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MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MBE Mean Bias Error 
ML Machine Learning 
mmBTU Million British Thermal Units 
RMSE Root Mean Square Error 
SQM Square Meter 
UWG Urban Weather Generator 
UHI Urban Heat Island 

Symbols 
X Input 
Y Output 
kW Kilowatt 
W Watt 
m Meter 
R2 Coefficient of Determination 
f() Function 
y Sample Output 
x Sample Input 
y Mean of All Samples 
n Total Number of Sample Data 

Subscripts 
w Microclimate Variables 
e Energy Variables 
kW Kilowatt 
b Building Variables 
i Sample Data Point  

1. Introduction 

The past decades have experienced rapid population growth. In dense urban developments, ambient air temperatures are higher 
than rural areas driven by land cover changes and anthropogenic heat, a phenomenon known as the Urban Heat Island (UHI) effect [1]. 
With climate change on the rise, the UHI effect will increase in magnitude in the coming decades. The impact of UHI on building 
cooling energy consumption must be addressed for arid regions. 

Buildings contributed 30% to global energy demand in 2019 and are responsible for one third of global greenhouse gas emissions, 
making them a focal point for efficiency improvements [2,3]. With global warming increasing air temperatures, cities that experience 
extreme heat will face many challenges in decreasing their carbon footprint while meeting cooling energy demands. The most recent 
data from 2009 show that cooling accounts for 25% of residential energy consumption in Arizona, compared to the 6% national 
average [4]. 

Building energy efficiency strategies are typically modeled using Building Energy Simulation (BES) tools. Such models require great 
attention to detail to avoid high uncertainty in the model outputs. Although BES models provide extensive knowledge of the un
derlying mechanisms and system dynamics of the model providing the opportunity to explore different design elements and scenarios, 
most BES models rarely consider the modeled building’s microclimate weather parameters [5]. Instead, typical BES models use nearby 
weather station data, usually airport data, to simulate hourly energy consumption of the modeled building. Weather station data 
captures regional weather patterns but are not representative of the microclimatic conditions the buildings are embedded in. 

In addition to the use of inaccurate weather data, BES models significantly suffer from bias errors that are evident when results are 
compared to actual data [6]. Many sources of bias stem from the complexity of buildings and how they are represented in BES models. 
Configuration of a BES model requires detailed information about the modeled building and how it operates daily and seasonally. 
Alternatively, energy predictions can be generated using Machine Learning (ML) algorithms that use statistical methods to find re
lationships between dependent and independent variables [7]. 

A ML model requires input data known as features to predict the output known as response. The design of an ML algorithm involves 
data processing, selection of an appropriate algorithm, feature engineering, and assessment of model accuracy using prediction scores 
and other indices usually applied on a separate testing dataset. Feature engineering is one of the most important steps throughout the 
process, requiring the selection of features that will provide the best results. For building energy predictions, modelers have tested a 
variety of different features such as outdoor weather conditions (dry-bulb temperature, solar radiation), indoor environmental con
ditions (room temperature, room relative humidity), building characteristics (geometry, orientation), time (type of day, type of hour), 
and operation characteristics (building use schedule, number of occupants) [8]. The selection of features depends on the magnitude of 
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their impact on the model’s response as well as the purpose of the model. For example, to investigate the impact of occupant behavior, 
features related to occupants should be included. 

Multiple ML algorithms have been developed, and selecting an appropriate algorithm depends on the type of data and the pre
diction type (numerical or categorical). In terms of learning style, ML algorithms fall under the following categories: supervised 
learning, unsupervised learning, and semi-supervised learning. Supervised learning happens when each data point in the training data 
has a known output. For unsupervised learning, the output is unknown, and for semi-supervised learning, the training data consist of a 
mixture of known and unknown output. 

Microclimatic conditions are impacted by the configuration and composition of urban features including buildings, plants, and 
roads. Accurate microclimate conditions surrounding a specific building can be obtained through in-situ observations, but most 
buildings do not have outside sensors, and building modelers rely on available weather station data closest to the building. Alter
natively, microclimate data can be simulated using Computational Fluid Dynamics (CFD) models. CFD models simulate flow by 
numerically solving governing equations of fluid flows. For microclimate simulations, CFD models replicate the flow of air and heat in 
neighborhood-sized study areas. The most popular and frequently used CFD model in urban climate studies is ENVI-met [9]. The model 
has been used to investigate the impact of urban form and landscaping on microclimate [10,11], the temperature amelioration by trees 
[12,13], effects on outdoor water use [14], and human thermal comfort [15,16]. 

This paper presents a novel framework to investigate the microclimate effect on three university buildings in Arizona using the CFD 
model ENVI-met to simulate microclimate coupled with a supervised ML algorithm to predict building cooling energy. Specifically, 
tree-based ML models were explored due to their interpretability using SHAP analysis. SHAP analysis provides local interpretation of 
the impact of different features on the model’s output and are highly compatible with tree-based algorithms such as Random Forest, 
XGBoost, and LGBM [17]. Features included microclimate variables local to the modeled buildings. 

The structure of the paper is as follows: Section 2 reviews the literature. Section 3 covers the methodology and modeling overview. 
Section 4 displays the results of the modeled buildings and their interpretations using SHAP. Section 5 presents a sensitivity analysis 
where variations of the microclimate were modeled to understand their impact on cooling energy. Section 6 discusses the results from 
section 4 and 5. Section 7 concludes the study. 

2. Literature review 

Building energy consumption varies significantly from one building to another. In terms of cooling loads, some buildings have high 
correlation with exterior air temperature and other weather parameters, while other buildings are not greatly affected by weather and 
are dominated by interior heat transfer from occupants and/or devices. Cooling loads are also influenced by thermal comfort re
quirements of a building, which varies based on building type, location, and operations. Heidarinejad et al. [18] studied university 
buildings and classified them based on their energy consumption in response to outdoor weather conditions. Buildings were classified 
as (1) externally-load dominated, (2) internally-load dominated, and (3) mixed-load dominated. Externally-load dominated buildings, 
which are also called envelope-dominated, or skin-load dominated, are those which are directly correlated with outdoor weather 
conditions. Internally-load dominated buildings on the other hand are influenced more by internal loads from equipment and occu
pants. Finally, mixed-load dominated buildings are influenced equally by outdoor weather conditions and internal loads. 

Building energy efficiency improvement is an active area of research. In the United States, The American Society of Heating, 
Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1 provides a benchmark for commercial building energy codes. 
These guidelines are updated every three years. Standard 90.1 covers building envelope, heating, ventilating, and air conditioning, 
service water heating, power, lighting, and other equipment. For each component, minimum compliance requirements are outlined in 
detail. Some requirements, such as building envelope, depend on the specific climate zone within which a building is located. 
Furthermore, Standard 90.1 includes a performance-based rating method, Appendix G, that provides an alternative compliance 
method. In this approach, simulation tools are necessary to compare baseline and proposed design energy consumption. Building 
efficiency rating systems such as LEED utilize Appendix G in their certification process. 

In practice, building energy reduction strategies are tested using BES models, which utilize physics-based dynamic computations 
[19]. Meeting ASHRAE Appendix G requirements for example, demands the use of BES tools for compliance. The impact of occupancy 
behavior on a building’s energy consumption is one of the major challenges for physics-based dynamic models and introduces high 
uncertainty in the model’s time variant occupancy related parameters which translates to uncertainty in the model’s outcomes [20]. 
Occupant behavior is often oversimplified and is not well understood, leading to significant gaps between simulated and actual energy 
use [21]. In a typical BES model, occupant behavior inputs are deterministic, which does not fully capture the stochasticity of occupant 
behavior. He et al. [22] defined three occupant behavior patterns (austerity, normal, and wasteful) and used the BES simulation tool 
EnergyPlus to quantify the differences in their energy consumption for a medium office building. They conclude that stochastic 
occupant behavior significantly impacts building energy consumption. For wasteful occupant behaviors, a 36% increase in energy 
consumption was observed. Amasyali et al. [8] found that occupant behavior made a difference of over 7 times in building energy 
consumption. 

The effect of occupants, however, may not significantly alter cooling consumption patterns in externally-load dominated buildings 
that have consistent cooling consumption intensities irrespective of the number of occupants and their activities in a building. The 
outdoor design and structure of an urban development influences the surrounding microclimatic conditions which, as a result, impacts 
cooling energy consumption levels for externally-load dominated buildings. Mixed-load dominated buildings can also be impacted by 
the surrounding microclimate, however, the impact will be less. For hot climate regions, the addition of vegetation, high albedo 
material, and urban shade to building facades could potentially reduce cooling energy use [23]. 
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The availability of local weather data is highly beneficial for modeling a building’s energy consumption. Hong et al. [24] used local 
weather observations over a span of 10 years to study the effect of microclimate on energy patterns and indoor air temperature. The 
availability of historical microclimate data allows for the analysis of the UHI effect on building energy with less uncertainty depending 
on the resolution of the available data (density of measured microclimate weather data at a specific site location). However, not many 
regions collect high resolution microscale weather data and as such, researchers rely on simulated weather data using CFD or other 
simplified calculations such as the Urban Weather Generator (UWG) [25–27]. 

Past studies have investigated the effect of microscale weather conditions on a building’s cooling/heating energy consumption 
using a coupled simulation approach by integrating a CFD model with a BES model such as eQuest or EnergyPlus [23,28–32]. Sedaghat 
et al. [23] combined EVNI-met simulations with EnergyPlus models and found that the UHI intensity varied from 3 ◦C to 6 ◦C during 
summer in Tehran. Using a combination of high-albedo material and added vegetation, energy savings ranged from 11% to 29% for 
residential buildings. Hadavi et al. [30] investigated the effects of urban configuration and density on urban climate and building 
energy consumption by combining OpenFOAM, a CFD simulation tool, and EnergyPlus. They found that decreasing urban compactness 
mitigates UHI intensity providing up to 16.4% energy savings. Zhang et al. [32] combined ENVI-met with EnergyPlus to investigate the 
effect of urban form on microclimate and building energy loads for eight generic residential district prototypes in Nanjing, China. They 
found that the use of microclimate data compared to EPW data, collected from a weather station, resulted in a difference of up to 
23.4%. One of the limitations mentioned in the study is the lack of validation between simulated and actual energy and microclimate 
data. 

Mosteiro-Romero et al. [5] coupled ENVI-met with a district scale energy simulation tool, City Energy Analyst, to investigate the 
effect of the microclimate on district scale energy consumption. They found that considering local microclimate conditions led to an 
increase of 5% in cooling demand. One of the limitations mentioned in the study, which is also evident in the previously mentioned 
BES-CFD coupling methods, lies in the assessment of the UHI effect. The comparison of baseline coditions using rural weather station 
data to microclimate conditions using CFD based simulation data may not fully capture the impact of microclimates on building energy 
consumption. Using rural weather data to represent baseline conditions would likely result in higher variations of cooling loads when 
compared to simulated microclimate data. A better approach would be to compare simulated microclimate data, validated by actual 
measured data, with simulated microclimate scenarios by modifying the validated microclimate model. The baseline microclimate 
simulation results would be used to simulate baseline building energy consumption. The baseline energy consumption would then be 
compared to energy consumption results under simulated microclimate scenarios, such as increased vegetation and added shade. 
Skelhorn et al. [33] followed this approach by using ENVI-met for microclimate simulations and IES-VE as the BES tool to measure 
these impacts for three commercial buildings in Manchester, UK. They found that adding 5% mature trees reduced cooling loads by 
2.7% in July. 

Results from these studies may be highly influenced by potential bias that exists within BES models that might not be evident [6]. 
For example, a modeled building could be validated with actual data using statistical indices, but the model might inaccurately 
simulate wall/roof insulation or air ventilation. The model may also underestimate equipment loads and overestimate HVAC loads. In 
such scenario, simulated results might match actual energy data, but the model would be highly influenced by a change in external 
weather conditions. 

In recent years, statistical ML methods have been widely used in engineering applications related to building energy. Engineers and 
researchers use ML techniques to find relationships between building parameters for different applications including efficient building 
operation, efficient building design, occupancy estimation, fault detection, and energy forecasting [8,34–38]. However, ML modeling 
for building energy management is a relatively new field that has limited publications compared to conventional approaches. The 
advantage of using black-box ML models is that they require relatively little modeling effort and can capture relationships between 
model parameters with great precision. For some problems, the level of detailed data required to build white-box models, such as BES 
tools, make their usage infeasible. 

Nutkiewicz et al. [31] proposed a Data-driven Urban Energy Simulation (DUE-S) framework to study the inter-building energy 
dynamics and urban microclimate factors that impact building energy use. The framework, which incorporates ML, was applied to 22 
university buildings in California. The study utilizes BES models simulated with typical building parameters obtained from the DOE 
archetype models corresponding to different building types. The framework generalizes these building parameters for the selected 
buildings and models the geometry of the buildings using GIS data. The results of the BES simulations were then used as inputs to an ML 
neural network architecture ResNet to learn the relationships between simulated and metered energy data. The authors conclude that 
the ResNet model captures uncertainty introduced by BES simulations related to inter-building dynamics and microclimate factors. 
Although the proposed BES-ML framework captures these differences due to microclimate impacts, utilization of such framework to 
explore different microclimate scenarios is limited. 

Multiple studies in the literature have explore the use of ML to predict building energy consumption using different features. Dong 
et al. [39] and Hong et al. [40] used climate related features to predict energy consumption. Zhang et al. [41] used dry-bulb tem
perature to predict hot water energy rate. Ascione et al. [42] predicted energy consumption using geometry, envelope, building 
operation, and HVAC-related features. Rastogi et al. [43] used a combination of building characteristic and climate related features to 
predict heating loads. Some studies used previous loads to forecast building energy consumption [44–46]. Amasyali et al. [47] used 
occupant behavior to predict cooling energy consumption in buildings. Acceptable accuracies were achieved using ML techniques in 
these studies. Different ML algorithms were used to generate these predictions, most notably deep learning approaches and ensemble 
approaches [47]. Each approach has its advantages and limitations. In this study, tree-based algorithms, which fall under ensemble 
approaches, were used for their ability to be interpreted using SHAP analysis. Multiple models were tested and compared for the final 
model selection. The final model was used to predict cooling loads and used to perform a sensitivity analysis in which microclimate 
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dominated by external loads. 
The approach used in this analysis combines a CFD simulation model with a tree-based ML model. The two models are not directly 

linked. The microclimate data from the CFD simulation was used as input variables or features to the ML model. A flow chart of the 
proposed coupling method is shown in Fig. 1. 

The data used to build the ML model were collected from two main sources: (1) ENVI-met microclimate simulations, and (2) ASU’s 
campus metabolism website for building energy data [48]. The ENVI-met model was validated for the study area for a hot summer day 
in a prior study [15]. The simulated timeframe was from 5am to 8pm for 12 days in summer of 2018 (4 days in May, 8 days in June, and 
1 day in July) using hourly local airport weather data (Sky Harbor) as forcing. The 12 simulated days were combined with available 
building energy data at 15-min timestamps from the campus metabolism website. The modeled area includes the following ASU 
buildings: Psychology, ISTB 4, and Psychology North. Table 1 contains information on the coordinates and area distribution for each 
building. Fig. 2 shows a map of the buildings and the ENVI-met domain, which spans 210 × 250 × 33 grid cells at 2-m resolution. 

Statistical machine learning models find relationships between input (X) and output (Y). For the developed model, the output (Y) 
was the chill water ton per square meter (CHWTON/SQM) of the building at a specific time. Data for the model output was collected 
from ASU’s campus metabolism database. The raw data was in units of CHWTON which was then divided by the conditioned area of 
each building obtained from ASU’s facilities management database resulting in units of CHWTON/SQM [49]. Dividing by the 
conditioned area allows for comparisons of the cooling intensities of each building. 

The input data set (X) includes some of the outputs generated by ENVI-met for each building including mean air temperature and 
mean absolute humidity around the building surfaces, shading at each façade, and direct shortwave radiation at each facade including 
the top surface of the building. The input data set (X) also includes kW electricity usage and heating energy in mmBTU which was 
collected with the CHWTON data for each building form the campus metabolism website. Finally, building names were one-hot 
encoded and included in the training process as part of the input data. This will allow the model to distinguish between the 
different buildings in the dataset allowing for a single combined model using tree-based regression algorithms. Table 2 below shows a 
summary of the input variables (X) and the output variable (Y) of the predictive model. 

The included microclimate parameters were based on the output of the validated ENVI-met model, which provides microscale 
weather data for each building. Air temperature and humidity data were simulated for each facade of the building and were averaged 
since the variations were relatively small between the building facades. ENVI-met also provides shading and radiation levels, which are 
quite different on each facade due to the orientation and design of each building. Since we are interested in the intensity within which 
cooling reductions can be achieved by design modifications, all facades were included for shading and direct shortwave radiation. 
Direct shortwave radiation data was also available for the top facade, which reflects the intensity of radiation in W/m2 is on the roof of 
the building. 

In terms of energy input parameters, the kW data collected for each building could explain the internal heat gain in the building 
resulting in higher cooling requirements and might also explain the occupancy levels since an increase in occupancy usually results in 
more electricity consumption. As such, this feature was added as part of the input dataset. Furthermore, heating energy was included as 
input data to the model since it could have a direct relationship with cooling energy especially since ASU buildings use terminal 
reheating to balance temperatures at the zone level. This also explains why heating energy consumption was observed in the modeled 
summer period between May and July of 2018. 

Four unique tree-based algorithms were tested: Random Forest [50], XGBoost [51], LightGBM [52], and CatBoost [53]. The 
Random Forest algorithm is an ensemble of decision trees that are averaged to compute the final output. The collection of decision 
trees makes up the random forest. The algorithm uses the bagging approach, also known as Bootstrap Aggregation, as opposed to 
gradient boosting, another ensemble technique used in XG Boost, LightGBM, and CatBoost. Bagging is the process of creating different 
training subsets sampled from the training dataset with replacement. Boosting uses a weighted average of results at each step of the 
iteration process. Incorrectly predicted cases from a given step are given increased weight during the next step. Boosting is an iterative 
procedure which is significantly different from bagging, that uses simple averaging of predictions from the sampled trees [54]. 

The dataset was split into training, validation, and testing. The testing day, June 9, 2018, was removed from the dataset. Then, the 
remaining dataset was split 70/30 for training and validation, respectively. For hyperparameter tuning, the Sklearn’s Random
izedSearchCV [55] method was implemented, in which a combination of hyperparameter ranges were used to train models, and the 
best hyperparameters were selected based on cross-validation results. For cross validation, three folds were fitted. 

4. Model results and interpretation 

Results from the ENVI-met simulation were used as input to the tuned ML model. These results included diurnal microclimate 

Table 1 
Coordinates and area information of modeled buildings on Arizona State University’s Tempe campus.  

Building Coordinates Conditioned SQM Classroom net SQM Office net SQM Research net SQM Laboratory net SQM 

Psychology 33◦ 25′ 11′′ N, 
111◦ 55′ 46′′ W 

5976 155 1392 1505 199 

Psychology North 33◦ 25′ 14′′ N, 
111◦ 55′ 46′′ W 

3998 0 1191 1306 255 

ISTB 4 33◦ 25′ 4′′ N, 
111◦ 55′ 42′′ W 

21521 237 3552 7685 0  
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irrelevant. Overall, training time was acceptable and was not a factor in the selection of the final model. 
From these scores alone, one would assume that CatBoost is the best selection for the baseline model. However, these results are for 

the testing data of all three buildings combined. Further investigation of error metrics was applied for each building using the tuned 
models shown in Table 4. 

Excluding R2, a lower value is preferred for all used error evaluations. Results in Table 4 show that although the CatBoost algorithm 
had the highest overall R2 score for all buildings combined, it was not predicting the Psychology North building as accurately as 
Random Forest or XGBoost. LightGBM also had a low R2 score for Psychology North predictions. MAPE values for Catboost and 
LightGBM indicate significant differences between Psychology North predictions compared to ISTB 4 and the Psychology building. 
Although CatBoost had more balanced MAE values, there is strong indication that it underperforms in predicting the Psychology North 
building. Both CatBoost and LightGBM were ruled out as baseline models. 

Comparing XGBoost and Random Forest we note that only ISTB 4 predictions had higher R2 score for Random Forest. RMSE values 
for the two algorithms were similar, however Random Forest had a relatively lower RMSE value for ISTB 4 predictions. XGBoost has 
higher MBE values for all buildings except for Psychology. MAE and MAPE scores were similar for the two models. 

From analyzing prediction results for each building, we conclude that the Random Forest algorithm, which uses the bagging 
technique, is more suitable for this timeseries dataset. The selection of algorithm highly depends on the given dataset, and no single 
model works best for all datasets. In general, bagging helps decrease the model’s variance, whereas boosting helps improve model bias. 
High bias is usually the result of oversimplified models that do not learn the patterns in the training dataset well. On the other hand, 
high variance is when a model overfits and learns well on the training dataset but is unable to generalize predictions for unseen data 
[59]. If a single decision tree model has low performance because of high bias, then boosting algorithms can be useful to increase 
performance. By contrast, if a single model overfits because of high variance, bagging can help reduce variance [60]. For the dataset 
used in this analysis, there was no issue with model performance. From the prediction plots of boosting models on the testing dataset, 
we observe unsmooth patterns that could be the result of overfitting. Random Forest prediction plots were relatively smooth and 
yielded overall better results upon evaluation of error scores on single building predictions. 

The tuned Random Forest model was selected as the final baseline model and was used to perform the sensitivity analysis. Fig. 4 
shows the tuned model predicted cooling energy for the test day of June 9, 2018, compared to the actual cooling data with an average 
difference between the two shown at the top of each graph. We note that all percent differences are positive, further indicating that the 
model tends to overestimate, and confirming the results of the MBE. ISTB 4 predictions were the most accurate, with an average 
difference of approximately 0.4%. Both Psychology and Psychology North predictions were off by around 3%. These results are 
satisfactory for the purpose of this analysis. 

A benefit to using tree-based algorithms is the ability to display the most important features that have the highest impact on the 
model outcomes. The feature importance values from highest to lowest are shown in Fig. 5 for the tuned model. The feature importance 
value for each feature is shown in the supplementary data Table S1. We note that kW was the most important feature followed by air 
temperature, then heating energy. The global feature importance results provide further evidence that the modeled buildings are likely 
mixed-load dominated. Absolute humidity turned out to be less important to the model than air temperature but was still more 
important than shading and radiation. The one-hot encoded building indicators also had relatively high feature importance, proving 
that the modeled buildings are unique and that it is important for the ML model to identify which building the predictions are being 
generated for. 

The feature importance results are unique to how the tree was designed for this dataset using the Random Forest algorithm. Feature 
importance results from other models were similar with minor differences in the order of features. Air temperature, heating energy, 
and kW energy were all at the top of the list. From these results, we conclude that (1) the modeled buildings are likely mixed-load 
dominated and (2) air temperature dominates all other climatic features. 

Feature importance is a global interpretation. SHAP, a python library, provides local interpretation using shapley values and works 
well with tree-based algorithms. SHAP allows interpretation of a single data sample as well as all samples in different plot types. It also 
allows interpretation of model predictions, for instance of the testing data, as opposed to interpretation solely on the training set. Fig. 6 
shows the impact of different features and the direction of impact each feature had on the outcome of a single data sample from the 
testing data. For this sample, kW pushed the prediction towards higher values, while air temperature pushed the outcome towards 

Table 4 
Prediction evaluation of four tuned tree-based algorithms on testing data for each building.  

Tuned Model Building R2 RMSE (CHWTON/SQM) MBE MAE MAPE 

CatBoost Psychology 0.938 0.00117 0.000369 0.000966 0.0289 
CatBoost ISTB 4 0.963 0.00075 0.000165 0.000617 0.0245 
CatBoost Psychology North 0.785 0.00129 0.000687 0.000924 0.0731 
Random Forest Psychology 0.860 0.00177 0.000914 0.001410 0.0418 
Random Forest ISTB 4 0.967 0.00071 0.000075 0.000602 0.0236 
Random Forest Psychology North 0.839 0.00111 0.000390 0.000755 0.0615 
XGBoost Psychology 0.878 0.00165 0.000748 0.001397 0.0401 
XGBoost ISTB 4 0.947 0.00090 0.000291 0.000751 0.0295 
XGBoost Psychology North 0.843 0.00110 0.000408 0.000753 0.0594 
LightGBM Psychology 0.914 0.00139 0.000604 0.001167 0.0344 
LightGBM ISTB 4 0.936 0.00098 0.000120 0.000833 0.0326 
LightGBM Psychology North 0.765 0.00135 0.000602 0.000915 0.0754  

A. Alyakoob et al.                                                                                                                                                                                                     



’

’



◦



◦

◦

−

−

−

◦

–



◦ −

’

’ 



– – 

– 

– – 



Journal of Building Engineering 64 (2023) 105705

15

& editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

This research was funded by the National Science Foundation, grant number CMMI-1942805 (CAREER: Human Thermal Exposure 
in Cities - Novel Sensing and Modeling to Build Heat-Resilience) and supported by the APS Endowment for Sustainable Design 
Research, administered by ASU’s Herberger Research Council. Any opinions, findings, and conclusions or recommendations expressed 
in this material are those of the authors and do not necessarily reflect the views of the sponsoring organizations. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jobe.2022.105705. 

References 

[1] S. Arifwidodo, O. Chandrasiri, Urban Heat Island and Household Energy Consumption in Bangkok, vol. 79, Elsevier B.V., Thailand, 2015. 
[2] C.Z. Li, et al., Advances in the Research of Building Energy Saving, vol. 254, Energy Build., 2022, 111556, https://doi.org/10.1016/j.enbuild.2021.111556. 
[3] Un Environment Programme, Global status report for buildings and construction: towards a zero-emissions, efficient and resilient buildings and construction 

sector - executive summary, Glob. Status Rep. (2020) 20–24, 2020, https://wedocs.unep.org/20.500.11822/34572. 
[4] U.S. EIA, Household Energy Use in Arizona,” EIA’s 2009 Resid, Energy Consum. Surv., 2009. http://www.eia.gov/consumption/residential/reports/2009/state_ 

briefs/pdf/az.pdf. 
[5] M. Mosteiro-Romero, D. Maiullari, M. Pijpers-van Esch, A. Schlueter, An integrated microclimate-energy demand simulation method for the assessment of urban 

districts, Front. Built Environ. 6 (September) (2020) 1–18, https://doi.org/10.3389/fbuil.2020.553946. 
[6] B. Bass, J. New, N. Clinton, M. Adams, B. Copeland, C. Amoo, How close are urban scale building simulations to measured data? Examining bias derived from 

building metadata in urban building energy modeling, Appl. Energy 327 (September) (2022), 120049, https://doi.org/10.1016/j.apenergy.2022.120049. 
[7] Y. Ma, E. Qiao, Research on accurate prediction of operating energy consumption of green buildings based on improved machine learning, in: 2021 IEEE Int. 

Conf. Ind. Appl. Artif. Intell., 2021, pp. 144–148, https://doi.org/10.1109/IAAI54625.2021.9699905. 
[8] K. Amasyali, N. El-Gohary, Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in office buildings, Renew. Sustain. Energy 

Rev. 142 (2021), 110714, https://doi.org/10.1016/j.rser.2021.110714. December 2020. 
[9] M. Bruse, H. Fleer, Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model, Environ. Model. Software 13 

(3–4) (1998) 373–384, https://doi.org/10.1016/S1364-8152(98)00042-5. 
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