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Phoenix is a harbinger of the future for other cities. Findings from this study can guide urban planning, public health policymaking, 
and heat stress mitigation strategies. 

2. Methods 

The structure of Icarus consists of two core processes: data ingestion and simulation. Fig. 1 illustrates the major processes and the 
key datasets used. During data ingestion, Icarus ingests critical datasets such as infrastructure networks, the ABM, and environmental 
temperature data (Icarus SQL Server I in Fig. 1). From this database, Icarus builds a transportation network with spatiotemporal 
temperature information, and population group with travel schedules to start the simulation. The simulation platform estimates 
personal travel patterns and heat exposure based on agents’ daily travel schedules. A second database (Icarus SQL Server II in Fig. 1) 
stores the simulation results for further analysis, such as estimating the population subgroups and the locations with high heat stress. 
The following section explains the modeling details, data parsing techniques, heat exposure calculations, and hot trip identification. 

2.1. Icarus 

Icarus is a personal heat exposure simulation module developed with Python and intended for transportation planning, urban 
planning, and policy research use. Agents with complementary information (e.g., age, gender, travel, and activity pattern) are primary 
simulation objects. Icarus estimates personal heat exposure by routing agents in the city and tracing the environmental temperature 
one experiences during daily trips and activities. Icarus needs multiple datasets to achieve the functions and has essential modules to 
parse the input data in different formats into the same simulation environment. 

2.1.1. Core data ingestion 
Parsing and unifying urban-related data sources is a critical first step. The core datasets ingested are described in Table 1 and 

detailed in the following subsections. Data requirements include the ABM, parcel data, transportation network data, temperature 
profiles, and environmental data. The ABM and parcel data are used to extract travel schedules and locations. Transportation networks 
and fine-scale temperature metrics are needed to route the trips and estimate heat exposure of travelers. Towards improving the 
scalability of Icarus, publicly available datasets are retrieved from the OpenStreetMap (for the transportation network) (Open
StreetMap Contributors, 2015) and National Oceanic and Atmospheric Administration (for Tair) (Oak Ridge National Laboratory, 
2020). The following sections explain the details of each dataset and data parsing techniques. 

2.1.1.1. Activity-based model (ABM) and land parcel data. The ABM and land parcel data are core inputs to Icarus towards estimating 
fine-scale movements of individuals. Metropolitan Planning Organizations, such as the Maricopa Association of Governments (MAG) in 
Arizona, use travel surveys and complementary datasets to generate ABMs. ABMs contain a synthetic population that captures indi
vidual actor characteristics, such as their education, age, gender, and job type. ABMs also included daily travel plans, including in
dividual and group travel behavior within households. The trips in the ABM have precise origins and destinations (described through 
either Traffic or Micro Analysis Zones, TAZ and MAZ), travel modes, travel times, trip durations, trip purposes, and the person who 
carried out the trip. Icarus follows the individual and group travel defined in the ABM when loading the data into the simulation 
environment. For instance, very young travelers and the school-age population often travel with at least one older member in the 
household. Icarus parses the group travelers and their trips by assigning them the exact origin and destination and the same start and 
end trip time. However, Icarus considers these grouped travels as several separate trips in the routing and exposure estimation process. 

Icarus relies on land parcel data to refine the precise locations of trip origins and destinations. Icarus needs the exact origin and 
destinations (O/D), such as a building or parcel, to initiate the routing and assess environmental exposure profiles. However, a MAZ or 
TAZ contains dozens to hundreds of parcels. Icarus depends on county assessor databases – publicly available land parcel datasets that 
describe the property and building locations – to downscale the O/D for each trip from MAZ or TAZ to a specific spot. The traffic 
analysis zones are spatially joined with fine-scale assessor data to identify the parcels inside each transportation zone. Icarus then 
assigns the parcel’s location to the MAZ or TAZ O/D randomly. The Land Parcel data is also used to estimate if an air-conditioner (AC) 
is present during the activity. 

2.1.1.2. Roadway network. The trip routing process requires roadway inputs, especially the biking/walking network. The roadway 
network data is sourced from OpenStreetMap (OpenStreetMap Contributors, 2015). OSM contains rich information about the roadway 

Table 1 
Core input data, format, and source for this project.  

Data name Data format Data Source 

Activity-based model output 
(ABM) 

.csv,.db City or regional planning organization 

Land Parcel data .shapefile, or.csv file with locations City or county assessor database 
Transportation network data .osm or.shp OpenStreetMap or Tiger shapefile 
Temperature data .net4,.csv, or raster file with location 

information 
National Oceanic and Atmospheric Administration or regional 
estimation  
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car and public transport trips. MatSIM is the start-of-art open-source agent-based simulation platform for transportation planning. 
Icarus can generate the transportation network, agent plans, and the simulation configuration file required by MatSIM. While 
computationally equivalent to Dijkstra, MatSIM can be used to adjust travel schedules with modifications to the underlying utility 
function. This paper uses Dijkstra’s shortest pathfinder for the proof-of-concept case study. 

2.1.2.2. Heat exposure calculation. The activities and trips can occur both outdoors and in climate-controlled environments. In 
studying heat exposure Icarus assumes that agents taking in-vehicle trips or having activities in the AC-cooled parcels have significant 
heat reprieve. In contrast, biking and walking trips that occur outdoor or activities on parcels without AC are assumed to be carried out 
with no temperature control and under constant heat stress. Whether a parcel has AC or not is determined by the Land Parcel data, 
explained in detail in the case study session. 

Heat exposure measures estimate the given environmental temperature trips and activities are likely to experience. Icarus sets the 
default Tair in an AC-cooled environment as 26.6 ◦C (80 ◦F). As such, for in-vehicle trips and activities under AC, their Tair exposure is 
constantly 26.6 ◦C (80 ◦F), and the TMRT exposure would be equal to Tair under indoor environment (Kántor & Unger, 2011). Heat 
exposure for active trips under outdoor environment is calculated in Eq. (5): 

Ti,j =

∑
r∈R(Lr*Tr)
∑

r∈RLr
(5)  

where Ti,j is the ambient temperature for a person i in trip j. Ti,j can be either Tair, TMRT, or TWBGT. R is the collection of links on the route 
for a trip j. Link r should always be in R. Tr is the temperature (Tair, TMRT, or TWBGT) at the link r when trip j happens. Lr is the length of 
link r. The calculated trip and activity heat exposure can then be used for heat stress classification. 

2.1.3. Heat stress classification 
Icarus provides three heat stress classification matrices to rank the active trips heat exposure level, recognizing the variety of 

temperature measures available. The in-vehicle trip’s heat exposure is not classified as they are assumed to have AC. The WBGT work/ 
rest table is introduced to rank the trip heat exposure using TWBGT and trip duration. A four-level rating scheme based on the quartile of 
calculated TMRT and Tair for the simulated agents is used to rank the trip heat exposure from cool to very hot. We introduce the Flow Ratio 
to identify the locations where trips with the top level of heat stress take place. 

Icarus introduces the WBGT work/rest table (W/R table), widely used in the industry to guide worker work and rest duration 
(ACGIH, 2019; Epstein and Moran, 2006; Sutherland, 2015), to assess travelers heat stress under TWBGT exposure. The W/R table 
suggests the work and rest cycles a person should follow under different environmental temperatures, considering their time in that 
environment, the clothing they wear, their workload, and acclimation to heat (ACGIH, 2019; Iverson et al., 2020). Icarus adapts the W/ 
R table (Sutherland, 2015) by assuming that active travel is the working status, while the activities after the trip are at resting status. 
Walking and biking are classified as moderate and heavy workloads according to their metabolic equivalent of task level (National 
Cancer Institute, 2002; Tudor-Locke et al., 2009). Assuming all agents in the ABM output are acclimated, Table 2 shows the adjusted 
W/R table. Based on duration and TWBGT the heat stress levels of trips include no risk, low risk, moderate risk, high risk, and extreme risk 
(Table 2). Besides the listed stress levels, Icarus introduces a violation of the W/B level to categorize the trips that exceed the suggested 
work/rest cycle. 

There is no standard threshold to distinguish low to high heat exposure using TMRT and Tair. Hence, the heat stress level of these 
temperature metrics are grouped based on the trip’s TMRT and Tair quartiles. From the low to high temperature, trips are grouped as cool 
(lowest 25 %), warm (25–50 %), hot (50–75 %), and very hot (highest 25 %). 

The Flow Ratio is defined as the proportion of the traffic flow contributed by trips with the top heat stress level and is calculated as 
per Eq. (6): 

FlowRatio =
FT

FAll
(6) 

The link flow counts the number of trips passing through the one-meter length of roadway in the simulation day. In Eq. (6), FT is the 
link flow of very hot trips or trips that violate the WBGT W/R tables. FT refers to the link flow of all trips. The Flow Ratio ranges between 
0 and 100 %. A Flow Ratio greater than 50 % is alarming, as over half of the trip crossing is through roadway sections that are under top 
heat stress. Demonstrating the Flow Ratio in the network could help to identify the locations of trips with high heat stress. 

Table 2 
WBGT Work/rest Table Adapted from Sutherland (2015).  

risk level TWBGT trip/activity duration (minutes) 

(C◦) (F◦) Walking (moderate work) Biking (heavy work) 

no risk 25.6–25.9 78–79.9 Continuous 50/10 
low 26–28.9 80–84.9 50/10 40/20 
moderate 29–30.9 85–87.9 40/20 30/30 
high 31–31.9 88–90 30/30 20/40 
extreme >32 >90 20/40 10/50  
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types and corresponding assigned parcel category. The simulation used the selected parcels for each activity as trip O/D. 
Icarus uses the Maricopa County assessor database to estimate AC presence at activity locations. The assessor database details the 

AC information for residential parcels, and Icarus uses this information to assess the home-based activities heat exposure. For non- 
residential properties with missing AC details, it was assumed that the following parcel categories did not have AC: barns, farm 
storages, garages, car wash, and pavilions. Details of the non-residential parcel types and AC assumptions are listed in Appendix B. 

The simulation day was hot, with the hottest Tair between 28.8 and 43.2 ◦C (83.9 to 109.7 ◦F) around 15:00 and the lowest 
Tair between 13.3 and 25.3 ◦C (55.9 to 77.5 ◦F) before sunrise (Oak Ridge National Laboratory, 2020). The Tair was validated in 
Thornton et al., 2021. The mean absolute error (MAE) of Tair-max was between 1.21 and 1.34℃ and Tair-min was between 1.07 and 1.2℃ 
in the case study region (Thornton et al., 2021). 15-minute resolution point-based TMRT was applied (Middel et al., 2017). Middel 
(et al., 2017) estimated and validated the TMRT along vehicle-accessible roadways by detecting the sky view factors (SVF) of buildings, 
trees, pavements, and shadings from Google Street View. And the TMRT is calculated using the SVF and an automated radiation model 
(Middel et al., 2017). TMRT provided temperature after sunrise and before sunset. Since the TMRT readings represent environmental 
radiance, especially the sun’s radiance flux for outdoor environments, it is safe to assume the TMRT is equal to Tair before sunrise and 
after sunset, or in indoor environments (Kántor & Unger, 2011). TWBGT was estimated at street level using the average wind speed in 
June observed at Phoenix Sky Harbor station, 3.2 m/s (7mph) (Lawrimore et al., 2016), and relative humidity (RH) of 20 %, 
considering the monsoon season humidity in Phoenix. 

3. Results 

The results show heat exposure of individuals, heat stress by demographic groups, and explicit locations with high heat stress. A 
summary of the Icarus simulation results—including the travel speed, trip duration, and distance—is discussed. Heat exposure in Tair, 
TMRT, and TWBGT, and heat stress classifications across different demographic groups are demonstrated. Lastly, locations where trav
elers are likely to experience excessive heat exposure are discussed. 

3.1. Non-motorized trips travel patterns and Icarus simulation statistics 

The 3.8 million agents carry out 1.17 million active trips, and Icarus successfully simulated 96 % of those trips. The 4 % of trips not 
simulated was because the origin and destination of the trip were the same or Icarus could not find a suitable route in the network. 
Agents from several months old to 93 all have active trips. Excessive heat and pollution exposure produce elevated risks for the very 
young and senior population (Glass et al., 2015; Hodges et al., 2018). The very young, such as the school-age population or seniors, 
often travel with at least one other member in the household in the ABM. The simulation captured the group travel behavior described 
in the ABM by parsing those trips with the exact O/D and trip start and end time. However, these grouped travels are considered as 
separate trips when analyzing travel and personal heat exposure. 

The active trips were short in duration and distance (Table 3). The medium walking and biking trip distances were 1.6 km (1 mile) 
and 2.8 km (1.7 miles), respectively. Moreover, half of the population spent less than 10.8 min on walking and 8.4 min on biking trips, 
considering the ingress/egress time. The 90-percentile travel speed was 14.9 kph (9.3 mph) for walking and 38.5 kph (23.9 mph) for 
biking trips. Although active trips are of short durations in general, certain age groups tend to spend longer on their trips compared to 
other groups. Around 35 % of the trips by young kids (0 to 5 years) and 26 % by people aged 50 to 65 were over 20 min. Meanwhile, 
people over 65 spent less time on outdoor travel, as under 4 % of their active trips were over 20 min. The differences in trip duration 
would impact the heat stress identification when using the heat stress index that considers the event duration, such as the W/R table. 

Tair, TMRT, and TWBGT reveal different environmental properties and should be assessed independently. As shown in Fig. 3, 
TWBGT had the lowest temperature range and TMRT had the highest temperature range. The three temperature measures reached their 
maximum at different times of the day. While the highest TMRT happened around noon when the sun radiance reached its maximum, 
the hottest Tair and TWBGT happened around 15:00. In the ABM, people aged 5 to 20 frequently traveled outside around 15:00 under the 
hottest Tair and TWBGT, while people older than 20 had more active trips around noon with the highest TMRT. 

Table 3 
Statistics of Icarus simulation results.   

Number of 
trips1 

Trip Duration1 (minutes) medium (10 %, 90 
%) 

Trip Distance2 (km) medium (10 %, 90 
%) 

Speed2 (kph) medium (10 %, 90 
%) 

walking 1,030,014 10.8 1.6 7.3 
(5.9, 25.8) max 72 (0.6, 3.1) (3.2, 14.9) 

biking 147,142 8.4 2.8 19 
(2.1, 18) max 41 (0.9, 6) (12.8, 38.5) 

car driving 17,245,967 9.1 N/A N/A 
(2.4, 25.5) max 345 

public 
transit 

142,869 74.8 N/A N/A 
(28.7, 131.8) max 208  

1 From the ABM output. The trip duration includes ingress/egress waiting time. 
2 From Icarus output. 
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risk according to Table 2, and 22.8 % had a moderate risk. However, 10.5 % of active trips violated work/rest cycles in Table 2, 
although active trips had short durations in general. When considering demographics, a higher ratio (16.9 %) of toddlers (younger than 
5) had trips that violate the W/R table. The ratio of trips from senior populations (older than 65) that violated the WBGT W/R table was 
low (less than 0.3 %), mainly because this demographic group has short-duration trips. 

The identified heat-vulnerable trips and population (red bins in Fig. 4) demonstrated distinct patterns when ranking heat stress by 
the quartiles of Tair and TMRT, and the WBGT W/R table. Using TWBGT most (71 %) of trips were identified with no or low risk. Young 
kids were the most vulnerable while seniors were the least risky when identifying heat stress using TWBGT. 16.9 % of people under 5 had 
their outdoor trip TWBGT violating Table 2. Meanwhile, less than 0.2 % of trips by people over 75 violated the WBGT W/R table. Using 
Tair, people under 20 were the riskiest as 36 % of their trips were very hot, while the rest of the population had 21 % of their active trips 
identified as very hot. People over 50 were identified as the most vulnerable using TMRT, as 34 % of their trips had very hot TMRT. 
Meanwhile, people under 20, the riskiest group identified with Tair, had 13 % of their trips under very hot TMRT - the least vulnerable 
across the population. The heat stress levels identified with TMRT matched with the reports that people aged 75 + had more very high- 
level heat stress than other population groups (Maricopa County Public Health, 2017, 2020). 

3.2.2. Locations with high heat exposure 
Most of the city’s roadways had few trips in the simulation. Walking and biking travelers used a total length of 3,689 km network. 

75 % of roadways had at most 58 trips per day. Only 5 % (184 km) of the network had more than 240 trips passing through. The busiest 
links in the Phoenix metro region accommodated up to 7,657 trips per day in the simulation. The top 2 % (74 km) most traveled links 
had a flow of 404 trips per day and were clustered around shopping malls, business centers, city parks, and medical centers (e.g., Carl T 
Hayden Veterans Affairs Medical Center, Banner Estrella Medical Center). 

Although some less traveled corridors had a 100 % Flow Ratio, the busiest 5 % corridors had a lower Flow Ratio (Table 4). The 100 % 
Flow Ratio, which meant all trips crossing the link were under the top heat stress level, were only identified on corridors with less than 
58 trips per day. Cooling strategies implemented on the busiest corridors would benefit more travelers. Therefore, finding links with 
both large traffic (over 240 trips per day) and a high Flow Ratio (over 50 %) are more critical than identifying corridors with little usage 
but a 100 % Flow Ratio. The upper bound Flow Ratio for the busiest 5 % links under Tair was lower than the corresponding value under 
TMRT and TWBGT. The Flow Ratio under TMRT identified some busiest links that had 63 % to 68 % of their traffic flow from very hot trips. 
Similarly, the Flow Ratio under TWBGT shows that the busiest links could have 51 % of trips crossing them violate the W/R table. 
However, none of the busiest links had a high Flow Ratio under Tair. 

Only the 5 % busiest traveled links were shown to reduce the noise from less travel links but with high Flow Ratio. The locations 
with a high Flow Ratio (over 50 %) under Tair and TWBGT were concentrated near downtown Phoenix and major arterials (Fig. 5.b and 
c). On the contrary, the majority of links had a moderate Flow Ratio between 20 % and 40 % under Tair and were evenly distributed 
across the network (Fig. 5.a). 

The Flow Ratio maps demonstrate the locations where very high heat stress trips are likely to occur and create opportunities for 
planners to design heat mitigation strategies within the network. The disparity of Flow Ratio maps from different temperature mea
sures poses challenges for decision-makers to make investments. Both TMRT and TWBGT consider the heat radiation from the built 
environment, and locations with a high Flow Ratio in Fig. 5.b and c were identified with large low-rise buildings and wide pavements in 
previous local climate zone studies (Wang et al., 2018). However, different trips purposes and start times, as well as the trip durations, 
all affect traveler’s heat stress and the distribution of Flow Ratio. Understanding the reasons behind the disparity of Flow Ratios is out of 
the scope of this study but is a part of ongoing work. 

3.3. Trips cannot reprieve during the activity 

Travelers who experience heat exposure may get a reprieve from AC during activities. Maricopa county, where the Metro Phoenix is 
located, has 1.56 million parcels, with one-fifth being non-residential (Fig. 6). 99.8 % of residential parcels have centralized AC or 
window cooling systems (Maricopa County Assessor’s Office, 2018) About 35 % of the non-residential parcels in the County had no 
climate control measures. It was assumed that garages, warehouses, golf courses, storage facilities, greenhouses, farms, carwashes, 
barns, and pavilions do not have AC. In the 1.13 million simulated active trips, 72.6 % could reprieve from the excessive heat exposure 
as the agents destine in an AC-cooled parcel and stay at the parcel long enough. 21.15 % of the active trips ended up on an AC-cooled 
parcel, but the duration of the activity was too short for these agents to reprieve from the excessive heat exposure. 5.79 % of trips 
stopped at a parcel with no AC and could not reprieve. Lastly, 0.46 % of trips ended on a no AC-cooled parcel, but both the trips and 

Table 4 
Flow ratio under different link flow range.  

Link Flow Range Flow Ratio (medium, 1 %, 99 %) 

Tair TMRT TWBGT 

404 to 7657 23 % (7 %, 39 %) 30 % (14 %, 63 %) 14 % (0 %, 51 %) 
240 to 403 25 % (10 %, 46 %) 28 % (13 %, 68 %) 15 % (0 %, 51 %) 
58 to 239 26 % (7 %, 52 %) 24 % (7 %, 69 %) 16 % (1 %, 23 %) 
1 to 57 30 % (5 %, 100 %) 25 % (0 %, 100 %) 24 % (2 %, 100 %) 
All (1 to 7657) 28 % (6 %-100 %) 25 % (0–100 %) 20 % (1 %, 100 %)  
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4.3. Limitations 

Icarus’s limitations come from simplifying the travel model and different temperature metrics. Uncertainties were introduced into 
the model during the random selection of parcels in the MAZ and assuming the shortest path as the routes agents would choose. 
Traveler walking or biking path choice could be affected by safety, preference, or street perceptions and conditions (Marshall & 
Garrick, 2010; Titze et al., 2012). Different temperature metrics complicate the result interpretation, as the high heat stress population 
and locations depend on the metric used for analysis. Previous studies pointed out that Tair is not a comprehensive indicator of personal 
heat exposure as it is only one of the several environmental factors (Hondula and Kuras, 2021; Kuras et al., 2017). While the TWBGT is 
widely used to identify the heat stress risk, the WBGT W/B table has its limitations in identifying the heat stress for the senior pop
ulation. More research must be done to identify the temperature metrics most suitable for personal heat exposure study. While most 
trips were simulated with reasonable travel speed, about 10 % of the active trips had unrealistic fast velocities. The uncertainty of the 
travel speed came from three aspects: either the trip duration provided by the ABM could be too short, the O/D provided in ABM was 
too long, or Icarus assigned activities in parcels away. However, checking the accuracy of the ABM data and providing accurate 
downscale strategies to extract location from the MAZ level to the parcel level is outside this study’s scope. Besides, urban heat itself is 
driven by wasted heat from building, high coverage of pavement, parking lots, and vehicles. While TMRT addressed the wasted heat 
from building and impervious surfaces, the heat emission from vehicles was not considered in this study. 

Despite the limitations Icarus creates significant advances in person-based heat exposure assessment. The module provides a more 
detailed look at exposure to extreme heat by using ABMs to create a bottom-up picture of heat exposure at a population scale. 
Incorporating high-resolution spatiotemporal temperature enhances the proxy variables, such as land surface air temperature used in 
previous studies. Considering the heat exposure along the transportation network, Icarus spotlights the effect of the built environment 
and travel behavior on personal heat exposure. Icarus could enhance our understanding of the relationship between exposure to 
extreme heat and social vulnerability and their role in influencing heat risk. 
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