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Abstract

The manufacture of large wind turbine blades requires well-controlled processing conditions to prevent defect formation and
thus produce high-quality composite blades. While the physics-based models provide accurate computational capabilities
for the resin infusion and curing process for the glass fiber composites, they suffer from high computational costs, making
them infeasible for fast optimization computation and process control during manufacturing. In light of the limitations, we
describe a machine learning (ML) approach that employs a deep convolutional and recurrent neural network model to predict
the spatio-temporal temperature distribution during the vacuum assisted resin infusion molding (VARIM) process. The ML
model is trained with the “big data” generated from the physics-based high-fidelity simulations. Once fully trained, it serves
as a digital twin of the blade manufacturing process. Validation is made by comparing simulation results with experimental
data on a unidirectional glass fiber composite laminate plate (44 plies, 2 m long and 0.5 m wide). The trained and validated
ML model is then extended to evaluate the role of critical VARIM processing parameters on temperature distribution. With
the predictive accuracy of 94%, at over 100 times faster computational speed than the physics-based simulations, the ML
approach established herein provides a general framework for a digital twin for temperature distribution in the composite
manufacturing process.

Keywords Vacuum assisted resin infusion molding (VARIM) - Machine learning (ML) - Deep convolutional neural network
(CNN) - Recurrent neural network (RNN) - Long short-term memory (LSTM) - Physics-informed surrogate model

Introduction capacity. The blade spans increase continuously with time,

and are projected to reach 120-150 m or longer in the near

In the past few decades, significant efforts have been made
in the design and manufacture of large-scale wind turbine
blades with increasing efficiency and energy production
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future (Cotrell et al., 2006; Department of Energy, 2022;
Griffith & Ashwill, 2011). Glass fiber-reinforced polymers
(GFRP) are often used as the primary structural material
in wind blades due to a combination of properties includ-
ing corrosion-resistance, high strength-to-weight ratio and
high stiffness, and low costs. GFRP manufacturing requires
impregnating glass fibers with a polymer matrix such as
epoxy. The most prevalent method in manufacturing long
wind turbine blades is vacuum-assisted resin infusion mold-
ing (VARIM) (Hsiao & Heider, 2012), a process that includes
applying vacuum/pressure, epoxy resin infusion to fill the
highly permeable medium (Hsiao et al., 2000), mold filling
(Sun et al., 1998), and heating to properly cure the polymer
matrix under thermomechanical conditions (Matsuzaki et al.,
2011). It is the goal of blade manufacturers to manufacture
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large composite parts without defects. Efforts on control-
ling the VARIM process have been made in the past, on the
flow rate control (Bender et al., 2006; Nalla et al., 2007),
post-filling flow monitoring (Simacek et al., 2009, 2012),
and controlling other process conditions, such as resin inlet
and outlet pressure control, and mold temperature control
(Kedari et al., 2011). It is noted that under- and over-heating
can introduce inadequate curing and chemical degradation,
respectively (Wisnom et al., 2006), and that defects such
as high residual stress, and micro-buckling fiber tows can
form due to improper processing conditions, which lead to
significant delamination (Upadhyaya et al., 2013), reduced
compressive strengths, and fatigue life (Fu & Yao, 2022;
Samborsky et al., 2010). To date, however, defects such as
thermal waves are still often formed in long blades, and as
such, defective blades are scrapped, leading to an increase in
blade costs. Under such a situation, for each new blade design
with a material system, it takes years of effort for wind tur-
bine blade manufacturers to refine their process protocols to
produce blades with minimum defects.

Understanding the thermomechanical process in VARIM
and their role on stresses, strains, displacements, and temper-
ature distributions, and implementation of a fast high-fidelity
digital twin for the manufacturing process for process con-
trol can potentially allow operators to take actions in time
during the VARIM process to reduce or prevent defect for-
mations. To date, however, multi-physics based simulations
take a long time (hours to days, or even longer) to run. The
lengthy computation times prevent the use of physics-based
models for real-time process control. As the first step towards
developing process control, rapid modeling methods and pre-
dictive tools are sought after for temperature distribution as
a function of time, so that they can be implemented for the
control of infusion and curing cycle for composite blades to
prevent defect formation.

Modeling the VARIM and the epoxy resin curing pro-
cesses, in particular, spatio-temporal temperature distribu-
tion due to the resin reaction and related heat transfer (Chiu
et al., 2000; Struzziero & Teuwen, 2019), and their effects
on defect formation (Potter, 2009), such as chemical, ther-
mal, and cure shrinkage (Ersoy & Tugutlu, 2010; Kravchenko
et al., 2014), represent a critical challenge due to the cou-
pling of the thermo-chemo-mechanical behavior associated
with the curing kinetics (Zhongliang et al., 2019) and thermo-
fluidic-solid response (Ouahbi et al., 2007). Numerous efforts
have been made in the past to address the challenges using
physics-based simulations (Shojaei et al., 2003), including
implementation of non-isothermal simulations of the resin
transfer molding process (Mal et al., 1998), modeling of the
resin infusion and cure processes in large composites with
validations (Ma et al., 2017), and simulations of the resin
infusion process considering the compaction and relaxation
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of the fabric laminate in the dry and wet state. (Govignon
et al., 2008).

Once a validated high-fidelity multiphysics simulation
methodology is established, it becomes possible to develop
predictive tools, or “digital twins”, of the VARIM process.
In a digital twin of the VARIM, it takes all inputs including
composite layup (ply orientations, etc.), geometry, process
conditions (vacuum pressure, mold temperature), and mate-
rial properties of the fibers and matrix (viscosity, modulus,
permeability, shrinkage as a function of degree of cure).
Based on these inputs, the digital twin will provide predictive
capabilities on a variety of manufacturing outcomes, includ-
ing resin flow front measurements (Mathuw et al., 2001), the
irregular resin flows identification in small channels inside
the composite layup (also known as the race-tracking phe-
nomenon) (Devillard et al., 2005; Siddig et al., 2018); filling
stage prediction with real-time uncertainty estimation (Tifk-
itsis & Skordos, 2020); resin flow forecasting using flow
control scheme (Matsuzaki et al., 2013), and feedback control
loop based on finite difference methods (Nielsen & Pitchu-
mani, 2002); composite structural health monitoring using
optical fibers with fiber Bragg gratings for VARIM (Eum
et al., 2007); and process-induced void formation prediction
in the composite parts using numerical methods (Barari et al.,
2019).

The multiphysics models are validated from experimental
results, including at times big data collected from different
sources, such as wireless sensors under very-high temper-
atures (Nicolay et al., 2017), and also thermocouple data
obtained from a local wireless network (Arnold et al., 2015),
towards smart manufacturing (Kusiak, 2017a, 2017b), to
establish a digital twin for rapid predictions (Tao et al., 2018).
It is noted that these sensors in general provide only lim-
ited data, they cannot provide the full field data needed for
training a robust data-driven model. In this context, experi-
mentally validated simulation models are capable of bridging
this gap by integrating physics-based models with data-
driven/machine learning (ML) tools for process modeling
and optimization. This integration is crucial as the physics-
based models are known to be accurate after validation and
provide high spatio-temporal resolution, but not feasible for
predicting in real-time the effects of the multi-physics pro-
cess of the composite curing.

With advances in powerful computational tools and com-
puter algorithms, the potential of applying artificial intel-
ligence (AI) and ML-driven approaches in many fields
to solve complicated tasks is within reach. For instance,
researchers have created a powerful machine learning model,
named AlphaFold, to accurately predict over 200 million
three-dimensional protein structures with atomic accuracy
(Jumper et al., 2021), bridging the gap between the inca-
pable physics-based computational methods and the dire
need for understanding the function of proteins based on the
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protein structure. In other challenging domains, a deep neu-
ral network-based Al model that learns from human expert
moves, AlphaGo, becomes the first computer program to
defeat the best professional human player of the board game
Go (Silver et al., 2016), which is thought as one of the most
complex strategy board game due to up to 2509 possible
moves. In addition, its improved version, AlphaGo Zero, the
Al model that is solely based on the reinforcement learn-
ing algorithm (Kaelbling et al., 1996; Mnih et al., 2013;
Sutton & Barto, 2018), and trained without human data,
has achieved an even more overwhelming victory record of
100-0 defeating its previous version (Silver et al., 2017).
Another Al model that is also based on powerful deep rein-
forcement learning algorithms with mixed-scenario enables
real-time control policy-making such that the model defeats
the best human e-sports drivers in the PlayStation game Gran
Turismo (Wurman et al., 2022), a racing simulation video
game with highly complex multi-agent interactions. With
newly developed ML algorithms, and integrations of differ-
ent neural network architectures into the large Al model,
which is trained on the enormous and continuously increas-
ing database, many more Al tools become available, such as
DALL-E (Ramesh et al., 2021), that can create pictures from
language inputs; chatGPT (OpenAl, 2022), that is capable of
having human-like conversations through creating the text
and code; and finally, GATO (Reed et al., 2022), a general-
ized agent that is capable of performing all tasks mentioned
above.

In the AI applications in the manufacturing sector, deep
neural network-based surrogate models have been imple-
mented to optimize the composite textile draping process
(Pfrommer et al., 2018), optimizing the resin flow distri-
bution by training a deep neural network using 3D finite
element (Szarski & Chauhan, 2023), and predict the pro-
duction progress in Industrial Internet of Things (IIoT) in
manufacturing using a convolutional neural network (CNN)-
long short-term memory (LSTM) based transfer learning
system (Liu et al., 2022). In addition, in polymer compos-
ite processing and manufacturing, many studies are devoted
to incorporating artificial neural networks (ANN) (Zhang
& Friedrich, 2003), and other ML methods to account for
defects detection using ultrasonic signal classification and
imaging processing techniques (Meng et al., 2017), auto-
mated visual detection of geometrical defects (Djavadifar
et al., 2021), predictions of cure kinetics parameters (Goli
et al., 2020), and mechanical properties (Zhou et al., 2021).
In predicting the spatio-temporal temperature distribution in
manufacturing composite parts, Amini Niaki et al. devel-
oped a physics-informed neural network to simulate the
temperature of composite materials under curing based on
the thermochemical evolution due to exothermic heat transfer
(Amini Niaki et al., 2021), however, the temperature predic-
tion is only one-dimensional, and does not utilize the large

data available that can be potentially learned from. To the best
of our knowledge, there has not been a comprehensive and
easy-to-adapt model for fast, full-field, spatially, and tempo-
rally coupled temperature prediction for the VARIM process.

Despite the significant progress made thus far, physics-
based predictive tools for the VARIM process still have
a critical shortcoming—Ilengthy computational time—that
prevents them from implementation in extensive design
optimization analysis, and real-time process controls. To cir-
cumvent this limitation, an attempt is made in this work to
use machine learning to train the “big data” to develop a
fast digital twin. In light of the high expenses required to
conduct VARIM experiments which provide only limited
experimental data, we use validated multiphysics simulations
to generate a large dataset to train the neural network-based
digital twin.

Multiple steps are taken in this study to achieve the objec-
tives, including firstly, designing and conducting a lab-scale
VARIM experiment based on existing works and inputs from
industry collaborators as the initial step; next, establishing
a fluid, thermal, and chemical coupled multi-physics finite
element model under the exact experimental conditions and
using properties of the same materials as ones used in the
VARIM experiment performed; then, generating temperature
history datasets from the validated simulations; and lastly,
developing a deep convolutional neural network (CNN) and
recurrent neural network (RNN)/long short-term memory
(LSTM)-based ML model to predict the full field three-
dimensional temperature distribution as a function of time
during the VARIM process. Taking advantage of its accurate
and fast prediction capabilities, the developed ML framework
is extended to establish the link between the spatio-temporal
temperature mapping and key processing parameters. The
fast predictions from this ML-based model with a period of a
few seconds enables operators to monitor and adjust the man-
ufacturing conditions in real time so that the part temperature
can be maintained in a certain range to avoid defects from
occurring. Promising prediction results of the model devel-
oped in this study demonstrate the potential of the model for
process optimization and control by tuning the parameters
“on-the-fly”.

The rest of the paper is organized as follows. A physics-
based finite element model is introduced first for the sim-
ulation of the VARIM process. Next, the physics-based
simulation model is validated by a VARIM experiment.
In “A deep neural network-based machine learning (ML)
model for the VARIM process” section, the machine learning
model with a general deep learning structure is developed,
consisting of a CNN-based autoencoder for spatial feature
extraction, and an RNN/LSTM-based temporal model for
predicting the temperature evolution during the VARIM pro-
cess. This CNN-RNN/LSTM model is trained using the finite
element simulation results that are validated by a VARIM
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Fig. 1 Multi-physics coupling mechanisms in the composite curing pro-
cess

experiment on a composite laminate plate of 2 m by 0.56 m
by 6.8 cm, with a length-to-width ratio of about 4:1. The
model is tested to be capable of predicting the full-field tem-
perature history, and further extended to predict the full-field
temperature distribution at the end of the resin curing process
based on key processing parameters, including four external
control temperatures, which are designated critical in caus-
ing uneven epoxy resin curing process and further inducing
thermal buckling and other defects in the fully cured glass
fiber epoxy composite parts, if not carefully optimized and
controlled. Finally, remarks are made on the expansion of the
proposed framework to real-time process control and appli-
cation to wind turbine blade manufacturing.

A physics-based model for VARIM
and composite curing processes

We describe first the framework for the multi-physics simu-
lation framework for the resin curing process. Composite
curing involves the coupling of curing kinetics, thermo-
fluids, and thermo-mechanical simulations as shown in
Fig. 1. The mathematical model for each physical process
is described in Table 1. The commercial code PAM-RTM
and ABAQUS have been employed for simulations of the
VARIM and curing processes. For this work, we focus on the
coupling between thermo-fluidic behavior and curing kinet-
ics. The governing equations are briefly described below.

In an infusion-based curing process, the flow of poly-
mer medium such as epoxy resin in the fiber fabric follows
Darcy’s law, given as

3
Uy =
1 .
v, | = ——I[K1| 2 |, (D
y /'L By
)
v, P
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in which vy, vy and v, are the flow velocity in the x, y, and
z-direction, p is viscosity assuming Newtonian flow, p is
pressure, and the matrix [K] is known as the permeability
tensor and has nine components in general.

The thermal/chemical equation is

da

oT
pC,,¥+p,Cprv~VT:V~(K~VT)—prAhdt, 2)

in which p and p, are the mass densities of the composite
and epoxy resin, respectively; Cp, and Cp, are the specific
heat of the composite and epoxy resin, respectively; T is
temperature, v is the flow velocity resolved from Eq. (1).
The second term represents the convection effects and V is
the gradient operator, the third term is the diffusion term
with « the conductance matrix, and the last term is due to
the chemical reaction in which A# is the enthalpy of resin
polymerization and « is the curing degree resolved from the
kinetic model as described next.
The kinetic equation is given as

a = f(T, a), 3)

in which « is the degree of curing and f is a function of
temperature and curing degree in the kinetic model. In this
study, we use an isoconversion curing kinetic model, which
is derived based on the well-known Kamal-Sourour model
(Kamal & Ryan, 1980; Kamal & Sourour, 1973).

The isoconversion curing kinetics model is given as

da E(x)
ﬁﬁ = A(a) exp(—ﬁ)f(oc), 4

in which g represents the heating rate, E is the activation
energy, A is the pre-exponential factor.
Taking logarithmic on both sides of Eq. (4) gives

E(x)
RT (1)

In fl_(: =In(A(x)) — +In(f(@)). (@)

From the above isoconversion curing kinetics model, the
curing degree is expressed as

‘jl—‘: = A@) - f(@)- e ¥, ©)

Once the parameters are identified by fitting the modeling
results to the experimental data, the curing degree is cal-
culated from the given temperature history recorded from
experiments, which is shown in Fig. 2.

Heat convection is described by Newton’s law of cooling,

0 = hAAT (1), (7)
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Table 1 Key physics and

mathematical models for the Physics Phenomenon Mathematical model Code
simulation of the VARIM process
Rheology Flow in porous media Darcy’s law PAM-RTM
Variation of viscosity Constitutive law (Newtonian or
non-Newtonian)
Thermal Mold: conduction, and loss from  Heat equation, transfer coefficient
the surface (convection)
Part: heat conduction, Equation of convection—diffusion
convection, and generation; with source term
superficial heat loss
Chemical Transport of chemical species, Equation of convection—diffusion
diffusion, polymerization with source term, and kinetic
model (Kamal-Sourour)
Mechanics” Distortion/buckling, Conservation of linear momentum ABAQUS

curing-induced residual stress,
shrinkage of resin/composite

(Newton’s 2nd law),
micromechanical model, and

in cure

thermal expansion model

*The multi-physics processes and models are not considered in the scope of this study
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Fig.2 The curing degree as a function of temperature and time, as calculated from the measured temperature history in an experiment: a Curing
degree as a function of temperature; b Curing degree as a function of time

where Q is heat transfer rate, & is the convective heat trans-
fer coefficient, A is heat transfer surface area, and AT (¢)
is the temperature difference between the environment and
the composite laminate made in the VARIM, which is the
time-dependent value.

To solve the coupling equations describing different phys-
ical processes, the resin flow and thermal/chemical equations
are resolved first. Detailed simulation steps and model cal-
ibration/validation processes are provided in the following
sections.

Physics-based model calibration
and validation by a VARIM experiment

Optimization of the entire composite manufacturing process
requires the collective efforts of experiments, high-fidelity
simulations, and a fast-prediction digital twin for monitoring
and analyzing the actual manufacturing progress in real-time.
In the first step, the physics-based model is calibrated and
validated by the experiment.

A VARIM experiment conducted in the factory

Figure 3 shows the top and side views of a small-scale
VARIM experiment set up for a composite plate of dimen-
sions of 6.8 cm by 2 m by 0.56 m. The glass fibers used
are UD1800 (SAERTEX GmbH & Co.KG, Germany), and

@ Springer
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Fig.3 Schematic of the designed
VARIM experiment setup
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the epoxy used is 780E/786H-B (Olin™ EPOXY, USA). The
epoxy resin inlet and outlet are located on the opposite side
of the 44-ply glass fiber sheet pileup, which is stacked on top
of the heating table. A total of ten thermocouples are placed
at the mid and top layers to continuously record the temper-
ature. The number and the locations of the thermocouples
are determined based on past experiments, and information
from the reference (Ma et al., 2017), where a similar setup
was practiced so that the VARIM experiment and the mod-
eling accuracy are not affected.

A 3D view of the actual experimental setup is shown in
Fig. 4 with the inset illustrating the part layup. The lab-scale
VARIM experiment was conducted at TPI Composites, Inc.
Three primary steps include: laying up and flattening each ply
of the 44-layer unidirectional dry glass fabric with the flow
media, Teflon peel ply, and bagging film inserted at different
locations between the glass fabric plies as illustrated by the
inset in Fig. 4; pre-fixing epoxy resin with resin hardener; and
arranging the resin feed line at the inlet and vacuum outlet.
Six batches of mixed epoxy resin weighing 28.4 kg are used
to infuse 44 plies of glass fabric (UD1800: unidirectional,
1800 g/m?) with a total mass of 85.5 kg. The entire VARIM
process is performed in a composite cleanroom on a table
made of the same glass fiber epoxy composite with heating
elements attached so that the heat applied from the bottom is
precisely controlled. The epoxy resin feed line and vacuum
outlet are located on the opposite side of the glass fiber sheet
layout, with a 0.2 m wide buffer zone arranged to ensure
a good flow of the liquid-state epoxy resin. Similar to the
large wind turbine blade manufacturing process, flow media
is also used to enhance the epoxy resin flow at the interface
of the glass fiber sheet and the tabletop surface, and multiple
studies exist on estimating the heterogenous permeability of
this distribution media (Gokce et al., 2005; Yun et al., 2018).

@ Springer

L6 ! | | I |
L L6 . L6 . L/6.. L6 . L6

The thermocouples placed at all ten locations and the table
surface record the temperature profiles as shown in Fig. 5.
It is noted that the resin infusion process ends after 60 min,
after which both resin inlets and outlets are closed and sealed
to maintain the vacuum inside the vacuum bag. A blanket is
used to cover the entire composite top surface to reduce heat
loss. The table heating temperature is set to 45 °C during the
first 200 min, then increased to 80 °C and kept for another
100 min, and subsequently reduced to 20 °C until the end
of the experiment as indicated by the red line in Fig. 5. The
heating temperatures, 45 °C, 80 °C, and 20 °C, and their
corresponding durations are similar to the ones in the actual
blade manufacturing process.

The overall temperature trends at all ten locations are syn-
chronized, and temperatures at the five locations at the mid
surface are slightly higher than the ones on the top surface.
This is largely due to the following two reasons: First, the
heat is transmitted from the heaters on the bottom through
mid surfaces to the top layers, during which heat spreads
across all layers. Thermal convection between the top layers
and the environment leads to more heat loss compared to the
mid surface. Second, the surface cover is removed at the time
around 370 min, and the tabletop temperature is set back to
20 °C, which causes a steep drop in temperature as observed
in all locations. The recorded temperature provides impor-
tant information and insight regarding the epoxy resin curing
progress. The temperature data is also used to calibrate the
physics-based simulation model as detailed in the following
section.
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Fig.4 Schematic diagram, including the part layup inset, of the VARIM experiment conducted in the TPI Composites, Inc. laboratory

Fig.5 Temperature readings at
all ten locations of the VARIM
experiment (Color figure online)
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Physics-based model calibration and validation
using experimental data

Infusion and curing simulations are conducted using the
commercial code PAM-RTM, which provides multi-physics
based simulation capabilities using models listed in Table 1
and described in “A physics-based model for VARIM and
composite curing processes” section. The primary objective
of the simulations is to establish a validated model based
on the VARIM experimental setup described in “A VARIM
experiment conducted in the factory” section.

To calibrate the model, we compare the simulation results
with the experimental data, so that the finite element model
generates very closely matched resin flow and temperature
results. Material properties and parameters for the bound-
ary conditions used in the model are shown in Table 2. The
ones calibrated from the experiment are marked by asterisks.
Material properties of the epoxy resin used in the experi-
ment, including density, coefficient of thermal conductivity,
Newtonian viscosity, and specific heat, are obtained directly
from the specs sheet provided by the epoxy resin manufac-
turer. The principal directions of the permeability tensor of
the glass fiber sheet are assumed to align with the in- and

200

400 500 600 700 800 900
Time (mins)

300

out-of-plane directions of the glass fiber sheet and the cor-
responding components are given as Ky, Ky, (in-plane), and
K, (out-of-plane). These values are calibrated based on the
recorded resin front flow from the experiment. The coeffi-
cient of thermal conductivity of the resin-infused preform is
taken from the reference (Ma et al., 2017), which is measured
on a similar system using the same materials. Two types of
boundary conditions are prescribed. The first is the temper-
ature imposed, including the environment air temperature,
which is set to be 20 °C, and the tabletop temperature, which
is prescribed according to the temperature history given in
Fig. 5. The second is the convection coefficients, including
the ones between the tabletop and the composite, and between
the composite top and the environment air. According to the
baseline values measured and principles explained in the ref-
erence (Ma et al., 2017; Struzziero & Teuwen, 2019), the
convection coefficient between the tabletop and the compos-
ite is set at 5.5 W/(m?- K), since the contact media has not
changed during the experiment. The convection coefficient
between the composite top and the environment is calibrated
to match the temperature readings of the thermocouples from
the experiment. Thermal insulation is applied 60 min into the
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Table 2 Material properties and imposed boundary conditions in simulations

Material properties

Glass fiber sheet (UD1800, SAERTEX GmbH & Co.KG)

Resin-infused preform

Boundary conditions Temperature imposed (°C)

Convection coefficient [W/(m?- K)]

Epoxy resin (780E/786H-B, Olin™ EPOXY)

Coefficient of thermal conductivity ~ 0.35

[W/(m-K)]
Density (kg/m?) 1083
Newtonian viscosity (N- s/m?) 0.8
Specific heat [kJ/(kg -K)] 2.5
Enthalpy (kJ/kg) 450
*Permeability (m?) Kx 8 x 10710
Ky 2 x 10710
K, 8 x 10712
Coefficient of thermal conductivity 0.6
[W/(m- K)]
Air 20
Tabletop set point See Fig. 5
*Tabletop & composite 5.5
*Composite top & environment See Fig. 8b

*Properties are calibrated in simulations to match experimental results

Thickness: 0.068 m

Width: 0.56 m Red area: resin feed line

Length: 2.0 m

Fig.6 A computational model for the composite laminate plate of 2 m
x 0.56 m x 0.068 m. A total of 84,000 tetrahedron elements with an
element side length of 1.28 cm are used

experiment and removed at around 370 min to capture the
effects of the blanket.

The computational model is shown in Fig. 6. A total num-
ber of 84,000 tetrahedron elements with an edge length of
1.28 cm are used. To calibrate the heterogeneous permeabil-
ity values, the simulated epoxy resin front flow is compared
with the recorded results of the VARIM experiment as shown
in Fig. 7. The most important variables contributing to the
kinetics results include the permeabilities of the flow media,
and permeabilities Ky and K, in the transverse cross-section
directions as denoted in Fig. 7c. As the flow media enhances
the epoxy resin flow, the epoxy resin fills the bottom of the
composite first as observed in the VARIM experiment, which
is also simulated in the model as illustrated by the cross-
sectional view of the 3D resin infusion simulation in Fig. 7c.
By iteratively changing the permeability values in the x, y,
and z directions to match the epoxy resin front position at
different time steps as recorded by images from the VARIM
experiment, such as Fig. 7b, a good fit of the simulation and
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experimental results is achieved as shown in Fig. 7a. Cali-
brated permeability values Ky, Ky, and K, are listed in Table
2.

As the epoxy resin front flows and the curing processes
are coupled in the finite element model, the temperature
results from the simulations need to be calibrated to match the
experimental results. This is done by adjusting the thermal
convection coefficient values between the tabletop and the
composite, and between the composite top and the environ-
ment. The initial thermal convection values are set based on
data from the published literature (Ma et al., 2017), where
the same composite and epoxy resin materials were used.
Other material properties of the epoxy resin, including den-
sity, coefficient of thermal conductivity, Newtonian viscosity,
and specific heat, are obtained directly from the specs sheet
provided by the epoxy resin manufacturer. This ensures that
the material properties in the model are set correctly. In the
simulation, the same tabletop set point heating history, as
shown in Fig. 8a and applied in the VARIM experiment, is
used in the model. The heating history is identified by two
stages since the thermal insulator cover is removed at about
370 min. After multiple iterations, temperature histories of
the mid and top surfaces of the composite from the simulation
match the VARIM experimental results as shown in Fig. 8c,
with the convection coefficient value between the compos-
ite top surface and the environment air calibrated as shown
in Fig. 8b. Figure 8d—g present visualizations of the spatial
temperature distribution from the calibrated simulations at
four different time steps during the resin curing process.

All the physics-based simulations are performed using
parallel computing executed on a workstation with an Intel
19-10900X CPU (10 core with 3.7 GHz base frequency) and
32 GB memory. The total computational time for the model
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Fig.7 Calibration process of heterogeneous permeabilities of the glass
fiber composite: a Comparison of resin front flow on top surface from
experiment and simulations; b Image of VARIM experiment showing
cross sections used in calibrations as marked in red; ¢ 2D transverse

is 574 s, including 218 s for the 3D resin infusion process,
and 356 s for the separate resin curing process.

A deep neural network-based machine
learning (ML) model for the VARIM process

Transfer the non-image data to images and data
preprocessing

To fully utilize spatial and temporal information from the
physics-based model as described in “Physics-based model
calibration and validation by a VARIM experiment” section,
all nodal temperatures obtained from the finite element anal-
ysis are converted into the image format. This is a common
practice for many applications where multiple methodolo-
gies have been developed to transfer non-image data, such as

—

(b) ! Cross section view

- . .
<+  Resin feed line
“L

Flow media "
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)//

(e) 4™ ply (f) 30™ ply

>

(g) 15" ply (h) 15t ply

y—z cross-section of finite element infusion simulations; d 3D visual-
izations of the epoxy resin infusion simulations; e~h Infusion results
on different plies of the composite (Color figure online)

tabular data, into images for deep learning with convolutional
neural networks (Sharma et al., 2019; Zhu et al., 2021).
The complete process of transferring the nodal informa-
tion to images is illustrated in Fig. 9. The mesh used in 3D
simulations is shown in Fig. 9a. Figure 9b and c show the
nodal distribution on each plane. Next, model data contain-
ing the spatial coordinates and temperature value of each
node are merged in tabular form. A total of 102, 30, and 6
distinct X, y, and z coordinate values of all nodes are identi-
fied and converted to the closest integer values as required by
CNN. Since the 6 z values provide the position of 6 layers,
the conversion leads to an array of size 30 x 102 filled with
temperature values for each of the six layers. One row and
one column are void after the transformation due to the lack
of computational nodes at these locations. The void space is
“patched” with the average of the neighboring values, and
images containing the temperature information at different
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Fig.9 An illustration of transferring data from the physics-based model to images a 3D simulation in PAM-RTM; b Distribution of nodes on the
2D plane; ¢ Visualization of all six planes in the 3D space; d Images obtained from nodal information after data processing
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Fig. 10 The basic structure of (a) an artificial neural network (ANN), and (b) a convolutional neural network (CNN) with three-channel images as

inputs

time steps are obtained as shown in Fig. 9d. All data pre-
processing is done using Jupyter Notebook in Python 3.9
environment.

A spatio-temporal temperature predictor based
on a deep CNN-RNN/LSTM model

CNN is one type of ANN, which are computational process-
ing system inspired by the working principles of biological
neuron systems. The basic structure of an ANN is shown
in Fig. 10a, where the input data in the format of a multi-
dimensional vector is delivered to each artificial neuron, and
then produces a single output that is sent to multiple other
neurons (Jain et al., 1996; Krogh, 2008). The output from
each neuron is the weighted sum of all the inputs plus a
bias term, which is then output after being processed by the
activation function. The neurons are typically organized into
multiple layers, noted as hidden layers. A complete neural
network stacked up with many hidden layers sequentially is
known as deep learning (Goodfellow et al., 2016), which is
found to be much more effective in improving the mapping
from inputs to outputs by adjusting parameters in each neu-
ron (Lecun et al., 2015). CNN is commonly used to extract
image-specific features by applying many convolution ker-
nels or filters that slide along the inputs (Albawi et al., 2018).
After comparing the output after each forward propagation
with the expected ground truth values using the loss func-
tion, the total error with respect to parameters in each layer
is calculated and back-propagated from the output layer to
the first hidden layer (Rumelhart et al., 1986). Through many
such iterations, all parameters of the entire neural network
are optimized to best project the output based on the inputs.
A representation of a CNN architecture with multi-channel
images as inputs, repetitive convolutional layers with filters,
pooling layers, and activation functions, the dense layers, and
the output layer is shown in Fig. 10b.

During the curing process, the temperature profiles are
sets of 4D data, consisting of the temperature at each point

in the composite system at different time steps. Therefore,
to account for both spatial and temporal developments of
the temperature information, specific types of the neural net-
work, the recurrent neural network (RNN), as well as the
derived and modified version of it, i.e., the network with
long short-term memory (LSTM) units are employed. Their
structural units are illustrated in Fig. 11.

RNN is one kind of ANN, which takes in an entire
sequence of data at different time steps ¢ as inputs x; into
each unit. With the repetitive units connected sequentially as
shown in Fig. 11a, this structure can make predictions along
the time domain based on the trained network and the previ-
ous inputs (Abiodun et al., 2018). However, this structure is
known to often fail to “remember” the long-term information
in the time series data due to vanishing gradient problems dur-
ing the backpropagation training process (Hochreiter, 2011;
Lipton et al., 2015). So the unit cell of the RNN has been
modified and improved into the LSTM unit as one example
is shown in Fig. 11b (Olah, 2015). LSTM can “remember”
the long-term information using three different gates, i.e., the
forget gate (f;), the input gate (i;), and the output gate (o;),
each of which process is expressed by Egs. (8), (9), and (10),
respectively, to control the weight of historical information
and new information input from the current state (Hochreiter
& Schmidhuber, 1997; Gers et al., 2000, 2002). The cell state
(Ct.1) is passed through the entire network with small inter-
actions with each unit. The forget gate decides the amount of
information from the cell state to be discarded, and the input
gate determines what new information is going to be stored
in the cell state, which is added to the created vector C. ¢
that contains new candidate values (Olah, 2015). Finally, the
output gate will filter out parts of the cell state by running the
sigmoid function first, and then put the cell state through the
tanh function by multiplication, so that the entire unit only
outputs the parts that are desired. The details of each step are
shown in Eqgs. (8)—(12).

fi = sigmoid(Wy - [h—1, x;] + by), (3)
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i = sigmoid(Wi . [hl,], xl] + bi), )
0y = tanh(Wc . [ht—l, xt] + b(,), (10)
Cr=fi - Cro1+ir- Cp, (11)
h; = o - tanh(C,). (12)

Utilizing the spatial features extraction functionality of
CNN and the sequential data processing capability of
RNN/LSTM structures, a spatio-temporal framework for
temperature predictions is established and presented in
Fig. 12. This spatio-temporal model is based on an integrated
ML model coupled with the design of the deep neural net-
work. Specifically, a CNN-based feature autoencoder is used
to extract and translate the spatial deep features from the input
images (Hinton et al., 2006; Rumelhart et al., 1985), and an
RNN/LSTM-based structure is employed as a temporal pre-
dictor to forecast such deep features along the timeline, given
the temperature mapping at the past time steps. Such autoen-
coder designs are widely used in many applications (Hinton
et al., 2011; Kingma & Welling, 2019), including computer
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vision (Pathak et al., 2016; VincentPascal et al., 2010), natu-
ral language processing (Devlin et al., 2018; He et al., 2022),
porosity extraction in wire-arc additively manufactured alu-
minum (Zhang et al., 2023), wind speed prediction (Chen
et al., 2021), and many more.

The input to this spatio-temporal model is the temperature
mapping at all time steps obtained from the experimen-
tally validated simulation results in the image form of 30
x 102 arrays with values normalized and preprocessed as
described in “Transfer the non-image data to images and data
preprocessing” section. Figure 13 shows the details of this
CNN—RNN/LSTM—CNN architecture. In the construction
of the ML model, different architectures, specifically, com-
binations of different numbers of convolutional layers, filter
size, stride number, activation functions, UpSampling size,
number of hidden units, etc., for the CNN-based autoencoder
and RNN/LSTM-based temporal models are considered,
which have a great impact on the model performance. After
many attempts, the structures shown in Figs. 13 and 14b,
are determined due to their higher prediction accuracies than
others. The input images first go through the CNN-based
encoder part such that the deep features embedded with the
spatial information of the temperature distribution among the
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Fig. 13 Flowchart of the CNN (encoder)—RNN/LSTM—CNN (decoder) architecture for spatio-temporal curing temperature predictions

entire composite system are extracted and encoded into a 1D
array with a size of 128 (number of extracted features) after
the flatten layer. Next, the RNN/LSTM-based temporal pre-
dictor takes in a number of those time-series deep features
to forecast the resulting sequences in the time domain as
the output. Then, the predicted deep features are fed to the
CNN-based decoder part to reveal the projected temperature
mapping. The time step in this study is chosen to be 5 with
a step size of 100 s, which means that the curing temper-
ature records of the last 500 s are collected to predict the
temperature profiles in the subsequent 100 s.

A CNN-based model to link processing parameters
to the temperature mapping

In the second ML model, the aim is to predict the effects
of the VARIM processing parameters, so that the process
can be optimized to minimize the defects induced by uneven
temperature distribution in different regions. It is known that
temperature history during the VARIM process, including
the epoxy resin curing, is the primary factor determining
the composite part quality. A typical temperature history of
VARIM is illustrated in Fig. 14a. Four temperatures, T hold-
ing temperature during the initial heating stage, T, the end
temperature of the heating ramp, T3 the starting temperature
of the heating decline, and T4 the last holding tempera-
ture, are designated as the key parameters and inputs to the
model. In addition, to account for the temperature variation

in the spatial domain, the layer number of composite planes
is included as the fifth input parameter in the model. The
complete model is established to predict the temperature dis-
tribution in the composite part at 400 min after the VARIM
process is started, which is considered as the finishing time of
the primary epoxy resin curing process, based on the material
properties and experimental characterizations of the curing
of the epoxy resin used in this study.

The proposed ML framework is shown in Fig. 14b and is
inspired by many established and well-known CNN designs,
such as AlexNet, VGG-16, ResNet, etc. (He et al., 2015;
Krizhevsky et al., 2017; Simonyan & Zisserman, 2014), that
can accurately map the image inputs to different categories.
In this study, a regression model is established herein, where
the values of the five processing parameters, including T (the
initial heating temperature), T> (the end temperature of the
heating ramp), T3 (the starting temperature of the heating
decline), T4 (the last holding temperature), and the spatial
temperature mapping are all considered continuous rather
than discrete. During the model training process, the same
regression metrics, MeanAbsolutePercentageError (MAPE),
or “mape” function in the TensorFlow Keras library is used.
The design of this model is to reflect the optimization need in
the manufacturing process, during which externally applied
temperatures affect the quality of the composite part. All five
parameters can be optimized to produce high-quality glass
fiber composite parts.
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Fig. 14 a Illustration of the four temperatures on the applied external heating history curve during the VARIM process; b The architecture of a

CNN-based deep neural network to predict the temperature mapping at 400 min from five input processing parameters

Results and discussions

The experimentally validated simulation results are used
to train and validate all the ML models. Two types of
datasets are generated and converted into image formats,
including the time-series 3D temperature distribution for the
spatio-temporal predictor, and the dataset of the processing
parameters to single temperature mapping. The datasets used
by different machine learning models are listed in Table 3.
All datasets are divided into two groups at a ratio of 4:1:
one group for training and the other for testing. The training
dataset is further separated for training and validation pur-
poses with the same split ratio of 4:1 as a common practice to
avoid biased results. This data partition is made automatically
using the “train_test_split” function in the “scikit-learn”
library to ensure that all data subsets for training, validation,
and testing are obtained randomly to avoid bias from select-
ing the data manually. The entire spatio-temporal dataset
composed of a total of 3,246 images, categorized as “Type 1”
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in Table 3, is first used to train and test the CNN-based autoen-
coder. Then 541 images from layer 6 of the spatio-temporal
dataset, with each image corresponding to the temperature
distribution of the top layer of the composite at every 100 s
during the entire VARIM process, are used to train and test
the RNN and LSTM models. For the case of the CNN-based
predictor of the single temperature mapping from the pro-
cessing parameters, the “Type 2” dataset of size 3,750 is
used for training and testing. Specifically, each of the four
temperatures that are designated as the critical processing
parameters, Tq, To, T3, and T4, with the physics meaning
illustrated in Fig. 14a, is assigned a temperature value from
four different groups, “41, 43, 44, 45, and 46 °C”, “79, 80,
81, 82, and 83 °C”, *“79, 80, 81, 82, and 83 °C”, and “20, 21,
22,23, and 25 °C”, correspondingly. It is worth noting that
all temperature values are selected based on practices on the
manufacturing floor and the most related existing reference
(Maet al., 2017), and this study aims at establishing such an
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Table 3 Dataset usage of all machine learning models established in this study

Datasets Machine learning models
Spatio-temporal predictor Processing
parameters-to-temperature
mapping
Type 1 Layer Number of images (size: 3246  CNN-based RNN/LSTM temporal CNN-based predictor
x 30 x 102) autoencoder model
1 (base) 541 v X X
2 541 v X X
3 541 4 X X
4 541 v X X
5 541 v X X
6 (top) 541 v v X
Type 2 3750 x {inputs (1 x 5) & output images (30 X X 4
x 102)}

ML-based modeling method, instead of seeking their optimal
values.

The evaluation metric used is the mean absolute percent-
age error (MAPE), defined as,

n

MAPE = lz

nx
i=1

A — P,

i

x 100%, (13)

where n is the total number of ML model training iter-
ations (epochs), A; and P; are the actual and predicted
values, respectively, at a different iteration i. The training
process of all models is carried out using the TensorFlow
software library for machine learning (Abadi et al., 2016),
in Python 3.9 environment on a workstation with an Intel
i9-10900X CPU, and Nvidia GTX 1080Ti graphic card with
GPU training enabled. The training time for all four models,
CNN-based autoencoder, RNN-based and LSTM-based tem-
poral models, and the CNN-based parameters-to-temperature
model, are 2 min 19 s, 1 min 44 s, 5 min 23 s, and 4 min
30 s, respectively. Once trained, all four models are capa-
ble of making predictions within 5.4 s when a total of 3,216
images of all six layers are input to the trained RNN/LSTM
models, and a single time frame temperature prediction can
be obtained instantly within 100 ms. The primary machine
learning model parameters are listed in Table 4, includ-
ing dataset size, hyperparameters for training ML models,
and model testing results. All ML models use the “Adam”
algorithm as the optimizer, which is a first-order gradient-
based optimization of stochastic objective functions (Kingma
& Ba, 2014). The regression metrics MAPE, as shown in
Eq. (13), or the corresponding “mape” function from the
Tensorflow Keras library, is used to monitor and measure the
performance of all models during training and testing. Other

hyperparameters, including the learning rate and batch size,
are determined from iterative experiments.

The training histories of the CNN-based autoencoder,
RNN, and LSTM models are shown in Fig. 15. The defi-
nition of “loss” in Fig. 15a is abbreviated and referred to as
the loss function calculated as the sum of errors made for each
example in training and validation datasets during the model
training process. The loss value implies how well or poorly
a model performs after each iteration of optimization. The
progressing lower loss value indicates the errors between the
model prediction and the ground truth are reducing signifi-
cantly, as also indicated by the MAPE vs. training iteration
shown in Fig. 15b. Once trained, they are tested on a sepa-
rate testing dataset. The results show that all four ML models
have a testing MAPE of less than 1.5% as indicated in Table
4.

Spatio-temporal temperature prediction results
of the CNN-RNN and CNN-LSTM models

The trained CNN-based autoencoder is used to encode deep
features from the raw images, and then the deep features
become inputs to train the RNN and LSTM temporal mod-
els. Although the RNN and LSTM models are trained on
images of layer 6 only, both models show excellent predic-
tion accuracy on images of all six layers, as shown in Fig. 16a
and b, where prediction accuracies of RNN and LSTM mod-
els are plotted as the average MAPE value of each image at
every 100 s during the entire 700 min. Figure 16c—h show
and compare the prediction accuracy of the RNN and LSTM
models on each of the six layers.

The comparison shows that the overall prediction accuracy
is over 94% during the entire time period for both models.
Further analyzing the model prediction accuracy at different
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Table 4 Machine learning model parameters

Model testing results

Model training

Models

Batch size Total epochs Training Validation Testing Testing loss Testing

Learning rate

Total parameters

MAPE (%)

dataset size dataset size

dataset size

0.4266
0.2268
0.2947

0.0043
0.0023
0.0029

650

520
82
82

379 2076

348
903

0.001 128

195,649
7,508
18,128

CNN-based autoencoder

104

340
340

12
12

0.001

RNN-based temporal model
LSTM-based temporal

104

0.001

model
CNN-based

1.4009

0.0140

600 750

2400

723

0.001 64

104,369

parameters-to-temperature

time steps, lower prediction results on composite layers 2, 3,
and 4 are observed during the first 20 min into the VARIM
process for both models, as indicated by the higher MAPE
during the early time steps in Fig. 16d, e, and f, corresponding
results of layer 2, 3, and 4, respectively. This is likely due to
the temperature changes in the middle of the composite hav-
ing a different trend compared to the temperature changes on
the top and bottom layers, on which the temporal ML model
is trained. As the VARIM process is started, the cold epoxy
resin first enters the dry and pre-warmed glass fiber compos-
ite from the bottom layer on the tabletop, as illustrated by the
resin feed line and the blue flow media that guides the epoxy
resin flow as shown in Fig. 4. While the resin supply is at the
ambient temperature, the glass fiber preform is heated up to
45 °C. The resin heats up as it flows into the system from the
inlet to the outlet. Therefore, the relatively cold epoxy resin
first infuses the area along the flow media within a short time,
which covers parts of the top and bottom layers of the com-
posite as illustrated by the schematic in Fig. 4. Hence the
temperature in these areas drops faster than the uncovered
area, for example, the middle parts of the composite, which
is significantly warmer than the already infused top and bot-
tom sections. This course leads to abnormal and unordered
temperature changes that make the prediction challenging
for both RNN and LSTM models, as they are trained on the
temperature history that is primarily dominated by the cur-
ing kinetics of the epoxy resin and the heat transfer under the
steady state.

The second noticeable high MAPE of the prediction in
Fig. 16 occurs on all layers of the composite before 220 min,
especially between 50-200 min, when the accuracy is rela-
tively low, with the maximum MAPE value approximately
3.5% t0 4.4% at about 100 to 130 min into the VARIM experi-
ment. This dip in prediction accuracy is attributed to the rapid
chemical reaction of the epoxy resin during the early curing
process, based on the curing kinetics and the associated heat
released by the epoxy resin. This temperature increase in the
composite system due to the heat release from the chem-
ical reaction of the resin curing is also observed from the
thermocouple data shown in Fig. 5 in which the temperature
readings at all ten locations in the composite are climbing
under the external heating from the tabletop with a constant
set temperature of 45 °C until around 200 min. As the overall
system enters a steady state with relatively subtle tempera-
ture changes, both RNN and LSTM models are more capable
of accurately predicting the temperature mapping. The sim-
ilar performances of the RNN and LSTM models imply that
within the time domain of 700 min and a temporal resolution
of 100 s in this study, the RNN does not have the obvious
“gradient vanishing” issue as typically reported. However,
this can be an issue for datasets with a larger time period or
higher temporal resolution.
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Fig. 15 Training progress of the CNN-based autoencoder, RNN, and LSTM models: a The loss vs. training epoch (iteration); b The mean absolute

percentage error (MAPE) vs. epoch

In addition to the assessment of the model prediction accu-
racy results on temperature as a function of time, it is also
necessary to evaluate the predicted temperature mapping at
different locations and different time steps from both RNN
and LSTM models. To this end, the temperature distribution
and evolution on layer 1 are visualized as shown in Fig. 17.
The selected time steps are 8, 38, 100, 180, and 700 min,
which correspond to the time for the first available predic-
tion, prediction with the lowest MAPE, prediction with the
highest MAPE, prediction with the highest temperature in
the composite, and the fully cured composite, respectively.
Overall, both models can predict the spatial temperature dis-
tribution and capture the temperature gradient at different
time steps with less than 3.6% average MAPE, which occurs
at about 100 min into the VARIM experiment, even when
the temperature value changes greatly from as low as room
temperature 25 °C, corresponding to the beginning of the
VARIM process, to as high as 100 °C, which occurs after the
epoxy resin has fully infused the glass fiber composite after
an hour, and hit the highest chemical reaction point at around
180 min.

Based on the images, the high-temperature and low-
temperature regions have evolved from the beginning to the
end of the entire VARIM process. Since it is recognized that
the uneven curing of the epoxy resin is the direct cause of
the local buckling and other defects within the large glass
fiber epoxy composite parts, the entire history of temperature
change that reflects the experimental VARIM process can be
divided into three phases based on the epoxy resin curing
progress: the pre-curing period, which ends after the epoxy
resin enters and infuses the entire dry glass fiber compos-
ite completely (at around 60 min); the drastic curing reaction
period, which starts after the infusion finishes and ends when
the elevated external heating is stopped (at around 350 min);
and the post-curing period that starts after the external heating
from the tabletop is fully stopped (at around 370 min). The

curing degree of the epoxy resin can be modeled as a function
of temperature and time, as shown in Fig. 2 and explained in
“A physics-based model for VARIM and composite curing
processes” section. In the meantime, the epoxy resin curing
process is accompanied by the release of heat that leads to a
higher temperature in the composite, during which areas of
heat concentration can also take shape. This positive inter-
action between the rising temperature and the accelerated
curing makes the overall curing process spatially and tem-
porally uneven, unstable, and unpredictable for composite
manufacturers. Therefore, robust modeling tools capable of
making fast and accurate temperature predictions are critical
for manufacturers to make a timely decision to control and
optimize the process. The proposed modeling tool based on
RNN and LSTM models is aimed at accomplishing this goal.

The MAPE mapping helps evaluate the model prediction
performance in different regions and times. It is observed
from Fig. 17 that higher prediction error normally occurs at
the temperature transition regions, especially at time steps
when a rapid chemical reaction is happening that leads to
the peak temperature during the curing process at around
180 min, as shown in Fig. 17c. It is worth noting that this
peak temperature is purely due to epoxy resin curing, as the
external heating is kept at 45 °C until around 200 min, as
shown in Fig. 5. During the drastic curing reaction period
from roughly 100 to 180 min, the temperature at the lower
half of the image, which corresponds to the resin outlet, starts
to increase dramatically from around 65-85 °C to around
100 °C. This is because the liquid epoxy resin is first infused
into the system from the top and then accumulates inside the
composite before being steadily discharged from the vac-
uum line at the resin outlet. Therefore, the curing degree
of the fresh epoxy that enters from the inlet at the top lags
greatly behind the epoxy resin that has a longer residence
time inside the composite and a longer heating time by the
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tabletop heater, as is observed in Fig. 17¢ and d, that the tem-
perature at the resin inlet is only around 32 °C and 60 °C
at 100 min and 180 min, respectively, while the temperature
toward the outlet is about 84 °C and 100 °C, correspondingly.
It is also during this period that the predictor has the highest
local MAPE with more than 10% at the interfacial regions
between the low and high-temperature regions, as shown by
the contour maps in Fig. 17¢ and d, and also as observed from
the MAPE vs. time step curves in Fig. 16. The large temper-
ature difference is due to local heat concentration. Due to the
small composite surface area (2 m x 0.56 m), the heat gen-
erated from the epoxy resin in the curing process cannot be
dissipated swiftly through the natural heat convection with
the surrounding environment. The datasets with an image
size of 102 x 30 pixels are too small to capture the large
temperature difference within a small region, and provide
enough pixel resolution for the CNN model to learn in order
to extract the spatial feature as the convolutional filters with
a size of 3 x 3 slides across the image during training. The
high MAPE in these temperature transition regions, however,
is fairly small, as indicated by the MAPE mapping and the
low average MAPE, and therefore, it does not prevent the
overall model from making reasonably accurate predictions
and providing insights into the spatio-temporal temperature
evolution for composite manufacturers.

To further evaluate the prediction results at different lay-
ers of the composite, the same temperature map and MAPE
map for the mid and top layers at 100, 180, and 350 min are
plotted in Fig. 18, with these time steps corresponding to the
onset, the peak, and the end of the rapid epoxy resin curing
phase, respectively, based on the temperature history plotted
in Fig. 5. Predictions from the RNN model are selected due to
its slightly better prediction accuracy than the LSTM model,
based on the comparison of the results shown in Fig. 16.
The RNN model has accurately captured the fact that the
temperature in mid layer 3 is higher than the temperature of
layer 6 at all time steps. This indicates that the model has
learned and is capable of capturing the physics phenomenon
that the heat tends to accumulate in the interior of the com-
posite with its surfaces having a lower temperature due to
the natural heat convection with the ambient. In addition, it
is observed that the MAPE mappings at both the mid and top
layers at all three selected time steps are very low, with the
largest average MAPE value of 4.3%, as shown in Fig. 18a.
The results indicate that the RNN model is capable of pre-
dicting the spatial temperature evolution during the VARIM
process, including the rapid resin curing phase when the low
and high-temperature regions on each layer shift dramati-
cally. As the temperature value is a direct indication of the
resin curing process, this ML-based model can potentially be
used as one of the key criteria for composite manufacturers
to monitor the temperature distribution in real-time during

manufacturing, so that the epoxy resin curing progress can
be controlled to prevent the formation of defects.

Single temperature mapping prediction
of the CNN-based model from processing
parameters

In addition to the CNN-RNN/LSTM-based spatio-temporal
model, it is of interest to establish the direct linkage between
the processing parameters and the corresponding temper-
ature distribution resulting from them. As introduced in
“A CNN-based model to link processing parameters to the
temperature mapping” section, four temperature values and
the layer height in the composite are the five processing
parameters for the inputs of the CNN-based predictor whose
structure is shown in Fig. 14b. Details of the model param-
eters are listed in Table 4. The model training history is
presented in Fig. 19a, which shows good learning progress
on the training and validation dataset with a size of 3000.
Figure 19b shows the prediction results of the trained model
on the separate testing dataset with a size of 750. The predic-
tion accuracy is high with a MAPE value of less than 5% for
97.2% of all testing datasets, and an overall testing MAPE
of 1.4% as shown in Table 4.

The effects of four external heating temperatures, Ty,
T, T3, and T4, and the prediction accuracy of the CNN-
based model are visualized in Fig. 20, where the processing
parameters and the corresponding temperature field at the
mid section (layer 3) of the composite are provided. Over-
all, the trained CNN-based model shows good approximation
capability by accurately predicting the 2D temperature field
from a range of different input processing parameters, even
when the temperature distribution, including the high and
low-temperature regions, varies dramatically under different
externally applied temperatures. Comparing the tempera-
ture fields shown in Fig. 20a and b, it is observed that the
pre-heating temperature T; has a great influence on the
temperature distribution after the primary epoxy curing is
complete. With T, and T3 both set at 83 °C, when Tj is set
at 41 °C, the highest temperature on layer 3 at 400 min is
49 °C, compared to that of 77 °C when T} is set at 46 °C.
The low-temperature region at the resin inlet located on the
top of the image in Fig. 20a indicates that if T} is set at41 °C,
the primary resin curing is somewhat incomplete at 400 min,
as the high-temperature region has not yet transitioned from
the outlet to the inlet in contrast to the high temperature at
the inlet region at 400 min in Fig. 20b.

As illustrated in Fig. 14a, T, and T3 are temperatures on
the tabletop, representing the set temperature of the exter-
nal heating source at the time approximately 250 min and
350 min into the VARIM experiment. Tq, Ta, T3, and Ty
are set to 45, 80, 80, and 20 °C, respectively, in the VARIM
experiment in this study. By comparing results in Fig. 20c
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Fig. 18 Comparison of the
temperature predictions on the
mid and top layers of the
composite from the CNN-RNN
model at the time a 100 min,

b 180 min, and ¢ 350 min
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dataset

and d, when T4 = 25 °C is applied, a mere 1 °C increase
in the temperature mapping of the entire layer 1 is observed,
indicating the temperature T4 does not affect the overall resin
curing. This is because Ty is the holding temperature start-
ing at approximately 380 min, by which point the primary
resin curing is finished, and therefore the heat release from
the chemical reaction to the composite is small. In addition,
the temperature distributions across the composite thickness
are shown in Figs. 20d—f with the temperature range in color
bars. It is observed that the overall temperature is the highest
on the bottom layer 3, and the lowest on the top layer 6. This
confirms the previous claim that the heat tends to accumulate
in the interior of the composite, and that the temperature at
the top surface is significantly lower due to the natural con-
vection with the ambient. The CNN-based model provides
temperature map predictions based on the five input parame-
ters with over 95% accuracys; it also has captured the physics
phenomenon, the direct correlation, and the high dependence
of the temperature distribution on the externally applied tem-
perature that assists in the resin curing process.

Conclusion

Based on developments in Al and smart manufacturing sec-
tors, and with the purpose of fully capturing the complex
mapping among the multiple physics-based models of the
thermo-chemo-mechanical effects during the epoxy resin
infusion and curing processes, in this study, a machine
learning framework based on deep CNN and RNN/LSTM
architecture has been established for fast prediction of the
temperature distribution during the VARIM process. For
training the CNN-RNN/LSTM-based ML model, a physics-
based simulation tool is developed and validated through a

VARIM experiment before it is employed to generate the
dataset needed for training the ML model. The physics-based
model cannot be employed for real-time process control of
the large blade manufacturing process due to lengthy compu-
tational time. The fully trained ML model can overcome this
shortcoming; it is shown that it is capable of predicting spatio-
temporal temperature distribution with an accuracy of >94%,
and is more than 100 times faster than the physics-based mod-
els. Trained on a single GPU, the ML-based model developed
in this study is highly parallelizable and it is expected to
maintain its fast and accurate prediction capabilities given
the robust training process on much larger datasets.

In addition, five critical processing parameters of the
VARIM process are designated, and linked to the single tem-
perature mapping at the end of the resin curing process, using
a similarly designed CNN-based model, so that it becomes
feasible for manufacturers to quickly predict effects and end-
ing results of key processing parameters, and therefore to
make changes on the operating conditions frequently in real-
time to get the desired and optimized temperature profile in
the composite part at different curing phases. This model
allows for extensive study and optimization of the process
effects. As such, this work demonstrated the great potential
of the proposed ML model as a digital twin of the VARIM
process.

Future work will focus on integrating this framework
with a closed-loop feedback system to adjust the process-
ing parameters based on the prediction results. With more
high-fidelity data available from both simulations and exper-
iments, similar neural network models can be developed to
account for more complicated VARIM processes and setup,
and eventually be able to accurately predict the full-field
temperature distribution on the full-scale wind turbine blade
manufacturing process.
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Fig. 20 Comparison of the
temperature field prediction on
different parts of the composite
at 400 min from the CNN-based
predictor with corresponding
four key temperatures Ty, T2, T3,
T4, and the layer set at a 41 °C,
83 °C, 83 °C, 20 °C, layer 3;

b 46 °C, 83 °C, 83 °C, 20 °C,
layer 3; ¢ 45 °C, 80 °C, 80 °C,
20 °C, layer 1; d 45 °C, 80 °C,
80 °C, 25 °C, layer 1; e 45 °C,
80 °C, 80 °C, 25 °C, layer 3; and
f 45 °C, 80 °C, 80 °C, 25 °C,
layer 6
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