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1 Introduction

Consider a standard linear triangular structural model

Y = X ′b1 + ε1 (1)

W = γY +X ′b2 + ε2 (2)

for some endogenous variables Y and W , exogenous covariates X, and unobserved errors ε1

and ε2. For example, W could be a worker’s wages or earnings and Y could be her level of

schooling. Or, as in our later empirical application, W could be a country’s GDP growth

and Y a health measure like growth in life expectancy. The primary goal is identification of

γ, the direct causal effect of Y on W , though we will also obtain identification of b1, b2, and

the joint distribution of the errors.1

The main obstacle to identification and estimation of γ is that ε1 and ε2 may be correlated,

because both depend on a common unobserved U (ability in the case of schooling and wages,

technology in the case of GDP and health). That is, in its simplest form,

ε1 = U + V and ε2 = βU +R (3)

where U , V , and R are unobserved, mutually independent (conditional on X) random vari-

ables and β is a constant. After projecting off covariates X, the V and R errors represent

idiosyncratic shocks to Y and W , while U is what makes Y an endogenous regressor in the

W equation.

Similar triangular structural models arise whenever we have one variable Y affecting

another variable W , and a common unobservable that affects them both. For example,

consider a two period dynamic model with autocorrelated errors. In this case W equals Y

in a subsequent time period, and U represents the autocorrelation in the errors. Another

example is production, where W could be a firm’s value-added output per unit of capital, Y

1Throughout this paper we focus on the traditional homogeneous effects model where γ is a constant,
rather than a heterogeneous treatment effects model.

1



is the firm’s labor per unit of capital, and U is unobserved entrepreneurship, which affects

both productivity and the chosen level of inputs.

Such models are traditionally identified in econometrics by finding an instrument, i.e., a

variable that correlates with Y but not ε2, or equivalently, a variable that correlates with

V but not U or R. However, such instruments can be difficult to find. For example, Card

(1995, 2002) and others propose using measures of access to schooling, such as distance to or

cost of colleges in one’s area, as wage equation instruments, while others raise objections to

the validity of these instruments, e.g. Carneiro and Heckman (2002). Other wage equation

instruments may raise fewer questions of validity but can be weak, like Angrist and Krueger’s

(1991, 2001) quarter of birth instruments.

Similarly, Acemoglu and Johnson (2007) propose using changes in predicted mortality,

constructed based on innovations in health care, as an instrument for life expectancy growth

Y in their regression of GDP growth W on Y . However, such health innovations could be

correlated with other technological advances that increase GDP, leading to instrument in-

validity. Comparable questions can be raised regarding the instruments or identifying side

information in other similar studies, such as Aghion, Howitt, and Murtin (2010), who find

a positive γ, in contrast to Acemoglu and Johnson’s (2007) negative γ. Ecevit (2013) sum-

marizes results from eleven similar studies, finding estimates of γ that range from strongly

negative to insignificant to strongly positive. This range of estimates raises serious questions

regarding the validity of instruments or other side information that different authors use to

identify γ.2

Rather than propose any new instrument, we address the more fundamental question of

whether and when this model can be point identified and estimated without side information

such as instruments whose validity can be hard to ascertain (noting that the alternative

of a randomized experiment is not feasible for a macro question like this). If so, then we

2Of course, differences are also due to variation in data sets and in how Y and W are defined and
constructed. As another way to explain these differing results, Cervellati and Sunde (2011) suggest that the
true effect might be non-monotonic.
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can estimate the model without relying on side information, and/or test the validity of side

information like instruments via overidentification tests.

We provide conditions for point identification of the model

Y = U + V (4)

W = γY + βU +R (5)

with U , V , and R being unobserved, mutually independent random variables with unknown

distributions. The same identification theorem can then be applied conditioning on covariates

X, to show point identification of more general models, where the entire distributions of U ,

V , and R could depend nonparametrically on X. A special case of this general identification

result is then identification of equations (1), (2) and (3). In this special case, variables V

and R that depend nonparametrically on X in equations (4) and (5) are instead replaced

with X ′β1 + V and X ′β2 +R, where these new V and R do not depend on X.3

Our main result is surprising: If the sign of β is known a priori, under minimal regularity

assumptions, the coefficients γ and β, and the distributions of U , V , and R (and b1 and b2

in that model) are all point identified without instruments or other side information, unless

either U or V is normally distributed (after appropriately conditioning on or projecting off

covariates X). So, for example, Y having bounded support would be a sufficient condition

for point identification, since that would rule out normality of U or V .

In addition to proving this general identification result, we also: 1. Provide a few low

order moments yielding simple GMM estimators of the model, 2. Show how infinitely many

additional moments conditions can be systematically constructed to provide identification

under weaker conditions, 3. Provide the sharp identified set for the coefficients γ and β in

the case where either U or V is normal and hence point identification fails, 4. Investigate

the behavior of these GMM estimators in some Monte Carlo exercises, and 5. Provide

3More generally, U , V and R could be heteroskedastic, or otherwise have higher moments that depend
in unknown ways on X, but estimation would then become more complicated. One possibility would be
replacing the GMM estimators we provide with conditional moment GMM, conditioning on X. More simply,
heteroskedasticity could be parameterized, with parameters estimated as part of the GMM.
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an empirical application where we establish that our identification and estimation strategy

is viable even with a very small sample size. Specifically, we estimate the Acemoglu and

Johnson (2007) model without using any instruments, and obtain estimates that are very

similar to what they found with their instrument.

Instrumental variables estimation of the model has the advantage that it only requires

assumptions regarding first and second moments of the covariates, errors, and instruments.

In contrast, our assumptions regarding U , V , and R are, implicitly, restrictions on all mo-

ments. However, there are a number of mitigating factors. First, some of our results, such

as Lemma 1 below, only rely on lower order moments. Second, our main theorem works via

convolutions, and so our independence assumptions can be relaxed to subindependence, as

defined and described in Schennach (2019), who points out that subindependence is arguably

as weak as a conditional mean assumption in terms of the dimensionality of the restrictions

imposed. Third, our independence assumption is actually conditional on other covariates,

so, e.g., the identification can handle arbitrary heteroskedasticity and dependence of higher

moments on regressors. Similarly, if, e.g., U is ability, then identification only requires ability

to be conditionally (sub)independent from other unobserved factors, conditional on covari-

ates. Nevertheless, given our required assumptions, these results should be most useful when

instruments either don’t exist, or might be invalid.

The identification of equations (4) and (5) without instruments has been previously con-

sidered by Rigobon (2003), Klein and Vella (2010), and Lewbel (2012), but these results

neither nest nor are nested by ours because they require that the errors be heteroskedas-

tic, and identification is obtained by imposing varying restrictions on the structure of that

heteroskedasticity.4

A number of special cases of our results do appear in the literature, but all of them assume

γ = 0, and so they omit the most important feature of the model in applications like ours.

4Rigobon (2003) and Klein and Vella (2010) impose different parametric restrictions on the error variances,
while Lewbel (2012) imposes a nonparametric restriction. For simplicity we assume homoskedastic errors,
but by conditioning our identification theorems on X, we could allow for general heteroskedastity as well, at
the expense of likely weaker identification and more complicated estimators.
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Kotlarski (1967) is the special case of our model where it is known that γ = 0 and β = 1,

and in that case Kotlarski’s Lemma shows that point identification of the distribution of

all the latent variables holds even under normality. Similarly, Reiersøl (1950) uses a special

case of our model where it is known that γ = 0 and Y plays the role of a measurement of U

contaminated by an error V and establishes conditions under which β would be identified.

As noted in Lewbel (2020), with γ = 0 and Reiersøl’s identification of β, one could rewrite

Reiersøl’s model as Y = U + V and W/β = U +R/β, and then apply Kotlarski’s lemma to

the joint distribution of Y and W/β to identify the distributions of U , V , and R.5

Our results, showing necessary and sufficient conditions to identify the more general

model of equations (4) and (5) with unknown nonzero γ, turns out to be a difficult extension.

In particular, the methods of proof used by Reiersøl (1950) and Kotlarski (1967) do not

extend to our problem. The proof of our main result instead relies on similar tools as Khatri

and Rao (1972) or Rao (1966, 1971) (see also Comon’s (1994) reference to Darmois (1953)).

Some limitations of our results should be acknowledged upfront. We assume that the

coefficients γ and β are constants. So, e.g., our results do not immediately extend to random

coefficients, such as treatment effects with unobserved heterogeneity, or to nonlinearity in

the dependence of W on Y . However, this limitation may be mitigated to some extent

by allowing the distributions of the unobservables to be unknown functions of covariates.

Another important restriction on our results is that we require U to be a scalar. While this

is a common assumption (as in the examples cited earlier), there are other situations where

one might expect a vector of unobservable shocks like U to affect both Y and W , and our

identification results would then not apply. We provide examples in Supplement D. Finally,

5A special case of non-normality is when the components U and V are asymmetric. Lewbel (1997)
and Erickson and Whited (2002) exploit asymmetry to construct simple estimators for the Reiersøl (1950)
model. See also Bierens (1981). Other papers propose estimators for models like equations (4) and (5) with
γ = 0, by assuming that coefficients like β are point identified using higher moments, but without explicitly
characterizing when that is possible. Examples include Bonhomme and Robin (2010), Fruehwirth, Navarro,
and Takahashi (2016), and Navarro and Zhou (2017). A related result, showing identification of direction
of causality in models under nonnormality, is Peters, Janzing, and Scholkopf (2017). Generalizations of
Kotlarski’s lemma to models with more components (but again still assuming γ = 0) include Székely and
Rao (2000) and Li and Zheng (2020). A nonlinear extension of Reiersøl (1950) is Schennach and Hu (2013).
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a limitation for empirical work is that our estimators depend on higher than second moments

of the data, and such moments can lead to very imprecise estimates when sample sizes are

small.

In section 2, we provide a few simple moments that will often suffice to point identify our

model, and can be used to construct a correspondingly simple GMM estimator. In Section

3, we present our general identification results, including constructing more moments like

those in Section 2, and showing that, with minimal regularity, the model is point identified

as long as both U and V are not normal. In sections 4 and 5 we derive the sharp identified

set when either U or V is normal, and derive some inequalities regarding our model relative

to ordinary least squares. Section 6 provides a Monte Carlo analysis of our simple GMM

estimators. In section 7 we provide an empirical application based on Acemoglu and Johnson

(2007), in which we obtain estimates comparable to theirs, without using their (or any other)

instrument. Section 8 concludes with some suggestions for further work.

2 Simple Identification and Estimation

We begin with a simple special case of our general results, by providing some moments

that can easily be used to identify and estimate (by standard GMM) the models described

in the introduction. These results are not as general as our main identification theorem, but

are likely to suffice for many empirical applications.

We first consider identification and estimation of equations (4) and (5) without covariates

X, and then we extend the results to equations (1) and (2).

Assumption 1 We observe the joint distribution of two real valued, nondegenerate random

variables Y and W .

With data, we could assume independent, identically distributed observations of Y and

W , and then identify their joint distribution to satisfy Assumption 1 using the Glivenko

Cantelli theorem.
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Assumption 2 The unobserved real valued random variables U , V , and R are mean zero

and mutually independent,6 with unknown distributions.

Assumption 3 R has finite variance, and U and V each have finite fourth moments.

Assumption 4 The unknown constants γ and β are real valued, finite, and β > 0.

We can assume our data Y and W have been demeaned, rationalizing the assumption

that the unobservables have mean zero. To see why we need a sign restriction on β, observe

that we can rearrange equations (4) and (5) to get W = (γ + β)Y − βV +R, which, except

for the sign of β, is observationally equivalent to the original model, switching the roles of V

and U . Usually, the sign of β should be clear from the economics of the application, e.g., in

a returns to schooling model, β > 0 is a natural assumption, since it says that unobserved

ability that increases (decreases) education outcomes will increase (decrease) wages. If we

instead believed β was negative, we could just replace Y with −Y everywhere to make β

positive (redefining γ, U , and V accordingly).

We also rule out β = 0, because if β = 0 then it would be pointless to separately identify

V and U . Moreover, having β = 0 is nonsensical in the types of applications we consider,

since it would mean that Y is exogenous, making identification and estimation of γ trivial.

Substituting equation (4) into equation (5) gives the reduced form expression for W

W = γV + αU +R with α = γ + β (6)

The following Lemma provides two moments that can often suffice to point identify γ and

α, which then trivially also point identifies β.

Lemma 1 Let Assumptions 1-4 and equations (4) and (5) (and therefore also equation 6)

hold. Then

E [(W − γY ) (W − αY )Y ] = 0 (7)

cov
[
(W − γY ) (W − αY ) , Y 2

]
− 2E

(
WY − γY 2

)
E
(
WY − αY 2

)
= 0 (8)

6Independence can be weakened to subindependence (Schennach (2019)).
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Proofs are all in Supplement A. The proof of Lemma 1 works by substituting W − γY =

βU + R and W − αY = −βV + R into equations (7) and (8), and then uses the mutual

independence of U , V , and R to verify that these equations hold.

Lemma 1 provides two equations in the two unknowns α and γ. If we solve the first

equation for α and substitute that into the second, we obtain a quadratic in γ. The sign

restriction that β > 0 then determines which root is the correct one for γ.

We later provide the formal conditions under which these two equations suffice to point

identify α and γ. The main condition, derived in Theorem 1 below, is equation (21). Equa-

tion (21) shows that the main cases in which equations (7) and (8) by themselves fail to

provide point identification are when U and V have the exact same distribution, or when

both are symmetrically distributed, or if either U or V is normally distributed. We later

show that infinitely many additional equations in α, γ, Y and W can be constructed, based

on higher moments of Y and W than those used in Lemma 1. These higher moments can

help identify α and γ in applications where Lemma 1 does not suffice.

A simple estimator for α and β can be constructed by rewriting equations (7) and (8) as

moment conditions, and applying standard method of moments or GMM. One can immedi-

ately check that these equations take the form

E (YW − µyw) = 0, E(Y 2 − µyy) = 0 (9)

E [(W − γY ) (W − (γ + β)Y )Y ] = 0 (10)

E
[
(W − γY ) (W − (γ + β)Y )

(
Y 2 − µyy

)
− 2 (µyw − γµyy) (W − (γ + β)Y )Y

]
= 0 (11)

where µyw = E (YW ) and µyy = E (Y 2). The parameters µyw and µyy are estimated along

with γ and β by putting equations (9), (10), and (11) into any standard GMM estimation

routine. One could replace β with eb in these equations to impose the sign restriction that

β > 0.

Lemma 1 uses up to fourth moments of the data. Based on results derived in the next

section, in Supplement B we provide additional equations (using up to fifth moments) that

8



can provide overidentification of γ and β, or point identification in some cases where Lemma

1 does not suffice.

Let σ2
U , σ2

V , and σ2
R denote the variances of the error components U , V , and R. It may

be of economic interest to estimate these variances, to identify how much of the variance

of the model errors is due to unobserved ability U versus the idiosyncratic components

V and R. From the model we have E ((W − γY )Y ) = βσ2
U , E (Y 2) = σ2

U + σ2
V , and

E
(
(W − γY )2) = β2σ2

U + σ2
R, which implies

σ2
U = E ((W − γY )Y ) /β, σ2

V = E
(
Y 2
)
− σ2

U , σ2
R = E

(
(W − γY )2)− β2σ2

U (12)

Given estimates of β and γ, we can replace the expectations in equation (12) with sample

averages to estimate these variances.

Alternatively, we can estimate these variances jointly with the model parameters by

observing that

µyy = σ2
U + σ2

V , µyw = βσ2
U + γ

(
σ2
U + σ2

V

)
. (13)

So, in equations (9), (10), and (11) we can replace µyy and µyw with their expressions in

equation (13), and apply GMM using those equations along with the additional equation

E
(
(W − γY )2 − β2σ2

U − σ2
R

)
= 0 (14)

to simultaneously estimate β, γ, σ2
U , σ2

V , and σ2
R. We can further replace σ2

U with σ2
U = eτU

and similarly for σ2
V and σ2

R, to impose the constraint that variances are positive. See

Supplement B for details on these moments.

Higher moments of U , V , and R can be estimated analogously. Alternatively, as discussed

later, once we have identified and estimated β and γ, we can apply Kotlarski’s Lemma to

recover the entire distributions of U , V , and R.

We can also easily extend this identification and associated estimation to allow for co-

variates. Suppose we have the model

Y = b′1X + U + V (15)
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W = γY + b′2X + βU +R (16)

where X is exogenous and is therefore uncorrelated with U , V , and R. The reduced form

for W is now

W = (γb1 + b2)′X + (γ + β)U + γV +R

So we can estimate the coefficient vectors b1 and b2 along with γ and β by replacing Y and

W in equations (9), (10), and (11) with Y − b′1X and W − (γb1 + b2)′X, respectively and

estimate those moments along with the moments

E
((
W − (γb1 + b2)′X

)
X
)

= 0, E ((Y − b′1X)X) = 0 (17)

The complete set of moments for estimating this model via GMM, which we use in our

empirical application, is provided in Supplement B.

Although we did not find this to be the case in our application, when GMM models are

substantially overidentified (many more moments then parameters) it is sometimes preferable

to only use a subset of available moments for estimation. Since our estimator takes the form

of standard GMM, in these cases the existing literature on empirical choice of moments

in standard GMM estimation might be applied. See, e.g., Andrews and Lu (2001), Caner

(2009), and Liao (2013).

For simplicity, these estimators assumed the errors U , V , and R are homoskedastic, and

similarly have higher moments that do not depend on X. This could be relaxed to allow

higher moments of these errors to depend in unknown ways on X, by letting the assumptions

of Lemma 1 hold conditional on X, thereby replacing the unconditional moments of equations

(7) and (8) with conditional moments. Corresponding estimators would then, however, be

much more complicated, and parameters like the error variances would need to be replaced

by nonparametric functions of X.

3 General Point Identification

We now provide a more general and systematic analysis of the identification of our model,

using more information than the low order moments of Lemma 1. We provide four main
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results. First, we show that it is possible to construct infinitely many moments like those

of Lemma 1, which can be used to construct simple GMM estimators, and we give the

conditions under which these moments point identify the coefficients α and γ (equivalently,

β and γ). Second, we apply Kotlarski’s lemma to point identify the distributions of U , V ,

and R given point identification of α and γ. Third, we demonstrate that, using the entire

joint distribution of Y and W (instead of just some moments) the only case where point

identification is not possible is when U or V (or both) are normal. Finally, in the not point

identified case, we fully characterize the sharp identified set.

We make extensive use of the characteristic function and its logarithm. Knowing the

(log) characteristic function of a vector of random variables is equivalent to knowing the

joint distribution of those variables (Theorem 3.1.1 in Lukacs (1970)).

Definition 1 Given two random variables Y and W , let φY,W (ζ, ξ) ≡ E
[
eiζY+iξW

]
de-

note their joint characteristic function. Similarly for a single random variable, let φY (ζ) ≡

E
[
eiζY

]
. Moreover, let ΦY,W (ζ, ξ) ≡ lnφY,W (ζ, ξ) and ΦY (ζ) ≡ lnφY (ζ) denote log char-

acteristic functions (which are also called cumulant generating functions).

Definition 2 Given two random variables Y and W , define the cumulant of order k, `

(Lukacs (1970), p. 27) as

Φk,`
Y,W ≡

[
∂k+`ΦY,W (ζ, ξ)

ik+`∂ζk∂ξ`

]
ζ=0,ξ=0

.

Similarly for a single random variable, define the cumulant of order k as

Φk
Y ≡

[
∂kΦY (ζ)

ik∂ζk

]
ζ=0

.

All cumulants can be expressed in terms of standard moments, as obtained by an explicit

differentiation of the log characteristic function and by exploiting the characteristic function

moment theorem (e.g. E
[
Y k
]

=
[
∂kφ(ξ)
ik∂ξk

]
ξ=0

)7. Also note that the joint and marginal

7For high-order cumulants, these otherwise tedious algebraic manipulations could be handled with sym-
bolic algebra packages.
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characteristic functions as well as the corresponding cumulants are directly related, e.g.,

φY (ζ) = φY,W (ζ, 0), ΦY (ζ) = ΦY,W (ζ, 0) and Φk
Y = Φk,0

Y,W .

With these tools in hand, we are ready to state a general identification result based on

moment constraints. As in Lemma 1, we start by rewriting the model of equations (4) and

(5) in the reduced form of equations (4) and (6), and focus on the parameters α and γ.

Theorem 1 Let Assumptions 1, 2, and Equations (4) and (6) hold. Assume −∞ < γ <

α <∞ and let

Mp (α, γ) ≡ Φ1+p,2
Y,W − α2Φ3+p

Y − (γ + α)
(
Φ2+p,1
Y,W − αΦ3+p

Y

)
. (18)

Let q, q̃ ∈ N ≡ {0, 1, . . .} with q < q̃. If E
[
|U |q̃

]
, E

[
|V |q̃

]
and E

[
|R|q̃

]
exist and

Φ3+q̃
Y Φ2+q,1

Y,W 6= Φ3+q
Y Φ2+q̃,1

Y,W (or, equivalently, if Φ3+q̃
U Φ3+q

V 6= Φ3+q̃
V Φ3+q

U ), then the moment con-

straints

Mq (α, γ) = 0 (19)

Mq̃ (α, γ) = 0 (20)

point identify the parameters of the model as (α, γ) = (α+, α−), where

α± =
F 3012

2F 3021
±

√(
F 3012

2F 3021

)2

+
F 1221

F 3021

and where F abcd ≡ Φa+q̃,b
Y,W Φc+q,d

Y,W − Φa+q,b
Y,W Φc+q̃,d

Y,W .

The proof, provided in Supplement A, proceeds by a judicious choice of cumulants of

(Y,W ) that do not depend on cumulants of R, and by exploiting the fact that cumulants of

(Y,W ) of order k, ` that share the same value of k+ ` involve the same cumulants of U and

V with prefactors that only differ in how they depend on α and γ. These observations then

lead to specific functions of cumulants that can be analytically solved for α and γ.

Note that Theorem 1 also relies on Assumption 4, here rephrased as −∞ < γ < α <∞.

Had we assumed −∞ < α < γ <∞ instead, then essentially the same Theorem would hold

except that now α and γ would be point identified by (α, γ) = (α−, α+). We next formally

show that Theorem 1 contains Lemma 1 as a special case.
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Corollary 2 The assumptions of Theorem 1 with q = 0 and q̃ = 1 imply that the assump-

tions of Lemma 1 hold. Equations (19) and (20) in Theorem 1 with q = 0 and q̃ = 1 are

equivalent to equations (7) and (8) in Lemma 1.

Equations (9), (10), and (11), used for GMM estimation of α and γ, were obtained by

converting equations (7) and (8) into moments suitable for GMM. Equivalently, equations

(9), (10), and (11) could have been directly derived from M0 (α, γ) = 0 and M1 (α, γ) = 0.

This is done explicitly in the proof of Corollary 2.

As noted above, all cumulants can be expressed in terms of standard moments, specifi-

cally, cumulants equal sums of products of moments. To fit within a GMM framework, the

cumulants in the expressions Mp (α, γ) = 0, after being converted to functions of moments,

must be linearized. This is done by introducing nuisance parameters. To illustrate, the

cumulant Φ4
Y appears in the equation M1 (α, γ) = 0. Now Φ4

Y equals E [Y 4] − 3 [E (Y 2)]
2
,

so, e.g., to convert the expression Φ4
Y = c into a form suitable for GMM, we rewrite this

expression as E [Y 4 − 3Y 2µY Y − c] = 0 and E [Y 2 − µY Y ] = 0, using the nuisance parameter

µY Y that was introduced in the previous section.

Theorem 1 shows that one can obtain any number of additional, potentially overiden-

tifying, moments to use for GMM estimation, based on the fact Mp (α, γ) = 0 holds for

any nonnegative integer p (as long as the associated moments of U , V , and R exist). We

illustrate this in Supplement B, where, in addition to the moments based on Lemma 1, we

provide the additional moments suitable for GMM estimation that are obtained from p = 2.

In our later Monte Carlo simulations and empirical application, we provide results using the

exactly identifying set of GMM moments based on p = 0 and 1, and also using the generally

over identifying set of GMM moments based on p = 0, 1 and 2.

Theorem 1 provides explicit conditions under which any pair of cumulant functions

Mq (α, γ) = 0 and Mq̃ (α, γ) = 0 suffice to identify the parameters α and γ. In particu-

lar, point identification based on the moments in Lemma 1, corresponding to M0 (α, γ) = 0
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and M1 (α, γ) = 0, requires that Φ4
UΦ3

V 6= Φ4
V Φ3

U , or equivalently(
E
(
U4
)
− 3

[
E
(
U2
)]2)

E
(
V 3
)
−
(
E
(
V 4
)
− 3

[
E
(
V 2
)]2)

E
(
U3
)
6= 0. (21)

The left-hand side of (21) turns out to be proportional to the determinant of the Jacobian

of the moment conditions (7) and (8) evaluated at the true value of the parameters:

β

[
E [V 3] −E [U3]

E [V 4]− 3 (E [V 2])
2 −E [U4] + 3 (E [U2])

2

]
. (22)

This connection is expected, since having a nonsingular Jacobian at the true parameter

values is a necessary condition for point identification.

Condition (21) is violated, for instance, if either U or V is normal, or if both U and V are

symmetric, or if both U and V have the exact same distribution. If we add the additional

moments corresponding to M2 (α, γ) = 0, then point identification only requires that at

least one of the inequalities Φ4
UΦ3

V 6= Φ4
V Φ3

U , Φ5
UΦ3

V 6= Φ5
V Φ3

U , or Φ5
UΦ4

V 6= Φ5
V Φ4

U , hold. For

example, if the second of these holds then Theorem 1 applies with q = 0 and q̃ = 2. If more

than one of these inequalities holds, then we are generally overidentified.

Once the parameters α and γ have been identified, the full distribution of all unobserv-

ables can be determined under the following Assumption.8

Assumption 5 The characteristic functions of U, V and R are nonvanishing on the real

line.

Corollary 3 If Assumptions 1, 2, 5 and Equations (4) and (6) hold, E [|Y |] < ∞ and if

α, γ are point identified, then the distributions of U , V and R are point identified from the

joint distribution of Y and W through

ΦV (ξ) =

∫ ξ

0

E
[
iY eiζ

W−αY
γ−α

]
E
[
eiζ

W−αY
γ−α

] dζ (23)

ΦU (ζ) = ΦY (ζ)− ΦV (ζ)

ΦR (ξ) = ΦW (ξ)− ΦU (αξ)− ΦV (γξ) .
8This can be relaxed to nonvanishing everywhere, except at isolated points, under slightly stronger mo-

ment existence conditions; see Schennach (2000) and Evdokimov, K. and H. White (2012).
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A more explicit expression for the distributions of these unobserved variables can be

obtained by an inverse Fourier transform. For instance, if V admits a density, it is given by

fV (v) = (2π)−1

∫ ∞
−∞

exp (ΦV (ξ)) e−iξvdξ (24)

and similarly for the other densities. More general distributions (e.g. discrete and/or sin-

gular) can be recovered as well, if equation (24) is interpreted in the appropriate measure

theoretic sense.

Although Theorem 1 is quite general, it does require the condition Φ3+q̃
U Φ3+q

V 6= Φ3+q̃
V Φ3+q

U

to deliver identification, so it is natural to ask whether this is fundamentally necessary. It is

in fact possible to formulate an estimation strategy that relaxes this condition. For instance,

as discussed above, one could stack the moment conditions of the form (19) and (20) obtained

with different values of (q, q̃). The resulting moment conditions would only fail to identify

(α, γ) if the condition Φ3+q̃
U Φ3+q

V 6= Φ3+q̃
V Φ3+q

U fails simultaneously for all the choices of q and

q̃ considered.

An even more general strategy could be to start from the fundamental relationships be-

tween the log characteristic functions of the observables and unobservables (ΦY,W (ζ, ξ) =

ΦU (ζ + αξ) + ΦV (ζ + γξ) + ΦR (ξ)) and cast identification as an optimization problem that

minimizes deviations between the observed quantities (i.e. ΦY,W (ζ, ξ)) and predicted quan-

tities:

(α, γ,ΦU ,ΦV ,ΦR) (25)

= arg min
(α,γ,ΦU ,ΦV ,ΦR)

∫ ∞
−∞

∫ ∞
−∞
|ΦU (ζ + αξ) + ΦV (ζ + γξ) + ΦR (ξ)− ΦY,W (ζ, ξ)|2 dξdζ,

subject to α ≥ γ, zero mean constraints (Φ′U (0) = 0,Φ′V (0) = 0,Φ′R (0) = 0) and that

(ΦU ,ΦV ,ΦR) be valid log characteristic functions. This approach circumvents requiring

existence of the moments E
[
|U |q̃

]
, E

[
|V |q̃

]
and E

[
|R|q̃

]
. However, the introduction of

nuisance functions (ΦU ,ΦV ,ΦR) would complicate estimation, as these would have to be

parameterized by series or other expansions to construct a corresponding sieve estimator.
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An estimator based on Equation (25) would be obtained replacing ΦY,W (ζ, ξ) by its sample

analogue and trimming or downweighting the high-frequency tails in the integral.

The question remains, do there exist situations where neither this nor any other estimator

can consistently estimate the model, due to lack of point identification? The following

theorem fully addresses this question, by showing that there exist cases that are not point

identified. However, all such cases are when U or V (or both) are normal.

This differs from, and is simpler than, Reiersøl’s (1950) well-known result in linear univari-

ate errors-in-variables models, where the nonidentified cases arise when the model contains

normal factors (see below). However, the required methods of proof differ significantly. For

instance, the presence of two slope parameters α and γ (instead of one), and the presence

of both latent variables U and V in both equations of the model, prevents us from using

Reiersøl’s proof method, which is based on the fact that two functions of different variables

that are equal to each other must be constant. In our case, we have sums of many different

functions of different variables on each side of an equality, and possible cancellation between

terms that complicates the argument significantly.

Assumption 6 E
[
|U |3

]
, E
[
|V |3

]
, E
[
|R|3

]
are finite.

Theorem 4 Let Assumptions 1, 2, 5, 6 and Equations (4) and (6) hold and assume that

−∞ < γ < α < ∞. If neither U nor V are normally distributed, then α, γ are uniquely

determined by the joint distribution of Y and W by Equation (25).

Note that U or V normal implies Y has full real line support, so having the support of

Y be bounded is a simple sufficient condition for point identification. In the next section,

we address what happens when either U or V (or both) are normally distributed.

4 Set Identification

In the case where Theorem 4 does not apply, so that the parameters are not point

identified, the objective function of Equation (25) is maximized over a set rather than at a

16



single point. In order to precisely characterize this identified set, we first need to introduce

the notion of factor, which is used by Reiersøl (1950) and by Schennach and Hu (2013).

Definition 3 If a random variable Z can be decomposed as Z = Z1 + Z2 where Z1 and Z2

are independent, then Z1 and Z2 are called factors of Z. (The term factor can also be used

to refer to the distributions of these variables.)

While for given characteristic functions φZ1 (ξ) and φZ2 (ξ), we automatically have that

φZ (ξ) = φZ1 (ξ)φZ2 (ξ) by the convolution theorem, the notion of factor embodies the fact

that, if one is instead given the two characteristic functions φZ (ξ) and φZ1 (ξ), it is not

automatic that there exists a random variable Z2 with characteristic function φZ2 (ξ) =

φZ (ξ) /φZ1 (ξ). The inverse Fourier transform of φZ2 (ξ), may not actually yield a proper

probability measure (it could assign negative weights to some sets, for instance).

Next we consider what it means for a random variable to have a normal factor.

Lemma 2 Let Z be an observed zero mean random vector. Then Z admits a unique decom-

position into two unobserved zero mean independent factors

Z = Zg + Zn, (26)

where Zg is Gaussian with variance Λ̄ and Zn has no Gaussian factors. Furthermore, the

variance of Zg is determined (from the observed distribution of Z) from the unique Λ̄ such

that

Λ̄− Λ is positive semidefinite ⇐⇒ φZ (ξ) exp (ξ′Λξ/2) is a characteristic function.

(Note that either Zg or Zn or both could be zero.)

Intuitively, Lemma 2 indicates that the decomposition into a Gaussian and a non-

Gaussian factor can, in principle, be found by attempting to deconvolve Z by a Gaussian of

variance Λ and seeking the “largest” (in a positive definite sense) possible Λ that will still

yield a proper distribution. In Fourier representation, this amounts to dividing φZ (ξ) by
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exp (−ξ′Λξ/2) and checking if the result is a valid characteristic function (e.g., by verifying if

the inverse Fourier transform is a nonnegative measure). An alternative check for the valid-

ity of a given function φ (ξ) to be a valid characteristic function can be based on Bochner’s

Theorem (Theorem 4.2.2 in Lukacs (1970)): φ is a characteristic function iff

n∑
i=1

n∑
j=1

cic
∗
jφ (ξi − ξj) ≥ 0 for all c1, . . . , cn ∈ C for all ξ1, . . . , ξn ∈ R for all integer n ≥ 1

(Bochner’s Theorem also includes the conditions that φ (ξ) be continuous and φ (0) = 1 but

these are automatically satisfied in our context.)

Using Lemma 2, we can decompose the observed Z = (Y,W ) into Gaussian (g) and

non-Gaussian (n) factors

(Y,W ) = (Yg,Wg) + (Yn,Wn) (27)

This decomposition can be accomplished without the knowledge of α or γ. The non-Gaussian

or Gaussian nature of the two factors is important in our context, because it is associated

with the features that can or cannot be point-identified. This type of decomposition is not

a purely theoretical construct; it can be empirically implemented. Independent Component

Analysis techniques, which are widely used in signal processing, (see Hyvärinen and Oja

(2000) for a review) specifically rely on such decompositions into Gaussian and non-Gaussian

components.

Define

Bs =
E [WsYs]

E [Y 2
s ]

(28)

Ds =
E [W 2

s ]E [Y 2
s ]− (E [WsYs])

2

(E [Y 2
s ])2 ≥ 0 (29)

where the subscript s is either set to “g” , or to “n” , or is removed. We can now state our

set-identification theorem:

Theorem 5 Let Assumptions 1, 2 and Equations (4) and (6) hold and assume that E [Y 2],

E [W 2], E [R2] <∞ and that −∞ < γ < α <∞. Then, the following bounds (illustrated in

Figure 1) are sharp:
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1. If both U and V are Gaussian (and E [Y 2] > 0), then

α ≥ Bg (30)

Bg −
Dg

α−Bg

≤ γ ≤ Bg. (31)

2. If V is Gaussian but U is not (and E [Y 2
n ] , E

[
Y 2
g

]
> 0), then

α = Bn (32)

Bg −
Dg

α−Bg

≤ γ ≤ Bg. (33)

3. If U is Gaussian but V is not (and E [Y 2
n ] , E

[
Y 2
g

]
> 0), then

γ = Bn (34)

Bg ≤ α ≤ Bg +
Dg

Bg − γ
. (35)

For each of the possible values of (α, γ) in the set given by Theorem 5, there corresponds

a unique implied distribution for U , for V , and for R, given by Corollary 3. To distinguish

between the three cases in Theorem 5, we have that case 1 holds only if Y is normal, in case

2 Bn > B, and in case 3 Bn < B.

Although the quantities Bn, Bg, Dn, Dg are, in principle, observable quantities, they may

be difficult to estimate. For this reason, we also provide below a coarser bound that is only

based on the covariances matrix of the observed Y and W :

Corollary 6 The following bounds on α, γ always hold:

α ≥ B

B − D

α−B
≤ γ ≤ B.

It is no accident that these bounds have the same form as Case 1 of Theorem 5: Both

are solely based on covariance information, but in the Gaussian case, covariances exhaust

all available information and yield sharp inequalities while, in general, that is not the case.
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This looser bound is also related to the measurement error bounds in Frisch (1934). If one

is willing to rely on this relaxed bound, then a simple GMM estimator for the resulting

identified set could be obtained based on the moment conditions

E
[
α2σ2

U + γ2
(
Y 2 − σ2

U

)
+ σ2

R −W 2
]

= 0 (36)

E
[
ασ2

U + γ
(
Y 2 − σ2

U

)
− YW

]
= 0 (37)

while optimizing over α, γ, σ2
U , σ

2
R, subject to the constraints γ < α (equivalent to β > 0),

σ2
U ≥ 0 and σ2

R ≥ 0. These moment conditions are obtained from Equations (66) and (67)

in the proof of Theorem 5, without extracting the Gaussian parts. The bounds of Corollary

6 are also obeyed in the case of point identified models, since they are obtained solely from

positive variance considerations that must always be satisfied. This implies that, if one is

unsure whether Y is normal or not, the moment conditions (36) and (37) could be stacked

with the ones of Theorem 1 to yield an estimator that is robust to loss of point identification.9

5 Ordinary Least Squares

It is instructive to analyze in more detail how the parameters of our model relate to the

slope coefficient of a naive OLS regression (in the population limit). The coefficient B given

by Equation (28) is the slope coefficient of the least-square regression of W on Y (in the

population limit). Regardless of whether the model is point identified or not, an implication

of the model (i.e., of equations (4) and (5)) is that B always lies between γ and α. This can

be immediately verified by observing that

B =
E [YW ]

E [Y 2]
=
E [(U + V ) (αU + γV )]

E
[
(U + V )2] =

αE [U2] + γE [V 2]

E [U2] + E [V 2]
= αλ+ γ (1− λ) (38)

where λ = E [U2] / (E [U2] + E [V 2]) and so lies between zero and one. So in particular, if

β > 0 we get γ ≤ B ≤ α.

This type of inequality has been noted before in the context of estimating returns to

education (e.g. by Card (2001), in a more detailed model that allows for some individual

9In this case the maximizing estimands could be sets rather than points, requiring nonstandard inference.
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heterogeneity). In particular, in the returns to schooling context, we would expect both β

and γ to be positive (because unobserved ability U should affect schooling Y and wages W in

the same direction, and increased schooling should increase wages). By the above analysis,

this in turn means that we would expect 0 < γ ≤ B.

However, as noted by Card (2001), most returns to schooling empirical applications

yield estimates of γ, using instrumental variables methods, that are greater than B, which

contradicts this inequality and hence also contradicts the model. One possible explanation for

this contradiction is that, in the returns to schooling context, Y may also contain significant

measurement error. Standard attenuation bias under classical measurement error implies

that the ordinary least squares coefficient B is biased towards zero relative to γ, which if

0 < γ would imply B < γ. If the model is correct for returns to education, but in addition Y

is mismeasured, then B could be either larger or smaller than γ, depending on the relative

magnitude of the measurement error.

6 Monte Carlo

To assess the finite sample performance of our simple GMM estimators, we generate data

from the model of equations (4) and (5) without covariates. All of our designs are chosen to

satisfy equation (21), so the model is point identified just from the moments in Lemma 1.10

The true values of the coefficients are γ = β = 1. It is widely recognized that estimators based

on higher moments can behave poorly with small sample sizes, so to see if our estimators

suffer from these issues, we work with relatively small sample sizes of n = 100 and n = 400.

We generate 5, 000 replications of four different designs. In design 1, U is log normal

while V and R are each standard Gumbel. In design 2, U is log normal while V and R are

uniform. We then reverse these, making U Gumbel and V and R log normal in design 3, and

making U uniform with V and R log normal in design 4. For each design, we report results

using two different estimators. The exactly identified estimator is GMM using moments

10In particular in all of our designs, U and V have different, non-normal distributions, and at least one is
asymmetically distributed. U , V , and R are also mutually independent and centered at mean zero.
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corresponding to Lemma 1, given by equations (77), (78), and (79) (without covariates, so

Ỹ = Y and W̃ = W ), as given in Supplement B. The over-identified estimator is GMM using

these same equations, plus equations (81) and (82) of Supplement B.

Tables C1 to C4 of the Supplement report results from designs 1 to 4, respectively. Each

Table has four panels, corresponding to the two different GMM estimators, each with the two

different sample sizes. We report estimates of γ, β, the error component variances σ2
U , σ2

V ,

and σ2
R, and, when over-identified, µWW . Reported summary statistics of each parameter

estimate across the simulations are the mean (MEAN), the standard deviation (SD), the

25% quantile (LQ), the median (MED), the 75% quantile (UQ), the root mean squared error

(RMSE), the mean absolute error (MAE), and the median absolute error (MDAE).

Some general tendencies stand out in these simulations. First, consider the trade off

between the exactly identified vs over identified estimators. The latter uses more information,

but that information takes the form of up to fifth order moments, which can be noisy and

more sensitive to outliers. In general we find that the overidentified estimator performs

better than the exactly identified estimator, particularly at the larger sample size.

The primary parameter of interest, γ, tends to be estimated reasonably precisely in all

of the designs, with most RMSEs in the range of .3 to .7. In contrast, β is generally much

less precisely estimated, often having much larger RMSEs (except in design 2). Estimates

of the variances σ2
U , σ2

V , and σ2
R, are mostly similar to each other, usually being less precise

than γ but more than β. The estimate of µWW is noisier, since it only appears in the highest

order moment equations of the over identified model. The designs where U was log normal

(designs 1 and 2) generally had more accurate estimates than the other designs. We conclude

that our estimator performs reasonably well even with rather small sample sizes.

7 GDP and Life Expectancy

There is a long literature studying the causal effect of health on economic growth.

Examples include Acemoglu and Johnson (2007) (which we will hereafter refer to as AJ),
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Well (2007), Lorentzen, McMillan, and Wacziarg (2008), Aghion, Howitt, and Murtin (2010),

Cervellati and Sunde (2011), Ecevit (2013), Bloom, Canning, and Fink (2014), and Bloom,

Canning, Kotschy, Prettner, and Schünemann (2019).

Based on a neo-classical growth model, AJ estimate a model in the form of equations (1)

and (2), where Y is the change in the log of a country’s life expectancy at birth between

1940 and 1980, W is the change in that country’s log GDP in the same time span, and X is

either just a constant, or a constant and a measure of the country’s quality of institutions,

or a constant and GDP per capita in 1930. The main goal is estimation of γ, the coefficient

of Y in the W equation.

AJ observe that ordinary least squares estimation of the W equation is inconsistent,

because the health measure Y is endogenous, with improvements and investments in a coun-

try’s productive technology over time positively impacting both health outcomes and GDP.

This technology change corresponds to our unobserved factor U (with β > 0) in equations

(15) and (16), while V and R are the idiosyncratic shocks to health and economic outcomes,

respectively.

To deal with the endogeneity caused by U , AJ construct an instrument, called predicted

mortality, that combines each country’s 1940 mortality rates from specific diseases with a

set of global interventions that addressed those diseases. As noted in the introduction, one

may question the validity of such constructed instruments.

In Table 1, columns labeled 2SLS1, 2SLS2, and 2SLS3 in Panel A are replications of

selected results appearing in Table 9 of AJ.11 These are AJ’s estimates using two stage least

squares (2SLS) with the above listed combinations of covariates X, and using their predicted

mortality instrument. AJ’s ordinary least squares (OLS) estimate of γ (corresponding to B

in the previous section) is −0.81, while their 2SLS estimates of γ are considerably larger

in magnitude, ranging from −1.316 to −1.643. As we noted earlier, having γ < B, as AJ

find, is an implication of our model when β > 0. Note that the sample size is quite small in

11Our data are provided by AJ. Life expectancy is from UN data sources and the League of Nation reports.
Pre-war GDP data are from Maddison (2003), and post-war data are from the UN. See AJ for details.
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this application, with only 47 countries. Nevertheless, AJ’s estimates of γ are statistically

significant.12

Now suppose we had not observed predicted mortality, or we are uncertain of its validity

as an instrument. We can instead consider applying our GMM estimators. First, consider

the distribution of Y . Assuming (measured) life expectancy is bounded away from zero, log

life expectancy is bounded, which suffices for point identification since it rules out U or V

being normal.13 We therefore attempt to apply our GMM estimators.

In Table 1, we report two sets of GMM estimates along with AJ’s 2SLS results. Columns

labeled GMM1, GMM2, and GMM3 are GMM estimates of equations (15) and (16), which

do not make use of the predicted mortality instrument in any way. Specifically, these are

estimates based on the over-identifying set of moments given by equations (77) to (82) in

Supplement B. The last three columns of Table 1 then give GMM estimates that use both

our over-identifying set of moments and the additional moment given by AJ’s instrument

(as discussed at the end of Supplement B).14

Panel A in Table 1 reports the main parameter of interest γ, and also reports b2, the

other covariate coefficients in equation (16). The variables in columns (4) and (7) have

been demeaned so there is no constant.15 Our main takeaway from Panel A of Table 1 is

that our estimates of γ are quite comparable to AJ’s. In GMM1 and GMM2, the estimates

of γ are −1.984 and −1.241, virtually the same range as AJ’s 2SLS estimates, and are

12Our standard errors in columns (1)-(3) of Table 1 differ from those reported by AJ. AJ’s estimates are
from ivreg in Stata 9. We use ivregress 2sls, which replaced ivreg as of Stata 10. ivreg and ivregress can
give different robust standard error estimates, because ivreg uses HC1 (MacKinnon and White 1985) robust
standard errors while ivregress 2sls uses HC0 (Huber-White). Also, to reduce the number of coefficients in
GMM estimation, we differenced the data while AJ used level data with fixed effects. Since T=2, these are
asymptotically equivalent estimators.

13More heuristically, if Y is close to normal, then it may be that U or V is close to normal. Y has a
skewness of 0.170 and a kurtosis of 1.791, which is reasonably far from normal in terms of the low order
moments our GMM estimator is based on. The p-value of a Shapiro-Wilk test of normality of Y is .02,
rejecting normality, and even lower if one tests the residuals after regressing Y on either of the covariates in
X.

14These GMM models are estimated in Stata, using the vce(robust) option to compute standard errors.
15In Supplement B: Moments for GMM Estimation, it is noted that “For the model without covariates,

one can replace b1 and b2 with zero in the above expressions, and drop equation (80). Note that in this case
Y and W should be demeaned.” In columns (4) and (7), we demeaned Y and W so b1 and b2 are zeros.
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statisically significant. GMM3 gives an estimate of a lower magnitude −0.383, but this

estimate is statistically insignificant with a very large standard error, suggesting that our

higher moment based estimator is imprecise for this particular combination of covariates and

small sample size. The last three columns of Table 1, which combine both our moments and

the AJ instrument, give estimates very close to those of AJ, with somewhat smaller standard

errors, which is exactly what one would expect to see if both sets of moments are valid and if

AJ’s instrument is strong. In the bottom row of Table 1 we report Hansen’s J-test; we do not

reject validity of the joint set of overidentifying restrictions in any of the GMM estimates.

Panels B and C of Table 1 provide the other estimated parameters of the model. Panel

C gives the estimated b1 coefficients from equation (15), while Panel B gives the estimates

of β and the estimated variances of our error components. β appears to be difficult to

precisely estimate, with large standard errors.16 In the specifications where γ is statistically

significant, the variance of U (the source of endogeneity in the model) is much smaller than

the variances of the idiosyncratic components V and R, but very precisely estimated with

small standard errors.

Later tables have the same format as Table 1, providing additional results. In Table 2,

we re-estimate the model using the exactly identified set of moments from Lemma 1. As

expected with fewer moments, these estimates are less efficient, and turn out to be quite a

bit noisier than those of Table 1. GMM5, with the quality of institutions as the covariate,

is still reasonably comparable to AJ with γ of −1.401, while now both GMM4 and GMM6

are insignificant and more variable. The estimates combining these moments with AJ’s

instrument behave as before.

We also perform a number of robustness checks in Supplement D, using alternative out-

come variables that AJ considered in their Tables 8-9. These additional outcomes are log

population, log births, percentage of population under age 20, log GDP, and log GDP per

working age population. Some of the alternative outcomes suffer from the issue that U might

16In contrast α is, like γ, much more precisely estimated, but apparently the difference β ≡ α−γ is harder
to pin down.
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also contain measurement error, and in those cases, our identification results would not ap-

ply. The results of our GMM estimators with other outcomes are generally more erratic than

with log per capita GDP. The estimates that combine our moments and the AJ instrument

remain comparable to AJ’s 2SLS estimates.

We conclude that, in all specifications where the standard errors were small enough to

yield statistically significant results, our estimates based on higher moments, without side

information, are very close to those obtained by AJ that required an instrument.

8 Conclusions

We have shown that a standard linear triangular structural model is generally point

identified, without an instrument or other side information that is generally used to identify

such models. We illustrate the result with Monte Carlo simulations and in an empirical

application. Our application shows that, without using an instrument, GMM estimation of

moments based on the model yields estimates close to those that were obtained by previous

authors using an instrument. Even when instruments are available, our estimator could be

usefully combined with instrument based moments to either increase estimation precision by

adding more moments to the model, or to provide overidentifying moments that might be

used for specification testing.

What makes point identification possible is the assumed error structure, which takes the

standard form of a scalar common component U in each equation, plus additional scalar

idiosyncratic components V and R. One goal for future work could include deriving alter-

native estimators for the model. These could include estimators that allow U , V , and R

to depend nonparametrically on covariates X (e.g., allowing heteroskedasticity of unknown

form), and estimators that make direct use of all the information in Theorem 4, perhaps

based directly on characteristic functions rather than moments. Other possibilities for fur-

ther work include extending the model to more equations, allowing the common component

U to affect outcomes nonlinearly, and extending the model to also allow for measurement
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error in Y . Based on Card (2001), this last extension would likely be needed for returns to

education applications.
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The Indian Journal of Statistics, Series A, 265-270.

Reiersøl, O. (1950), “Identifiability of a linear relation between variables which are subject

to error,” Econometrica, 18, 375-389.

Rigobon, R. (2003), “Identification Through Heteroskedasticity,” Review of Economics

and Statistics 85(4), 777–792.

Schennach, S. M. (2000), “Estimation of nonlinear models with measurement error,”

Working Paper, University of Chicago.

Schennach, S. M. (2019), “Convolution without independence,” Journal of Econometrics,

211(1), 308-318.

Schennach, S. M. and Y. Hu (2013), “Nonparametric Identification and Semiparametric

Estimation of Classical Measurement Error Models Without Side Information,” Journal of

30



the American Statistical Association, 108, 177-186.

GJ Székely, G. J. and C. R. Rao (2000), “Identifiability of distributions of independent

random variables by linear combinations and moments,” Sankhyā: The Indian Journal of
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