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• PanoMRT calculates outdoor thermal ex-
posure and comfort from panoramic infra-
red thermography.

• Surface temperatures in cities vary widely
due to heterogeneous materials and shade
patterns.

• 3D surface temperature information sig-
nificantly improves mean radiant temper-
ature models.
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As summer heat waves become the new normal worldwide, modeling human thermal exposure and comfort to assess
andmitigate urban overheating is crucial to uphold livability in cities.We introduce PanoMRT, an open source human-
biometeorological model to calculate Mean Radiant Temperature (TMRT), Physiologically Equivalent Temperature
(PET), and the Universal Thermal Climate Index (UTCI) from thermal equirectangular 360° panoramas and standard
weather information (air temperature, relative humidity, wind speed). We validated themodel for hot, dry, clear sum-
mer days in Tempe, Arizona, USA with in-situ observations using a FLIR Duo Pro R thermal camera on a rotating arm
and the mobile human-biometeorological instrument platform MaRTy. We observed and modeled TMRT and thermal
comfort for 19 sites with varying ground cover (grass, concrete, asphalt), sky view factor, exposure (sun, shade),
and shade type (engineered, natural) six times per day. PanoMRT performed well with a Root Mean Square Error
(RMSE) of 4.1 °C for TMRT, 2.6 °C for PET, and 1.2 °C for UTCI, meeting the accuracy requirement of ±5 °C set in
the ISO 7726 standard for heat and cold stress studies. RayMan reference model runs without measured surface tem-
perature forcing reveal that accurate longwave radiative flux estimations are crucial to meet the±5 °C threshold, par-
ticularly for shaded locations and during midday when surface temperatures peak and longwave modeling errors are
largest. This study demonstrates the importance of spatially resolved 3D surface temperature data for thermal exposure
and comfort modeling to capture complex longwave radiation exposure patterns resulting from heterogeneity in built
configuration and material radiative and thermal properties in the built environment.
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Abbreviations

A atmospheric radiation [Wm−2]
D diffuse shortwave radiation [Wm−2]
Diso isotropic diffuse shortwave radiation [Wm−2]
Daniso anisotropic diffuse shortwave radiation [Wm−2]
fSVF sky view factor [−]
Fi angular weighting factor for standing reference person for

radiation incident from direction i (0.22 for N, E, S, W; 0.06 for
up/down) [−]

G0 global shortwave radiation, fSVF = 1, cloudless [Wm−2]
i index that denotes directions (N, E, S, W, up, down)
I direct shortwave radiation on a horizontal surface [Wm−2]
I′ direct shortwave radiation on a surface perpendicular to the

Sun [Wm−2]
I0 solar constant (1367) [Wm−2]
I0 extraterrestrial radiation [Wm−2]
Ki directional shortwave radiation (i denotes N, E, S, W, up, down)

[Wm−2]
K↓, K↑, K→ directional shortwave radiation (arrow indicates direction)

[Wm−2]
Li directional longwave radiation (i denotes N, E, S, W, up, down)

[Wm−2]
Lsky longwave radiation for sky pixels in thermal panorama [Wm−2]
Lpixel longwave radiation for non-sky pixels in thermal panorama

[Wm−2]
mRO relative optical air mass
N degree of cloudiness [octas]
PET physiologically equivalent temperature [°C]
R mean radiant flux density [Wm−2]
RH relative humidity [%]
Ta air temperature [°C]
TL Linke turbidity factor (4.2) [−]
Tped pedestrian surface temperature at street level [°C]
Ts surface temperature [°C]
TMRT mean radiant temperature [°C]
UTCI Universal Thermal Climate Index
v wind velocity [ms−1]
Vp vapor pressure [hPa]
z altitude [m]
α albedo (0.15) [−]
δRO optical thickness
ε standard emissivity (0.95 [−]
εp emissivity of the human body (0.97) [−]
η Sun's altitude (elevation) angle above the horizon [°]
ϕ solar zenith angle [°]
θ azimuth angle [°]
ξk absorption coefficient for shortwave radiation (0.7) [−]
ρ local atmospheric pressure [hPa]
ρ0 atmospheric pressure at sea level (1013) [hPa]
σ Stefan-Boltzman constant (5.670367 ∙ 10−8) [Wm−2 K−4]
τ transmittance of direct solar radiation [−]
1. Introduction

Land use and land cover change fromurbanization coupledwith climate
change leads to urban overheating, i.e. thermal conditions in cities that are
hazardous to people and associated urban systems (Nazarian et al., 2022).
Heat has myriad negative impacts on human health (Gasparrini et al.,
2015; Luber and McGeehin, 2008), comfort (Kuras et al., 2017; Middel
et al., 2016), productivity (Dunne et al., 2013; Kjellstrom and Crowe,
2011), and performance (Alhadad et al., 2019; Kosaka et al., 2018). It
also increases cooling energy use (Li et al., 2012), water use for irrigation
(Jenerette et al., 2011), stresses urban infrastructure (Clark et al., 2019),
2

and negatively impacts the economy (Xia et al., 2018; Zander et al.,
2015). Hotter weather is expected in the future (Russo et al., 2014), with
more frequent and intense heat waves that may jeopardize the livability
and sustainability of cities. Keeping people cool through targeted heat
mitigation interventions is a priority of the 21st century (Broadbent et al.,
2022; Jay et al., 2021).

While heat can be quantified using various temperature metrics, one of
the most relevant metrics to assess human thermal exposure is the Mean
Radiant Temperature (TMRT), as it provides an important summary assess-
ment of the radiation exchange between the human body and the built
environment (ISO, 1998; Johansson et al., 2014; Kántor and Unger, 2011;
Middel et al., 2016). TMRT is a synthetic parameter that quantifies the
heat load on the human body throughweighted omnidirectional shortwave
and longwave radiation flux densities. Under hot, dry, clear-sky weather
conditions, TMRT is the main meteorological factor that drives spatial
variation of human thermal comfort (Lin et al., 2010) and an important
parameter in many thermal comfort indices that incorporate radiative
exposure, such as the Physiological Equivalent Temperature (PET)
(Höppe, 1999) and Universal Thermal Comfort Index (UTCI) (Blazejczyk
et al., 2012; Fiala et al., 2012; Jendritzky et al., 2012).

TMRT varies significantly in the built environment with reported differ-
ences of over 35 °C in the afternoon shade and sun (Middel et al., 2021).
While spatial and temporal variation of TMRT is mostly driven by shortwave
radiation, lateral longwave radiation is the largest contributor to TMRT in
warm climates (Middel and Krayenhoff, 2019). Lindberg et al. (2014)
showed that longwave fluxes become increasingly important in dense
built environments with increased radiant fluxes from walls, highlighting
the importance of vertical surface temperatures (Ts) for human thermal
exposure. Stewart et al. (2021) introduced the concept of pedestrian
surface temperature (Tped), which is the weighted average of all surfaces
surrounding a street-level pedestrian and is more relevant to human
thermal exposure than horizontal Ts observed from above using satellite
thermal imagery.

The built environment is a complex patchwork of differently oriented
surface types with varying diurnal sun-exposure and radiative, thermal,
roughness, and moisture characteristics, which leads to significant varia-
tions of Ts patches that contribute to Tped in the urban canopy layer. Accu-
rate Ts estimates are important for thermal exposure assessments, but
spatially explicit Ts have not traditionally been observed in urban climate
studies and are difficult to model without detailed 3-dimensional informa-
tion on the composition and configuration of those Ts patches.

The emerging field of Urban Climate Informatics (Middel et al., 2022)
offers novel sensing techniques and embraces more integrated and
human-centric methods, including approaches to sense spatially resolved
Ts in the urban canopy layer. For example, Aviv et al. (2021) used a rotating
non-contacting infrared Ts sensor and LiDAR to create 3-dimensional Ts
point clouds. Merchant et al. (2022) developed a camera system that re-
cords 360° shortwave and longwave panoramic images to fully resolve
the spatial variation in shortwave and longwave radiant heat transfer in
the outdoor environment.

We present an instrument setup to measure an approximation of Tped in
the form of thermal equirectangular 360° panoramas and introduce
PanoMRT, an open source human thermal exposure and comfort model
that calculates TMRT, PET, and UTC from standard meteorological informa-
tion and detailed Ts observations. Model results are validated using the
mobile 6-directional instrument setup MaRTy (Middel and Krayenhoff,
2019) and compared to RayMan TMRT calculations without Ts forcing to
demonstrate the importance of spatially explicit, human-centric Ts data
for human thermal exposure and comfort modeling.

2. Methods

PanoMRT is a Python-based software that calculates TMRT from ob-
served longwave radiation fluxes and modeled shortwave radiation fluxes
simulating a 6-directional net radiometer setup for integral radiation mea-
surements. To model TMRT for a given location, time, and day, PanoMRT
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requires a 360° equirectangular thermal panorama of the location and
standard weather information (Fig. 1). The thermal panorama is projected
into six fisheye images to calculate integral longwave radiation fluxes from
pixel surface temperatures Ts and determine the sky view factor (fSVF) of the
location. The sun position (i.e., solar azimuth θ and zenith ϕ) is calculated
from the latitude, date, and time of panorama acquisition. Standard
weather data (air temperature Ta, relative humidity RH, and wind speed
v) can be input from in-situ observations or automatically retrieved from
the closest airport via the OpenWeather Application Programming Inter-
face (API). 6-directional contributions of direct and diffuse shortwave radi-
ation are then estimated from atmospheric conditions. Additional input
parameters capturing characteristics of the pedestrian are used to calculate
the thermal indices PET and UTCI.

2.1. Mean radiant temperature modeling

TMRT is defined as the “uniform temperature of an imaginary enclosure
in which the radiant heat transfer from the human body equals the radiant
heat transfer in the actual non-uniform enclosure” (ISO, 1998). It is calcu-
lated from themean radiant flux density R using the Stefan-Boltzmann law:

TMRT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R=εpσ4

q
−273:15 °C½ � ð1Þ

R summarizes the long-(Li) and shortwave (Ki) radiation fluxes the human
body is exposed to from six directions (i) (VDI, 1994) and can be observed
using a 6-directional setup or integral radiation measurements (Höppe,
1992):

R ¼ ξk∑6
i¼1KiFi þ εp∑6

i¼1LiFi (2)

Fi are angular weighting factors for a standing person and set to 0.22 for lat-
eral radiation fluxes and 0.06 for upwards and downwards directed fluxes
to approximate the elongated body shape (Fanger, 1972). ξk is an absorp-
tion coefficient for shortwave radiation (0.7), and εp is the emissivity of
the human body (0.97) (VDI, 1994).

While PanoMRT estimates the longwave components of R from ob-
served, pixel-based Ts in thermal panoramas, it uses a hybrid radiation
flux density modeling approach that draws from existing TMRT models to
calculate diffuse and global shortwave radiation and directional shortwave
radiation (Lindberg et al., 2008; Lindberg and Grimmond, 2011).

2.1.1. Shortwave radiation
The shortwave radiation Ki for each of the six directions depends on the

sun position and has a direct (I) and diffuse (D) component. The direct
shortwave radiation I on a horizontal surface can be calculated as the por-
tion of extraterrestrial solar radiation I0 that travels through the atmo-
sphere (VDI, 1994):

I0 ¼ I0 ∙ 1þ 0:03344∙ cos DOY ∙0:9856 � 2:72ð Þ∙π=180�ð Þð Þ (3)
Fig. 1. PanoMRT model workflow including input (360° equirectangular thermal pa
characteristics) and output (TMRT, UTCI, PET).
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I0 is calculated using the solar constant I0=1367 Wm−2 and day of year
(DOY) to determine the length of the path (the air mass) the radiation
must travel. To consider atmospheric absorption and scattering of the in-
coming solar radiation, I can then be formulated as (Jendritzky, 1990):

I ¼ I0∙ sin ηe � TL ∙δRO ∙mRO ∙ρ=ρ0ð Þ ∙ 1 � N=8ð Þ (4)

where TL is the Linke Turbidity factor (denotes the transparency of the
cloudless atmosphere); ρ/ρ0 is the pressure correction for reducing the
optical thickness of the standard atmosphere at sea level (1013.25 hPa) to
the current atmospheric pressure:

ρ ¼ 101325∙ 1−2:25577∙10−5∙z
� �5:25588 ð5Þ

N is degree of cloudiness in octas; δRO is the optical thickness (Kasten,
1980):

δRO ¼ 1= 0:9mRO þ 0:94ð Þ (6)

mRO is the relative optical air mass for a given sun elevation angle η (Kasten
and Young, 1989):

mRO ¼ 1= sin ηþ 0:50572 ∙ ηþ 6:07995°ð Þ−1:6364
� �

ð7Þ

Eq. (7) only holds for η > 5°; for lower sun elevation angles, δRO has to be
retrieved from a look-up table (Matzarakis et al., 2010).

The diffuse shortwave radiationD is composed of an isotropic (Diso) and
anisotropic (Daniso) component and interpolated linearly between cloudless
(N= 0) and overcast (N= 8) weather conditions (Matzarakis et al., 2010):

D ¼ Diso þ Danisoð Þ ∙ 1−N=8ð Þ þ 0:28G0 ∙ f SVF ∙N=8 ð8Þ

The isotropic component Diso depends on the sky view factor fSVF, the direct
shortwave radiation I on a horizontal surface, the global radiation G0 for
fSVF = 1 and cloudless conditions, and the transmittance of direct solar
radiation τ:

Diso ¼ G0−I N ¼ 0ð Þð Þ ∙ 1−τð Þ ∙ f SVF ð9Þ

G0 ¼ 0:84 ∙ I0 ∙ cosϕ ∙ e
−0:027∙ ρρ0 ∙ TL

cosϕ

� �
ð10Þ

τ ¼ I N ¼ 0ð Þ= I0 cos ϕð Þ (11)

For shaded locations, the anisotropic component Daniso is omitted; for sun-
exposed locations, it is calculated as follows:

Daniso ¼ G0−I N ¼ 0ð Þð Þ ∙ τ ð12Þ

The sky view factor fSVF is calculated from individual thermal panoramas
assuming that all pixels with TS < 4 ° C are sky pixels to distinguish them
from urban surface pixels—a threshold that should be refined for other
norama, standard weather information, latitude/longitude, date, time, personal
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geographic locations and weather conditions. The panoramas are projected
into hemispherical views, and each thermal fisheye is partitioned into n an-
nular rings (n = 32) to calculate fSVF by summing up the contribution of
non-sky pixels in each ring:

f SVF ¼ π
2n

∑n
j¼1 sin

π 2 j−1ð Þ
2n

� �
pj

t j

� �
ð13Þ

where pj/tj is the ratio between the number of sky pixels to the total
number of pixels in ring j (Middel et al., 2017, 2018; Steyn, 1980).
The hemispherical fisheye is further used to determine if a position is
shaded or sun-exposed at any given time by determining the sun posi-
tion in the fisheye and calculating the percent sky vs. non-sky pixels in
a 3-by-3 pixel neighborhood.

To calculate the total shortwave radiation K including direct and diffuse
radiation, we consider each of the six directions separately and use a simpli-
fied formulation by Lindberg and Grimmond (2011). The incoming short-
wave radiation K↓ from the upper hemisphere is a function of the direct
solar radiation on the plane normal to the direction of incidence I′ = I/
sin η and the diffuse radiation D (ignoring reflections from surfaces in the
surroundings):

K↓ ¼ I′ ∙ sin ηþ D ¼ I þ D (14)

The outgoing shortwave radiation K↑ is calculated as a fraction of the in-
coming shortwave, assuming that all surrounding surfaces are sun-
exposed and have an average albedo of α = 0.20:

K" ¼ K↓ ∙ α (15)

The lateral reflected shortwave radiation is calculated as K→ = K↓ ∙ α ∙ 0.5
for sun-exposed locations, ignoring reflections from vertical features and
Fig. 2. Thermal panorama projection into 6-directional fisheye views; sky detection in th
using 32 annulus rings.
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assuming that all ground surfaces in the surrounding are sun-exposed
(view factor of the ground is 0.5 in lateral fisheye views). The incoming lat-
eral shortwave radiation depends on the cardinal direction (N, E, S, W) and
will only be calculated for the two directions in which the sun is visible in
the lateral fisheye projection, i.e.,

N : θ≥270 ° K→ ¼ I0 ∙ cos η ∙ sin θ−270 °ð Þ þ D ð16Þ

N : θ < 90 ° K→ ¼ I0 ∙ cos η ∙ sin θþ 90 °ð Þ þ D ð17Þ

E : 0 °≤θ < 180 ° K→ ¼ I0 ∙ cos η ∙ sinθþ D ð18Þ

S : 90 °≤θ < 270 ° K→ ¼ I0 ∙ cos η ∙ sin θ−90 °ð Þ þ D ð19Þ

W : 180 °≤θ < 360 ° K→ ¼ I0 ∙ cos η ∙ sin θ−180 °ð Þ þ D ð20Þ

If θ falls outside the given range or the location is shaded, I′ = 0.

2.1.2. Longwave radiation
Longwave radiation fluxes Li in six directions are calculated from

equirectangular thermal panoramas. To mirror a 6-directional net radiom-
eter setup, the panoramas are projected into sixfisheye views (Fig. 2) by re-
lating pixels (xp,yp) of a WxH sized panorama to pixels (xf,yf) of a fisheye
view with center pixels (Cx,Cy) using the following transformation:

xp ¼
π=2þ tan−1 y f−Cy

� �
= x f−Cx
� �h i� �

∙W=2π; x f < Cx

3π=2þ tan−1 y f−Cy

� �
= x f−Cx
� �h i� �

∙W=2π; x f > Cx

8<
: ð21Þ

yp ¼ H ∙W=2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf � Cx
� �2 þ yf � Cy

� �2q� �
(22)
ermal fisheyes using a threshold of TS < 4 ° C; and sky view factor (fSVF) calculation
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For each directional thermal fisheye, Ts of non-sky pixels is converted to a
longwave radiation flux assuming a standard emissivity of ε = 0.95 and
atmospheric radiation A as follows:

Lpixel ¼ εσ Ts þ 273:15ð Þ4 þ 1 � εð Þ ∙ A (23)

A ¼ σ ∙ Ta þ 273:15ð Þ4 ∙ 0:82−0:25 ∙ 10−0:0945∙Vp
� �

∙ 1þ 0:21 ∙ N=8ð Þ2:5
� �

ð24Þ

Longwave radiation for sky pixels is estimated from Ta and sky emissivity
εsky, which is a function of vapor pressure Vp and Ta (Lindberg et al., 2008):

Lsky ¼ εskyσ Ta þ 273:15ð Þ4 (25)

εsky ¼ 1− 1þ 46:5
Vp

Ta þ 273:15

� �
∙ e − 1:2þ3:0∙46:5 Vp

Taþ273:15ð Þ0:5
� �

ð26Þ

Finally, Li is calculated for each directional thermal fisheye by summarizing
average longwave radiation values over 32 annulus rings (analogous to
the fSVF calculation) and inserted in Eq. (2) along with the directional
shortwave radiation fluxes Ki (Eqs. (14)–(20)) to yield the mean radiant
flux density R and subsequently TMRT.

2.2. Thermal comfort index calculations

Thermal comfort is a complex function of environmental factors
determining thermal exposure and physiological, psychological, and be-
havioral factors (Chen and Ng, 2012; Johansson et al., 2014; Middel
et al., 2016; Nikolopoulou and Lykoudis, 2006). Numerous thermal com-
fort indices have been developed to integrate environmental and personal
factors into an experienced temperature value (Potchter et al., 2018). The
current implementation of PanoMRT calculates PET (Höppe, 1999) and
UTCI (Blazejczyk et al., 2012; Fiala et al., 2012; Jendritzky et al., 2012)
based on user-configured personal characteristics (age, gender, height,
weight), metabolic rate, and clothing insulation.

3. Model validation

PanoMRT was validated through in-situ observations of human-
biometeorological data at the time of thermal panorama acquisition.
Model performance was assessed using standard model statistics such as
the Root Mean Square Error (RMSE), Mean Bias Error (MBE), and the
index of agreement (d) (Willmott, 1982). In addition, PanoMRT results
were compared to RayMan (Matzarakis et al., 2010) simulations to assess
the benefit of spatially explicit Ts observations for location-based TMRT

modeling. For this comparison, RayMan was run with hemispherical
black and white images generated from the thermal panoramas (assuming
a threshold of 4 °C for sky pixels) and the same meteorological forcing as
PanoMRT (observed Ta and RH but not Ts). Lastly, PET and UTCI were cal-
culated from human-biometeorological observations (Ta, TMRT, RH, v) and
default parameters for personal characteristics for PET (35-year old male,
1.75 m, 75 kg, clothing insulation 0.5 clo, metabolic rate 80Wm−2) for
comparison to PanoMRT and RayMan results to determine the impact of
spatially explicit Ts on thermal index calculations.

3.1. Study site

PanoMRT was developed, tested, and validated in hot and dry Tempe,
Arizona, USA. Tempe is situated in the East Valley of the Phoenix metropol-
itan area, a region in the Sonoran Desert of the U.S. Southwest with low
annual rainfall (237 mm) and low relative humidity (Köppen Climate
Classification subtype Bwh). With an average of 300 clear, sunny days per
year, air temperature peaks at or above 32 °C for an average of 175 days,
and maximum air temperatures frequently surpass 43 °C in June. To test
and validate PanoMRT, we chose 18 locations on Arizona State University's
5

Tempe campus that are within walking distance from each other to allow
for transect observations (Fig. 3). The campus is a 2.6-km2 area of intercon-
nected pedestrian malls and can be considered an open midrise local
climate zone (Stewart and Oke, 2012). We selected diverse sites with
respect to ground cover (asphalt, concrete, grass), sky view factor (fSVF),
and shading (trees, building tunnel, engineered shade canopies, fully
exposed). In addition, we conducted field observations on the Phoenix
Zoo main parking lot, which is located 5 km north of campus and has
minimal horizon limitation (fSVF = 0.98).

3.2. Thermal panorama retrieval and TMRT observations

Thermal panoramas were acquired on campus along with in-situ obser-
vations of human-biometeorological data on three hot, dry, clear summer
days in summer 2020: May 27, May 28, and June 16. Observational walk-
ing transects were conducted every 3 h from 6:00 h to 20:00 h local time
covering five to six locations per day. The Phoenix Zoo parking lot location
was monitored hourly on June 3, 2020 from 7:00 h to 17:00 h.

A FLIR Duo Pro R Dual-Sensor 4K Thermal Camera (640 × 512 pixels,
45° horizontal field of view) was attached to a Gigapanos rotational arm on
a tripod to automatically capture a matrix of 8 × 10 visual and thermal
images with 25 % overlap at each location (Fig. 4b). A complete 360°
scan took about 5 min. In post-processing, the sets of visual images were
arranged in a grid and stitched into an equirectangular panorama using
the stitching software PTGUI. The stitching parameters then served as a
template for creating the corresponding thermal panoramas (Fig. 5).

TMRT was observed at each location using the mobile weather station
MaRTy (Middel et al., 2021; Middel and Krayenhoff, 2019). MaRTy is a
human-biometeorological instrument platform that records 6-directional
radiation flux densities (Li and Ki), Ta, horizontal wind speed (v), and rela-
tive humidity (RH) at 2 s intervals (Fig. 4a). The platformwas placed in the
center of the panorama tripod location immediately after each thermal scan
to collect human-biometeorological data for 1–2min. Thefirst 15 records at
each location were removed to account for the response time of the Ta/RH
probe (sensor time constant 22 s, 63 % step change) and minimize the im-
pact of sensor lag (Häb et al., 2015); the remaining records were averaged
for each location and time to provide localized forcing data for the
PanoMRT validation (Ta, RH, v) and TMRT ground truth.

3.3. Results

3.3.1. Meteorological conditions and in-situ observations
Meteorological conditionswere similar acrossfieldwork dayswithmin-

imum Ta between 24 °C and 31 °C, maximum Ta between 41 °C and 43 °C,
and clear, sunny skies. RH ranged between 21 % and 25 % at 6:00 h and
below 10 % during the afternoon hours. Wind speed was generally low
(<1.0 m s−1 on average across all observations) with peak gusts of up to
4.3 m s−1.

TMRT varied considerably across locations and times of day, especially
between sun-exposed and shaded sites (Fig. 6). TMRT peaked in the after-
noon (between 15:00 h and 16:00 h) at open locations with high fSVF,
such as the sun-exposed parking lot location 10 (fSVF = 0.84) with
72.3 °C and the concrete path intersection 12 (fSVF = 0.81) with 71.0 °C.
In contrast, TMRT was close to Ta during the day under large, dense shade
trees (locations 4, 16, and 2) and below Ta inside a tunnel through a parking
garage (location 8). After sunset, TMRT was highest in a narrow east-west
canyon enclosed by concrete walls (location 6, 35.6 °C), under a metal
shade structure (location 1, 35.6 °C), and inside the tunnel (location
8, 36.9 °C). Coolest TMRT was recorded over grass after sunset (location
11, fSVF = 0.93, 22.9 °C).

Surfaces showed the greatest variability in temperature across surface
types, sun exposure level, and times of day. Irrigated grass exhibited the
lowest Ts at 6:00 h with 19.8 °C (location 3) and 19.2 °C (location 11)
and did not exceed Ta throughout the day. The hottest ground Ts in excess
of 60 °Cwas recordedmidday over a concrete path (location 12), an asphalt
road (location 9), and the Phoenix Zoo asphalt parking lot (location 10).



Fig. 3. Equirectangular panoramas of 18 observation sites on Arizona State University's Tempe campus and one site on the Phoenix Zoo parking lot (upper left panorama,
location outside map 5 km north of campus). For site metadata (fisheye photos, exposure, ground cover, sky view factor) see Supp. Table 1.
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The thermal panoramas illustrate the Ts distribution of surfaces in the 360°
surroundings of each location (Fig. 7).

3.3.2. PanoMRT and RayMan model performance
PanoMRT performs well overall (Supp. Table 3) with a Root Mean

Square Error (RMSE) of 4.1 °C for all observations (N = 145), which
meets the accuracy requirement of ±5 °C set in the ISO 7726 standard
Fig. 4. a) Mobile human-biometeorological instrument platform MaRTy (Middel et al.,
Camera on a Gigapanos rotational arm. For instrument specifications see Supp. Table 2
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(ISO, 1998) for heat and cold stress studies. The model exhibits an unsys-
tematic RMSE of 4.5 °C and a systematic RMSE of 0.7 °C, indicating that
model parameters are well-specified and the majority of the error results
from processes or model-observation differences beyond the scope of the
current model. This includes errors associated with observation procedures
and instrumentation setup: human-biometeorological observations and
thermal panoramas were not taken at the same time but successively, and
2021; Middel and Krayenhoff, 2019); b) FLIR Duo Pro R Dual-Sensor 4K Thermal
.



Fig. 5. a) Matrix of 8 × 10 overlapping photos from panorama scan at location 12; b) stitched visual panorama; c) corresponding stitched thermal panorama.
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MaRTy's net radiometers are subject to varying spatial exposure, because
they are 0.6–1.0 m apart. The Mean Bias Error (MBE) captures the average
bias in the prediction and is negative (−1.9 °C), meaning that PanoMRT
tends to underestimate TMRT. The slope of the regression line (Supp.
Fig. 1) supports this observation. The Mean Absolute Error (MAE), i.e. the
sum of absolute errors divided by the sample size, is 3.2 °C, and the index
of agreement (d), i.e. a standardizedmeasure of the degree of model predic-
tion error, shows excellent agreement with d = 0.98.

PanoMRT performance varies by time of day (6:00 h, 9:00 h, 12:00 h,
15:00 h, 18:00 h, 20:00 h), exposure (sun/shade), and shade type (tree/
engineered) (Fig. 8). The lowest RMSE (3.3 °C) is observed at 20:00 h
when incoming shortwave radiation is zero and the model solely relies on
the measured thermal panorama input. At this time of day, errors can be at-
tributed to an assumed fixed emissivity (0.95) for the thermal images, the
assumption that reflected longwave from surfaces originates from the sky
only, inaccuracies in the sky detection at the transition between the built
environment and sky, and the tripod surface temperature, which is in the
field of view of the camera and obstructs parts of the ground. In addition,
the model tends to underestimate Ts for sky pixels and therefore L for
open sites with a large fSVF (overall RMSE = 3.8 °C, MAE 3.0 °C, d =
0.93). Model results after sunrise (6:00 h) exhibit the highest RMSE
(5.0 °C) with a negative MBE (−2.3 °C). PanoMRT underestimates incom-
ing solar radiation at low sun angles, andmeteorological conditions change
quickly after sunrise, which introduces differences inMaRTy and thermog-
raphy observations that impact model validation and add to unsystematic
errors. The model performs equally well for engineered shade (RMSE =
4.2 °C) and tree shade (RMSE = 4.1 °C) due to available surface tempera-
ture observations for both shade types from thermal panoramas. Systematic
errors are low for all times of day, exposures, and shade types. The largest
RMSEs is observed at noon with 3.1 °C, otherwise RMSEs ranges between
0.7 °C and 1.6 °C.

PanoMRT performance also varies by location due to heterogeneous
urban forms. A majority of sites (120 of 145 observations across space
and time) exhibit a <5 °C difference between modeled and observed
TMRT, and more than half (75) of the modeling results are within 3 °C
of the MaRTy observations. Two sites show large discrepancies in the
morning: TMRT at location 18 (under a Palo Verde tree, fSVF = 0.17) is
overestimated by 11.2 °C during the 9:00 h transect, and TMRT at location
15 (sun-exposed concrete crossing, fSVF = 0.87) is overestimated by
11.2 °C during the 6:00 h transect. Both observations are subject to mea-
surement errors as one of MaRTy's net radiometers was inadvertently
shaded. In contrast, PanoMRT significantly underestimates TMRT for loca-
tions 11 (lawn next to Arizona State University's Hayden library, fSVF =
0.85) at 18:00 h, 1 (metal shade structure, fSVF = 0.10) at 16:00 h, and
7

17 (photovoltaic shade structure, fSVF = 0.04) at 12:00 h. The difference
in modeled and observed TMRT of −10.8 °C for location 11 is due to the
low sun elevation angle that leads to underestimated incoming shortwave
radiation in the model. TMRT estimation errors under engineered shade
result from inadvertent sun exposure of a net radiometer due to the off-
center placement of the sensors. Overall, the most challenging location
for PanoMRT to estimate TMRT is 19 (fSVF = 0.37), which is a plaza
surrounded by tall palm trees. The model is unable to handle semi-shade
or dappled shade and underestimates TMRT by −5.6 °C to −7.6 °C when
the sun is not visible in the upper hemisphere (obstructed by palm leaves,
shaded) and overestimates TMRT by 5.8 °C for the sun-exposed case at
12:00 h.

RayMan has an overall RMSE of 9.0 °C (Supp. Table 3) with an unsys-
tematic RMSE of 7.8 °C (mostly due to observation procedures and instru-
mentation setup) and a systematic RMSE of 4.4 °C. The MBE for all
observations (N = 145) is positive, indicating that RayMan tends to
overestimate TMRT. The MAE is 7 °C, and the index of agreement shows
good overall model performance (d = 0.89).

RayMan performance varies significantly by time of day, exposure, and
shade type (Fig. 8). The lowest RMSE is observed after sunset (3.2 °C).
Model results at 12:00 h and 15:00 h exhibit the highest RMSE (11.0 °C
and 11.4 °C), the highest MAE (8.5 °C and 10.6 °C), and the lowest d
(0.42 and 0.51). During mid-day, I and Ts peak, therefore modeling errors
in emitted longwave radiation are expected to be largest. With respect to
exposure, the MBE shows that RayMan overestimates shaded locations
and underestimates sun-exposed locations. In the shade, the RMSE is
11.8 °C for trees and 9.2 °C for engineered shade, respectively, due to over-
estimation of surrounding Ts. In the sun, the RMSE amounts to 8.2 °C. The
absence of reflected shortwave radiation in the model is likely a contribut-
ing factor to underestimated TMRT values in sun-exposed locations.

RayMan performance varies significantly by location. Simulations are
most accurate for open sites with high fSVF. Half of the modeling results
are within 5 °C of TMRT observations, while only 46 model runs yield
TMRT results within 3 °C of MaRTy observations. Locations 8 (tunnel,
fSVF= 0.00), 7 (dense tree canopy cover, fSVF= 0.02), 2 (dense tree canopy
cover, fSVF = 0.02), and 4 (medium dense tree canopy cover, fSVF = 0.32)
exhibit the largest TMRT error of up to −24.9 °C, −19.3 °C, −18.1 °C,
and − 17.2 °C respectively, during the 12:00 h transect. TMRT is
overestimated at all times at the four locations due to a modeling error
of shaded Ts of up to 8.8 °C, which translates into overestimated longwave
emission.

In contrast, RayMan underestimates TMRT by up to−17 °C for open lo-
cations 13 (lawn next to Arizona State University's Old Maine, fSVF = 0.84)
and 12 (sun-exposed concrete crossing, fSVF = 0.87) at low sun angles



Fig. 6. In-situ mean radiant temperature observations withMaRTy for all field work days and locations: a) May 27, 2020; b)May 28, 2020; c) June 16, 2020; d) June 3, 2020.
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during the 6:00 h transect. Some of these errors are due to inaccuracies in
the fisheye photo where the pixel of the calculated sun position is black
(i.e. the location is shaded) but the neighboring pixels are white, and the
observations are actually sun-exposed (or vice versa, RayMan models sun-
exposure for a shaded location). Analogous to PanoMRT, RayMan struggled
to model the semi-shade of location 19 (plaza with tall palm trees, fSVF =
0.37), and measurement errors due to accidental sun or shade exposure of
8

one of MaRTy's net radiometers led to inadvertent differences in modeled
and observed TMRT for locations 18, 15, 17, and 1.

3.3.3. Mean radiant temperature error propagation into thermal indices
Since PET and UTCI are driven by TMRT, modeling errors related to

radiative heat fluxes propagate into PET andUTCI outcomes. Here, temper-
ature, humidity, and wind speed are provided by the MaRTy



Fig. 7.Thermal panoramas for all locations observed on June 16, 2020: after sunrise (6:00 h),mid-morning (9:00 h), midday (12:00 h), midafternoon (15:00 h), before sunset
(18:00 h), after sunset (20:00 h).
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Fig. 8.Model performance statistics for PanoMRT and RayMan including Root Mean Square Error (RMSE), unsystematic RMSE (RMSEu), systematic RMSE (RMSEs), index of
agreement (d), andMean Bias Error (MBE).R2 values are illustrated in Suppl. Fig. 1–3. Violin plots of PanoMRTmodel errors are shown in Suppl. Fig. 4. Performance statistics
are summarized in suppl. Table 3.
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biometeorological station, and therefore all errors in PET and UTCI derive
from TMRT modeling. PanoMRT results for PET yield an overall RMSE of
2.6 °Cwith anMAE of 2.2 °C,MBE of−1.53 (model tends to underestimate
PET), and d of 0.97. Reference RayMan simulations without Ts forcing have
an RMSE of 6.4 °Cwith anMAE of 5.3 °C,MBE of 4.80 (model tends to over-
estimate PET), and d of 0.85. Concurrent withTMRT estimates,model results
for PETmeet the accuracy requirement of ±5 °C set in the ISO 7726 stan-
dard for heat and cold stress studies when spatially explicit Ts are used as
model input. UTCI is less sensitive to TMRT and Ts of the built environment.
PanoMRTmodelsUTCIwith anRMSE of 1.22 °C and RayManwith anRMSE
of 2.31 °C.

4. Discussion

Since PanoMRT and RayMan have similar procedures to calculate in-
coming shortwave radiation, forcing both models with MaRTy observed
human-biometeorological data and comparing results allows to quantify
the benefit of using spatially explicit, human-centric, 3-dimensional Ts
(Tped) for TMRT modeling. RayMan exhibits larger errors than PanoMRT
for all times, exposures, and shade types except at 20:00 h when RMSE is
similar (3.2 °C and 3.3 °C). Overall, thermal panoramas reduce RMSE
from 9.0 °C to 4.1 °C, which meets the accuracy requirement of ±5 °C set
in the ISO 7726 standard. The biggest model performance boost is observed
at 12:00 hwhen Ts are highest.RMSE improves from 11.0 °C to 4.0 °Cwhile
d increases from 0.42 to 0.97. Previous studies confirm that RayMan over-
estimates Ts for enclosed sites, especially during the summer, which results
in a large positive MBE for shaded sites with low fSVF (Colter et al., 2019;
Crank et al., 2020; Gál and Kántor, 2020; Krüger et al., 2014; Lee and
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Mayer, 2016). While sun exposure is the main driver of variability in
TMRT under clear sky conditions (Lee et al., 2014; Lindberg et al., 2016),
longwave fluxes gain importance in denser built environments (Lindberg
et al., 2014). Middel and Krayenhoff (2019) found that lateral components
of the longwaveflux are the largest contribution toTMRT, rendering Ts of the
surrounding built environment the second most important input variable
after sun exposure for accurate TMRT modeling as evidenced in the perfor-
mance improvement reported here. Spatially explicit Ts forcing also en-
hances PET and UTCI calculations, but PET is more sensitive to accurate
Ts input than UTCI.

As for all image based TMRTmodels, PanoMRT and RayMan are sensitive
to the location of photo acquisition (fisheye image or panorama) in com-
plex urban geometries. Sun exposure may be miscalculated due to pixel
misalignment, especially at the transition from horizon limitation to sky
and in tree canopies. For some locations, our model evaluation was further
impacted by observation procedures and instrumentation setup. MaRTy
observations were taken after the thermal panorama was acquired, not
concurrently, and in a few instances, one of MaRTy's net radiometers was
inadvertently exposed to the sun or shade. Those observational flaws
contribute to the unsystematic error in both models and do not bias the
model results.

PanoMRT is not the first TMRT model based on thermal photography.
Several approaches have been developed in recent years, most of which
are restricted to indoor settings. Lee et al. (2019) developed a system
using angle factors and an infrared thermal camera to model TMRT for
large stadiums. Their setup overestimated TMRT by 0.9 °C with R2 = 0.83
compared to globe thermometer observations and was subsequently im-
proved to a pan-tilt scanning system (Lee and Jo, 2021). Initial tests of
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the system in indoor and longwave-dominated outdoor settings yielded an
R2 of 0.80 (Lee and Jo, 2022). Natephra et al. (2017) integrated thermal im-
ages with 3-dimensional Building InformationModels (BIMs) to investigate
the performance of building envelopes and occupancy comfort levels but
did not provide performance statistics. More recently, Acuña Paz y Miño
et al. (2020) developed the “4π”method to evaluate outdoor radiant envi-
ronments using photographic high dynamic range (HDR) images and
longwave infrared images. The resulting short- and longwave radiance
maps yielded TMRT values within 2 °C of globe temperature readings for
15 observations that were conducted in France and Spain during mostly
cloudy winter conditions and at night, so impacts of direct shortwave radi-
ation were minimal. In contrast, Merchant et al. (2022) collected longwave
and shortwave panoramas under clear sky, hot, dry conditions in Tempe,
Arizona using a SMaRT-SL sensor platform and report a significant im-
provement over the previous version of the system,which relied on thermal
point clouds (Aviv et al., 2021). Their analysis mainly focused on compar-
ing directional short- and longwave panoramas to a 6-directional net radi-
ometer setup but findings suggest that integrating those fluxes into TMRT

would yield accurate results.
PanoMRT is in development and has several limitations with respect to

shortwave and longwave calculations. The model currently underestimates
longwave radiation for sky pixels, i.e. TMRT is underestimated for sites with
high fSVF. In addition, the threshold to determine sky pixels (4 °C) works
well for clear hot dry summer conditions but needs to be adjusted for
other meteorological conditions, seasons, and geographic locations. For
example, Asawa et al. (2022) manually determined 10 °C and 18 °C as
appropriate sky pixel thresholds for a thermal imaging system in Tokyo.
Alternatively, sky pixels could be detected automatically from the visible
photographs that are used to determine the stitching parameter for the
thermal images. Image segmentation approaches using convolutional neu-
ral networks to identify sky pixels have gained popularity in recent years
and can also handle cloudy conditions (Middel et al., 2019; Nice et al.,
2020; Zeng et al., 2018).

At sun-exposed locations, PanoMRT assumes an average albedo of 0.20
for the surrounding surfaces to calculate reflected shortwave radiation.
Reflected shortwave contributions are likely overestimated, because the
model assumes equal reflection from all solid surfaces, even shaded
surfaces, when the location is sun exposed. This yields a “worst-case”
TMRT for sun-exposed locations. Similarly, reflected shortwave radiation is
assumed to be zero for shaded locations and therefore underestimated.
While this approach simplifies exposure of the complex built environment
(e.g. in reality, parallel building walls are not simultaneously exposed),
the impact of TMRT is <1 °C. Longwave radiation in Phoenix is the largest
contributor to TMRT (Middel and Krayenhoff, 2019), and the impact of
sun exposure on surface temperatures is directly captured through the
thermal panoramas. Merchant et al. (2022) observed reflected shortwave
radiation in the built environment using a SMaRT-SL shortwave array
sensor that produces panoramic views of shortwave radiant heat fluxes
and found that reflected shortwave radiation can be on the order of
100 Wm−2 during midday. Most microclimate models that do account for
reflection use raytracing and view factors of surface patches to estimate
reflected shortwave radiation (Krayenhoff and Voogt, 2007; Lachapelle
et al., 2022; Lindberg et al., 2016; Simon et al., 2021). A similar approach
could be incorporated into PanoMRT using image segmentation to detect
various surface types and assign appropriate radiative and thermal proper-
ties to each pixel. Classified surface types would also be required to
estimate view factors of buildings and vegetation in each direction to refine
the calculation of D (Eqs. (16)–(20)) as implemented by (Lindberg et al.,
2008).

Currently, PanoMRT assumes that the thermal panoramas are
corrected for emissivity. An appropriate correction for target emissivity
is required for accurate Ts measurements, because Ts of an object may
appear to be emitting more radiation than it really is, for example, a
metal bench. Our validation sites were chosen to not have extensive sur-
faces with low emissivity in the surrounding to minimize the impact of
emissivity on the results.
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Lastly, PanoMRT cannot model dappled or partial shade because sun
exposure is modeled in a true/false fashion with no option to define
shade transmissivity. This leads to inaccurate TMRT estimates under trees
with low leaf area density and engineered structures such as photovoltaic
canopies and cloth umbrellas. Konarska et al. (2014) measured the trans-
missivity of total and direct solar radiation through foliated and leafless
tree crowns in Göteborg, Sweden and found a wide transmissivity range
from 1.3 % to 51.9 %. Results were incorporated into the SOLWEIG
model (Lindberg et al., 2008) to improve TMRT calculations. Transmissivity
estimates could be incorporated into PanoMRT by detecting overhead
obstructions in the photographs and estimating transmissivity using sky
versus non-sky pixels of the obstruction.

PanoMRT is a hybrid modeling approach that relies on Ts observations
to calculate longwave radiation and models shortwave radiation based on
the sun position and simplemeteorological forcing. As itmeets the accuracy
requirement of±5 °C set in the ISO 7726 standard, it has the potential to be
used in place of the 6-directional setup, which is considered the gold stan-
dard tomeasure TMRT but is a major research expense (>$20 k). Globe ther-
mometers to measure TMRT are more affordable ($500) but have a slow
response time and require precise heat loss estimates (Vanos et al., 2021).
The current thermal panorama setup measures the surroundings in
2–3 min and could be improved further, e.g., by using a FLIR ONE camera
attachment for phones that directly captures panoramas without the need
for stitching. In summary, PanoMRT constitutes an affordable, practical
alternative to current TMRT acquisition and modeling approaches.
5. Conclusions

Mitigating urban overheating through urban design interventions
(e.g., trees, cool pavement) is a top priority of the 21st century for cities
around the world. Assessing the impacts of design changes on human ther-
mal exposure requires fine-scale information on radiative heat fluxes in the
built environment.We demonstrated the importance of human-centric, spa-
tially explicit Ts data, i.e., approximated Tped observations using panoramic
thermography, for capturing complex longwave radiation patterns that re-
sult from a patchwork of surface types with varying orientation, diurnal
sun-exposure, and material characteristics. PanoMRT model results show
that Tped measurements are most important during midday (peak Ts) and
for shaded locations, because Tped captures Ts underneath the shade in
contrast to horizontal Ts from thermal satellite imagery. The use of spatially
explicit Ts as model input improved TMRT estimates such that they met the
accuracy requirement of ±5 °C set in the ISO 7726 standard for heat and
cold stress studies. TMRT modeling errors propagated into thermal comfort
index calculations more strongly for PET than UTCI but significantly im-
proved modeling accuracy for both indices, indicating that Tped is also
highly relevant to human thermal comfort assessments. Ts has long been
recognized as key parameter in urban climate, but traditional acquisition
methods lack spatial resolution and do not capture pedestrian-relevant sur-
faces patches. Our work elevates the importance of human-centric, street-
level Ts measurements for thermal exposure assessments.
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