previous cell state ¢~ will be kept or dis-
carded. It relates to the weighting matrices W q4,
W b, associated with the current input d™ and
the previous hidden state h<"71), respectively,
plus the bias b;. The activation o; is usually a
sigmoid function, which provides an output range
from 0 to 1. The forget gate implements the
expression

1) = oy (Wi qd™ + Wi k™Y 18 (18)
The Input gate adds new information to the
cell state from the current input d<"), previous
hidden state A" and their corresponding input

gates weighting matrices W, , g4, and biases by, ,,
through the operations

i = oa(Wi, ad™ + Wi ph" Y 1 by)
i = 03 (Wi, qd™ + Wi ™D 1 b)) (19)
i =i i,
where 05,03 are a sigmoid and a hyperbolic
tangent activations, respectively, and ® is the

Hadamard product. Then, the cell state e is
updated as

c(") — c(nfl) B f(") D i(")7 (20)

where @ denotes component-wise sum. Finally, the
output gate updates the hidden state R as

o = 0y (W, qd™ + W b + bo)

B — s (e™) @ o™ 1)

where 04, 05 are again the sigmoid and hyperbolic
tangent functions and W, 4, b, are weights and
bias associated with the output gate.

In our application, ™ will be the discrete dis-
placement solution at step 7, at the shared nodes.

Since we are interested in sequence-to-sequence
learning, we would have multiple LSTM cells like
the one introduced above, sharing the same set of
weights and biases.

3.2 LSTM encoder-decoder network

The design of our deep neural network model
is demonstrated in Figure 2. It is the combi-
nation of a k-layer bi-directional LSTM encoder
and a single-layer unidirectional LSTM decoder,
inspired and implemented based on [32]. Stacking
encoder layers ensures that more information is
extracted from the input sequence while limiting
the total number of parameters. The encoder-
decoder structure is also designed to handle vari-
able sequence lengths, which is a distinctive fea-
ture in language translation and other sequence-
to-sequence models [15]. In addition, our encoder
is enriched by a bidirectional structure, which
helps to capture dependency across the whole
input sequence [15]. Note that a bidirectional
LSTM network was also used in [18] to approx-
imate time-dependent differential equations over
discrete lattices through a Many-to-Many recur-
rent architecture [15]. This is different from the
Many-to-One architecture used for the encoder
in the present study. Additionally, unlike [18],
our decoder remains uni-directional. Further, each
item of our input sequence varies spatially, while
the input of [18] considers time series at each
collocation point.

Our proposed deep neural network model can
be simply expressed as the following operation
with the input sequence X of length n, and

predicted output sequence Y of length nf

Yy = (ND,(BD ONE7@E)X =NeX (22)
X = [d“), d?, ... 7d("p)} € RMdot X"y

s st

i} _ [a(anrl) a(np+2) a(anrnf)} c RMdot X7

(23)

The encoder and decoder models are expressed
as Ng.oey, Np.e, respectively, and nger stands
for the total number of degrees of freedom in all
displacement solutions at the shared nodes. We
further refer to the overall LSTM encoder-decoder
model as the composition Ng, parameterized by
®=0pU0Bg.

In the encoder model, each displacement solu-
tion d@), i=1,---n, of input sequence X is fed to
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Fig. 2: Schematic representation of the LSTM encoder-decoder model. The Encoder is a stacked bi-
directional LSTM network. The Decoder is a single layer uni-directional LSTM network with dense output

layers.

a LSTM cell (Figure 1) while having hidden and
cell states coming from two opposite directions.
We use expressions h%) j and CEE) to represent the

hidden and cell states in the dlrectlon 1 = n,

(solid arrow) and qEJ and rE,j along n, — 1
(dashed arrow), where j = 1,---  k is the layer
index. At the final encoder layer, hidden and cell
states from two directions are concatenated sepa-
rately and provided to the decoder model as initial
states hg) and c( ).

The decoder then receives the final item d(™»)
in X and recursively produce the predictions
cAi(npﬂ), j =1,---,n; in Y. At each decoding
step, the previous prediction will be forwarded to
the next step as an input, with a dense neural
network bridging the different size between the
hidden state and model output.

During training (and validation) we use a
Mean Squared Error (MSE) loss function built

from the predicted output Y and true numerical

solution Y as

LYY= ndeHY - Y513
f Ndo
B de 2 (24)
= i 2 2 Y~ il
nfe ndf] 14i=1
1 2
= ——|Y -Y|E,
nf - Ndof

and perform gradient-based updates for the train-
able parameters ©.

3.2.1 Network training and evaluation

We tailor the training and evaluation of the pro-
posed network to the specific application of inter-
est, i.e., dynamical systems simulated through
explicit numerical solution algorithms in time. In
the structural analysis of soft biological tissue, the
time step At is usually in the range 1 x 107¢ ~
1 x 1073 due to the stability condition (14). As



a result, to completely describe the full dynamic
response, we might need millions of data points.

Such small time step will also lead to lim-
ited changes between displacement solutions at
two successive time steps, and therefore almost
identical model input X and true output Y. How-
ever, for effective training, we would like each of
our training sample to contain enough information
of the underlying dynamics. In other words, the
input X and output Y should be sufficiently dif-
ferent for the network to learn a relevant mapping
and not just an identity operator, typical of mere
steady state conditions (See additional discussion
in Section 5.1.3).

This is accomplished through a so-called
sample-refill strategy during the training and eval-
uation stages, respectively. First, as illustrated in
Figure 3, instead of using the full dataset, we only
pick a displacement solution every ns steps (oper-
ation S, ). This sampled data is what we group,

Ndof

s

s
S?’LS dW
— i
. d@nat1)

Sampled dataset for 1,miniug&\;alidm,i0n

~—

Original dataset

Fig. 3: The sample pre-processing step.

batch and feed into the deep neural network at
training and validation stages. Upon successful
training, as described in Figure 2, the network
will take n, displacement solutions in the past
and use them to predict ns future steps. Because
of the pre-processing, the time lag between each
predicted solution will still be ng.

To fill these gaps, we leverage a refill opera-
tion during the evaluation (or prediction) stage.
Given enough steps computed in the past, we use
the model n, times to produce n, - ny predic-
tions. After the first time, the input X is shifted
ns — 1 times forward such that the model can
generate the missing displacement predictions at
all shared mesh nodes, as illustrated in Figure 4
(operation R, ). More details of the refill task can
be found in Algorithm 3 below. The sample-refill

strategy can adequately improve the training effi-
ciency, since less training examples will be used
for an increasing sample size ng.

4 A data-driven
synchronization-avoiding
algorithm

We propose a data-driven methodology to min-
imize synchronization in distributed, explicit in
time, finite element structural analysis, which
starts with data preparation. This consists in run-
ning Algorithm 1 in parallel, and gathering the
sequential displacement solutions for each of the
n. processors. We then identify all degrees of free-
dom associated with the shared nodes and form a
training dataset using samples spaced by ng time
steps. Next, we train n. independent replicas of
the LSTM network illustrated in Figure 2, pro-
ducing a set of optimally trained network models
Ne,jj,J = {1,2,--- ,n.}. We finally apply Algo-
rithm 3 where the synchronized displacements at
the shared nodes are modeled by the network
at each processor instead of being communicated
across partitions.

The parameter n.; in Algorithm 3 is used
to switch between the synchronization process
and using displacement predicted by the net-
work for all shared degrees of freedom. Clearly
neri 18 expected to be set as low as possible to
attain the most speedup but it cannot be less
than n, - ng, + 1 since the model requires the
first n, - ns steps to start. For additional clarity,
we sketch the sample-refill approach in Figure 5
for n, = 2, highlighting the training, valida-
tion and prediction stages. We further distinguish
between an Offfine and an Online prediction stage
in Section 5.1.2. Offline prediction are performed
only on the shared nodes, while both shared and
internal node displacements are updated in the
online prediction stage.

Further note that the previously mentioned
refill stage (see Section 3.2.1) is realized by index-
ing every intermediate steps as lists Nfg and N?
such that the model inputs are properly shifted for
continuous predictions. For large computational
models, compared with synchronization costs, exe-
cution times for evaluating pre-trained network
models at every time step are negligible.
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Algorithm 3 A synchronization-avoiding algorithm for distributed linear elastodynamics.

Step 1: Partition the mesh over n. processors and compute At
Step la: If needed, apply mass scaling following Algorithm 2
Step 2: Identify Dirichlet nodes and initial conditions for each processor
Step 3: For the generic j-th processor, set t = At, n = 1, neri, Ny, Ny, N
while t <T do
if n < ng; then
Apply Algorithm 1 to compute d™

t=1t+4+ At
n=n+1
else

fori=1,2--- ;ns; do > refill step

N; =[i+n—mpns—1:ng:i+n—ns—1] > Index set of NN model input
ZJ} =li+n—1:ns:i+n+nsms—ng—1] > Index set of NN model output

Forward pre-trained NN model: d™s ») [shared] —> d Ny [shared]

end for _

C . ~(Ny) ~(N%) .
Gather all predictions on shared nodes: d " [shared] = {d ’’[shared],i =1,2,-- ;n,}
form=n,n+1,--- ,n+nmy—1do

Apply Algorithm 1 to compute d™ without “boxed” steps (synchronization)

Update d™ at shared nodes by the corresponding modeled values in E(Nf) [shared]
end for
Impose Dirichlet boundary conditions to d™N»)
t=1t+nsnpAt
n=n-+ngny
end if
end while

5 Numerical Examples

5.1 Cantilever model

To test the proposed computational framework,
we use a simple cantilever beam model contain-
ing only 110 vertices and 256 tetrahedral elements.
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and sample-refill operation.

Specifically, we focus on the under-damped oscil-
latory regime using a mass proportional damping
with factor a. As shown in Figure 6, the can-
tilever has fully fixed restraints d|,—o = 0 at one
end, and external load f consists of a ramp of 1s
(see Remark 1), followed by a constant distributed
body force equal to f,=0.5 dynes/cm?® in the
z-direction, i.e., f = [0,0,—f,]7. Further, homo-
geneous initial conditions are considered here as
d? = @ = 0, and geometric and material
model parameters are listed in Table 1.

The time step size is set to 2.48 x 107 via
equation (14). The mesh partitioning is realized
by mgmetis [8] based on the ParMETIS library [26],
and parallel computations are managed through
the Message Passing Interface (MPI). Initially we
consider a distributed mesh on 2 processors, with
8 shared mesh nodes each. The result of mesh
partitioning is shown in Figure 7.

z f

i

X H Ay

Y

Fig. 6: Simple cantilever beam model.

5.1.1 Hyperparameters and network
training

In our numerical experiments, we optimize over
a number of selected hyperparameter realizations

Length (L) 25 (cm)

Width (W) 1 (cm)

Height (H) 1 (cm)

Young’s modulus (E) 1 x 10 (dynes/cm?)
Density (p)

1 (g/cm®)
Poisson’s ratio (v) 0.3

Table 1: Geometric and material parameters for
the cantilever beam model.

Fig. 7: Coarse mesh partitioned over 2 CPUs,
labelled 0 and 1, respectively.

by performing a grid search on the mini-batch size
ng, the hidden unit size ny and the initial learn-
ing rate ng. In addition, we utilize an exponential
learning rate scheduler, where n(xz) = nyy* for
a given epoch z. In the search of a good initial
learning rate 7y, we set a minimum learning rate
Dmin = D x 1077 and keep the decay rate fixed
at v = 0.9995. As a result, the total number of
epochs nepoch can be calculated as:

Thmin
Nepoch = [10g, ( ” )]. (25)

The selected grid of hyperparameter realizations
includes ng = 5, 10, 20, 50, ny = 20, 50, 100 and
no = 5x1073 (Nepoch = 18416), 5x10™* (nepoch =
13812), 5 x 107 (nepoech = 9208), leading to 36
cases in total.

In terms of how to pick the best combina-
tion of ng, ny and 79, we introduce the following
criterion, rather than simply looking at the loss
curves produced by MSE (24) during training and
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that is, after the network is trained, starting from
step i, we go ahead and use the trained network
model Ng for N times. This is referred to as the
testing phase. Then, by definition, F,¢ quanti-
fies a MSE error of displacement predictions on all
shared nodes over N-ny steps (note that a lag of n,
time steps is still present between a collection of n ¢
successive shared nodes predictions in the testing
phase, and this gap is only “refilled” at the offline
and online prediction stages (see Section 5.1.2.)
Note that during the calculation of E,4, after the
first time (N = 1), we no longer have exact inputs.

~

In other words, d is the model output (N = 2)
with model input d, predicted from the last step.
Here we abuse the notation (-) to avoid stacking
multiple “hats”. Trivially, (26) collapses to (24)
when N = 1.

Using FEse is more consistent with our objec-
tive, in the prediction stage, to use previously
predicted displacements as inputs to predict syn-
chronized displacements at future times. A stan-
dard MSE loss (24) on the other hand, would
only account for the performance of a single model
application (ny steps), thus delivering less infor-
mation about accuracy and stability on a longer
time horizon. Note that alternative ways to ensure
robust long-term predictions for non-recurrent
networks are proposed in [9, 10, 44], where either
a recurrent loss function similar to (26) was used
in the context of ResNet network training, or
the artificial random-walk noise was added to the
input data to counter error accumulation, in graph
neural network training.

In practice, we set N = 45 and calculate
the square root of Fs as a measure of accu-
racy per degree of freedom and per prediction.
All the results are reported in Figure 8, where
the lowest learning rate 79 = 5 x 1075 provides
the worst accuracy. In addition, we train a num-
ber of networks equal to the number of mesh

partitions (two in this case, see Figure T7), so
we can quantify the variability in the prediction
accuracy produced by multiple network replicas,
and favor models producing robust predictions
across processors. This observation penalizes net-
works with a larger learning rate 7o = 5 X
1073, characterized by large inter-processor vari-
ability. The optimal hyperparameter combination
(marked by “A” in Figure 8c) is finally selected as
ng = 5,ng = 100,79 = 5 x 1074, since it offers
the best compromise between a moderate train-
ing cost, a sufficient accuracy and limited model
discrepancy. It is worth noting that one could fur-
ther refine this choice by expanding the number of
hyperparameter combinations in the grid search.
For example, we expect better accuracy for even
smaller mini-batch size ng when 7y = 5x10™% via
the observation of a roughly monotonic behavior.
However, the selected accuracy metric v/ Eige is
already close to 1 x 107°, regarded as satisfactory.

We also study the effects of the sequence
lengths n,, ny, the training set size ns and the
sample size ng in section 5.1.3. The parameters
np, g specify the amount of past and future dis-
placement observations used in training, whereas
the training set size n;s controls the total amount
of pre-computed numerical solutions fed into the
network, i.e., temporally speaking, we use nss (and
later sampled by n;) of all finite element solutions
at each partition to train our surrogate models in
parallel. The sample size ns > 1 is also regarded as
a hyperparameter that may be dependent on the
time step size At, problem type, etc., where larger
ns are associated with increasing cost savings dur-
ing training. In the experiments shown in Figure 8,
these parameters are fixed as n, = ny = 20,
nts = 50%, ng = 100.

Further, our training is performed through
the Adam optimizer [28], shuffling the order and
choice of the mini-batches at each epoch.

5.1.2 Offline and online data-driven
model evaluation

We proceed to define two ways to use our data-
driven model. First, as discussed in Section 4, we
train several network models in parallel based on
the shared degrees of freedom at each partition.
Next, we inspect whether displacement evolution
on each set of shared nodes are ideally learned,
which we refer to as the offline prediction stage,
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g

(a) ng = 20.

(b) ng = 50.

g

(¢) ng = 100.

Fig. 8: Values of \/F,, from grid search on mini-batch size ng, hidden unit size ny and initial learning
rate 19. The optimal hyperparameter combination is selected as ng = 5, ng = 100, 9 = 5 x 1074,

marked by “A”.

which differs from the previous testing stage,
as missing predictions are refilled. Offline pre-
diction performance using the hyperparameters
determined in Section 5.1.1 is shown in Figure 9,
along with the finite element solutions, denoted
as the truth. Both the damped dynamics and the
convergence to the steady state are accurately
learned. Besides a satisfactory accuracy, two sep-
arately trained network models on the same set of
shared degrees of freedom show very good agree-
ment, with hardly noticeable discrepancies after
15 seconds on the lateral x and y components.

A vertical line in each subplot of Figure 9
separates a region on the left where 1/ng of the
simulated data is used for training (756% of which
is used to compute the parameter updates), from
a pure prediction region on the right, where the
system’s response is completely modelled based on
the learned dynamics. However, the line does not
indicate where we start evaluating the surrogate
model which instead occurs after n,-n, steps from
the beginning of the simulation. While an over-
lap between the prediction and training regions
may seem inappropriate, this is only apparent, as
the network inputs in the prediction phase are the
results of previous network evaluations, instead of
the true data.

The offline prediction discussed above serves
as a preliminary error monitor for an online pre-
diction task, which constitutes the basis for the
synchronization-avoiding strategy shown in Algo-
rithm 3. When predictions are performed online,
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Fig. 9: Offline shared node displacement predic-
tions for the cantilever model. Predicted steps:
98000. Node coordinate: (11.54, 0, 1).



we start to combine the pre-trained neural net-
work surrogates with the distributed finite element
solver. This inevitably causes the error of data-
driven model to propagate from share nodes to
other nodes during each explicit update, due to a
non-diagonal stiffness matrix K.

In Figure 10 we plot the online predicted dis-
placement dynamics at two non-shared nodes, one
for each partition. The predictions appear accu-
rate and stable such that the previously mentioned
error propagated from shared nodes to non-shared
nodes does not grow unbounded. A [? error is
shown in Figure 11 with its definition at time ¢ as

. (27)

From Figure 11, we observe an initial increase in
the error once we start to use the trained surro-
gate model. As time evolves, e;2 gradually reduces
before the vertical bar due to the increasingly
smaller oscillation amplitude. After the vertical
bar, e;2 increases again due to the lack of famil-
iarity of the data unseen during training, but
eventually drops, suggesting a stable prediction of
the steady state.

In the current cantilever problem, small-valued
predictions in the lateral directions (z,y) would
be more susceptible to get polluted by an error of
the magnitude shown in Figure 11, as we can see
from the following sections. However, this should
be of less concern since the error remains bounded
and the dynamics is governed by the dominant
z-component.

e = a® - a"

Remark 3 The vertical bar shown in Figure 10 and
in many other figures in this paper indicates the end
of the training-validation period for the shared dofs.
However, we often plot the dynamics of internal (non-
shared) dofs to show how they are affected by the
propagation of errors.

5.1.3 Network performance tests

Input-output sequence length - We investi-
gate the effects produced on the network accuracy
by changing the parameters n, and ny, indicating
the number of time steps included in the net-
work input and output, respectively. We consider
three symmetric cases with an increasing number
of steps n, = ny = (5,20,50) and an asymmet-
ric case with n, = 20 and ny = 5. As shown
in Figure 12, the best results are obtained for an

intermediate number of steps either symmetric or
asymmetric while an excessive or limited number
of steps seems to reduce the flexibility of the net-
work predictions. A sufficient number of inputs
in the past is required for accurate long-term
predictions. However, for n, = ny = 50, the non-
optimal performance is due to an insufficiently
complex model, since learning a much longer
input-output dependence would require more hid-
den units, deeper encoder etc. Therefore, without
making unnecessary model refinements, a choice
of n, = ny = 20 should suffice for the current
dynamical system.

Finally, it is also worth mentioning that n,,ny

also affect the overall speedup of our data-driven
framework, since a smaller n;y means more net-
work usage. This is the reason why we prefer
ny = ny = 20 over n, = 20,ny = 5, although their
resulting accuracy seems comparable.
Training set size - In this section we perturb
the hyperparameter n;s, to see how the total
number of training examples affects the accu-
racy of the network predictions. As expected (see
Figure 13), accuracy improves for longer training
periods and approximately three cantilever oscil-
lations are needed to accurately learn the damped
response in the z-direction.

Sample size - In this section, we explore the
performance of our approach for varying sample
size ns. The results are presented in Figure 14,
where a reduced accuracy is observed, with respect
to ng = 100, for sparser (ns = 200) or denser
(ns = 50,10) training datasets.

Another side effect of a smaller n, is the pro-
liferation of training examples, which reduces the
training efficiency. As shown in Figure 14, a larger
sample size ng = 200 could still produce sta-
ble and accurate predictions for the (dominant)
z-component response. Therefore, in general, we
prefer to select ng as large as possible.

As discussed above, we conjecture that the
poor performance under a small ng is due to
the limited variation of adjacent solutions pro-
duced by the explicit FEA solver. This might be
amplified by using single precision in the neu-
ral network computations. However, experiments
using double precision data types did not produce
any improvements in Figure 15.

Refined mesh with additional processors -
Next, we extend our data-driven framework to a
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Fig. 11: Time history of [? error in online predic-
tions.

refined cantilever model partitioned over 6 CPUs
and shown in Figure 16. The mesh contains 4615
tetrahedral elements, we select At = 6.2 x 1075
and use the previously discussed optimal combi-
nation of hyperparameters ng = 5, ng = 100,
ny = 5 x 1074, n, = ny = 20, ny; = 0.5. We
set the sample size n, to 500, selected based on
the ratio of time step size between the two mesh
resolutions, and then increased it to reduce the
training cost. Each model learns the dynamics of
approximately 105 degrees of freedom on average
(35 shared nodes). Even though some differences
are observed in the lateral y direction for all mod-
els, the dominant response in the z-direction is
accurately learned.

Test with skewed forcing - We add an addi-
tional external loading component in the y-
direction, ie., f, = f, = 0.5 dynes/cm?, resulting
in extra non-zeros in the update for the displace-
ment solutions (17), and therefore with additional
complexity imposed to the network training.

Results are shown in Figure 18 where the net-

work successfully learns the correct dynamics in
the y-z plane.
Test on a discontinuous loading - Next, we
switch the external loading back to the z-direction
but consider a discontinuous load with respect
to time: f(t) = [0,0,—f.I;«3(t)]7, where the
indicator function I; .3(¢) is defined as

Li<s(®) = {(1)

As shown in Figure 19, having part of the train-
ing data associated with a forced rather than free
dynamic response does not negatively affect the
ability of the network to reach a steady state with
zero displacements. However, training for this task
is harder and requires more samples, so we set

ns = 80 and nss = 0.6.

General initial conditions - For more general
applications, we wish our proposed LSTM net-
work to learn and predict the evolution of a class
of dynamical systems rather than a very specific
case. To do so, we first propose a data-driven
model trained on a collection of displacement solu-
tions, generated from different initial conditions
(IC) d'® and check if this model is able to evolve
the correct dynamics from an initial condition
unseen at training. Note that this strategy has also
been used in [9, 16, 56] for training general resid-
ual networks approximating dynamical systems.
To generate training data, we random perturb the

steady solution d up to 25% and use it as the

t < 3s

28
t > 3s. (28)
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initial displacement, i.e.
d% =1+ u)d, (29)

where u is a uniformly distributed random vari-
able u ~ U(—0.25,0.25). Figure 20 shows how the
accuracy of the proposed approach is affected by
the number of initial conditions included in the
training dataset. For networks trained with 10 sets
of initial conditions, the dynamics in the global
z-direction is captured with satisfactory accuracy
by both network replicas.

General uniform forcing - Next, we seek to
achieve generalization with respect to a uniform
external load. This task is intrinsically more com-
plicated than varying the initial conditions, as
a time-dependent load f can severely affect the
dynamic system response (see, e.g., forced vibra-
tions [11]). Similarly to the previous section, we
expand the training data set by adding displace-
ment ensembles generated by our distributed finite
element solver through the application of multi-
ple uniform loads (the number of loads is denoted
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Fig. 16: Refined mesh partitioned over 6 CPUs.

as F,). A parametric family of loading condi-
tions is obtained by introducing a uniform random

variable to the z-component of f

£=10,0—af";
where of min = 0.3, af max = 0.7 are the selected
prior bounds.

However, simply increasing the size of the
dataset is not sufficient in this case to produce
accurate predictions (see Figure 21). We therefore
modify the network architecture using a condi-
tional decoder [14, 30] (e.g. see Figure 22) , where
the loading condition is concatenated to the last
item in the input sequence, i.e., d"). It is also
worth noting that, by stacking multiple identical
ay values to d'"») we can further improve the
accuracy. In our experiment, we concatenate 12
copies of ay to AN

Results produced by this conditional encoder-
decoder LSTM network are illustrated in
Figure 23, where training with 10 different
external loads is sufficient to achieve accurate pre-
dictions for an external load not seen at training.
Finally, note how the current conditional struc-
ture can be trivially extended to the previous test
case on multiple initial conditions and we expect
better performance than Figure 20, especially for
long-time behaviour of small lateral (i.e., x or y)
displacements.

Qg Nu(af,minvaf,max)v (30)

General distributed load - We can extend
the conditional network introduced in the previ-
ous section for training under a random convex
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Fig. 17: Predicted dynamics of the refined cantilever model. CPU labels are 1,3,5. Training is based on
shared degrees of freedom of each partition and the plotted nodes are not shared. Predicted steps: 490000.
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Fig. 18: Predicted dynamics for the cantilever model with skewed loading. CPU label: 0,1. Training is
based on shared degrees of freedom of each partition and plotted nodes are not shared. Predicted steps:
98000. Top row: CPU:0, node (25.0,0.0,1.0). Bottom row: CPU:1, node (5.77,0.0,0.0).

combination of the following loads

2

. _ T

50] ) f2*(x) [0505 500] ’

(31)

so the network can produce accurate predictions
for a general forcing of the form

fl*(x) = [Oa 0,

f*(x): [anai(liﬁf)fl**ﬁff%]jj ) (32)

where By ~ U(0,1). Similarly to the uniform
loading scenario, we condition the predictions by
concatenating nodal forces from f, to dme),

Testing results are shown in Figure 24, using
an f, that does not belong to the training set.
Similar to the previous section, training based on
5 ~ 10 datasets is sufficient for our conditional
network to accurately learn the dynamics under a
general f,.
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Fig. 19: Predicted dynamics for the cantilever model with discontinuous loading. CPU label: 0,1. Training
is based on shared degrees of freedom of each partition and plotted nodes are not shared. Predicted steps:
98400. Top row: CPU:0, node (25.0,0.0,1.0). Bottom row: CPU:1, node (5.77,0.0,0.0).
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Fig. 20: Predicted dynamics for the cantilever model trained with multiple initial conditions. CPU label:
0,1. Training is based on shared degrees of freedom of each partition and plotted nodes are not shared.

Predicted steps: 43000. Top row: CPU:0, node (25.0,0.0,1.0). Bottom row: CPU:1, node (5.77,0.0,0.0).
The tested initial condition is not in the training dataset.

Full system modeling - While tests in the
previous sections focus on predicting the system
dynamics at a small number of shared locations,
we would like to see how the accuracy of the pro-
posed network is affected for an increasing number
of such locations. Thus, we use the proposed
LSTM network to predict the dynamic response
for a coarse discretization of the entire cantilever
beam. The hyperparameters are still selected as
ng =5, ng = 100, ng = 5 x 1074, n, = ny = 20,
ns = 100, n;s = 0.5 and the external loading is
f =10,0,—£.]7. Clearly in this case, once we start

to use the trained network model, no more finite
element computations are required, leading to a
substantial reduction in the computational effort.

We first show the evolution of displacement
predictions at three distinctive locations in the
mesh, i.e., near the clamped end, in the middle
and at the tip. Figure 25 shows a satisfactory accu-
racy in all cases, except for the z-displacement
at the tip, but, in this case, the displacement is
practically zero and therefore the absolute error
still acceptable. We also show a comparison of
the exact and predicted z-displacement contours
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Fig. 21: Predicted z-displacement dynamics for
the cantilever model trained with 5 (F, = 5)
external loadings. The network is not conditioned.
Top row: CPU:0, node (25.0,0.0,1.0). Bottom row:
CPU:1, node (5.77,0.0,0.0). The tested external
loading is not in the training dataset.
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Fig. 22: Modified conditional decoder.

in Figure 26. In such a case, the surrogate model
has no knowledge on how to strongly enforce a
Dirichlet boundary condition at the clamped end.
However, the predicted displacement of —1.56 x
1077 is sufficiently small.

Finally, Figure 27 shows the evolution of the
[? error using Equation (27), where we observe a
trend similar to that reported in Figure 11.

5.2 Coronary model

In this section, we extend the proposed compu-
tational framework to a realistic cardiovascular
simulation. We adopt a patient-specific human left
coronary artery model, which was investigated in
previous FSI and UQ studies [47, 48]. The model
dynamics is driven by a pulsatile pressure acting
on the vessel lumen, whose periodic waveform is
illustrated in Figure 28b. The pressure is gradu-
ally applied to the model through a linear ramp
active during the first 1 second of the simulation
(¢f. Remark 1, tena = 1s). It fluctuates from a sys-
tolic maximum of 1.6 x 105 baryes (120 mmHg)
to a diastolic minimum of 1.067 x 10° baryes (80
mmHg) with a period of approximately 0.833 s
(72 beats per minute), as per the normal systemic

pressure and heart rate at rest of a healthy adult.
Additionally, we consider an elastic modulus of
E = 6.26 x 10® dynes/cm”, a density of the vascu-
lar tissue of p — lg/em® [27] and a Poisson ratio
equals to v = 0.4.

Homogeneous Dirichlet boundary conditions
are strongly enforced at the main inlet (7;) and
6 outlets in the bottom (O, - ,0g), as shown
in Figure 28a. The model is discretized using
373,435 tetrahedral elements with 250,659 degrees
of freedom and is partitioned over 11 cores, where
each core shares about 262 nodes with its neigh-
bors. The original time step size calculated by
equation (14) is about 2.02 x 1075, and we have
increased it up to 5 x 107% via artificial mass
scaling (e.g. Algorithm 2), saving 60% of the com-
putational time, but leading to a sensible increase
in the total mass of the model equal to 21.13%.
However, we verified in Figure 29 that this increase
corresponded to a marginal effect on the model
dynamics. We also include a comparison test in
Figure 29 using the original time step size 2.02 x
1075, current size 5 x 107% and a further slightly-
increased size 5.1 x 1079, which corresponds to
24.7% of mass increment.

Note that a model of the coronary circula-
tion offers an ideal benchmark for the proposed
approach, since the small size of the coronary
arteries leads to a lower bound in the explicit time
step with respect to other anatomical regions.

To test our methodology, we run Algorithm 3
using the optimal hyperparamter combination
as discussed in the previous sections, with an
increased sample size n, = 1000, and train 11 sep-
arate deep neural network surrogates. Figure 30
shows the predicted displacement dynamics at a
non-shared node of a few partitions and confirms
that the displacement evolution of the system is
sufficiently learned even from the limited avail-
able data. Note that the discontinuity brought
by the linear ramp condition is also correctly
learned. Larger relative errors can be observed for
nodes with small displacement amplitudes but the
dominant displacement components appear to be
accurately modelled.

6 Error control

In this section, we discuss metrics for error estima-
tion that are naturally provided by the proposed
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Fig. 23: Predicted dynamics for the cantilever model trained with multiple uniform external loadings.
The network is conditioned. CPU label: 0,1. Training is based on shared degrees of freedom of each
partition and plotted nodes are not shared. Predicted steps: 43000. Top row: CPU:0, node (25.0,0.0,1.0).
Bottom row: CPU:1, node (5.77,0.0,0.0). The tested external loading is not in the training dataset.
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Fig. 24: Predicted dynamics for the cantilever model trained with multiple distributed external loadings.
The network is conditioned. CPU label: 0,1. Training is based on shared degrees of freedom of each
partition and plotted nodes are not shared. Predicted steps: 43000. Top row: CPU:0, node (25.0,0.0,1.0).
Bottom row: CPU:1, node (5.77,0.0,0.0). The tested distributed external loading is not in the training

dataset.

approach. As mentioned above, provided the dis-
cretization error from the Galerkin method is
neglected, then the only source of error comes
from the predicted dynamics at the shared nodes.
If we consider, for example, the coronary model
in Figure 28a, there are exactly two, separately
trained, deep neural networks associated with each
shared node, that ideally should provide identical
predictions. However, in practice, these predic-
tions may differ, providing a means for estimating
the approximation error in Algorithm 3.

In Figure 31, we illustrate the prediction
variability for the same shared node produced

by networks associated with two different parti-
tions, following offline evaluation, as discussed in
Section 5.1.2. It is shown that CPU6 produces
errors smaller than CPUb in most instances.

We then introduce the following criterion to
quantify such variability globally, i.e., over all the
shared nodes

@ 1 e at
€52 *3.NQ;H (O

Therefore, esg) represents a global average [°
error per shared degree of freedom at time t.

d90.  (33)
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Fig. 25: Predicted dynamics at three distinctive nodes for the cantilever model. Training is based on all

degrees of freedom. Predicted steps: 98000.
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Fig. 26: Network prediction for the full can-
tilever model. Comparison of exact and predicted
z-displacement solution at t ~ 12.4s.

Moreover, since there are exactly two processors
associated with each shared node, we denote their
arithmetic average as e‘sg). We also calculate the
difference between two predictions for the same
shared node by replacing the exact solution dgg in
equation (33) with the solution predicted by the
second network. The resulting quantity is denoted
as ésg). As shown in both Figure 31 and Figure 32,
the error increases around regions of high cur-

vature in the displacement response. It can also

€
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Fig. 27: Time history of the [ error for the
predicted solutions of the full cantilever model.

be observed that the discrepancy between two
predictions at the same shared node is highly cor-
related with the displacement error and is greater
in most cases. Moreover, it is easy to compute
and therefore particularly appropriate for error
monitoring.

We finally provide histograms in Figure 33 to
show the temporal average of such variability. We
further define

IR N OR0)
etz = 3 np ; ;) — d(j)”?a (34)

to quantify this error at shared node j, where
np is the total number of predicted time steps.
Again, we put a bar on top of et(;y,2 to indicate
an average of two generic processors that share
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(a) Geometry of the left coronary artery model. The
mesh is partitioned over 11 CPUs, labelled 0 to 10.
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(b) Pressure waveform acting on the vessel lumen.

Fig. 28: Geometry, mesh and loading condition for the coronary artery model.
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Fig. 29: Comparison of z-component displace-
ment dynamics with and without artificial mass
scaling. Plotted node: (-13.7, 6.4, -9.6)

node j, and denote eAtQ-)JQ for the difference in two
predictions, at the same shared node j.

From Figure 33 and consistent with our discus-
sion above, the time-averaged model differences
provide an upper bound for the approximation
error at the shared nodes, providing an effective
error control mechanism for cases where the true
numerical solution is not available.

7 Performance analysis

As presented in Algorithm 1, at each time itera-
tion of the proposed distributed solver, the main
computational tasks are (1) the evaluation of
element-level quantities K., fg")’e"t, (2) matrix-
vector product for displacement update and (3)
displacement synchronization at the shared nodes.
Application of the proposed synchronization-
avoiding Algorithm 3 allows one to avoid most
of the synchronization cost by leveraging pre-
trained data-driven surrogates. To better quantify
the cost of the above operations, we introduce sev-
eral quantities in Table 2, where the superscript
(\) means the average with respect to time and
over multiple processors. The speedup factor ¢
is simply the ratio between ?; and 7}, where ()’
denotes whether the data-driven surrogate is used
to reduce the synchronization cost.

We are interested in two scenarios. The first
considers a fixed number of cores and several mod-
els of increasing size. The second considers a fixed-
size mesh partitioned over an increasing number of
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Fig. 30: Predicted dynamics of the human left coronary artery model. CPU labels are 0,2,4,6,8,10.
Training is based on shared degrees of freedom of each partition and plotted nodes are not shared.

Predicted steps: 980000.

cores. We further analyze these cases with or with-
out pre-assembling element-level quantities (see
Remark 2). In this section, the model geometry
consists of a unit cube, which amplifies synchro-
nization costs compared to the slender cantilever
model used in the previous sections.

7.1 Test with pre-assembly of
element-level quantities

For linear structural problems in the small strain
regime, the matrices M, K in problem (17) are
constants in time and therefore can be assembled
only once before the time loop, stored and re-used.
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Fig. 31: Offline predicted d, displacement and
time history of absolute error between two neigh-
bor processors for coronary model. The plotted
node (-12.8, 4.9, -7.5) is shared by CPU5 and
CPUG.

Fig. 32: Evolution of space-averaged [? error per
shared degree of freedom of the coronary model.
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Fig. 33: PMF of time-averaged [ error per shared
degree of freedom of the coronary model.

In such a case, the cost of displacement synchro-
nization dominates over the relatively inexpen-
sive matrix-vector product, making the proposed
approach particularly appealing.

Fixed number of partitions - We consider a
series of pre-assembled explicit structural simu-
lations with increasing mesh size, solved by an
8-core machine. Since the number of shared nodes
for each partition increases with the mesh size,
the amount of communication also increases. This
is clearly shown for all cases in Figure 34, as 7,

Total time t: (s)
Time for element quantity evaluation t. (s)
Time for synchronization ts (s)
Time for matrix-vector product T (s)
Time for applying data-driven model tq (s)
Ratio of element quantity formation cost  7(%)
Ratio of synchronization cost 7s(%)
Ratio of matrix-vector product cost Fm (%)
Ratio of data-driven model cost (%)
Number of shared nodes N,
Number of elements N.
Number of processor used Ne
Speedup factor ¢

Table 2: Definition of quantities for performance
analysis.

grows rapidly with respect to N, and takes more
than 97% of the total cost. In such a case our
data-driven synchronization algorithm is particu-
larly effective, resulting in a significant speed-up
as shown in Figures 35 and 36, since t/, is orders
of magnitude less expensive than ;.

Generally speaking, as shown in Figure 2, by
fixing the network depth (number of encoder lay-
ers), the sequence length n,/ny, and the number
of hidden units n, the model cost ¢/, only depends
on the size of input d, which essentially scales with

N, see Figure 35.

10° 10°
N, N.

Fig. 34: Timing statistics with pre-assembly and
without data-driven model. The number of par-
titioning is fixed at n. = 8. Left: average cost
per step vs. average number of shared nodes.
Right: average ratio per step vs. average number
of shared nodes.

Fixed mesh size - In this section, we fix the
mesh size and distribute it over an increasing
number of processors. In Figure 37, the synchro-
nization cost remains approximately stable for up
to 20 processors but increases sensibly with 40 and
80 processors. This relates to the different cost
of communication in computational environments
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with data-driven model. The number of partition-
ing is fixed at n. = 8. Left: average cost per step
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Fig. 37: Timing statistics of the test with pre-
assembly and without data-driven model. The
mesh resolution is fixed. Left: average cost per step
vs. number of partitioning. Right: average ratio
per step vs. number of partitioning.

0.003 4

fS
0.00{%— %+«

501

ratio(%)
f

—0.05

8 12 20 40 0

e

251

102
A
Fig. 36: Data driven model speed-up with pre-
assembly for n. = 8.

with shared memory rather than distributed mem-
ory. In other words, we need 2 and 4 24-core
machines to realize the final two cases character-
ized by 40 and 80 processors, respectively.

A significant reduction in the computational
costs is also achieved for this scenario, as shown in
Figure 38 and Figure 39. On a single machine with
shared memory (n. = 8,12,20), the model cost
slightly increases, while it significantly decreases
after transition to a distributed memory archi-
tecture on multiple machines (n, = 40, 80), as
more memory becomes available. Finally, we see
promising speed-up factors ¢ shown in Figure 39.

7.2 Test without pre-assembly of
element-level quantities

For general nonlinear structural simulations, the
element-level matrices and vectors need to be re-
computed at each iteration in time, with a cost
that dominates over the remaining components.
Here, for simplicity, we mimic this scenario via
Algorithm 1 but still solving a linear problem.
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Fig. 38: Timing statistics of the test with pre-
assembly and with data-driven model. The mesh
resolution is fixed. Left: average cost per step vs.
number of partitioning. Right: average ratio per
step vs. number of partitioning.
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Fig. 39: Data driven model speed-up with pre-
assembly for an increasing number of processors.

Fixed number of partitions - Without the
pre-assembly, from Figure 40 and Figure 41, the
majority of cost is occupied by the evaluation
of element quantities. Again, due to load imbal-
ance and the presence of a barriers in the code
preceding inter-processor communication, the syn-
chronization time also increases. Finally, for an
increasing mesh size, the relative importance of



the synchronization cost 7. is reduced while 7.
increases, clearly reducing the performance of our
surrogate model (e.g. see Figure 42).
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Fig. 40: Timing statistics without pre-assembly
and without data-driven model. The number of
partitioning is fixed at n. = 8. Left: average
cost per step vs. average number of shared nodes.
Right: average ratio per step vs. average number
of shared nodes.
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Fig. 41: Timing statistics without pre-assembly
and with data-driven model. The number of par-
titioning is fixed at n. = 8. Left: average cost
per step vs. average number of shared nodes.
Right: average ratio per step vs. average number
of shared nodes.
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Fig. 42: Data driven model speed-up without pre-
assembly for n, = 8.

Fixed mesh size - For an increasing number
of processors, from 75 and 7. in Figure 43, we
observe a more efficient evaluation for the ele-
ment quantities is accompanied by an increasing
synchronization cost. The speed-up in this case,
shown in Figure 45, is roughly monotonic with the
increasing number of partitions.

In general, the performance of our surrogate
model is limited by the dominant cost of element
assembly, but can be improved with the techniques
discussed in Section 1.
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Fig. 43: Timing statistics without pre-assembly
and without data-driven model. The mesh res-
olution is fixed. Left: average cost per step vs.
number of partitions. Right: average ratio per step
vs. number of partitions.
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Fig. 44: Timing statistics without pre-assembly
and with data-driven model. The mesh resolution
is fixed. Left: average cost per step vs. number
of partitions. Right: average ratio per step vs.
number of partitions.

7.3 Effect of model geometry

Most examples we have tested in this paper con-
sider a finite element model of a slender cantilever,
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Fig. 45: Data driven model speed-up without pre-
assembly for an increasing number of processors.

where the number of shared degrees of freedom
remains modest for each partition, as opposed to
the cubic geometry we used above for algorithmic
performance assessment. We now would like to
provide a direct comparison between the speedup
factor ¢ for these two geometries.
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(a) Comparison of speedup factor with pre-assembly.
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(b) Comparison of speedup factor without pre-
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Fig. 46: Comparison of speedup factors for a
cubic and slender cantilever geometry. The num-
ber of partitioning is fixed at n. = 8.

To make the comparison fair, we plot the
speed-up factor ¢ with respect to the average ele-
ment number per partition N, in Figure 46. For
higher mesh resolutions, the cube model holds a
similar number of element per partition as the
cantilever model while the shared degrees of free-
dom significantly increase. As a result, the cost
for applying our surrogate model also increases,
causing a decline in the speedup ratio ¢ for the
scenario with pre-assembly, due to an increased

sensitivity to the small denominator #;. Without
pre-assembly, when the cost of our data-driven
model is insignificant comparing to the cost of
element formation, after avoiding the synchroniza-
tion cost, we have a slightly better speedup ten-
dency for the model with cubic geometry. Finally,
it is also worth mentioning that most cardiovas-
cular simulations consist of slender geometries,
which would therefore benefit from an increased
runtime reduction.

7.4 Network training time

In this section we provide a brief discussion on
how the selection of hyperparameters affect net-
work training time. We first observe that all net-
works are trained independently on one or multipe
GPUs, and therefore the total number of networks
and therefore partitions has limited effect on the
overall training time. Second, we compare network
training times for three of the models analyzed
in the previous sections, i.e., the cantilever mod-
els with coarse and fine meshes and the coronary
model. For these models, the same total number of
examples (and therefore the same number of mini-
batches for a constant mini-batch size np = 5)
is obtained by dividing the number of simulation
steps by an appropriate n,. For example, n, = 100
is selected for the coarse cantilever mesh which has
10° total simulation steps, while n, = 500 for the
fine cantilever mesh with 5 x 10° total steps. The
training example are then extracted as a subset of
such examples

Even though the average number of shared
nodes N, differs wildly across models, the effect
on the training time appears to be minimal, sug-
gesting it is not sensitive to N, as the number of
trainable network parameters does not scale pro-
portionally to the number of shared nodes. This
is promising, in view of using this technique for
large cardiovascular models.

Further, we believe most of the training effort
is used to increase the accuracy for negligible
axial or out-of-plane displacement components.
For example, in Figure 14, we showed that train-
ing the network using twice the sample size (i.e.,
ns = 200) can still yield an accurate represen-
tation of the dominant model response in the
z-direction. With this in mind, we may also sac-
rifice some accuracy by tuning ~v (learning rate
decay rate), ng,ny and other hyperparameters
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to minimize the training cost, while preserving
accuracy mostly on quantities associated with
the dominant structural response. In this con-
text, we re-trained the skewed forcing test case for
the coarse cantilever model with hyperparameters
np = 10, ng = 50, ngy = 200,~ = 0.998 using only
6% of the original training time (~30 minutes ver-
sus ~5 hours). In the results shown in Figure 47
the displacements in the y-z plane remain com-
parable to those in Figure 18 and the solution
remains stable even on a long time horizon.

8 Conclusions and future work

In this paper, we have developed a novel data-
driven approach to speed up the structural anal-
ysis of soft biological tissue. Our approach mini-
mizes the amount inter-processor communication
by replacing shared node synchronization tasks
with predictions from an optimally trained arti-
ficial neural network. As verified through exten-
sive numerical experiments, the LSTM encoder-
decoder network model proposed in this study
accurately approximates the displacement values
at the shared nodes and maintains stability and
accuracy even for long integration times.

The proposed network significantly reduces
synchronization times in large scale simulations.
This is demonstrated in Section 5.2 using a realis-
tic coronary artery model used in previous studies
for fluid-structure interaction problems. In addi-
tion, when modified to include conditional pre-
dictions and trained accordingly, our model is
robust to the choice of initial condition and exter-
nal loading. Note that this conditional structure
can also be extended to material proprieties, e.g.
predicting shared node dynamics under arbitrary
elastic modulus, Poisson ratio and, in future work,
constitutive laws.

Reduction of synchronization times is crucial
for ensemble distributed finite element solvers
where multiple realizations of geometry, bound-
ary conditions or material properties are solved
simultaneously. An explicit-in-time multi-GPU
implementation of an ensemble solver has been
proposed in our previous work [34], where GPU-
to-CPU synchronization represents a challenging
computational bottleneck. Therefore, the pro-
posed approach represents an interesting accel-
eration, particularly for the periodic response of
cardiovascular models.

In addition, the well known poor bending
performance of constant strain tetrahedral ele-
ments may significantly degrade the reliability
of patient-specific cardiovascular structural mod-
els. To overcome this problem, we will explore
recently proposed stabilized and variational mul-
tiscale finite element formulations [46]. Finally,
future work we will be devoted to apply the
proposed approach in the context of non-linear
problems.

Acknowledgments. This work was supported
by a NSF CAREER award #1942662 (PI DES),
a NSF CDS&E award #2104831 (PI DES) and
used computational resources provided through
the Center for Research Computing at the Uni-
versity of Notre Dame. The authors would like
to thank Prof. Zhiliang Xu and Prof. Guosheng
Fu for their comments and suggestions that con-
tributed to improve the quality of the present
manuscript. The authors would also like to thank
the anonymous reviewers for their insightful com-
ments.

Declarations

The authors declare that they have no conflicts of
interest.

References

[1] M. Aslam, O. Riaz, S. Mumtaz, and A.D.
Asif. Performance comparison of GPU-based
Jacobi solvers using CUDA provided synchro-
nization methods. IEEFE Access, 8:31792—
31812, 2020.

[2] J. Bakarji, K. Champion, J.N. Kutz,
and S.L. Brunton. Discovering governing
equations from partial measurements with
deep delay autoencoders. arXiv preprint
arXiw:2201.05136, 2022.

[3] A Bartezzaghi, M. Cremonesi, N. Parolini,
and U. Perego. An explicit dynamics GPU
structural solver for thin shell finite elements.
Computers € Structures, 154:29-40, 2015.

[4] T. Belytschko, W.K. Liu, B. Moran, and
K. Elkhodary. Nonlinear finite elements for
continua and structures. John wiley & sons,
Hoboken, NJ, 2014.



d(cm)

0.0005 4 —— Predicted —— Predicted —— Predicted
=== Truth —~ —0.051 ===- Truth —~ —0.05 ===- Truth
0.0000 1 B B
..@m P N e e o .ﬁ“‘
—0.0005 —0.101 _0.104
5 10 15 20 5 10 15 20 5 10 15 20
t(s) t(s) t(s)
—0.001 —— Predicted —— Predicted —— Predicted
-——- Truth /é\ —0.0054 —==- Truth /é\ 0.005 1 —-—=- Truth
—0.002 5 5
e ;m N § PAhingn
_ —0.010 1
0.003 o101
5 10 15 20 5 10 15 20 5 10 15 20
t(s) t(s) t(s)

Fig. 47: Predicted dynamics for the cantilever model with skewed loading. CPU label: 0,1. Hyperparam-
eters are optimized for minimize training time: ng = 10,ng = 50, g = 0.998, n, = 200. Top row: CPU:0,
node (25.0,0.0,1.0). Bottom row: CPU:1, node (5.77,0.0,0.0).

[5]

U. Bhat and S.B. Munch. Recurrent neu-
ral networks for partially observed dynamical
systems. Phys. Rev. E, 105:044205, Apr 2022.

S.L. Brunton, J.L. Proctor, and J.N. Kutz.
Discovering governing equations from data
by sparse identification of nonlinear dynam-
ical systems. Proceedings of the National
Academy of Sciences, 113(15):3932-3937,
2016.

B. Chang, M.M. Chen, E. Haber, and E.H.
Chi. AntisymmetricRNN: A dynamical sys-
tem view on recurrent neural networks, 2019.

Q. Chen. MGMETIS—mesh & graph METIS
partitioning.  GitHub repository: https://
github.com/chiao45/mgmetis, 2020.

Z. Chen, V. Churchill, K.I.. Wu, and D.B.
Xiu.  Deep neural network modeling of
unknown partial differential equations in

nodal space. Journal of Computational
Physics, 449:110782, 2022.

V. Churchill and D.B. Xiu. Deep learning of
chaotic systems from partially-observed data.
arXiv preprint arXiv:2205.08384, 2022.

R.W. Clough and J. Penzien. Dynamics of
Structures. Civil engineering series. McGraw-

Hill, 1993.

[12]

[15]

[16]

[17]

X.H. Fu, L.B. Chang, and D.B. Xiu. Learn-
ing reduced systems via deep neural networks
with memory. Journal of Machine Learning
Jor Modeling and Computing, 1(2), 2020.

K. Funahashi and Y. Nakamura. Approxima-
tion of dynamical systems by continuous time
recurrent neural networks. Neural Networks,

6(6):801-806, 1993.

M. Garnelo, D. Rosenbaum, C. Maddison,
T. Ramalho, D. Saxton, M. Shanahan, Y. W.
Teh, D. Rezende, and S.M.A. Eslami. Con-
ditional neural processes. In Proceedings
of the 35th International Conference on
Machine Learning, volume 80 of Proceed-

ings of Machine Learning Research, pages
1704-1713. PMLR, 10-15 Jul 2018.

Tan Goodfellow, Yoshua Bengio, and Aaron
Courville. Deep learning. MIT Press, Cam-
bridge, MA, 2016.

K.M. He, X.Y. Zhang, S.Q. Ren, and J. Sun.
Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference
on computer vision and pattern recognition,

pages 770-778, 2016.

S. Hochreiter and J. Schmidhuber. Long
short-term memory. Neural Comput.,
9(8):1735-1780, nov 1997.



31

[18]

[20]

[24]

[25]

[26]

[27]

Y.H. Hu, T. Zhao, S.X. X1, Z.L. Xu, and
L.Z. Lin. Neural-PDE: a RNN based neu-
ral network for solving time dependent PDEs.
Communications in Information and Sys-
tems, 2022.

T.J.R. Hughes. The finite element method:
linear static and dynamic finite element anal-
ysts. Dover Publications, INC., Mineola, New
York, 2012.

P. Huthwaite. Accelerated finite element elas-
todynamic simulations using the GPU. Jour-
nal of Computational Physics, 257:687-707,
2014.

G.R. Joldes, A. Wittek, and K. Miller. Real-
time nonlinear finite element computations
on GPU-application to neurosurgical simula-
tion. Computer methods in applied mechanics
and engineering, 199(49-52):3305-3314, 2010.

J. Jung, H. Jun, and P.S. Lee. Self-updated
four-node finite element using deep learning.
Computational Mechanics, 69(1):23—-44, 2022.

J. Jung, K. Yoon, and P.S. Lee. Deep
learned finite elements. Computer Meth-
ods in Applied Mechanics and Engineering,
372:113401, 2020.

K. Kaheman, J.N. Kutz, and S.L. Brun-
ton. SINDy-PI: a robust algorithm for paral-
lel implicit sparse identification of nonlinear
dynamics. Proceedings of the Royal Society
A: Mathematical, Physical and Engineering
Sciences, 476(2242):20200279, 2020.

E. Kaiser, J.N. Kutz, and S.L. Brunton. Data-
driven discovery of Koopman Eigenfunctions
for control. Machine Learning: Science and
Technology, 2(3):035023, june 2021.

George Karypis and Vipin Kumar. MeTis:
Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 4.0. http:
//www.cs.umn.edu/~metis, 2009.

H.J. Kim, LE. Vignon-Clementel, J.S.
Coogan, C.A. Figueroa, K.E. Jansen, and
C.A. Taylor. Patient-specific modeling of
blood flow and pressure in human coronary

[31]

[36]

arteries. Annals of biomedical engineering,
38(10):3195-3209, 2010.

D.P. Kingma and J. Ba. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

D. Komatitsch, G. Erlebacher, D. Goéddeke,
and D. Michéa. High-order finite-element
seismic wave propagation modeling with MPI
on a large GPU cluster. Journal of computa-
tional physics, 229(20):7692-7714, 2010.

A. Kovacs, L. Exl, A. Kornell, J. Fis-
chbacher, M. Hovorka, M. Gusenbauer,
L. Breth, H. Oezelt, M. Yano, N. Sakuma,
A. Kinoshita, T. Shoji, A. Kato, and
T. Schrefl. Conditional physics informed
neural networks. Communications in Non-
linear Science and Numerical Simulation,

104:106041, Jan 2022.

M. Kronbichler and K. Ljungkvist. Multi-
grid for matrix-free high-order finite element
computations on graphics processors. ACM
Trans. Parallel Comput., 6(1), may 2019.

L. Kulowski. LSTM_encoder_decoder.
GitHub  repository:  https://github.com/
lkulowski/LSTM_encoder_decoder, 2020.

J.N. Kutz, S.L. Brunton, B.W. Brunton, and
J.L. Proctor. Dynamic mode decomposition:
data-driven modeling of complex systems.
SIAM, 2016.

X. Liand D.E. Schiavazzi. An ensemble solver
for segregated cardiovascular FSI. Computa-
tional Mechanics, 68(6):1421-1436, 2021.

L. Lu, P.Z. Jin, G.F. Pang, Z.Q. Zhang, and
G.E. Karniadakis. Learning nonlinear oper-
ators via deeponet based on the universal
approximation theorem of operators. Nature
Machine Intelligence, 3(3):218-229, 2021.

P. Malhotra, A. Ramakrishnan, G. Anand,
L. Vig, P. Agarwal, and G. Shroff. LSTM-
based encoder-decoder for multi-sensor
anomaly detection, 2016.



[37]

[40]

[43]

[45]

S.E. McCaslin, P.S. Shiakolas, B.H. Dennis,
and K.L. Lawrence. Closed-form stiffness
matrices for higher order tetrahedral finite

elements. Advances in Engineering Software,
44(1):75-79, 2012.

L. Olovsson, K. Simonsson, and M. Unos-
son.  Selective mass scaling for explicit
finite element analyses. International Jour-
nal for Numerical Methods in Engineering,

63(10):1436-1445, 2005.

S.H. Park, B.D. Kim, C.M. Kang, C.C.
Chung, and J.W. Choi. Sequence-to-sequence
prediction of vehicle trajectory via LSTM
encoder-decoder architecture. In 2018 IEEE
Intelligent Vehicles Symposium (IV), pages
1672-1678. IEEE, 2018.

L. Partin, G. Geraci, A. Rushdi, M.S. Eldred,
and D.E. Schiavazzi. Multifidelity data fusion
in convolutional encoder/decoder networks,
2022.

A. Paszke, S. Gross, F. Massa, A. Lerer,
J. Bradbury, G. Chanan, T. Killeen, Z.M.
Lin, N. Gimelshein, L. Antiga, et al. Pytorch:
An imperative style, high-performance deep
learning library. Advances in neural informa-
tion processing systems, 32:8026-8037, 2019.

T. Qin, K.L. Wu, and D.B. Xiu. Data
driven governing equations approximation
using deep neural networks. Journal of Com-
putational Physics, 395:620-635, 2019.

M. Raissi, P. Perdikaris, and G.E. Karni-
adakis. Physics-informed neural networks:
A deep learning framework for solving for-
ward and inverse problems involving nonlin-
ear partial differential equations. Journal of
Computational physics, 378:686—707, 2019.

A. Sanchez-Gonzalez, J. Godwin, T. Pfaff,
R. Ying, J. Leskovec, and P.W. Battaglia.
Learning to simulate complex physics with
graph networks. In Proceedings of the 37th
International Conference on Machine Learn-
ing, ICML’20. JMLR.org, 2020.

D. Schillinger, J.A. Evans, F. Frischmann,
R.R. Hiemstra, M.C. Hsu, and T.J.R.

[51]

Hughes. A collocated CO finite element
method: Reduced quadrature perspective,
cost comparison with standard finite ele-
ments, and explicit structural dynamics.
International Journal for Numerical Methods
in Engineering, 102(3-4):576-631, 2015.

G. Scovazzi, B. Carnes, X. Zeng, and S. Rossi.
A simple, stable, and accurate linear tetra-
hedral finite element for transient, nearly,
and fully incompressible solid dynamics:
a dynamic variational multiscale approach.
International Journal for Numerical Methods

in Engineering, 106(10):799-839, 2016.

J. Seo, D.E. Schiavazzi, A.M. Kahn, and
A.L. Marsden. The effects of clinically-
derived parametric data uncertainty in
patient-specific coronary simulations with
deformable walls. International journal for
numerical methods in biomedical engineering,

36(8):e3351, 2020.

J. Seo, D.E. Schiavazzi, and A.L. Marsden.
Performance of preconditioned iterative lin-
ear solvers for cardiovascular simulations in
rigid and deformable vessels. Computational

mechanics, 64(3):717-739, 2019.

D.E. Shea, S.L. Brunton, and J.N. Kutz.
SINDy-BVP: Sparse identification of nonlin-
ear dynamics for boundary value problems.
Phys. Rev. Research, 3:023255, Jun 2021.

A. Sherstinsky. Fundamentals of recurrent
neural network (RNN) and long short-term
memory (LSTM) network. Physica D: Non-
linear Phenomena, 404:132306, 2020.

P.S. Shiakolas, R.V. Nambiar, K.L.
Lawrence, and W.A. Rogers. Closed-form
stiffness matrices for the linear strain and
quadratic strain tetrahedron finite elements.
Computers &  structures, 45(2):237-242,
1992.

S.K.F. Stoter, T.H. Nguyen, R.R. Hiemstra,
and D. Schillinger. Variationally consis-
tent mass scaling for explicit time-integration
schemes of lower- and higher-order finite ele-
ment methods, 2022.



33

[53]

[55]

[57]

V. Strbac, D.M. Pierce, J. Vander Sloten,
and N. Famaey. GPGPU-based explicit
finite element computations for applications
in biomechanics: the performance of mate-
rial models, element technologies, and hard-
ware generations.  Computer Methods in

Biomechanics and Biomedical Engineering,
20(16):1643-1657, 2017.

Z.A. Taylor, M. Cheng, and S. Ourselin.
High-speed nonlinear finite element analysis
for surgical simulation using graphics pro-

cessing units. IFEFE Transactions on Medical
Imaging, 27(5):650-663, 2008.

P.R. Vlachas, W. Byeon, Z.Y. Wan, T.P.
Sapsis, and P. Koumoutsakos. Data-driven
forecasting of high-dimensional chaotic sys-
tems with long short-term memory networks.
Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences,
474(2213):20170844, 2018.

K.L. Wu and D.B. Xiu. Data-driven deep
learning of partial differential equations in
modal space.  Journal of Computational
Physics, 408:109307, 2020.

0.C. Zienkiewicz, R.L. Taylor, and J.M.
Too. Reduced integration technique in gen-
eral analysis of plates and shells. Inter-
national Journal for Numerical Methods in
Engineering, 3(2):275-290, 1971.



