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Abstract

Economic models often depend on quantities that are unobservable, either
for privacy reasons or because they are di cult to measure. Examples of such
variables include human capital (or ability), personal income, unobserved het-
erogeneity (such as consumer “types”), etc. This situation has historically been
handled either by simply using observable imperfect proxies for each the unob-
servables, or by assuming that such unobservables satisfy convenient conditional
mean or independence assumptions that enable their elimination from the esti-
mation problem. However, thanks to tremendous increases in both the amount
of data available and computing power, it has become possible to take full advan-
tage of recent formal methods to infer the statistical properties of unobservable
variables from multiple imperfect measurements of them.
The general framework used is the concept ofmeasurement systems in which a

vector of observed variables is expressed as a (possibly nonlinear or nonparamet-
ric) function of a vector of all unobserved variables (including unobserved error
terms or “disturbances” that may have non additively separable a ects). The
framework emphasizes important connections with related elds, such as non-
linear panel data, limited dependent variables, game theoretic models, dynamic
models and set-identi cation. This review reports the progress made towards
the central question of whether there exist plausible assumptions under which
one can identify the joint distribution of the unobservables from the knowledge
of the joint distribution of the observables. It also overviews empirical e orts
aimed at exploiting such identi cation results to deliver novel ndings that for-
mally account for the unavoidable presence of unobservables.
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SES-1950969. The author would like to thank Vincent Starck for helpful comments.

1

Copyright American Economic Association; reproduced with permission



1 Introduction

Economists have long understood that economic behavior is largely determined by
quantities that are di cult to measure accurately or are entirely unobserved (e.g.,
Griliches and Ringstad (1970), Amemiya (1985), Bound, Brown, and Mathiowetz
(2001), Hausman (2001), Aigner, Hsiao, Kapteyn, and Wansbeek (1986)). Fortunately,
techniques to handle such situations have been under constant development for a long
time and, in fact, have experienced a recent surge in interest in empirical applications,
thanks in part to the availability of rich datasets, increased computing power and on-
going theoretical advances. Recognizing the presence of unobservables enables a better
assessment of the true uncertainty associated with economic modeling and paves the
way for more informed policy decisions and more representative counterfactual analy-
ses.
Although other surveys on measurement error or latent variables exist (Carroll,

Ruppert, Stefanski, and Crainiceanu (2006), Fuller (1987), Cheng and Ness (1999),
Söderström (2018), Bound, Brown, andMathiowetz (2001), Chen, Hong, and Nekipelov
(2011), Wansbeek and Meijer (2000), Hu (2015), Schennach (2013a), Schennach (2016),
Schennach (2018)), this review has a distinct focus. It emphasizes methods, through
both theory and empirical examples, that target empirically relevant situations where
the observed and unobserved variables can be multidimensional and where the true val-
ues of some variables are simply not accessible to the researchers. A natural framework
to discuss these techniques is the concept of measurement system, in which information
regarding the unobserved variables can be inferred from numerous observable variables.
The motivation for focusing on measurement systems is twofold. First, in the age of
“big data”, high-dimensional data is becoming increasingly available, thus providing
a rich source of multivariate data to choose from. Second, multidimensional settings
o er more opportunity to uncover information about unobservable variables, because
even a small signal contained in multiple measurements can su ce to recover infor-
mation about the unobservable variables by exploiting the fact that the “signal” is
common to multiple measurements while the “noise” is not. Measurement systems
provide a unifying concept that highlights the connection between measurement error
models and unobserved (or latent) variable models and emphasizes natural connections
with other topics such as factor models, panel data, limited dependent variables and
set-identi cation.
Special attention will be devoted to techniques that can readily be used in multi-

variate settings (either directly or through natural extensions introduced herein) and
that avoid the traditional assumptions of classical zero-mean errors, linearity of the
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model and/or additive separability of the errors. The main focus will be on identi ca-
tion issues, because these typically constitute the rst hurdle in even de ning a useful
model of data generating process and also suggest novel ways to collect data that elicit
many, though perhaps noisy, measures rather than a single but elusive accurate mea-
sure. As it will become clear, the minimum number of measurements strictly needed for
identi cation is often not very large, and the redundancy provided by more numerous
measures can be exploited to further improve statistical accuracy.
In this paper, we rst characterize the various types of measurements and mea-

surement systems that have been considered in the literature. We then describe the
techniques available to establish that these measurement systems can be used to iden-
tify features of the underlying unobserved variables, using well-known applications to
illustrate how the necessary information can typically be obtained. These approaches
are primarily organized by the type of information they rely on, rather than by mathe-
matical techniques they use. Finally, a more in-depth discussion of some these methods
is given through a number of applications that demonstrate the e ectiveness of mea-
surement systems in addressing questions of empirical relevance.

2 Key concepts

2.1 Measurement systems

The overarching theme in this review is the concept of measurement system:

= ( ) (1)

which is represented by a (possibly nonlinear) function (· ·) that relates the observed
data vector to the unobserved data vectors and . The vector comprises
all the variables of interest while the vector contains all the sources of noise. The
mapping (· ·) may, in general, depend on some other observable vector . However,
for the purpose of studying identi cation, one can formally eliminate the vector
by working with conditional quantities throughout with the understanding that all
quantities have an implicit -dependence. (It may sometime be more convenient to
express a measurement system by instead isolating some of the unobserved variables
on the “left-hand side” in Equation (1).)
A distinguishing feature of a measurement system is that the support of the ob-

servables is smaller (for instance in terms of dimensionality or cardinality) than the
support of all the unobservables . As a result, one cannot simply “invert”
to recover the unobservables and the system is fundamentally underdetermined. This
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feature also makes measurement systems starkly distinct from well-known simultane-
ous equation models, where the unobserved disturbances can typically be recovered
from the observables (for a given value of the model’s parameters and the observable
variables and under suitable monotonicity assumptions). To make identi cation mat-
ters even more challenging, the form of the function (· ·) may or may not be known
a priori, although some restrictions on its behavior can be a priori placed, based on
either economic theory or plausible normalizations.
In such a measurement system, one cannot hope to assign a speci c value of to

each observation unit of the sample, but one may be able to make inference regarding its
statistical properties, such as its mean, variance, quantiles, distribution, etc., or bounds
on such quantities, potentially after conditioning on other observed or unobserved
variables.
A central question in the study of measurement systems is thus one of identi abil-

ity: Under which constraints on the function and on the joint distribution of the
observables and unobservables can one recover features of interest of the distribution
of ? The array of possible assumptions on and on the distributions lead to the
di erent types of measurements and models that have been considered in the literature
and that will be discussed next.

2.2 Notation and conventions

We rst brie y introduce the notations that will be used throughout. A lower case
letter denotes a speci c value of the random variable (or random vector) denoted by
the corresponding upper-case letter. Let ( ) and ( ) denote, respectively, the
density function and the distribution function of the random variable and similarly
for random vectors, whose dimension is denoted . A similar notation is used for
conditional quantities, e.g. 1| 2 ( 1| 2). Although not strictly necessary, we will
present most of the ideas assuming that all variables admit a density with respect to
the Lebesgue measure. We disregard “almost everywhere” quali cations to lighten the
text and avoid detailed de nitions of suitable function spaces. We let 1 { } denote
an indicator function equal to 1 if is true and equal to 0 otherwise while [·] is
the usual expectation. Norms are denoted by k·k and refer to the square root of the
sum over all elements of a vector or a matrix. Abbreviations are consistently used for
Generalized Method of Moment (GMM) and cumulative probability density function
(cdf).
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2.3 Classical measurement error

In classical measurement error, the unobserved but true value of the random variable
of interest and its observed but mismeasured counterpart are related through

= + (2)

where denotes the measurement error. (Each of these random variables could,
in general, be random vectors.) In this classical case, the measurement function
( ) is linear and additively separable in its arguments. Two alternative types

of classical measurement error have been described in the literature (here we adopt
the terminology proposed in Schennach (2016)):

De nition 1 In Equation (2), the measurement (or the error ) is said to be

1. strongly classical if is independent from and [ ] = 0 and

2. weakly classical if [ | = ] = 0 for all

Both conditions imply the standard uncorrelatedness between and that
is typically assumed in linear measurement error models. Depending on the speci c
model, these two assumptions may include independence from, or conditioning on,
some of the other variables of the model. The term di erential error is sometimes used
to describe errors that, albeit classical, are correlated with variables other than . In
the absence of such correlations, errors would be called nondi erential. When and
are discrete, the term misclassi cation is often used in place of measurement error.

While most of this review targets the more challenging case of continuous variables,
some misclassi cation problems will also be considered.
Although in a measurement system, the dimension of all unobservables ( )

exceed that of , the most fruitful cases (in terms of being able to make inferences
about ) occur when the dimension of is larger than the dimension of alone (the
unobserved variables of interest), as this may enable disentangling the signal from
the noise . To emphasize this, we shall express the left-hand-side vector as blocks,
e.g., ( 0 0)0 where has the dimension of and contains additional observable
variables. This natural notation ties in with the concepts of repeated measurements,
which are arguably one of the most e ective ways to handle measurement error models
(Schennach (2004a)).
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2.4 Nonclassical measurement error

Errors that do not conform to the classical assumptions of the previous section are la-
belled nonclassical measurement error, which have long been a concern (Bound, Brown,
andMathiowetz (2001), Bollinger (1998), Bound and Krueger (1991)), but have only re-
cently started to be addressed via formal methods. Nonclassical errors occur whenever
the errors exhibit a bias that depends on the true ( [ | ] 6= [ ]).
A well-known empirical example is self-reported income, where respondents tend to
over report at the lower end of the income distribution and under report at the upper
end (Bollinger (1998)). A plausible model for the generation of variables contami-
nated by nonclassical errors is the presence of a random noise that does not a ect the
observed outcome in an additive fashion, leading to a general nonlinear nonseparable
model (Matzkin (2003), Chesher (2003), Matzkin (2008), Heckman and Vytlacil (2005),
Chernozhukov, Imbens, and Newey (2007)), which also forms a measurement system:

= ( ) (3)

where (· ·) is a general nonlinear function. In this more general setting, one obviously
needs some form of normalization, for otherwise, one can always change the function
(· ·) and the distribution of the unobservables in ways that exactly o set each other.

For instance, one could select a normalization so that is independent from and
let (· ·) account for the dependence.
Measurement with nonclassical errors include indicators (or proxies) which are re-

lated to the true value of the variable of interest but may be expressed in di erent units
or may even be nonlinearly related to the true value. Indicators are often monotone in
the unobserved variable they proxy for. In a factor model, the indicators may proxy
for multiple unobserved variables – i.e., one may not know in advance which indicator
provides information regarding which unobserved variable.
The special important case of linear systems or factor models (i.e. = +

for some matrix of “factor loadings”) has a long history (Spearman (1904), Ander-
son and Rubin (1956)). Such class of systems includes measurements that are not fully
classical, because the loadings may di er from unity ( [ | ] = ( ) 6= 0
if 6= ). Extensions of this classic linear setting to general nonlinear and even non-
separable factor models have been developed (e.g., Hu and Schennach (2008), Cunha,
Heckman, and Schennach (2010), Gunsilius and Schennach (2019)) and come quite
close to handling a fully general nonlinear measurement system = ( ).
Although completely general nonclassical measurements are notoriously di cult to

handle, more speci c classes of nonclassical measurements have proven empirically and
methodologically useful.
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One example is the so-called Berkson-type measurement error (Berkson (1950)),
which almost obeys a classical-like error structure, but with the role of the measurement
and the true value reversed:

De nition 2 A measurement (or an error ) is said to be Berkson if

= + (4)

where, alternatively, (i) is independent from and [ ] = 0 (“strongly Berk-
son”) or (ii) [ | = ] = 0 (“weakly Berkson”).

In this setting, we generally have that is not independent from and that
[ | ] 6= 0, hence the nonclassical nature. This error model has traditionally

been used when one has imperfect control over a given variable (e.g. medication dosage
or oven temperature) and the actual resulting value of that variable deviates randomly
from the imposed value. The importance of Berkson errors is beginning to be recog-
nized in economics. For instance, it has been argued to arise when the agents reporting
the data attempt to form the best possible predictor given their available information
(Hyslop and Imbens (2001), Hoderlein and Winter (2010)) or when averaged regressors
and “regional” variables are used (Schennach (2013b), Blundell, Horowitz, and Parey
(2018)). Rounding (Hoderlein, Si inger, and Winter (2015)) can also generate errors
that closely mimic Berkson errors, although the error is generally not com-
pletely independent from in that case. Classical and Berkson errors can even occur
simultaneously (Carroll, Delaigle, and Hall (2007), Delaigle (2007), Mallick, Ho man,
and Carroll (2002), Stram, Huberman, and Wu (2002), Hyslop and Imbens (2001)).
Another speci c form of nonclassical errors was proposed by Hu and Schennach

(2008).

De nition 3 A measurement and its true unobserved counterpart satisfy a
centering restriction if £

| (·| )
¤
= (5)

for all , where is a known user-speci ed functional mapping a density on R to
a point in R .

Examples of such functionals include the median, the mode or the mean (in the
latter case, this condition reduces to the usual weakly classical assumption). It is
important to note that methods that allow for multiple measurements of the same
variable with nonclassical errors typically only require the centering restriction to hold
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for one of the measurements (so in De nition 3 could be a subset of all available
measurements). The ability to specify centering concepts other than the mean enables
considerable freedom that has signi cant practical relevance. In fact, this property has
been shown to hold for both the median (Bollinger (1998)) and the mode (Chen, Hong,
and Tarozzi (2008)) in the well-know household income validation sample of Bound
and Krueger (1991). More fundamentally, median or mode centering restrictions
exhibit a robustness to other data problems not enjoyed by the mean. The mode is
una ected by truncation, while the median is una ected by censoring, provided the
truncation or censoring points do not go beyond the “center” of the distribution. One
could also consider Berkson error with centering restrictions (Schennach (2013b)), i.e.£

| (·| )
¤
= .

The notion of nonclassical measurement system is so broad that it includes a number
of concepts that have historically appeared under di erent names.
Instruments are widely used in economic applications and can be seen as special

cases of indicators, often exhibiting bias or Berkson errors (Newey (2001), Schennach
(2004b), Schennach (2007a), Wang and Hsiao (2011), Nadai and Lewbel (2016))
Time series ( ) and panel data ( ) often naturally provide either repeated mea-

surements, instruments or more general indicators (Griliches and Hausman (1986),
Hausman and Taylor (1981), Evdokimov (2009), Horowitz and Markatou (1996), Wil-
helm (2015), Evdokimov and Zeleneev (2020a)).
The idea is that if the underlying unobservable follows a Markov process, future

( + ) and/or past ( )measurements provide indirect information regarding and
can thus be considered as multiple measurements, albeit with a nonclassical error (as
will be illustrated in Section 4.3). Such models have a close connection with dynamic
state space models (e.g., Cunha, Heckman, and Schennach (2010), Hu and Shiu (2013),
Connault (2014)), where observed variables provide indicators of the latent “state” of
the system, and repeated game-theoretic models (e.g. Hu and Shum (2013)), where
player’s actions provide indicators of the players’ valuations and/or which equilibrium
they are selecting.
Mixture models (e.g. Bonhomme, Jochmans, and Robin (2016b), Hall and Zhou

(2003), Compiani and Kitamura (2016), Adams (2016), Sasaki (2015a), Henry, Ki-
tamura, and Salanié (2014), Kitamura (2003), d’Haultfoeuille and Février (2015),
Jochmans, Henry, and Salanié (2017), Hu and Xiao (2018)) can be seen as special
cases of repeated nonclassical measurements models where the true unobserved vari-
able can only take on discrete values, as surveyed in more detail in Schennach (2018).
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2.5 Latent variables models

Some models include unobserved (or latent) variables whose only e ect is to in uence
the value of various observed variables. Formally, such setups can be seen as nonclassi-
cal measurement systems, although the observed variables were not a priori designed
for speci cally measuring these unobserved variables. For instance, a consumer’s de-
cision to purchase a certain type of goods does not attempt to measure their taste
preferences but may very well be related to it. The idea is that, in many settings, it is
possible to recover some features of the unobservables if we have access to su ciently
many observed variable related to them.
Latent variables are ubiquitous in advanced structural models. In models with

unobserved heterogeneity, the latent variable can represent the individual “type”,
or some unobserved shock that is common to multiple observations. Within a panel
data setting, one could have an outcome that is related to some observed covariates

and to some latent “type” or common shock and some observation-speci c
disturbance :

= ( )

The indices would typically represent individuals ( ) and time ( ), but other interpre-
tations are possible. The key to identi cation is that the unobserved variable keeps the
same value for di erent observations ( ) for = 1 , hence one e ectively
has access to multiple measurements of a single underlying variable.
Sometimes the outcome variable varies discontinuously with the explanatory

variables ( ), making the identi cation problem more challenging, due to the
resulting strong nonlinearity. A typical example comes from revealed preferences mod-
els (among many others, McFadden (2005), Aguiar and Kashaev (2020), Afriat (1973),
Varian (1982)), where the outcome variable is the good being selected, while the good’s
characteristics and/or the individual preferences are only partially observed. Here again
the identi cation analysis bene ts from the availability of multiple outcomes where, say,
unobserved preferences are known to remain constant because the same individ-
ual is being observed, while the available goods’ characteristics may di er. As an
extreme example, Williams (2019) shows that, in the limit of a large number of mea-
surements, even binary measurements can enable the identi cation of the distribution
of an underlying continuous latent variable.
Latent variables can also occur due to simple data collection issues. Important

examples include limited dependent variables, e.g.

= min { ¯}
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where ¯ is a xed censoring level that may be introduced for privacy reasons or due to
measurement apparatus limitations. Another example is interval-valued data (Manski
and Tamer (2002)), or more generally, set-valued data:

= i

where for = 1 are disjoint possible sets of values that respondents are asked
to select from. Surveys are often phrased as multiple choice questions with brackets of
values rather exact numerical values, to elicit a response even if the exact value is not
precisely known by the respondent. Missing data provide another example that could
bene t from formal approaches aimed at handling latent variables, as an alternative to
imputation procedures in cases where a proper accounting of a missing data’s variability
is important for consistency.

3 Basic techniques

De ning the class of problems that demand potentially nonlinear and/or nonseparable
measurement systems is only part of the solution. The section is devoted to describing
the methods that actually enable researchers to uncover properties of the unobservable
variables from the observed variables.

3.1 Validation data

Validation data consist of an additional auxiliary sample containing data regarding the
true value of the latent variables and have often been proposed as an avenue to address
the presence of measurement error (Lee and Sepanski (1995), Chen, Hong, and Tamer
(2005) Chen, Hong, and Tarozzi (2008), Hu and Ridder (2012)). A classic example
of validation data can be found in Bound and Krueger (1991), in which mismeasured
income from the Current Population Survey was matched to administrative Social
Security payroll tax records to provide a validation sample for true income.
In this section, we collect general conversion formulae that relate observable quan-

tities to the unobservable quantities of interest and that specialize to many of the
standard identities that are typically used in this context. We indicate by superscripts
and quantities pertaining to the main sample and the validation sample, respec-

tively. In the presentation below, the main sample is assumed to provide data on two
vectors and , where represents variables not available in the validation sample,
while represents indicators for the underlying true variables of interest that are
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not available in the main sample. The validation sample contains data on and
(which may not have the same dimension).
The results reported below are based on the following assumptions.

Assumption 1 (i) | ( | ) = | ( | ) (nondi erential errors) and ei-
ther (ii) | ( | ) = | ( | ) (classical transferability) or (ii*) | ( | ) =

| ( | ) (Berkson transferability).

Condition 1(i) requires the mismeasured variable to provide no more information
regarding the dependent variable than the true value already does. The conditions
1(ii) or (ii*) demand that the measurement error distribution be transferable between
the two samples. The two cases of (ii) and (ii*) are most natural for classical and
Berkson errors, respectively, which suggest the name we have given those assumptions
here. However, fully nonclassical errors are allowed in either case. Both conditions (ii)
and (ii*) are implied by the stronger condition that ( ) = ( ). One
then has the following result:

Theorem 1 Under Assumption 1(i),(ii),

( ) =

Z
( ) | ( | ) (6)

while under Assumption 1(i),(ii*),

| ( | ) =

Z
| ( | ) | ( | ) (7)

[ | = ] =

Z
[ | = ] | ( | ) (8)

When and can be assumed independent, we also have

| ( | ) = ( ) ( )

( )
(9)

which is useful when the validation sample only contains data on (and not )
(Hu and Ridder (2012)). Then, can be inferred from ( ) and ( ) by
a deconvolution argument (see Section 3.3), while ( ) and ( ) are directly
available. Equation (9) is also very useful outside of a validation data context. Hsiao
(1989) uses it in the context of a fully parametric model, while Li (2002) exploits
repeated measurements to recover and , as discussed further in Section 3.4.2.
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Let = ( ) for some given vector of moment function ( ) that depends
the true variable and a parameter vector of interest. This substitution leads to a
very useful strategy to handle measurement error in the context of GMM estimators
(Chen, Hong, and Tamer (2005), Chen, Hong, and Tarozzi (2008)), after de ning a
“measurement error-corrected” moment condition

˜ ( ) [ ( ) | = ] =

Z
( ) | ( | ) (10)

Indeed, by iterated expectations, one can readily verify that [ ( )] = 0 if and
only if [˜ ( )] = 0, so that the validation data can be used to calculate the function
˜ ( ) via (10) and the resulting feasible moment condition [˜ ( )] = 0 can be
used to determine with a standard GMM estimation using the main sample (although
the fact that ˜ ( ) is itself estimated leads to a modi ed asymptotic treatment, see
Chen, Hong, and Tamer (2005) and Chen, Hong, and Tarozzi (2008)).
Unfortunately, validation data are, more often than not, unavailable and, even when

they are, the validation sample size tends to be small (due to the di culty or costs
associated with collecting it), thus limiting the accuracy of the resulting estimators.
For this reason, there is considerable interest in devising methods that do not rely on
validation data.

3.2 Sensitivity analysis

Sensitivity analysis seeks to determine the e ect of the measurement error of a certain
type and magnitude on an assumed model with a speci c functional form, in an e ort
to determine what types of bias one could expect measurement error to introduce. It is
relatively straightforward to perform such an exercise, for instance, for polynomials and
assuming normal errors (Cheng and Schneeweiss (1998), Stoker, Berndt, Ellerman, and
Schennach (2005)). Sensitivity analysis does not deliver formal identi cation results but
its simplicity and transparency make it a useful diagnostic tool. The idea of looking
at the e ect of measurement error on observable quantities, without attempting to
recover the properties of the true covariates has also led to useful tests for the presence
of measurement error (Wilhelm (2019)).
Chesher (1991) and Chesher (2017) have derived the measurement error-induced

bias in conventional regressions, quantile regression models and density estimation, in
the limit of small classical measurement errors. Here we report a simple multivariate
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generalization of his result for errors with a small covariance matrix :

[ | = ] = ( ) +
1

2
tr
¡¡ 0 ( ) + 2 ( ln ( )) ( ( ))0

¢ ¢
(11)

+ (k k)
( ) = ( ) +

1

2
tr ( 0 ( ) ) + (k k) (12)

| ( ) = | ( )
1

2

tr
³³

0 | + 2 ln ( )
¡

|
¢0´ ´

| ( ( ) )
(13)

+ (k k)

where ( ) = [ | = ], denote gradients and 0 denote Hessians while primes
denote transposition and where the quantile function | ( ) is de ned implicitly
via | ( ( ) | ) = for any random variable and | is a shorthand for£

| ( | )¤
= | ( )

, with the gradient being taken with respect to the condition-

ing variable (and similarly for 0 | ).
Equations (11) and (12) are entirely analogous to the bias of nonparametric kernel

estimators with a second order kernel (Härdle and Linton (1994)) since the e ect of
measurement error is to smooth all functions via a convolution with the measurement
error density, which plays the role of the kernel. Chesher (1991) also notes that one
can use the approximations ( ) [ | = ] and ( ) ( ) etc. in the
bias expressions without a ecting the order of the (k k) remainders. This result is
useful, because it enables the researcher, based on the observed data alone, to easily
get an idea of what would be the direction and magnitude of the bias introduced by
a measurement error of a given (small) magnitude (see Battistin and Chesher (2014)
for an application of this approach to treatment e ects and Chesher and Schluter
(2002) for an application to the assessment of the impact of measurement error on
welfare measures). It also gives an intuitive picture of the origin of measurement error
bias: Conditional expectations are a ected by both the curvature in the regression
function ( 0 ( )) and nonuniformities in the density of the regressor ( (ln ( ))),
while densities are only a ected by curvature ( 0 ( )). This small-error expansion
approach can be applied to GMM settings as well and, in this context, Evdokimov and
Zeleneev (2020b) shows how could be identi ed if a su cient number of moment
conditions are available.
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This approach can be adapted to the Berkson case (Schennach (2016)):

[ | = ] = ( )
1

2
tr ( 0 ( ) ) + (k k) (14)

( ) = ( )
1

2
tr ( 0 ( ) ) + (k k) (15)

| ( ) = | ( ) +
1

2

tr
¡¡ 0 |

¢ ¢
| ( ( ) )

+ (k k) (16)

While the bias contains terms similar to Equations (11)-(13), with the expected oppo-
site sign, Equation (14) is free of terms that involve rst derivatives. This re ects the
fact that a conventional least squares regression of on a Berkson-type error contami-
nated regressor is consistent in the special cases of linear or quadratic speci cations
(Huwang and Huang (2000), Hausman, Newey, Ichimura, and Powell (1991)), with
only a biased intercept coe cient in the quadratic case.

3.3 Deconvolution

Deconvolution is a widely studied method that is unfortunately only helpful when the
measurement error is strongly classical and its distribution is known. The density
of the sum of two independent random variables (or random vectors) and is
given by the familiar convolution of their respective densities:

( ) =

Z
( ) ( ) (17)

This result takes an even simpler form of a conventional product when expressed in
terms of Fourier transforms:

De nition 4 For any random variable (or random vector) , we de ne the charac-
teristic function as ( )

£
i · ¤, where i 1.

Theorem 2 (Convolution theorem) For two independent random variables and
,

+ ( ) = ( ) ( ) (18)

It is useful to observe that independence is a su cient but not a necessary condition
for Equation (18) to hold. The necessary and su cient condition is “subindependence”,
as de ned below (Hamedani and Volkmer (2009), Ebrahimi, Hamedani, Soo , and
Volkmer (2010), Hamedani (2013), Schennach (2019)):
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De nition 5 and are independent i ( ) = ( ) ( ) for all while
they are subindependent i ( ) = ( ) ( ) for all .

Subindependence is arguably as weak as a conditional mean assumption (Schen-
nach (2019)), because both conditions can be phrased, in Fourier representation, as
a constraint on a one-dimensional subspace of frequency space, rather than a two-
dimensional subspace in the case of independence. This observation is useful in econo-
metric modeling, because it emphasizes the fact that many measurement error tech-
niques that rely on independence are, in fact, much more robust to violations of this
assumption than previously thought. The usefulness of the notion of subindependence
is beginning to be more broadly recognized in econometrics (Adusumilli, Otsu, and
Whang (2017), Chen, Linton, and Yi (2017)).
The main advantage of the Fourier representation is to facilitate the reverse oper-

ation of deconvolution. If the distribution of the measurement error is known, then
( ) is known, and we can thus express the density of the true unobserved variables

in terms of known ( ( )) or observed ( ( )) quantities:

( ) = (2 )

Z
( )

( )
i · (19)

where the integral is taken to be over R , under the standard assumption that
( ) 6= 0 (it is su cient that this holds on a dense subset of R , since ( )

is continuous (Carrasco and Florens (2011))).
This identi cation result can be naturally turned into an estimator by taking ad-

vantage of the fact that kernel smoothing is also a type of convolution, leading to the
kernel deconvolution estimator

ˆ ( ) (2 )

Z Ã
1X

=1

i ·
!

( )

( )
i · (20)

where ( ) =
R

( ) is the Fourier transform of the kernel while is
the bandwidth. This estimator is the focus of an extensive literature (Fan (1991b),
Fan (1991a), Carroll and Hall (1988), Liu and Taylor (1989), McIntyre and Stefanski
(2011), among others). Alternative methods, not based on Fourier transforms, have
also been proposed (e.g., Carrasco and Florens (2011), Mallows (2007), Arellano and
Bonhomme (2020)).
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The idea of kernel deconvolution can be extended to cover nonparametric regression
as well (Fan and Truong (1993)):

ˆ [ | = ] =

R R
( )

( )
( ) i ·R 1

( )
( )

( ) i ·
(21)

where we have introduced the quantity ( ) 1
P

=1
i · , which can be viewed

as an estimator of
£

i · ¤.
A notable di culty in applying kernel deconvolution is that the division by ( )

in Equations (20) and (21) can cause the integrand to become very noisy in the limit of
large frequency . Keeping this unwanted phenomenon under control typically demands
(i) a kernel whose Fourier transform ( ) has compact support and (ii) a slower
decrease of the bandwidth with sample size , relative to standard nonparametric
estimators. The latter often results in slow convergence (in some cases, as slow as
(ln ) for some 0).
Although kernel deconvolution methods for classical errors are often criticized for

their slow convergence, an arguably more severe limitation is their reliance on the
knowledge of the measurement error distribution. Fortunately, numerous alternative
methods, to be discussed in the subsequent sections, have been proposed that do not
share this limitation.
One can also similarly handle the converse case of Berkson (rather than classical)

errors using Fourier techniques (Delaigle, Hall, and Qiu (2006)). In fact, this case is
arguably much simpler and convenient because (i) Fourier transforms are not actually
necessary, as Equation (17), with the role of and reversed, su ces and (ii)
the ill-posed operation of dividing by a potentially small ( ) is avoided. The end
result is that, if the measurement error distribution is known, one can obtain rapidly
converging (even root consistent) estimators.

3.4 Repeated measurements

Repeated measurements arguably provide the most practical way to address measure-
ment error problems. They consist of multiple imperfect measurements of the same
unobserved underlying true variable (Hausman, Newey, Ichimura, and Powell (1991),
Li and Vuong (1998), Li (2002), Schennach (2004a), Schennach (2004c), Delaigle, Hall,
and Meister (2008)). This class of approaches proves very useful when there are no
biases in at least one of the measurements, because then, as we will see, there exist
formal methods to fully recover the distribution or various features (e.g. moments) of
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the underlying true variable from the observed distributions. A well-known applica-
tion of this approach is the estimation of so-called Engel curves that relate household
expenditure share on various types of good to household income, all of which are po-
tentially mismeasured (Hausman, Newey, and Powell (1995), Schennach (2004a)). As
consumption or income data is often collected over time, observations in di erent time
periods can serve as repeated measurements.
Although we shall focus on the minimum number of measurement needed for identi-

cation in this review, the availability of more measurements can be straightforwardly
exploited to improve statistical accuracy by merely averaging over the di erent esti-
mates obtained while considering di erent subsets of the measurements.

3.4.1 Correlation analysis

Correlations are mostly useful in linear models. As a simple example, consider three
scalar measurements = + , = + and = + with

mutually uncorrelated and with zero mean. One can then straight-
forwardly identify the model’s key parameters through:

= [ ] [ ] = [ ] [ ]
Var [ ] = [ ] = [ ] Var [ ] = Var [ ] Var [ ]
Var [ ] = Var [ ] 2Var [ ] Var [ ] = Var [ ] 2Var [ ]

(22)

Generalizing of this basic idea leads to a factor model structure between the ob-
served vector of measurements and the unobserved vector of factors :

= + (23)

where [ ] = 0, [ ] = 0, Covar [ ] = 0 and Var [ ] is diagonal while
is a × matrix of factor loadings (here 6= in general). The above assumes,
without loss of generality, that has been demeaned.
Such model can be shown to be identi ed (up to some normalizations) under simple

conditions (Anderson and Rubin (1956)):

Theorem 3 In model (23), if the matrix is such that there remains two disjoint
matrices of rank after any one row of is removed, then a given Var [ ] uniquely
determines Var [ ], while all observationally equivalent have the form ˜ for some
xed ˜ and an arbitrary × matrix satisfying 0 = .

Normalizations are necessary in this model, because it is possible to substitute
= ˜ 1 and = ˜ into (23), without a ecting the observable quantities, while
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obtaining di erent factors ˜ and di erent factor loadings ˜ . A popular normalization
is to assume that Var [ ] = .
Alternatively one may assume that of the measurements in are each dedi-

cated to only one latent factor (so that contains, on a diagonal block, a submatrix
that is a × identity matrix). In this case, the elements of can be gener-
ally correlated. It is interesting to note that the selection of a speci c normalization
becomes unnecessary when the latent factors are merely used as control variables
(for instance, to match comparable individuals in treatment e ects models).
The rank condition of Theorem 3 is su cient but not necessary in general. While

identi cation of from the covariances and normalizations alone clearly requires
2 +1 to satisfy the rank condition of Theorem 3, that number can be reduced using
higher order moments (Bonhomme and Robin (2009)), or, equivalently, higher order
derivatives of the log characteristic function (Ben-Moshe (2018)).
An analysis of the correlation structure is also very useful in time series or panel

data settings (Griliches and Hausman (1986), Gospodinov, Komunjer, and Ng (2017)).
If one posits distinct models for the serial correlation of the signal and the noise, it is
often possible to recover the model’s primitives (e.g. autocorrelation or moving average
coe cients) from the observed correlations over time by solving a system of nonlinear
equations.

3.4.2 Kotlarski-type identities

Consider two repeated measurements that are related to the true underlying
variable of interest via

= + (24)

= + (25)

where the appropriate assumptions regarding the measurement errors and
will be speci ed for each case below. Repeated measurements are useful, because the
distribution of the true unobserved variable can be obtained via an old but very
powerful result known as Kotlarski’s Lemma (see Kotlarski (1967), or p. 21 in Rao
(1992)):

Lemma 1 In the system (24)-(25), if and take value in R and , are
mutually independent with [ ] = 0 then, provided

£
i
¤ 6= 0 for all real ,

( ) = exp

ÃZ
0

£
i i

¤
[ i ]

!
(26)
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and ( ) = (2 ) 1 R ( ) i .

Kotlarski’s Lemma has been modi ed and generalized in various ways since then.
Li and Vuong (1998) prove the consistency of a nonparametric density estimator based
on Kotlarski’s Lemma. This result is extended by Li (2002) to multivariate settings
(assuming mutual independence of , 1,. . . , ):

( ) = exp

ÃZ
0

£
i i

¤
[ i ]

!

( ) =
( )Q

=1

³
( ) ( )

´
Li (2002) also uses this result to correct for measurement error in a nonlinear regression
model by combining Equations (26) and (9).
Schennach (2004a) obtains an identity that generalizes both Kotlarski’s result and

the identi cation result for polynomial errors-in-variables regression model of Hausman,
Newey, Ichimura, and Powell (1991).

Theorem 4 Let be random vectors, with = = . If (i) [ | ] =

0, (ii) [ | ] = [ | ],1 (iii) is independent from , then, for any
function ( ) with Fourier transform ( ),

[ ( )] = (2 )

Z
R

( )

£
i · ¤

[ i · ]
( ) (27)

where the integral is over the whole R space and

( ) = exp

ÃZ
0

£
i i · ¤
[ i · ]

·
!

(28)

where the integral is the path integral of a vector-valued eld along a smooth path
joining the origin and the point R (provided all the requisite quantities exist and
the denominators are nonvanishing).

In this framework, collect variables that enter the moments linearly, which can
exhibit zero mean errors conditional on (such as the dependent variable in a least-
square regression). If is not needed, it can be simply set to = 1. Perfectly

1In a regression setting, this is implied by [ | ] = 0.
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measured variables that enter the moment nonlinearly can be included in and the
corresponding elements of and can then just be set to be equal.
This result is phrased in a form that directly identi es moments involving (a possibly

multivariate) (and perhaps other variables ), because a large class of models can
be identi ed from the knowledge of a set of moments. This is true by construction
for GMM-type models, but also for likelihood models. As a special case, for nonlinear
regression models:

= ( ) + (29)

the moment vector needed is [( ( )) ( ) ] (through the rst-order
conditions for least-square minimization).
The Fourier transform ( )may be a generalized function (Lighthill (1962), Schwartz

(1966), Temple (1963), Gel’fand and Shilov (1964)). For instance, if ( ) is a polyno-
mial, the Fourier transform ( ) consists of delta function derivatives of various orders
that e ectively extract various derivatives of the quantity

¡ £
i · ¤ £

i · ¤¢ ( )

in (27). In this fashion, one can recover the polynomial result of Hausman, Newey,
Ichimura, and Powell (1991) for repeated measurements under the same conditional
mean and independence assumptions. This observation is especially useful in multi-
variate settings, where a polynomial result has not yet been explicitly derived (and
would be extremely unwieldy), but a symbolic algebra engine can automatically com-
pute the appropriate mixed derivative of

¡ £
i · ¤ £

i · ¤¢ ( ) and Equation
(28).
Equations (27) and (28) also suggest a very natural estimator in which all quantities

of the form
£

i · ¤ for = 1 are replaced by sample averages 1
P

=1
i · .

Schennach (2004a) shows that, after a simple automatic bounding device (ensuring,
for instance, that an estimator obtained via (28) is bounded), this approach yields a
root consistent and asymptotically normal estimator that does not require any user-
speci ed bandwidth parameter, provided ( ) is su ciently smooth. This smoothness
condition ensures that ( ) decays su ciently rapidly as | | to downweigh the
noise in the tail in the estimated Fourier transform, yielding a nite overall noise that
decays to zero at the rate 1 2 as .
One can also recover Kotlarski’s identity from (27) and (28) under fewer indepen-

dence assumptions by setting = 1 and ( ) = i · 0 (which corresponds to setting
( ) to be a delta function, or a point mass, at 0). In a similar vein, only set-
ting ( ) = i · 0 (but keeping ) yields the identi cation of [ | = 0] ( 0)

which opens the way to nonparametric identi cation of conditional expectations (after
division by ( 0), which is also identi ed):
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[ | = ] =

R
i · 0 [ i · ]

[ i · ]
( )R

i · 0 ( )
(30)

with ( ) given by (28). Schennach (2004c) proposes a nonparametric estimator
based on this identity while Schennach, White, and Chalak (2012) also considers the
estimation of derivatives as well as functionals constructed from such quantities. Simi-
lar constructs have found applications for varying coe cient models (Dong, Otsu, and
Taylor (2020)).
Kotlarski’s identity has been generalized in other ways. For instance, in order

to relax some of the nonvanishing Fourier transform assumptions, Evdokimov (2009)
suggests using and as repeated measurements of to identify its distribution,
from which one can recover the distribution of via standard deconvolution. This
only requires a nonvanishing assumption on ( ) but not ( ). This can be even
further relaxed by evaluating an appropriate limiting process, provided higher order
derivatives of ( ) do not vanish where ( ) itself does (see Schennach (2000) and
Evdokimov and White (2012)). One should note, however, that distributions whose
characteristic functions vanish are relatively rare: Among commonly used distributions,
the uniform and the symmetric triangular distributions are the only examples.
The structure of the second measurement can also be extended to = + +

with [ ] = 0 if another variable , related to but independent from the errors,
is available (Carroll, Ruppert, Crainiceanu, Tosteson, and Karagas (2004)). In this
case, the slope coe cient can be identi ed from = Cov ( ) Cov ( ) while the
intercept is given by = [ ] [ ]. Hu and Sasaki (2015) were able to further
extend Kotlarski’s approach to a measurement system that includes a measurement
that is polynomially related to its true unobserved counterpart, thus allowing for the
possibility of a nonclassical measurement.
Kotlarski-type identities can be applied to a class of factor models (in which the

indicators may not be obviously matched with corresponding latent factors):

= + with (31)

where denotes independence and where we may assume without loss of generality
that all variables have zero mean. Let us assume that the factor loading matrix
is known (as it can be identi ed, e.g., from Theorem 3). One can then construct
two vectors of repeated measurements suitable for use in Equation (28) in order to
estimate the joint distribution of the factors . Speci cally, under the same conditions
as Theorem 3 and under a suitable normalization, one can decompose the known 0
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as ( 0 0 0 ) where and are × invertible submatrices and has
any dimension (it even can be empty, as it plays no role in the identi cation of the
distribution of ) and let 0 = ( 0 0 0 ) be the corresponding partitioning of
in (31). Then, the repeated measurement vectors and in Equation (28) can be

taken to be 1 and 1 .
Bonhomme and Robin (2010) instead consider a factor model of the form

= with for 6= and [ ] = 0 (32)

In this framework, one combines all unobservables in one vector without labelling some
as noise and others as signal. The matrix of coe cients is again considered known.
They show that the marginal distribution of each is identi ed using a Kotlarski-type
identity that involves second derivatives of Fourier transforms.

Theorem 5 In Model (32),

ln ( ) =

Z
0

Z
0

¡ ¢
· vech

0 ln 0 ·

¶¶
where R \ {0} is a user-speci ed direction of integration and where =

¡ ¢ 1

and =
¡
vech

¡
·1 ( ·1)

0¢ vech
¡

· ( · )0
¢¢
provided has full column rank

and ( ) does not vanish

The requirement of independent factors can be relaxed to some extent. Ben-Moshe
(2018) provides a range of identi cation theorems allowing for various levels of de-
pendence between the factors, from general dependence to mean independence. His
results, many of which are necessary and su cient, are phrased in terms of rst and/or
second derivatives of the characteristic functions.
Kotlarski-type identities are being increasingly used in panel data settings (Evdoki-

mov (2009), Arellano and Bonhomme (2011)), based on the idea that the “ xed” or
“permanent” e ects remain constant over time while transitory components do not, so
that observations over time can provide a form of repeated measurements.
Kotlarski-type identities have also been modi ed in rather di erent directions, to

handle nonlinear measurement error problems in a variable with an instrument
vector (denoted ), rather than a conventional repeated measurement:

= ( ) (33)

= + (34)

= ( ) + (35)
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For convenience, one can work with the constructed instrument , de ned as
( ), since the function (·) is identi ed from observables via ( ) = [ | = ].
The proof of identi cation of this model in the separable case = ( ) +

with scalar has a long history, starting from the polynomial treatment of Hausman,
Newey, Ichimura, and Powell (1991), followed by a conjecture, based on functional
equations, that identi cation holds more generally (Newey (2001)). Some counterex-
amples based on exponential speci cations were described in Schennach (2004b), while
Wang and Hsiao (2011) showed identi cation in speci c parametric models satisfying
integrability conditions. Schennach (2007a) then showed identi cation in general set-
tings by using Fourier transforms of the functional equations of Newey (2001). The
resulting expression for ( ) is similar to Kotlarski’s result except for two key di er-
ences: (i) all 3 variables and (rather than 2 of them) play a role in identi cation
and (ii) the Fourier transforms involve conditional expectations rather than probabil-
ity densities. As conditional expectations are not necessarily integrable, their Fourier
transform need to be interpreted as generalized functions (Lighthill (1962), Schwartz
(1966), Temple (1963)). Nadai and Lewbel (2016) have extended this approach by (i)
allowing for some forms of correlations between the errors in and , (ii) considering
multiplicative errors and (iii) providing identi cation results for polynomial moments
of .
Schennach (2008) extends Schennach (2007a) to quantile regressions, thus allowing

for a nonseparable model of the form = ( ) and enabling the recovery of
the complete joint distribution of and . Remarkably, this result can be phrased
entirely in terms of ordinary (rather than generalized) functions, thus suggesting a
natural plug-in estimator. An extension of this result to multivariate (and thus
multivariate and ), developed by Wilhelm (2015), is reported below.

Theorem 6 In Model (33)-(35), if (i) is supported on all of R , (ii) ad-
mits a bounded density and [k k] , (iii) | , and
[ | = = ] = 0 and (iv) there exist and 0 such that

sup

¯̄̄̄
¯ [ | = ]

1

¯̄̄̄
¯ Y

=1

¡
1 +

¯̄ ¯̄¢ 3
(36)

for all R , then, the cdf of given is given by

[ | = ] = ( ) + (2 )

Z
( )

( )
i · (37)
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where, for a given 0 R,

( ) =

Z
( [1 { 0} | = ] ( )) i · (38)

( ) = lim
1

lim
2

R
1 | | 2

[1 { 0} | = ]R
1 | | 2

(39)

( ) = exp

Z
0

i 1 ( )

0 ( )
·
¶

(40)

( ) =

Z
( ) i (41)

1 ( ) = [( )1 { 0} | = ] (42)

0 ( ) = [1 { 0} | = ] (43)

in which the denominators ( ) and 0 ( ) are assumed nonvanishing.

It should be noted that it is of course possible for a dataset to exhibit both mea-
surement error and endogeneity at the same time. In general, in a nonlinear model,
a single instrument is unfortunately not su cient to handle both problems simultane-
ously and dedicated methods that address each problem individually have to be used
(Otsu and Taylor (2016), Song, Schennach, and White (2015), Schennach, White, and
Chalak (2012)).

3.4.3 Di erencing

A special case that turns out to be especially simple to handle occurs when ,
and are mutually independent in the repeated classical measurements setup of
Equations (24) and (25) where the distribution of the measurement errors and

are identical and symmetric about zero. Then, one can exploit the fact that
only depends on the measurement errors (see Horowitz and Markatou (1996), Li and
Vuong (1998), Delaigle, Hall, and Meister (2008)) to write ( ) = ( ) =

( ) ( ) = | ( )|2 so that ( ) = ( )
q¯̄

( )
¯̄
(selecting the

positive root, assuming ( ) is strictly positive).
Delaigle and Meister (2007) provide an alternative expression that does not require

the distributions of and to be identical. Here we remark that this expression
remains valid under even weaker conditions, leading to the following result (shown in
Schennach (2018)):
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Theorem 7 Let , and each take value in R . If is (sub)independent from
( + ) 2 and the distribution of conditional on is symmetric about 0
then

( ) =
( + ) 2 ( )

( ) 2 ( )
(44)

provided ( ) 2 ( ) 6= 0 for R (except perhaps at isolated points).

3.4.4 Higher-order moments

It can happen that a measurement system is such that the dimension of is too small
relative to that of , so that not enough repeated measurements are available. In
such cases, one typically needs to make stronger independence assumptions regard-
ing the observables and attempt to regain identi cation by exploiting every possible
implications of these additional assumptions.
In a linear regression of on :

= + (45)

= + (46)

with being a classical error-contaminated measurement of , the basic idea is to
consider higher order moments of and and note that independence implies that
these moments can be expressed in terms of products of moments of and moments
of the errors and , some of which are zero by assumption. The resulting expres-
sions can be solved for the slope parameter in terms of observable moments. Since
the seminal works of Geary (1942) and Reiersol (1950), a large number of authors
(e.g. Kapteyn and Wansbeek (1983), Kendall and Stuart (1979), Pal (1980), Cragg
(1997), Erickson and Whited (2002), Erickson and Whited (2012), Erickson, Jiang,
and Whited (2014), Dagenais and Dagenais (1997), Lewbel (2012), Lewbel (1997),
Bonhomme and Robin (2009), and the many references therein) have exploited analo-
gous techniques to identify and estimate linear errors-in-variables models without any
auxiliary information.
One simple result of this kind is that if

£
( [ ])3

¤ 6= 0 then
=
Cov [ ]

Cov [ ]
(47)

where = ( [ ]) ( [ ]). This expression has a natural instrumental vari-
able interpretation, where the instrument is constructed from the variables themselves
and does not need to be externally provided. It is possible to relax the assumption that
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£
( [ ])3

¤ 6= 0 by using fourth order mixed moments, but then the restriction£
( [ ])4

¤ 6= 3
£
( [ ])2

¤
is required. Violations or near-violations

of such nonzero denominator conditions can be readily detected in practice by inspect-
ing the magnitude of the denominator of Equations such as (47) or, equivalently, by
checking if the estimated standard errors of a corresponding estimator of are reason-
ably small. Going to even higher moments keeps slightly expanding the set of allowed
distributions, but some unidenti ed cases always remain, as formally shown in Reiersol
(1950) using Fourier transforms.
Going beyond a simple univariate regression, Bonhomme and Robin (2009) gener-

alizes the classic treatment of Geary (1942) to multivariate factor models (introduced
in Equation (23) above), enabling identi cation of the factor loadings with fewer mea-
surements than from covariance information alone (Anderson and Rubin (1956)).
While using speci c moments is simple and convenient, it carries the risk of project-

ing out some useful information. In response to this, researchers have begun using the
full distribution of the observable variables instead. Chen, Hu, and Lewbel (2009) use
this idea to identify a regression model with discrete mismeasured regressors. In that
case, thanks to the discrete nature of the problem, the identi cation can be reduced to
a nite, albeit complex, system of equations. In the case of continuous variables, the
classic result of Reiersol (1950), covering a univariate linear regression with classical
errors in both variables, has been generalized to a nonparametric univariate regression
model by Schennach and Hu (2013). More recently, the case where the regressor ex-
hibits centered nonclassical errors (while the dependent variable error remains classical)
has also been shown to be identi ed (Hu, Schennach, and Shiu (2020)), albeit under
some stronger assumptions (such as boundedness and monotonicity of the regression
function).
An in uential empirical example of the use of the higher-order moment approach

can be found in Erickson and Whited (2000), who re-examine the apparent failure
of the so-called theory (Brainard and Tobin (1968), Tobin (1969)), which relates a
rm’s investment behavior to , de ned as the ratio of the market values of the rm’s
capital stock to its replacement value. The authors nd that theory has, in fact,
good predictive power for investments, once measurement error in is accounted for.
In the absence of credible instruments, higher-order moments techniques were crucial
to establish the result.
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3.5 Nonclassical repeated measurements

3.5.1 Operator inversion

In the case of nonclassical errors, the density of the sum of two random variables
and that are not necessarily independent is no longer given by a simple convolution,
but is instead given by

= | (48)

where we have introduced the operator£
|

¤
( )

Z
| ( | ) ( ) (49)

acting on a generic function . This operator point of view makes a direct connection to
the problem of inverting an integral equation (Carrasco, Florens, and Renault (2005)),
which is well-studied in the nonparametric instrumental variable literature (Newey
and Powell (2003), Darolles, Florens, and Renault (2011), Hall and Horowitz (2005),
Adusumilli and Otsu (2015)). Note that Equation (49) is the continuous analogue of
matrix multiplication, with | playing the role of a matrix and of a vector.
We assume (for this section only) that the density | is known and consider

the problem of recovering from . Whether Equation (48) can be inverted as
= 1

| depends on whether the operator | is injective (Carrasco, Florens,
and Renault (2005)), a condition often stated as invertibility (as in Hall and Horowitz
(2005)) or by stating that the underlying density | is complete or forms a complete
family (as in Newey and Powell (2003)). Su cient conditions for injectivity can be
found in Newey and Powell (2003), Mattner (1993), d’Haultfoeuille (20011), Hu and
Ridder (2010), Andrews (2017) and Hu, Schennach, and Shiu (2017), but the literature
is far from a simple and exhaustive characterization of injective linear operators in terms
of primitive conditions.
Even when the inverse of an operator exists, it may still lead to an ill-posed prob-

lem (i.e. the output is not a continuous function of the input ). While this
does not preclude identi cation, it does have implications for estimation purposes (i.e.
slow convergence). One can reasonably assume that a matrix has no zero eigenvalue,
but virtually all reasonable invertible integral operators have eigenvalues that are not
bounded away from zero, which is the source of the problem. In practice, this means
that the inverse operator must be “regularized” to obtain consistent estimators (as
covered extensively in Carrasco, Florens, and Renault (2005)).
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3.5.2 Operator diagonalization

Identifying nonclassical measurement error models involves more than merely inverting
a known operator | , as it also requires the identi cation of this operator solely
from the information provided by the observable variables. Hu and Schennach (2008)
establish the identi cation of general nonlinear factor model with continuous variables
contaminated by nonclassical measurement errors. For convenience, the vector of ob-
servable indicators is partitioned as ( ) and the measurement system has the
form

= ( ) for = (50)

One can think of as the dependent variable and as the regressor for which two
indicators and are available, but this assignment is not the only possible choice.

Theorem 8 Assume that (i) the random vectors are mutually independent
conditional on , (ii) the operators | and | are injective2 (iii) the distribu-
tions of given = 1 and of given = 2 di er whenever 1 6= 2. and (iv)
there exists a known functional such that

£
| (·| )

¤
= . Then, for a given

true observed density | , the equation

| ( | ) =
Z

| ( | ) | ( | ) | ( | ) (51)

admits a unique solution
¡

| | |
¢
. A similar result holds for

( ) =

Z
| ( | ) | ( | ) | ( | ) ( ) (52)

In Theorem 8, Assumption (i) weakens independence assumptions used in factor
models and can be seen as an analogue of “exclusion restrictions” commonly used in
instrumental variables settings. Assumption (ii) was discussed in Section 3.5.1. While
the injectivity Assumption (ii) typically requires that the dimensions of , , and
be the same, Assumption (iii) is weaker than injectivity and can be satis ed even if
is scalar. Remarkably, Assumptions (ii) and (iii) jointly demand that + +

2 + 1, which is the same dimensionality constraint as in a linear factor model
(Anderson and Rubin (1956)). Assumption (iv) is a nonclassical centering restriction
(see De nition 3).
A general nonlinear and nonseparable relationship (50) can be recovered from the

identi ed densities | ( | ), | ( | ), | ( | ) under standard normaliza-
tions (e.g. Matzkin (2003)), such as normalizing the distributions of the disturbances

2Or, equivalently, | and | are injective.
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to a given distribution. For one-dimensional variables this can be accomplished in the
usual way (Cunha, Heckman, and Schennach (2010)):

( ) = 1 ( | )

if the distribution of is normalized to a uniform. In multivariate settings, one can
rely on recent results on optimal transport and Brenier maps (Carlier, Chernozhukov,
and Galichon (2016), Gunsilius (2020)).
The proof of identi cation of Theorem 8 can be outlined as follows. Assumption

(i) directly implies the integral Equation (51). We then associate, for any conditional
density | ( | ), an operator | , as in Equation (49). Equation (51) can then be
cast as an operator equivalence relationship:

; | = | ; | (53)

where ; | is de ned analogously to | with | replaced by | ( ·|·) for
a given and where ; is the “diagonal” operator mapping a function ( )

to the function | ( | ) ( ), for a given . Next, note that the equivalence

| = | | also holds (since | ( | ) =
R

| ( | ) | ( | ) , again
by conditional independence). Isolating | to yield

| = 1
| | (54)

substituting it into (53) and rearranging, we obtain:

; | 1
| = | ;

1
| (55)

where all inverses can be shown to exist over suitable domains under the injectivity
assumptions made.
Equation (55) states that the operator ; | 1

| admits a spectral decomposition
(eigenvalue-eigenfunction decomposition). The operator to be diagonalized is de ned
in terms of observable densities, while the resulting eigenvalues | ( | ) and eigen-
functions | (·| ) (both indexed by ) provide the unobserved densities of inter-
est. To ensure uniqueness of this decomposition, Hu and Schennach (2008) employ
four techniques: (i) uniqueness (up to some normalizations) is ensured by Theorem
XV 4.5 in Dunford and Schwartz (1971)); (ii) the scale of the eigenfunctions is xed
by the fact that densities integrate to one; (iii) use Assumption (iii) to resolve ambi-
guities in eigenfunctions if some eigenvalues are degenerates; (iv) invoke Assumption
(iv) to uniquely determine the indexing of the eigenvalues and eigenfunctions. The last
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step makes use of the centering restriction: Consider another variable ˜ related to
through = (˜ ), and note thath

| ˜ (·|˜ )
i
=

£
| (·| (˜ ))

¤
= (˜ ) (56)

which is only equal to ˜ if is the identity function. The four above steps ensure that
the diagonalization operation uniquely speci es the unobserved densities | ( | )

and | ( | ) of interest. Next, Equation (54) implies that | ( | ) is also iden-
ti ed.
Schennach (2013b) also employs operator diagonalization to cover the converse case

of Berkson measurement error in , where the centering restrictions must be phrased
in terms of | rather than | , which requires a substantially di erent approach.
Speci cally, the measurement system has the form:

= ( ) + (57)

= + (58)

= ( ) + (59)

where all three measurement are nonclassical and the functions and are unknown.

Theorem 9 Assumptions that (i) , , , are mutually independent, (ii)
, , are centered (i.e. have zero mean, mode, median, etc.), (iii) and
are nonvanishing, (iv) the functions ( ) and ( ) are one-to-one, (v) and

its inverse are di erentiable. Then, given the true observed conditional density | ,
the functional equation

| ( | ) =
Z

( ( )) ( ( )) ( ) (60)

admits a unique solution ( ).

Operator diagonalization techniques are now being used to solve an increasing num-
ber of identi cation problems with nonclassical disturbances, such as dynamic models
(Hu and Shum (2012), Hu and Shum (2013)), dynamic factor models (Cunha, Heck-
man, and Schennach (2010)), two-sample combination methods (Carroll, Chen, and Hu
(2010)), nonlinear panel data models via quantile restrictions (Arellano and Bonhomme
(2016)), with heterogeneity and selection (Sasaki (2015b)), and with interactive xed
e ects (Freyberger (2017)). Wilhelm (2015) combines operator inversion techniques
with Fourier methods used in quantile models (Schennach (2008)) to provides a nearly
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closed form solution to the identi cation problem of a general nonlinear panel data
model. Schennach and Starck (2020) exploit spatial data to re-construct synthetic
nonclassical repeated measurements from nearby observations to enable measurement
error-robust estimation.
So far, operator diagonalization techniques have been preferentially used as a tech-

nique for proving identi cation rather than as a tool to build explicit estimators. In
practice, one typically proceeds by replacing all unknown functions in the appropri-
ate integral equations (such a Equations (52) or (60)) by either parametric forms or
nonparametric sieve approximations (Chen (2005)). One then numerically optimizes
the unknown coe cients of these expressions, either in a maximum likelihood (Shen
(1997)) or GMM framework (Ai and Chen (2003)). Naturally, it would be risky to ap-
proach a new latent variable problem by simply writing down an integral equation and
attempting to solve it numerically without rst obtaining the theoretical guarantee of
the existence of a unique solution (for instance using the techniques from this section).
The illusion of a unique solution might then simply be the result of the functional
form assumptions made either explicitly or implicitly via the truncation of an in nite
approximating series.

3.5.3 Discrete variables

When a discrete variable is measured with error (and its measurement is also
discrete) this variable is said to be misclassi ed. Misclassi cation is typically considered
a nonclassical error because, when the number of possible values and can take
is nite and if and have the same number of support points, extreme values of

can only be mismeasured in one direction, so that a zero mean error (conditional
on the true value ) is impossible. The case when some of the variables have discrete
support (with a nite number of points) presents the unique advantage that one can
typically exhaustively write out the nite number of equations relating the observables
to the unobservable distributions. This possibility has lead to a number of closed
form solutions for speci c models (Hu (2008), Chen, Hu, and Lewbel (2008a), Chen,
Hu, and Lewbel (2008b), Mahajan (2006), Lewbel (2007), Molinari (2008), Chen, Hu,
and Lewbel (2009)). In parametric discrete response models with misclassi cation,
Cameron, Li, Trivedi, and Zimmer (2004), Hausman, Abrevaya, and Scott-Morton
(1998) and Li, Trivedi, and Guo (2003) observe that identi cation without additional
information is made possible by the following fact: The errors in the response produce
distortions in the observable distribution of the mismeasured response that are distinct
from the distributions that could be generated from the underlying parametric model
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of the true unobserved response.
The general problem of identifying the distribution of an unobserved discrete vari-

able from misclassi ed repeated measurements has received considerable attention in
the statistics literature (see, e.g., Kruskal (1989), Kolda and Bader (2009) for reviews).
One of the most signi cant results is Kruskal’s tensor array decomposition (Kruskal
(1977)), which we now describe. Assume that we have access to three potentially mis-
classi ed measurements ( , , ) of that are mutually independent conditional
on , i.e., | ( | ) = | ( | ) | ( | ) | ( | ), where with
appropriate subscripts denotes a probability mass function. This equality lets us derive
a discrete analogue of Equation (52):

( ) =
X

X
| ( | ) | ( | ) | ( | ) ( ) (61)

where X denotes the discrete support of the distribution of . We can associate each
quantity on the right-hand side with (possibly rectangular) matrices: | ( | ),

| ( | ) and | ( | ) ( ) = ( ), and relabel the support
points of each variables as consecutive integral numbers, without loss of generality.
Similarly the left-hand side can be associated with a third order tensor (or three-way
array) ( ). The question of identi cation is addressed in the following
de nition and associated theorem:

De nition 6 The Kruskal rank of a matrix , denoted , is the largest such that
any columns of are not colinear. Note how this de nition di ers from the usual
rank, which is the largest such that there merely exists one choice of columns that
are noncolinear.

Theorem 10 (Kruskal’s theorem) If a “three-way array” admits the decomposition:

=
X
=1

(62)

with
+ + 2 + 2 (63)

then, any other triple of matrices
³
˜ ˜ ˜

´
such that

=
X
=1

˜ ˜ ˜ (64)

will satisfy ˜ = , ˜ = , ˜ = where , , are diagonal
matrices satisfying = and is a permutation matrix.
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The proof of this result is notoriously di cult, although one relatively accessible
proof can be found in Rhodes (2010), who starts from the simple case = 1 (which
is analogous to the matrix diagonalization argument of Hu (2008)) and proceeds by
induction to reach the 1 cases.
When the matrices represent probabilities, we can use the fact that

P
=P

| ( | ) = 1, to uniquely determine . Similarly,
P

= 1 uniquely deter-
mines . Next, is recovered from = 1 1 (because

P 6= 1 in general,
since represents a joint distribution rather than a marginal).
The result e ectively states that, under the rank Condition (63), for a given ob-

servable ( ), Equation (61) admits a unique tuple of unobserved probability
mass functions | ( | ), | ( | ), ( ) as a solution, apart from a triv-
ial re-ordering of the unobservable (via the permutation matrix ). The permuta-
tion ambiguity can be lifted by imposing additional natural centering-like conditions
(Hu (2008), Hu and Xiao (2018)): For instance, | ( | ) for a given is max-
imized at = . In discrete models, the centering restrictions can be considerably
weaker, relative to the continuous case, because in the continuous case, it is possible to
reparametrize without changing ordering (e.g. = (˜ )3), while in the discrete case,
re-orderings are the only possible one-to-one mappings between two random variables
with same number of support points.
Kruskal’s result is particularly adapted to factor models, because all variables of the

model are treated in a symmetric fashion. The Kruskal-based approach to the identi-
cation of discrete models is receiving increasing attention in the statistics and econo-
metrics literature (e.g., Allman, Matias, and Rhodes (2009), Bonhomme, Jochmans,
and Robin (2016a)). However, since verifying the Kruskal rank of a matrix is a com-
putationally demanding combinatorial problem, there is interest in instead providing
conditions under which the model is identi able with probability one (e.g. Allman,
Matias, and Rhodes (2009), Connault (2014)) when one considers models as being
drawn at random from a set of possibilities. Although the case of the Kruskal rank is
more complex, an analogy with matrix invertibility best illustrates this point: If the
elements of a square matrix are drawn independently at random from nondegenerate
continuous distributions, there is zero probability that this matrix is not invertible,
which arguably eliminates the need for the more computationally demanding check
that its determinant is indeed nonzero in a speci c application.
It should be noted that identi cation results for discrete variables do not imply

identi cation of the corresponding model with continuous variables via a simple limiting
argument. To illustrate this, let Id( ) denote a function equal “1” if model is
identi ed and “0” otherwise. This function is necessarily a discontinuous function of
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because its range is discrete. Consequently, for a sequence of models , we do
not have lim Id( ) = Id(lim ) in general. Therefore, when constructing
a sequence of identi ed discrete models converging to a continuous model, we cannot
conclude that the limiting continuous model is identi ed. A possible way to approach
the continuous case would be to instead derive an identi ed set for the discrete case
and show that this set converges to a point (e.g. in the Hausdor metric) as the
discretization becomes ner (as in Williams (2019)).

3.6 Bounding techniques

As we have seen in the previous sections, securing identi cation of a latent variable
model may require strong conditions (such as independence restrictions, potentially
after conditioning). When one is unwilling to make such assumptions, one may instead
seek to derive constraints on the parameters of interest under weaker assumptions.
Such bounding techniques have direct connections to the set identi cation literature
(e.g. Chernozhukov, Hong, and Tamer (2007), Manski (2003), Chandrasekhar, Cher-
nozhukov, Molinari, and Schrimpf (2012), Bontemps, Magnac, and Maurin (2012),
Magnac and Maurin (2008), Chesher (2013), Molinari (2018)), in which the goal is to
obtain a set of possible values of the parameters consistent with the observed data.
In the following sections, we report the bounds in the population but natural sample
analogues provide estimates of the bounds.

3.6.1 Positivity

A very natural avenue to derive bounds under minimal assumptions is to exploit the
fact that probabilities are positive (and, consequently, that covariance matrices are
positive de nite). In the linear errors-in-variables model (Equations (45) and (46)),
this idea underlies the well-known bounds attributed to Frisch (1934), which is perhaps
one of the earliest example of set-identi cation. These bounds can be derived under
the assumption of mutual uncorrelatedness of , , and observing that the full
covariance structure of and can be expressed in terms of the variances of the
unobservable variables 2 , 2 , 2 . Imposing the latter two to be positive leads to
the inequalities on the slope coe cient :

|Cov [ ]|
Var [ ]

| | Var [ ]

|Cov [ ]|
(with sgn = sgnCov [ ]). These bounds have the straightforward interpretation
as the slope coe cient of the “forward” regression of on (lower bound) and of

34



the reciprocal of slope coe cient of the “reverse” regression of on (upper bound).
These bounds are sharp under uncorrelatedness of , , (but not under their
mutual independence, see Section 3.4.4).
This result has been formally generalized by Klepper and Leamer (1984) to multi-

variate linear regression where all regressors = ( 1 )0 are measured with er-
ror. It su ces to sequentially use each of the +1 observed variables ( , 1,. . . , )
as the dependent variable and the remaining variables as regressors. After rearrange-
ment, each regression line = 1 can be cast in the form =

P
=1

( )

(where ), so that the regression coe cient vectors ( ) all have the same
units. Then, the set obtained by taking the convex hull of (1) ( ) provides the
identi ed set, the true set of possible values of the regression coe cients, provided
the ( ) all lie in the same orthant.3 Otherwise, the set is unbounded along some di-
rection(s). While the above methods sometimes deliver fairly large identi ed sets,
they can often be further narrowed down by imposing a priori plausible restrictions on
the variance and on the correlation structure of the measurement error (Klepper and
Leamer (1984), Erickson (1993), Hyslop and Imbens (2001)).
Exploiting the positivity of probabilities is also useful in discrete variable models

(Black, Berger, and Scott (2000), Bollinger (1996), Molinari (2008), Klepper (1988))
and can often be combined with other plausible constraints (such as bounds on the mis-
classi cation probabilities, symmetry, monotonicity constraints, etc.) to yield usefully
small identi ed sets in concrete empirical settings (Molinari (2008), Kreider and Pepper
(2008)). More speci cally, monotonicity restrictions in themselves often provide e ec-
tive ways to weaken identifying assumptions while maintaining good set-identi cation
power (Manski and Pepper (2000)).

3.6.2 Interval-valued data

Interval-valued data occur in a number of settings. In surveys, respondents are often
asked to report ranges instead of speci c values or data may be rounded. Alternatively,
some data could be missing or erroneous with some probability (i.e., contaminated or
corrupted data), in which case the suspect data could take any value in some pre-
speci ed reasonable set.
In such settings, one needs to consider any value of data in the interval as a pos-

sibility. If the model parameters are monotone in the input data, the identi ed set
boundaries are determined by the extreme points of the data intervals. Examples of
this line of work include Manski and Tamer (2002), who derive bounds on the re-

3An orthant is a set of vectors whose elements share the same pattern of signs.
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gression coe cients when both the regressors and the dependent variable could be
interval-valued. Also, Horowitz and Manski (1995) consider the problem of bounding
the true distribution of a variable with a known support, based on contaminated data.

3.6.3 General bounds under nonmonotonicity

The derivation of sharp bounds in general nonlinear latent variables problem is compli-
cated by the potentially nonmonotone relationships among the unobserved variables,
the observed variables and the model parameters. For this reason, it is often more useful
to rely on general numerical methods to derive the bounds numerically. A number of
methods have recently been proposed (Galichon and Henry (2013), Ekeland, Galichon,
and Henry (2010), Schennach (2014), Beresteanu, Molchanov, and Molinari (2011) and
Bar and Molinari (2017)). We focus here on the method proposed by Schennach (2014)
– The reader is referred to the excellent review by Molinari (2018) for a more detailed
description of the other methods.
Schennach (2014) solves for the possible value(s) of a parameter vector that satisfy

a set of moment conditions that are known to hold in the population:

[ ( )] = 0 (65)

where is a -dimensional vector of nonlinear measurable functions depending on the
parameter vector , on an unobserved random vector and on an observed random
vector . It is the unobservable that enables the treatment of measurement systems,
with typically playing the role of and expressing as a function of and the
observable variables . We let denote the distribution of the observables and
denote a conditional distribution of the unobservables given = while their joint
distribution is denoted by × . Let U denote the support of conditional on =

(where it may be assumed without loss of generality that U does not depend on , since
this dependence could be incorporated into the function ( )). Expectations are
calculated under the distribution speci ed as a subscript. The method then relies on
the following equivalence:

Theorem 11 In model (65), for any and any distribution ,

inf
¿
k × [ ( )]k = 0 (66)

if and only if
inf
R
k [˜ ( )]k = 0 (67)
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where

˜ ( )

R
( ) exp ( 0 ( )) ( | )R
exp ( 0 ( )) ( | ) (68)

where is a user-speci ed dominating4 conditional distribution such that (i) (·| ) is
supported on U at each and (ii) [ln [exp ( 0 ( )) | ]] exists and is twice
di erentiable in for all R and all .

This theorem turns the original problem of interest (66), which involves optimiza-
tion over an in nite-dimensional quantity , into a nite dimensional optimization
(67). This simpli cation is made possible by the fact that the so-called parametric least-
favorable entropymaximizing family of distributions (proportional to exp ( 0 ( )) ( | ))
used to compute the expectation over in (68) is such that it spans exactly the same
range of values of moments (as varies) as the original, fully nonparametric, problem
(as the distribution of varies). This is true for any distribution (even for the empir-
ical distribution of the sample) and for any choice of (provided it satis es the stated
conditions). Consequently, the choice of has no e ect on the properties of any esti-
mator based on the moment conditions [˜ ( )] = 0, even in nite samples (since
the optimization over would yield the same pro led objective function in terms of ).
Measures ( | ) satisfying the needed restrictions are easy to construct. For in-

stance, if U is compact and su ciently regular, ( | ) can simply be set to the Lebesgue
measure on U . More generally, merely needs to have the right support and su ciently
thin tails. A general recipe for constructing a suitable is given by Proposition 1 in
Schennach (2014).
The fundamental reason Theorem 11 holds is simple. Even though Equation (66)

has potentially an in nite number of solutions, we only need to nd one. Hence, we
can rank distributions according to some criterion (here, their entropy) and convert
an “existence” problem into an optimization problem under the constraint (65). This
constrained entropy maximization problem has a unique solution which turns out to
have the convenient form (68).
A practical way to evaluate the integral (68) is to draw random vectors , =

1 from a density proportional to exp ( 0 ( )) ( | ) using, e.g., theMetropo-
lis algorithm and calculate the average

1 X
=1

( ) (69)

4A measure is said to be dominating (written as ¿ ) if admits a density with respect to
the measure . This is a technical condition that rules out irrelevant events of probability zero.
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for a su ciently large . This simulation-based approach essentially amounts to plugging-
in a parametric least-favorable entropy maximizing family of distributions into the
method of simulated moments (MSM) (McFadden (1989), Pakes and Pollard (1989)).
This method, called Entropic Latent Variance Integration via Simulation (ELVIS) can
thus be seen as a semiparametric generalization of the MSM.
Averaging over the unobservables then provides a conventional vector of moment

conditions [˜ ( )] = 0 involving only observable variables that is equivalent to
the original moment condition (65). As a result, solving for the parameter of interest
and for the nuisance parameter can be accomplished through a variety of standard
GMM-type techniques (Hansen (1982), Owen (1988), Newey and Smith (2004), Owen
(1990), Imbens, Spady, and Johnson (1998), Kitamura and Stutzer (1997), Qin and
Lawless (1994), Schennach (2007b)). Existing generic inference techniques for set-
identi ed models (such as Chernozhukov, Hong, and Tamer (2007)) can then be used.
The ELVIS objective function bypasses the complex task of establishing point- or set-
identi cation of the model by providing a vector of moment conditions that are, by
construction, satis ed (asymptotically) over the identi ed set, whether it is a single
point or a larger set.
One should be careful not to interpret the entropy maximizing distribution as the

actual distribution of the unobservables. Nevertheless, one can easily bound features
of the true distribution of , provided that these features can be expressed as moment
conditions. For instance, if one wished to nd all possible values of the mean of
consistent with the data, one could merely include

h
˜
i
= 0 among the moment

conditions and the identi ed set for the auxiliary parameter ˜ will indicate the possible
values of [ ]. If one wished to bound the cdf of at some point , the appropriate

moment condition would be
h
1 { } ˜

i
. The key is that the least favorable

family will automatically adapt to the addition moment conditions to explore the
possible worst case scenarios for the moment of interest.
The ELVIS method is useful to estimate the identi ed set in general nonlinear

regression models with covariate measurement error under very weak uncorrelatedness
assumptions when no additional indicators or instruments are available, as shown in
Schennach (2014). This work also shows that ELVIS nests as special case both the
higher-order moment treatment and the bounding treatment of the standard linear
errors-in-variables model. A linear regression with measurement error estimated using
higher order moments results in a sharply peaked objective function for non-normal
data, re ecting the point identi cation result of Reiersol (1950) in that case. But for
normal data, the objective function becomes maximized over an interval that reveals
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the identi ed set obtained from the forward and reverse regression bounds of Section
3.6.1.
ELVIS is also a natural approach to handle a combination of measurement error

with other latent variable problems (censoring, truncation, interval-valued data, lim-
ited dependent variables, panel data with nonseparable correlated individual-speci c
heterogeneity, various game-theoretic models, etc.). Schennach (2014) provides exten-
sions to conditional mean and independence restrictions. Recently, the fact that ELVIS
reaches the semiparametric e ciency bound has been formally established by Bedard
and Renault (2016) for point-identi ed models.
The ELVIS method is related to moment inequality methods (e.g. Beresteanu,

Molchanov, and Molinari (2011)), as shown by the following result.

Theorem 12 The identi ed set 0 can be equivalently described by

{ : 0 [ ( )] 0 for all B1}

where B1=
©

R : k k = 1ª (the unit ball boundary) and
( ) lim 0˜ ( ) (70)

for ˜ ( ) as in Theorem 11. Note that if, for some , the limit in (70) diverges
then no constraint is associated with this value of . An alternative expression is

( ) = sup
U

0 ( ) (71)

This result shows that a general GMM model with unobservables can be expressed
as an in nite set of moment inequalities (indexed by ). A feasible way to implement
this alternative approach is to re-write the problem as an optimization over that
seeks the tightest inequality (as done in Beresteanu, Molchanov, and Molinari (2011)
under the assumption that ( ) is bounded). However, this optimization problem
is, in general, nonsmooth, whereas the nite-dimensional ELVIS optimization problem
of Theorem 11 is smooth by construction.

4 Application examples

The techniques outlined so far are making a signi cant impact on empirical economic
work. Below, we delve deeper into a number of illustrative examples picked from a range
of diverse elds. Our list is by no mean exhaustive and the works are selected in large
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part on the basis of how they demonstrate the practical use of the di erent methods
reviewed here. A common feature of all of these applications is that they do not rely
on the availability of an auxiliary sample of perfectly measured validation data, nor do
they merely assume that the measurement error has a known variance or distribution.
Instead, these studies exploit the availability of multiple measurements or indicators
that, together, enable identi cation of the feature of the unobservables. The success
and broad applicability of this approach suggests that future data collection e orts
should be designed with this in mind, as noted by other researchers (e.g., Browning
and Crossley (2009)).

4.1 Human capital

Measurement of human capital (i.e. skills or abilities) has historically been one of
the earliest uses of factor models, since the well-known Spearman (1904) “general
intelligence” factor was proposed. This remains, to this day, a very frequent application
of factor models (e.g. Cunha, Heckman, and Schennach (2010), Cunha and Heckman
(2008), Attanasio, Meghir, and Nix (2020), Attanasio, Cattan, Fitzsimons, Meghir, and
Rubio-Codina (2019)). The basic idea is that any single measure of skills is bound to
be highly noisy and simple averages of these measures do not succeed in fully averaging
out the noise. However, by accounting for the measurement error in a factor model
framework, one can make robust inference regarding statistical features of the skills
even if each individual’s skill level is not known precisely.
A popular topic of investigation is the dynamics of skill acquisition over time in

response to parental or governmental inputs. Cunha, Heckman, and Schennach (2010)
set up a “production function” (or “technology”) that relates future skills +1 to
current skills , various inputs and covariates :

+1 = ( )

where is a disturbance. The unobserved skills are assume to be related to ob-
servables via a measurement system: = ( ) (assumed to be linear in
their application, although it is not required by their general theoretical approach). A
key feature of their approach is to allow for nonlinear production functions so that
substitution e ects can be investigated. The development of such structural model
o ers opportunities to carry out counterfactual analyses (Low and Meghir (2017))
that investigate di erent re-allocations of the investments across children of di erent
characteristics or across time periods (Cunha, Heckman, and Schennach (2010), At-
tanasio, Meghir, and Nix (2020)). The application of measurement systems in this
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eld goes beyond the measurement of evolving cognitive skills to also include imperfect
measurement of parents skills, children’s noncognitive skills, parental investments into
developing their children’s skills (Cunha, Heckman, and Schennach (2010), Cunha and
Heckman (2008)), as well as children’s health (Attanasio, Meghir, and Nix (2020)).

4.2 Measuring economic growth

It is generally recognized that o cially reported GDP for developing countries may not
be very accurate and Hu and Yao (2018) nicely illustrate the idea of combining multiple
imperfect nonclassical measurements to address this. They consider the measurement
of true unobserved per capita GDP ( ) using (i) the World Bank’s reported GDPs
( ), (ii) satellite measurement of night time light intensity ( ) and (iii) two other
auxiliary variables, a country’s latitude ( ) and its so-called “statistical capacity” ( ),
which measures the data collecting abilities of the country’s statistical institutions.
Under suitable conditional independence assumptions, they express the joint density

of the observables as:

( ) =

Z
( | ) ( | ) ( )

and employ an operator diagonalization argument to show that the observed left-hand
side density uniquely determines the unobserved right-hand side densities. This result
also relies on the assumption that reported GDP exhibits zero mean error for one value

0 of statistical capacity . Reported GDP for 6= 0 are allowed to be nonclassical
and so are all the other indicators of GDP. This setup does not exactly fall within the
Hu and Schennach (2008) framework, due to the presence of the additional variables
and (which cannot be eliminated by mere conditioning), but operator diagonalization
techniques can be suitably adapted nevertheless. For estimation purposes, all unknown
densities are represented by sieve expansions.
This setup enables them to uncover the distribution of measurement errors on

and and the potentially nonlinear relationship between light intensity and true GDP.
This helps corroborate some features of this data that have been postulated, but not
yet rmly empirically established.
At low levels of GDP, light intensity shows a strong correlation with real GDP, pre-

sumably because at early stages of development, most development e orts are aimed at
building basic infrastructure. In contrast, at high levels of GDP, light intensity shows
little dependence on real GDP, suggesting that economies turn their focus to techno-
logical innovations. In addition, the magnitude of the measurement error on reported
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GDP is clearly larger for developing economies (with low GDP and low statistical
capacity). These features call for methods that can handle nonclassical measurements.
As discussed in the paper, this framework also provides a second look at the contro-

versial issue of China’s actual GDP growth, suggesting that its GDP growth may indeed
have been overreported in the o cial gures, although not by as much as estimates
based solely on light output would have suggested.

4.3 Income and consumption dynamics

Models of income and consumption behavior often rely on unobserved variables to
go beyond simple static exercises and “representative individual” arguments. For in-
stance, Arellano, Blundell, and Bonhomme (2017) investigate income and consumption
dynamics emphasizing the importance of individual heterogeneity and nonlinearity.
They develop a model of the time evolution of income as well as of consumption and

assets accumulation decisions. Latent variables enter the model at multiple levels and
their properties can be inferred using a measurement system framework. First, earning
dynamics is governed by a nonlinear hiddenMarkov process, where the observed income
at time is the sum of a permanent component and a transitory component
:

= + (72)

(we omit individual index for conciseness). The transitory component plays the role
of a white noise measurement error (independent from over all times), while the
permanent component is the latent variable of interest, which is assumed to follow a
general rst order Markov process:

+1 = ( )

where is a sequence of independent and identically distributed disturbances. It is
this Markov structure that enables the use of consecutive observations of income to
play the role of multiple indicators of the permanent component at time . They
then make use of the hybrid operator and Kotlarski-type approach of Wilhelm (2015),
to show identi cation of the joint distribution all the unobserved variables ,
under suitable conditional independence assumptions.
The second role played by latent variables is in the consumption dynamics equa-

tion, where individual heterogeneity (e.g. tastes) in uences the consumption level of
the household. In this part of the model, the observed variable is consumption in three
consecutive time periods ( ˜ ˜

+1
˜
+2), whose distribution depends on (i) an un-

observed time-invariant taste ˜ , (ii) other observable covariates (such as assets and
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earnings) and (iii) other unobserved variables whose distributions were identi ed in
the previous step (i.e., the permanent component of earnings). Upon implicitly con-
ditioning on those known quantities, the identi cation problem reduces to solving the
integral equation of the form:

(˜ ˜ +1 ˜ +2) =

Z
( |˜ ) ( +1|˜ ) ( +2|˜ ) (˜ ) ˜

which again falls within the domain of applicability of the operator diagonalization
methods (discussed in Section 3.5.2).
The above summary of this work somewhat understates its true complexity. Most of

the functions actually depend on a number of other variables and the complete depen-
dence structure of these variables over time must be carefully speci ed and accounted
for. Estimation also presents challenges, given the large number of exibly speci ed
functional forms for all the distributions and nonlinear functions employed.

4.4 Game theory

In game-theoretic settings, the players’ actions may depend on unobserved variables
(Hu and Shum (2013), Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Moli-
nari (2011)), either because payo s are not fully observable to the econometrician or
because there are multiple possible equilibria and the econometrician does not know
which one the players are selecting.
A more speci c example is the one of auction models (Li, Perrigne, and Vuong

(2000), Athey and Haile (2002), Krasnokutskaya (2011), An, Hu, and Shum (2010),
Guerre, Perrigne, and Vuong (2000)), where the bids made by di erent players are re-
lated to their valuation, which may consist of both a common and a private component.
There is a close analogy between these setups and a measurement system in which the
bids play the role of multiple measurements of the same common value that are each
altered in di erent ways by each player’s private value. An important step in these
approaches is to rst exploit the structure of the auction to obtain an explicit relation-
ship between the bids and the valuations (see Athey and Haile (2007) for a review). A
classical example can be found in Li, Perrigne, and Vuong (2000), where they exploit
the fact that the observed bids for strategic players = 1 implicitly indicate
their valuations, shifted by an amount | ( | ) | ( | ) where = max 0 6= 0.
After assuming a classical error structure in log levels and a symmetric auction, they
obtain a measurement system:

= +
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where represents the log common value and is the log private value of player
and plays the role of a measurement, obtained from the bids via:

ln +
| ( | )
| ( | )

¶
Implementing this method of course requires the nonparametric estimation of the ap-
propriate conditional densities and cdf, which fortunately only involve the observable
bids.
Latent variable techniques also prove useful to handle other issues pertaining to

auctions. For instance, An, Hu, and Shum (2010) address the issue that the number
of potential bidders (which has an e ect on the player’s optimal strategy) is generally
unobserved. They exploit the availability of various indicators (e.g., other bids, an
observed maximum possible number of auctioneers and other variables that are known
to be a ect number of bidders, such as the time of day) to identify the model. They
account for the fact that the bidders’ optimal strategy may depend on the number of
bidders and use an instrument that a ect the number of bidders entering an auction
but that satis es the exclusion restriction that they have otherwise no direct e ect on
the bidders’ strategy.

4.5 Revealed preferences under heterogeneity and measure-
ment error

While revealed preferences arguments (e.g., McFadden (2005), Afriat (1973), Varian
(1982)) are widely accepted and well understood, their empirical use is complicated by
the fact that heterogeneity in consumer preferences and their individual-speci c dis-
count factors are not directly observed, and by the fact that prices and/or quantities
may be subject to measurement error. Allowing for these possibilities is important in
order to avoid spurious empirical rejections of the basic revealed preferences assump-
tions, but also leads to more intricate latent variable models that need to be handled
via advanced techniques.
Recently, researchers have begun to tackle these issues in substantial generality

by taking advantage of latent variables techniques. For instance, Illanes (2015) mod-
els pension plan selection in the presence of switching costs when consumers exhibit
unobserved preference heterogeneities. The latter cannot simply be dealt with by at-
tempting to average out the heterogeneity, due to both endogeneity in the decisions,
and the fact that averaging preference inequalities leads to a weaker constraint than
imposing them at the individual level.
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Illanes casts the revealed preference condition as a moment condition of the general
form:

1 { = }
X

0 J\{ }
1
©

0 + + 0
ª

= 0 for J (73)

(for each consumer at each time period), where is the choice the consumer makes
out of the set J , while represents the total present and future expected discounted
utility if choice is made, are the switching costs (if the choice in consecutive
periods di er) and 0 accounts for unobserved individual preferences. In practice,
the and terms are nontrivial to obtain, as is the solution to a stochastic
dynamic programming problem (accounting for all future costs and returns) and
depends on the history of choices. To ensure identi cation of the parameters of interest
(that enter and ), he makes use of the fact, (shown in Chesher, Rosen, and
Smolinski (2013)) that a multinomial discrete choice model is identi ed using a revealed
preference moment (such as Equation (73)) and an independence restriction between
an observed instrument and the unobservable 0. He implements this constraint

as a truncated sequence of moment conditions:
h
( [ ])

¡
0
¢ i

= 0 for =

1 2. The fact that the moment conditions involve unobservables is handled using
the general ELVIS framework of Schennach (2014). This avoids the need to devise a
complex estimator that explicitly solves for the parameter of interest in terms of the
observable using a generic simulation-based approach. This application demonstrates
the use of instruments in a rather new context where the exclusion restriction involves
unobservables, so that existing instrumental variable estimators are inapplicable. It
also shows how devising latent variable models with minimal assumptions enables the
determination of empirically relevant bounds on parameters of economic interest (in
this application, a lower bound on the costs of switching pension plans).
The ELVIS framework has also been used by Aguiar and Kashaev (2020) to de-

vise more realistic tests of the fundamental exponential discounting model within a
revealed preferences framework. The idea is that the consumers’ exponentially dis-
counting behavior can be masked if there is heterogeneity in their discount factors as
well as measurement errors in prices and/or quantities. The ELVIS is ideally suited to
handle such questions as it makes it possible to directly incorporate the discount factor
and the measurement error as latent variables and cast the revealed preference con-
straints as moment conditions. This work goes beyond a simple application of ELVIS,
however: the authors also implement, without parametric restrictions, a concavity con-
straint on the consumer’s utilities as a set of moment inequalities, which allows them
to account for in nite dimensional unobservables in a feasible fashion. The resulting
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moment inequalities can also be incorporated in the ELVIS objective function by intro-
ducing appropriate slackness parameters. Finally, they devise ways to implement many
economically-justi ed forms of nonclassical measurement errors in the form of moment
conditions. The end result of this e ort is perhaps one of the rst fully nonparametric
test of the exponential discounting hypothesis.
Their empirical ndings are informative: They nd support for exponential dis-

counting behavior for single individuals (even in previously studied datasets why sim-
pler models had rejected the hypothesis). However, they reject the exponential dis-
counting behavior hypothesis for couples. This suggests that, even though very general
and sophisticated models always carries the risk of increasing standard errors to the
point where rejections are rare, their approach still exhibit good power against alterna-
tives and can thus meaningfully discriminate between data generating processes that
do and that do not conform to the exponential discounting hypothesis.

5 Conclusion

This review gives a snapshot of some of the most powerful techniques currently avail-
able to establish the identi cation of various features (e.g. moments, distributions) of
unobserved variables based on a measurement system relating all observed and unob-
served variables in very general ways.
The available techniques cover a quite broad range of mathematical techniques, in-

cluding Fourier transforms, higher-order moments, operator theory, tensors, nonlinear
optimization, etc. A notable feature of the existing results is that, often, even very
small changes in the model’s structure or in its assumption demands completely di er-
ent approaches. This suggests the possibility of devising more fundamental and general
approaches that encompass some of these currently disparate cases within a common
framework. Another observation is that some of the most powerful techniques (in terms
of range of applicability) do not necessarily provide constructive identi cation results
that can be used for estimation. Conversely, results that may be the most convenient
for estimation purposes may not deliver transparent conditions for point identi cation.
This situation points to an active area for future research.
We have seen that numerous empirical applications of the techniques described

herein are emerging and empirical researchers are increasingly willing to incorporate
latent variable techniques in their toolkit. The fact that most economic data is im-
perfect in some way does not need to be viewed as mostly an annoyance but instead
as an opportunity to devise better ways to explain the available observable data. The
idea that, guratively, we cannot directly get at truth by asking a question once but
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rather indirectly by “interrogating” the data in di erent ways is starting to become an
intrinsic part of the way economists approach data.
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