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ABSTRACT: We develop an algorithm based on the enhanced Attard’s model (EAM) to simulate PeakForce
tapping (PFT) atomic force microscopy (AFM) on soft adhesive polymers. The simulations enhance our
understanding of microcantilever—surface interactions, predict surface dynamics, and illustrate the role of Lo ‘
viscoelasticity and adhesion on PFT AFM observables. Behaviors predicted by the developed algorithm cannot
be fully reproduced with alternative contact mechanics models. In the second part of this study, we utilize the
output of our PFT AFM simulations to train a data analytics approach that quantitatively estimates a surface’s &
viscoelastic and adhesive properties from experimentally acquired PFT AFM data. We demonstrate the
performance of a machine learning (ML) algorithm to estimate the properties of three elastomer grades with
different nominal stiffnesses. The properties extracted from the PFT AFM data using the ML algorithm agree

well with the bulk properties of these polymers.

B INTRODUCTION

Current atomic force microscopy (AFM) operational modes
with appropriate modifications are capable of reconstructing
the complete tip—surface interaction forces to estimate a
sample’s nanoscale mechanical properties. Force volume
mapping (FVM),” contact resonance AFM (CR),*”> bimodal
AEM,® PeakForce Tapping (PFT),” quantitative imaging
(Q),° tapping mode AFM (TM),” and fast force mapping
(FEM)'® are examples of operational modes that provide a
pathway to obtain force—distance curves. These modes differ
in terms of the excitation frequency utilized (resonant or sub-
resonant), acquisition speed, instrument control loops, and
recorded observables.”'”'" In the sub-resonance FVM-like
modes, either the microcantilever base or the sample is excited
through a periodic (not necessarily sinusoidal) displacement
waveform with a frequency, ,, far below the fundamental
resonance of the microcantilever, .'”* Both the tip deflection,
q(t), and the relative sample position, Z(t), are recorded
during each oscillation cycle (Figure 1a). The tip deflection is
translated into the tip—surface interaction force, F,, with a
point mass model using microcantilever stiffness k,"* as shown
in Figure 1b. At each image pixel, the control loop adjusts the
average Z position to maintain a specified imaging setpoint.
This enables simultaneous extraction of surface topography.
The image acquisition rate in these sub-resonance modes is
generally slower than in resonant modes. However, these sub-
resonance modes enable simpler measurement architectures
for extracting the tip—sample interaction force.
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PFT AFM is a mode offered on Bruker (Santa Barbara, CA)
AFMs in which the Z position is modulated by a prescribed
sinusoidal waveform (@, < @) which can be expressed as

Z(t) = Zy + A, cos(wyt) (1)

where Z, is the average tip distance from the surface and A, is
the oscillation amplitude of the microcantilever base. In this
study, we assume the Z modulation is applied through
oscillating the microcantilever base with respect to the
stationary sample stage. However, if the instrument is designed
based on the scanner movement, A, will be defined as the
scanner oscillation amplitude, and the rest of the following
derivation remains the same. Z; is adjusted by the controller to
maintain a set peak interaction force between the tip and the
surface during imaging. The smooth sinusoidal Z velocity
profile in PFT AFM prevents common artifacts associated with
triangular Z modulation such as unwanted piezoelectric tube
oscillations and coupling to higher harmonics. This enables
PFT AFM to simultaneously map topography and acquire
force curves at higher imaging speeds and with better peak
force control than other FVM methods. The schematic shown
in Figure 2 shows the tip deflection and surface deformation
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Microcantilever

Figure 1. (a) Schematic of an interacting AFM microcantilever tip and a surface in FVM-like AFM operational modes is illustrated, and the relevant
parameters are specified: the tip—surface distance Z(t), tip deflection q(t), surface deformation u(r, t), and axisymmetric tip profile fy,(r). The
other parameters shown in the figure can be defined based on Z(t), q(t), u(r, t), andfﬁp(r) as follows: d(t) = Z(t) + q(t), h(r, t) = d(t) +fﬁp(r) -
u(r, t). (b) Equivalent point mass model representation for a rectangular microcantilever excited at a sub-resonant frequency.
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Figure 2. Schematic of PFT AFM on a soft sample. The dashed red-blue curve shows the trajectory of the microcantilever base during a cycle (eq
1). The black solid curve represents the tip deflection (q) during a cycle.

time history during a PFT AFM cycle on a compliant surface.
At the end stages of each cycle, when the retracting tip fully
detaches from the surface, the conversion of potential to
kinetic energy of the microcantilever leads to its freely ringing
without interacting with the surface. This high-frequency
segment of the output signal is filtered out in PFT through
averaging over a set of force curves at each image pixel and the
use of denoising algorithms."*

Despite instrumentation enhancements in PFT AFM that
facilitate high-quality experimental data, rigorous method-
ologies that link the acquired force curves to nanoscale
mechanical properties of soft, viscoelastic, and adhesive
polymers are not yet established. This gap is partially due to
the more complex response to external time-varying loads of
viscoelastic materials with surface forces. In contrast with
elastic materials, the force-deformation relation for viscoelastic
materials not only depends on the amount of deformation but
also is contingent on the deformation history and its rate.
Models that systematically include the 3D viscoelastic
properties within a continuum mechanics framework make
more reliable and accurate predictions than models that
introduce viscoelastic behavior with ad hoc addition of a
viscoelastic element to elastic contact mechanic models."
These ad hoc models usually proceed by combining a Kelvin—
Voigt (KV) viscoelastic element in parallel with an elastic
contact model, such as Hertz.'"® In contrast, the continuum
mechanics-based models, such as the one proposed by Ting,"”
expand the elastic contact models to capture the complex
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response of viscoelastic materials through the use of the
convolution theorem.'® However, these models do not apply
to adhesive surfaces, and the complexity of the continuum
mechanics-based models does not allow the derivation of a
closed-form solution for the force—displacement problem. This
lack of a closed-form solution complicates their use to estimate
the viscoelastic properties of the materials based on the
associated acquired AFM observables. Furthermore, the
required computational cost for simulating the AFM modes
using continuum mechanics-based models is much higher than
their elastic or ad hoc viscoelastic counterparts.

The continuum mechanics-based contact model proposed
by Attard"”*° is arguably the most comprehensive and rigorous
model to capture the physics of interaction on adhesive
viscoelastic samples. In prior work, we implemented three key
enabling strategies on Attard’s model to enhance its computa-
tional part and make it faster and more robust*' These
strategies are (a) using a set of optimized orthogonal basis
functions instead of the computationally expensive radial
discretization technique of the original Attard’s model; (b)
solving the model’s governing ordinary differential equations
(ODEs) using multistep Adams—Bashforth methods, and (c)
facilitating the explicit solution of the ODEs of the model by
rearranging the original formalism. The resultant enhanced
Attard’s model (EAM) is 3+ orders of magnitude faster, more
stable, and equally accurate in comparison with the original
Attard’s model. EAM enables fast and rigorous calculation of
the tip—surface interaction force on viscoelastic samples with

https://doi.org/10.1021/acs.macromol.2c00147
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surface forces. EAM allows incorporating arbitrary surface
long-range forces and linear viscoelasticity constitutive models.
Nonetheless, linking the AFM observables to the mechanical
properties of the surface using EAM is not straightforward. The
complexity is partially due to how the model’s solution is
structured. Attard’s solution for the contact problem between a
compliant surface and a rigid tip is a multistep procedure. First,
based on the relative distance between the tip and the
undeformed surface at each timestep the solution of the
model’s governing ODEs yields the surface deformation
velocity at each radial distance. Second, the deformed surface
profile is predicted and reconstructed. The force between the
tip and deformed surface at each radial location is computed
based on the tip—surface distance using the employed
potential model. Finally, the total interaction force is calculated
based on integration of the tip—surface pressure over the
whole computational domain. When using this multistep
procedure, it is not possible to analytically solve the inverse
problem to link the tip—surface force to the material surface
viscoelastic and adhesive properties.

In this work, we first develop an algorithm to predict PFT
force curves with a known set of operating conditions,
microcantilever parameters, and material viscoelastic and
adhesive properties. The algorithm adopts EAM to model
the tip—surface interactions when performing PFT AFM on
viscoelastic adhesive surfaces.”’ The algorithm is then
employed to conduct a parametric study to predict variations
in force—distance curves due to changes in PFT AFM
operational parameters, microcantilever parameters, and sur-
face properties. In the second part of this work, we examine
using a machine learning (ML) algorithm to estimate the
viscoelastic and adhesive properties of the sample based on
observed PFT AFM force curves. We use simulations of PFT
AFM experiments over a range of input parameters to generate
a data set to train and test the employed ML algorithm. Finally,
we implement the ML algorithm on acquired experimental
PFT data of a set of polymer samples. The estimated surface
mechanical properties by the ML method agree well with the
sample’s macroscale properties.

B THEORY

In PFT AFM, the interaction between the tip of a
microcantilever and a surface is monitored and recorded
while the Z distance of the microcantilever is modulated by a
sinusoidal waveform: eq 1. The absolute deflection of the
microcantilever at a distance x from the base of the
microcantilever at time f, w(x, t), is composed of two
components: Z(t), and gq,(x, t), which is the transverse
deflection of the beam in the noninertial frame attached to the
base

w(x, £) = Z(t) + q,(x, t) )

We model the deflection of the microcantilever in PFT AFM
with the partial differential equation (PDE) of Euler—Bernoulli
beam theory. Since @ = w/w, > 1 in PFT AFM (sub-
resonance), the effect of the interference between the higher
harmonics of the drive frequency and the first eigenfrequency
of the microcantilever can be safely ignored. Therefore, the
inertial and damping terms of the beam PDEs become
negligible, and the steady-state solution of the microcantilever
motion can be approximated as follows

kq(t) = E(t)

©)
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where k is the effective stiffness of the microcantilever and g(t)
is the tip deflection at time t. eq 3 can be represented as an
equivalent point mass model shown in Figure 1b. Transient
phenomena such as microcantilever ringing during retraction
cannot be captured using the quasistatic solutions to Euler—
Bernoulli beam theory.

We use EAM>' to calculate F, in eq 3, and we model the
surface viscoelasticity and tip—surface interaction by the
standard linear solid (SLS) model and Lennard-Jones (LJ)
equation,”” respectively. The creep compliance function, J(t),
of an SLS viscoelastic element is

Eoo - EO —t/T
———¢

1
Jit) = — + EE.

E

(o8]

(4)

where, 7, E, and E, are retardation (creep) time and long- and
short-term moduli of the surface, respectively. Alternative
viscoelastic constitutive models can be embedded in EAM so
long as their creep compliance function can be specified.
According to the LJ pressure equation, the interaction force
per unit area (pressure) between two parallel and infinite
surfaces with distance h is expressed as follows

p(h) =
(3)

where Z, and H are the intermolecular equilibrium distance
and Hamaker constant of interacting surfaces, respectively.

In EAM, the deformed surface profile, u(r, t), is numerically
calculated from the differential equations governing the
viscoelastic and adhesive interactions between the tip and
the surface. The total tip—sample interaction force at each
timestep, F(t), is recovered from integrating the contact
pressure p(h(r, t)) over the entire computational domain. The
details of this process are described in a Supporting
Information Section and in prior publications.*’

Figure 3 illustrates the flowchart of the algorithm used to
solve F(t), given the motion of the base of the microcantilever
and the properties of the sample (i.e., the forward problem).
The algorithm starts with a guessed tip deflection for each
timestep, q,, which is then progressively adjusted by the
algorithm until F(t) calculated with EAM equals k X g, for
that timestep, as in eq 3. This procedure continues for all
timesteps of an oscillation cycle to complete the force curve
prediction process. The subscript “g” in Figure 3 denotes a
guessed value for a parameter.

Forward Problem. In PFT AFM the forward problem is
the prediction of the tip—sample interaction force, the tip
trajectory, and the surface dynamics, given the properties of the
sample, the properties of the microcantilever, and the AFM
operating conditions. Figure 4 illustrates using the forward
problem algorithm to simulate a single PFT AFM cycle on an
elastomer sample. The utilized elastomer viscoelastic proper-
ties and the PFT operational parameters are listed in column
“*#” of Table 1. The predicted time-resolved u(r = 0, t) and q(t)
are illustrated in Figure 4a, and F,(t) vs d is shown in Figure
4b. The tip—surface position and pressure distribution over the
computational domain for the labeled timestamps in Figure 4a
(I, I, II, and IV) are shown in Figure 4c—f and g—j,
respectively.

During the tip approach, the long-range attractive forces
between the axisymmetric rigid tip and the surface cause the
microcantilever to deflect down toward the surface (Figure
4a). Simultaneously, on the sample side, the attractive forces

https://doi.org/10.1021/acs.macromol.2c00147
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F-d curve prediction is complete Figure 4a, and its associated surface deformation, u(r, t), and
> the pressure distribution over the computational domain, p(r,
t), are shown in Figure 4c,g, respectively.

By further approaching, the total interaction force between
h(r.t) =hy(r) the tip and the surface gradually switches to net repulsive, and
q(t) = q,, u(r,t) = uy(r) the microcantilever deflects upward. The tip continues to
indent the surface until F(t) reaches the peak force setpoint,
and then the microcantilever begins to retract. Instances
Yes labeled as II and III in Figure 4a, with their associated u(r, t)
shown in Figure 4d,e, and p(r, t) shown in Figure 4hj,
respectively, represent this part of the cycle. As seen in Figure
4h,i, while the total tip—surface interaction is repulsive, the
predicted pressure distribution over the contact region by the
algorithm includes a repulsive pressure near the center of the

tip surrounded by regions with attractive pressures.

Input: Z(t)
@t=0:q(t)=0

s, ?

F)=F,

| guess tip deflection g, le

revisit g

calculate uy(r)
hy(r) = Z(t) + gy —uy(r) + i, (1)
calculate F,

Figure 3. Algorithm utilized in this work for predicting the F—d curve

in PFT AFM. The process starts with known Z(t) for the whole cycle During retraction, the central repulsive tip—surface inter-
and a guessed tip deflection (q,) for timestep “t = df” (steps1 and 2). action region gradually shrinks, and the attractive tip—surface
Since “dt” is selected to be very small, the tip deflection at each interaction region expands. Interestingly, F, (t) = 0 either
timestep is very close to previously recorded q(t). We continue the during approach or retraction does not indicate any interaction
process (step 4) using EAM to compute the associated surface between the tip and the surface. Rather, F(t) = 0 means that

deformation ug(r) and tip—surface interaction force (Fiyg)- Then, we the tip is under both repulsive and attractive force components
check if the guessed/derived (qy Fig) set satisfies eq 3 (step $) that are equal in magnitude and cancel out. As shown in Figure
considering the acceptable tolerance (tol). If not, we revisit the 9 4a, when F,(f) = 0 during retraction, the surface is still below

ti d t th for th t ti t tep 3). If . .
assumption and fepea: the process for the current Hmestep (step 3) the undeformed level (u(r = 0, £) < 0), and the viscoelastic
yes, we record all of the guessed/derived parameters as final and then . ) .
repeat the same process for the next timestep (step 2). This will material needs more time to return to its undeformed

continue until the data for the whole cycle is recorded (step 6). The equilibrium. If there is no effective attractive force between
axisymmetric tip profile is defined by fq,(r). the tip and sample, the retracting tip leaves the yet indented
surface when F,(t) = 0. However, when the material is soft and
between the tip and sample cause the surface to gradually rise the long-range attractive forces are significant, the surface
upward from its initial flat state. Eventually, when the gradient forms a meniscus around the retracting tip profile, and
of F,, exceeds the microcantilever stiffness, k, the tip of the detachment occurs through a gradual “peeling off” process. In
deflected down microcantilever and the bulged surface meet this process, the outermost areas of the contact region on the
each other above the undeformed surface level through a rapid surface gradually detach from the tip until it fully separates
unstable phenomenon called “snap-in” (also known as jump to through another unstable phenomenon called “snap-oft”
contact). The snap-in instance of the cycle is labeled as I in (labeled as IV in Figure 4a). The associated u(r, t) and p(r,
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Figure 4. Simulation results for a single-cycle of PFT AFM on an elastomer sample using the developed algorithm. (a): time-resolved tip deflection
and surface deformation at » = 0 (dashed line); (b): predicted F—d curve. The approach and retraction phases of the interaction cycle are shown in
blue and red in panels (a) and (b), respectively. Four instances of the interaction time representing snap-in, indentation, F(t) ~ 0, and snap-off are
marked with vertical dotted lines and labeled as I, II, III, and IV in panel (a), respectively. The associated surface deformation and pressure
distributions over the contact region for these instances are shown in panels (c)—(f) and panels (g)—(j), respectively. The instant label for each of
these graphs is specified at the bottom-right of subfigures (c)—(f). The green and red areas in subfigures (g)—(j) represent attractive and repulsive
interaction pressures, respectively.
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Table 1. Operational Parameters and Material Properties Used in Simulations for Visualizing the Microcantilever—Sample
Interaction in the Parametric Study”

R (nm)

k (N/m)

f (kHz)
Az (nm)
E, (GPa)
E, (GPa)
H(1072))

z, (nm)

* a b c d e f g h i

30 30 30 30 30 30 30 30 30
5 5 5 5 5 5 5 5 5
2 2 2 2 2 2 2 2 2

100 100 100 100 100 100 100 100 100
1 1 1 1 1 1 1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
8 8 8 8 8 8 8 8 8

031 031 031 031 031 031 031 031 031

“The colored cells are the parameters whose values are varied over the range specified in the subfigure legends in Figure S. R, k, and f are the tip
radius, stiffness of the microcantilever, and its excitation frequency, respectively. A, is the Z oscillation amplitude. E,, E,,, H, and z; are short-term
modulus, long term modulus, Hamaker constant, and equilibrium distance between tip and surface molecules, respectively.

— H=4x10%J
— H=6x10%J
— H=8x10%J

— E,=0.1GPa |
~— E,=0.2 GPa
— E,=0.4 GPa

Fs(nN)

— E,=0.5GPa

—E,=1 GPa
_E0=2 GPa

—E/E=1/0.1
—E/E_=2/0.2
—E,/E.=4/0.4

. f—

— k=10 N/m

—k=7.5N/m
—k=5 N/m

0
d(nm)

0
d(nm)

d(nm)

Figure S. Predicted variation in F—d curves when the operational parameters and surface viscoelastic and adhesive properties are changed. Each
graph (except (e)) changes only one parameter as specified in the legend, and other surface properties or operational parameters remain identical.
At panel (e), both E; and E,, are changed, while the E,/E, ratio remains constant. Full input parameters used for each set of simulations are listed
in Table 1. For all simulations, 7 = 1 us. The peak tip—surface interaction force is the same for all conducted simulations. The model maintains peak
force via tuning the average tip—surface distance (Z, in eq 1). Arrows indicate changes in the F—d curves from increasing the studied parameter in

each subfigure.
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Figure 6. Flowchart illustrates the two-step method used to estimate a material’s viscoelastic and adhesive properties based on an experimentally
acquired PFT F—t curve. The procedure employs a machine learning algorithm that is trained by a data set of the forward simulation results.

t) for this instance are shown in Figure 4f}j, respectively. The
position of the surface at which the tip snaps off during the
retraction phase depends on various parameters such as the
adhesion of the surface, tip radius, maximum indentation
depth, contact time, and viscoelastic properties of the sample.
The value of F,(t) when the tip snaps off is called the “pull-off
force” and is traditionally perceived as the adhesion of the
surface. When the final detachment happens, the surface
relaxes to its original state over its characteristic timescale. This
illustrates the adhesion-related energy loss mechanism when
conducting AFM on soft viscoelastic polymers in which the
attractive tip—sample forces cause the microcantilever energy
to be used to overcome the return speed reduction of the
deformed area. In this work, we assume the surface will be
provided enough chance to return to its original state before
being struck in the subsequent PFT cycle.

The full set of predictions for the microcantilever-sample
interactions in PFT AFM using EAM in the implemented
algorithm cannot be fully reproduced using any of the classical
contact models such as Hertz,'® JKR (Johnson, Kendall, and
Roberts),”> DMT (Derjaguin, Muller, and Toporov),23 Ting’s
model,"” or ad hoc viscoelasticity contact models. The
algorithm enables a realistic understanding of how the
cantilever and the surface behave during a PFT interaction
cycle. The tip—surface attractive forces lead to adhesion-
induced energy dissipation (hysteresis) when conducting PFT
on compliant polymers. In addition, the model predictions
show that the pull-off force is a sole function of not only the
surface adhesion but also the surface mechanical properties.
Therefore, judgment on the tip—surface adhesion of two
adjacent polymeric domains of a sample based on the observed
pull-oft force is valid only if the mechanical properties of the
domains are comparable. The model can rigorously capture the
instantaneous stiffness difference in the contact radius at each
timestep during the interaction cycle based on their distance
from the central contact line (r). This difference originates
from the dissimilar interaction cycles for the regions with
different r values.

To understand how predictions of our algorithm are affected
by changes in input parameters, we conducted a series of
parametric studies. In Figure 5, the effect of varying selected
microcantilever parameters, surface properties, or operational
conditions on the predicted PFT force curves is evaluated. The
input parameters employed for each of these sets of
simulations are listed in Table 1.

Figure Sa,b shows that the adhesion force variation through
H and z, mostly impacts the retraction segment of the F—d
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curves while the approach segment and its slope remain almost
unchanged. When the tip—surface adhesion is stronger, the
“peeling off” process takes longer to complete, as the
outermost regions of the contact zone become more resistant
to detaching from the tip. For soft polymers, before tip—
surface detachment during retraction, the surface can hold
onto the retracting tip for a longer time and further deform
above its undeformed state while the microcantilever deflects
downward toward the sample. This results in a larger “pull-off”
force during retraction. A final observation is that surface
adhesion does not considerably affect the indentation depth.

Figure Sc—e depicts the F—d curve variation due to changes
of SLS parameters (eq 4) with a constant 7 = 1 s, which is
much smaller than the tip—surface interaction time. Either
increasing E, when E, is constant or decreasing E,, when E is
constant leads to force loops with greater hysteresis (Figure
5¢,d). When 7 is much less than the interaction time, most of
the contact zone surface can transmit its stiffness from E; to
E,, during the early periods of the contact time. Thus, the
shape of the predicted F—d curve for this 7 configuration
becomes more sensitive to E,, than E, variation. Therefore,
while E,, reduction causes the whole force curve to change
shape (Figure Se), the slightly boosted dissipation due to E,
increase manifests itself mainly in the attractive part of the
retraction segment of the force curve (Figure Sd). However,
when 7 is much greater than the interaction time, this trend
changes. In Figure Se, we change both E, and E, while their
ratio E./E, (Deborah number) remains constant. The
resultant F—d curve variation is a mixture of both effects
seen when either E; or E,, changes.

Next, we examine the predicted F—d curve variation due to
changes of microcantilever properties, including microcanti-
lever stiffness, k (Figure 5f) and tip radius, R (Figure Sg). The
microcantilever deflection, g, proportionally changes with its k
value variation, but the indentation depth, tip trajectory, and
sample deformation during the interaction time do not
noticeably change. When all of the parameters are identical
except microcantilever stiffness, a softer microcantilever spends
slightly more time interacting with the surface than a stiffer
microcantilever, ie., the interaction time is longer. That is
because the snap-in/off with the surface for the softer
microcantilever occurs earlier/later than a stiffer one. The
snap-in/off phenomena are the results of the mutual
contribution of the surface and the microcantilever to
minimize the interaction energy between the approaching/
retracting tip and the surface. The level of contribution of the
surface and microcantilever in these unstable processes

https://doi.org/10.1021/acs.macromol.2c00147
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depends on the surface/microcantilever properties and the
adhesion force between them. Variation of the microcanti-
lever’s tip radius, R, does not noticeably influence the length of
the interaction time, and its effect on the predicted F—d curves
is mainly due to an increase in the contact radius (Figure Sg).
This leads to a slight decrease in indentation depth and an
increase in pull-off force as tip radius increases. When the 7 to
interaction time ratio is smaller than 1, A, (Figure Sh,i)
reduction leads to less dissipative F—d loops. This trend is
reversed when the 7 to interaction time ratio is greater than 1.
Inverse Problem. The inverse problem is to predict the
properties of the surface based on the observed PFT AFM
force curves and the AFM operating conditions. However,
solving the inverse problem when the tip—surface interaction is
modeled using EAM is not straightforward. As mentioned
before, the challenge is partially due to the way the tip—surface
interaction force is calculated by EAM. At each timestep of the
interaction cycle, EAM first predicts the deformed surface
profile and then calculates total F,; by integrating tip—surface
forces over the whole computational domain. This indirect link
between tip position/velocity and the associated Fy
complicates the inverse solution. Therefore, we have utilized
ML models as an alternative way to link PFT AFM force
curves to the local viscoelastic and adhesive properties of the
surface without requiring an analytical closed-form solution.
The flowchart of the employed method is shown in Figure 6.
In material science, data analytics strategies are efficient and
accurate methods to predict a material’s characteristics,
response, or behavior. The resultant surrogate ML models
provide predictive capabilities based on recognizing the
underlying patterns in past data. Specifically, when there is
not an established theoretical model to connect the
observables to the material characteristics and performing
traditional computational or experimental measurements is
hard, data-centric informatics methods are favorable.** These
methods typically involve a “descriptor” selection phase in
which the proper number of observables as input parameters of
the model are carefully chosen. When the selected descriptors
have different units or scales, implementing a scaling process to
assimilate their scales is recommended. Then, a learning
algorithm that connects the descriptors and the material
properties of interest is established using a linear*® or nonlinear
regression-based technique such as support vector regression
(SVR),*® random forest regression (RFR),”” or multilayer
neural networks (MLP).”® We need to have an inclusive set of
material characteristics with known associated descriptors to
train the predictive machine learning algorithm. Usually,
different combinations of selected descriptors and various
learning algorithms are examined to determine the config-
uration that delivers the optimized predictive performance.
The forward EAM-based algorithm predicts PFT force
curves based on known material properties, microcantilever
properties, and PFT operational parameters. We can utilize
these predictions to build the required training data set for the
inverse problem ML model, which is expected to map the
problem descriptors: the given Force curve, the utilized
microcantilever properties, and PFT operational parameters,
to the material’s viscoelastic and adhesive properties. Due to
the following reasons, we utilize F(t) vs time (F—t curves) as
the model descriptor. First, the F—t curve fulfills the
mathematical function definition so that each member of the
input set (domain) is mapped to exactly one object in the set
of outputs (codomain). Second, F—t curves (in contrast with
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F—d curves) differentiate the approach and retraction phases of
the force curve. Figure 7 shows an experimental F—t curve
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Figure 7. F—t curve parametrization method. The dots shown on the
curve are the 15 representative (F, t) pairs for the stable regions of an
F—t curve acquired on a polyolefin-based elastomer (ENGAGE 8003
Polyolefin Elastomer, Trademark of the Dow Chemical Company).
The time is nondimensionalized based on the time period of the
oscillation. The attractive-approach, repulsive, and attractive-retrac-
tion parts of the force curve are labeled as (a), (b), and (c),
respectively.

from a polyolefin-based elastomer sample. The generated
training data set is split into two portions: a training set and a
test set. We use these sets to train and evaluate the predictive
performance of the employed ML algorithm.

The F—t curves need to be parametrized to a set of
representative values acting as ML model descriptors. To
proceed, we split the F—t curve into three segments, as
illustrated in Figure 7. The three segments are (a): Approach/
attractive, (b): repulsive, and (c): retraction/attractive. First,
the maximum tip—surface interaction force magnitude and its
associated nondimensionalized time instance for each segment
are determined: (IFl,,,, tmay, X f) where y: a, b, and c. Next,
12 (F, t) pairs on the stable parts of the given F—t curve are
recorded: (0; X |Fl,.., t;, X f) where: i: 1, 2, 3, §:0.75, 0.5,
0.25, and y: a, b, c. Each 6, when y = b has two associated
nondimensionalized time instances. Using this method, the
stable parts of a given F—t curve can be represented by 15 (F,
t) data pairs with a total of 18 independent values which are: {|
Fliap tiy X f} where: i: 1,2, 3 and y: g, b, c. These 18 values,
along with the tip radius, R, and microcantilever stiffness, k,
constitute a large array of single-valued features which is used
as the input of the machine learning algorithm. The employed
operational parameters used for simulation and experiments
are identical (@, = 2 kHz and a 10 nN peak force trigger), and
therefore, they are not counted in the list of descriptors.

The forward solution algorithm generates a set of predicted
F—t curves for an associated known operational condition,
microcantilever parameters, and sample viscoelastic/adhesive
properties. For these simulations, we assume A, = 50 nm, @, =
2 kHz, z; = 0.3 nm, v = 0.5, and 7 = S ps. The defined ranges
for Z and other material/ microcantilever parameters for the
training set simulations are shown in Table 2. These ranges are
defined based on the expected properties for the elastomer
samples and Bruker RTESPA-150-30 probes. The input
parameters for the training set simulation are randomly
selected over these defined ranges using the Latin hypercube
sampling (LHS) method.” We selected the multilayer neural
network (MLP)*® algorithm to connect the model descriptors

https://doi.org/10.1021/acs.macromol.2c00147
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Table 2. Ranges for Z and Other Material/Microcantilever
Parameters for the Training Set Simulations”

k
R (nm) (N/m) Z (am) E,(GPa) E, (GPa) H (x1072])
30 + 10 S+2 42 + 4 45+ 4 0.11 &+ 0.09 20 + 1S
“These ranges are defined based on the expected properties for
elastomer samples and Bruker RTESPA-150-30 probes. The input
parameters for the training set simulation are randomly selected over

these defined ranges using the Latin hypercube sampling (LHS)
method.”

to the output parameters: E_, E,, H, and Z. We tried to solve
this problem using MLP, LinearSVR, linear regression, and
RFR and observed that MLP provides the most optimized
predictivity performance and leads to fewer outliers on the test
data. A grid-based search and k-fold cross-validation
technique™ are used to optimize the hyperparameters such
as the size of the MLP hidden layers and to avoid overfitting
the employed regression algorithms to the training data.”’' In
the k-fold cross-validation technique, first, the training data set
is divided into k portions, with an almost identical number of
samples, and then the predictive performance of the algorithm
is evaluated k times (k = 5 for this work). At each of these k
times, one of the k portions of the data set is considered as the
test set, and the remaining k-1 portions are used to train the
algorithm. The optimal hyperparameters are the ones that
deliver the minimum cross-validation error. Since the
descriptors and output parameters are in various scales and
different units and to reduce the impact of outliers, we scaled
the training data parameters using a robust nonlinear
preprocessing technique (Quantile Transformer) so that each
follows a normal distribution. We calculated the error of the
model predictions using the “mean absolute percentage error”

(MAPE), which is defined as

100%
MAPE =
=2

At_B

Ay

(6)

where n is the number of the predictions and A, and P, are the
actual and the ML prediction values, respectively.

A typical set of predictive accuracy evaluation charts for the
MLP model is illustrated in Figure 8. In each of these charts,
the actual and predicted values, which are ideally equal, are
compared for the employed ML models. We tested the
predictive performance of the ML model by applying it to the
prepared training data. For these performance test runs, 20% of
the training data set is randomly selected as the test set, and
the model is trained with the rest of the data. We repeated this
process 10 times for each of the output parameters. The
calculated MAPE for each of the parameters is listed in Table 3

Except for E,, the MLP model provides acceptable (<10%
error) predictive accuracy for other parameters. We hypothe-
size that the weaker predictive performance for E; is due to the
reduced sensitivity of the simulated F—t curves to their
associated E, values for the employed 7. This causes the
pattern recognition process by the ML model to become
insensitive. The selection of the single 7 to interaction time
ratio regulates the influence level of E; and E, values on the
resultant F—t curves when using the SLS viscoelasticity
element. Nonetheless, the acceptable accuracy of the models’
predictions for Z, E, and H is promising.

Experimental Tests of the Surrogate Model. The
developed ML algorithm is utilized on experimental PFT AFM

t=1
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Figure 8. Typical set of the models’ predictive accuracy evaluation
charts when 20% of the training data is considered as test data. In
these charts, the actual and predicted values, which are ideally
supposed to be equal (represented as dashed red lines) for E, E,, H,
and Z using each of the employed ML models are illustrated and
compared.

Table 3. Calculated Mean Absolute Percentage Error
(MAPE) of the Predictions by the Trained ML Algorithm“

E., E, z
MLP 4.3 + 0.4% 284 + 6.5% 0.3 + 0.1%
“These values are determined based on the calculated MAPEs of 10
times deploying the predictive model on the training data. The
employed test data used for these evaluations is 20% of the whole
training set and is randomly selected.

H
S.2 + 0.6%

data on commercial elastomer samples. Three commercial
grades of elastomers (ENGAGE 8003, 8100, and 8540
Polyolefin Elastomers from the Dow Chemical Company)
were selected to represent a range of bulk mechanical
properties.”” For the experiments, approximately 300 nm
thin sections were prepared using cryomicrotomy (Leica UC7
ultramicrotome, —120 °C) and placed onto cleaved mica
substrates. PFT AFM was obtained on a Bruker MultiMode 8
AFM with a Nanoscope V controller running v9.40 Nano-
Scope software. The experiment was run in QNM mode
(quantitative nanomechanics) using a precalibrated probe
(RTESPA-150-30 silicon microcantilever with a spring
constant and tip radius of 6.25 N/m and 32 nm, respectively).
Data were acquired at a tip oscillation frequency of 2 kHz and
a 10 nN peak force trigger, with a force curve captured at each
pixel in a 64 X 64 array. For each elastomer, a set of data was
acquired with different peak force amplitudes (50, 75, or 100
nm). Typical PFT AFM F—t curves and their parametrization
are shown in Figure 9. PFT AFM force curves are acquired as
64 X 64 arrays over 1 ym X 1 ym regions.

The samples’ viscoelastic and adhesive property estimation
using the trained ML algorithm are provided in Table 4. In
Figure 10, we compare the moduli predictions from the ML
analysis of the PFT data to moduli estimations from fitting the

https://doi.org/10.1021/acs.macromol.2c00147
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Figure 9. Typical PFT AFM F—t curves acquired on elastomer
ENGAGE 8100, 8003, and 8540 Polyolefin Elastomer samples and
their parametrization. For the same PFT AFM operational conditions
and microcantilever properties, the contact time increases when the
sample is softer.

Table 4. Mean and Standard Deviation of Estimations for
Viscoelastic and Adhesive Properties of Three Assessed
Elastomer Grades by the Trained ML Algorithm®

8100 8003 8540
E., (MPa) 254 + 0.0 321+ 19 106.7 + 24.8
E, (MPa) 268 + 20.3 323.8 & 29.7 5654 +229.2
H (107]) 18.0 + 0.3 204 + 0.8 22.6 + 3.6
Z (nm) 353 + 04 40.7 + 0.2 44.0 + 0.6

“These estimations are made based on deploying the ML algorithm
on 128 acquired F—t curves on 128 points on the sample’s surface.
The microcantilever and operational conditions are: k = 6.25 N/m, R
=32 nm, A, = 50 nm, and f, = 2 kHz. The amount of penetration for
each sample can be estimated based on the calculated Z’s (indentation
=Z — A, + k Fgp, where Fg), is the defined peak force trigger). 7 = S ps
based on the employed @, = 2 kHz.

unloading curves of PFT and force volume mapping (FVM)
JKR model.** The PFET curves are acquired at a rate of 2 kHz,
while the FVM curves are acquired at a rate of 1 Hz. The ML
predictions for Ey, which represent the modulus of the sample
for greater than 2 kHz frequencies, are noticeably larger than
Eppr. Since the ML predictions were based on force curves
acquired at 2 kHz, we expected E;, > Eppr. The ML
predictions for E;; which represent the modulus of the
sample for lower than 2 kHz frequencies, are relatively closer
to Egpyy. This is also expected, given the differences in the
interaction time between FVM and PFT. In general, these
results illustrate the importance of considering a material’s full
viscoelastic properties when extracting modulus values.

B CONCLUSIONS

We demonstrate the utilization of EAM as a rigorous three-
dimensional viscoelastic contact model to simulate PFT AFM
on soft polymeric samples. Analysis of the results enables a
better understanding of the mutual interaction between the
microcantilever and the surface during a PFT cycle. The results
highlight the effects of viscoelasticity and long-range surface
forces and can rigorously capture complex dynamics such as
sample necking and adhesion-related energy loss due to
peeling of the surface from the retracting tip. The computa-
tional parametric study depicts the role of sample properties,
microcantilever properties, and PFT operational parameters on
the predicted force curves. Since the developed algorithm does
not lead to a straightforward way to relate the material
viscoelasticity and adhesion characteristics to the PFT AFM
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Figure 10. Moduli predictions from the ML analysis of the PFT data
and moduli estimations from fitting the PFT and FVM force curves
with the JKR model.”> The PFT and FVM curves are acquired at 2
kHz and 1 Hz frequencies, respectively. The ML analysis is done
using the PFT force—time curves (2 kHz).

observables, we instead employed data analytics approaches.
We developed a multilayer neural network model, which
provides the most optimized predictivity performance and
leads to fewer outliers on the test data. The required labeled
data to train and evaluate the ML model performance is
prepared using the developed validated algorithm for the
forward solution. Using the trained ML algorithm on the
experimental PFT AFM data acquired on three commercial
grades of elastomers results in physically acceptable predictions
for surface viscoelastic and adhesion properties.
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