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Given an N -dimensional subspace XN of Lp(Ω), we consider the problem of choosing 
M -sampling points which may be used to discretely approximate the Lp norm on the 
subspace. We are particularly interested in knowing when the number of sampling 
points M can be chosen on the order of the dimension N . For the case p = 2 it is 
known that M may always be chosen on the order of N as long as the subspace 
XN satisfies a natural L∞ bound, and for the case p = ∞ there are examples where 
M may not be chosen on the order of N . We show for all 1 ≤ p < 2 that there 
exist classes of subspaces of Lp([0, 1]) which satisfy the L∞ bound, but where the 
number of sampling points M cannot be chosen on the order of N . We show as well 
that the problem of discretizing the Lp norm of subspaces is directly connected with 
frame theory. In particular, we prove that discretizing a continuous frame to obtain 
a discrete frame which does stable phase retrieval requires discretizing both the 
L2 norm and the L1 norm on the range of the analysis operator of the continuous 
frame.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Many problems in applied math, physics, and engineering are stated in terms of some continuous struc-
ture, but only become computationally feasible when appropriately discretized. Some examples of this are 
using numerical integration to estimate the integral of a function over a measure space, or using a fast 
Fourier transform as a discretization of the Fourier transform. We will be considering the problem of dis-
cretizing the Lp norm on finite dimensional subspaces of Lp(Ω) where 1 ≤ p < ∞ and Ω is a probability 
space. We let XN ⊆ Lp(Ω) be an N -dimensional subspace and note that

‖f‖pp =
∫

Ω

|f(t)|p dµ(t) for all f ∈ XN . (1.1)
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Given some A < 1 < B, we are interested in the problem of discretizing (1.1) by choosing sampling points 
(tj)Mj=1 ⊆ Ω such that

A‖f‖pp ≤ 1
M

M∑

j=1
|f(tj)|p ≤ B‖f‖pp for all f ∈ XN . (1.2)

As XN is finite dimensional, the law of large numbers gives that if M ∈ N is large enough and (tj)Mj=1 ⊆ Ω
are chosen randomly and independently then (1.2) is satisfied with probability arbitrarily close to one. 
We provide a proof of this result in the appendix. However, the law of large numbers does not give any 
bounds on how large M must be for a given XN ⊆ Lp(Ω), and as one of our motivations is to make a 
problem computationally feasible, it is of fundamental importance to obtain good bounds on the number 
of sampling points M . This problem was first considered by Marcinkiewicz and later by Zygmund for the 
case of discretizing the Lp norm on spaces of trigonometric polynomials [22][27]. Because of this, modern 
papers on the subject often refer to this class of problems as Marcinkiewicz-type discretization problems. 
It has been recently proven that for all 1 ≤ p < ∞ there are certain entropy conditions on XN ⊆ Lp(Ω)
which guarantee that the Lp-norm on XN can be discretized to satisfy (1.2) using M on the order of 
N(log(N))2 sampling points for 1 ≤ p < ∞ [10],[11],[19],[26]. These entropy conditions can be fairly 
technical, but they imply in particular that the subspace satisfies a (2, ∞)-Nikol’skii-type inequality, which 
implies a (p, ∞)-Nikol’skii-type inequality for 1 ≤ p < 2. Here, we say that an N -dimensional subspace 
XN ⊆ Lp(Ω) satisfies a (p, ∞)-Nikol’skii-type inequality for some 1 ≤ p < ∞ if there exists β > 0 such 
that

‖x‖L∞ ≤ βN1/p‖x‖Lp for all x ∈ XN . (1.3)

Having XN ⊆ Lp(Ω) satisfy inequality (1.3) is a very natural Banach space condition as it is equiva-
lent to for all t ∈ Ω point evaluation at t is a bounded linear functional on XN with norm at most 
βN1/p. For the case p = 2, the celebrated solution to the Kadison-Singer problem [23] can be applied 
to show that if Ω is a probability space and XN ⊆ L2(Ω) satisfies the inequality (1.3) then the L2-
norm on XN can be discretized using M on the order of N sampling points [21]. The main theorem in 
[23] was first used in discretization to prove that if Ω ⊆ R is a subset with finite measure then L2(Ω)
has a frame of exponentials [24], and was later used to prove that if (xt)t∈Ω is a bounded continuous 
frame of a Hilbert space H then there is a sampling (tj)j∈J ⊆ Ω such that (xtj )j∈J is a frame of H
[17].

It was not previously known that if XN ⊆ Lp(Ω) satisfied the Nikol’skii-type inequality (1.3) for some 
1 ≤ p < ∞ with p &= 2 then the Lp-norm on XN could be discretized using M on the order of N sam-
pling points. In Section 2 we give a construction of a class of subspaces XN ⊆ L1(Ω) which uniformly 
satisfy (1.3) but the L1-norm on XN cannot be discretized using M on the order of N sampling points, 
and in Section 3 we give for each 1 ≤ p < 2 a construction of a class of subspaces XN ⊆ Lp(Ω) which 
uniformly satisfy (1.3) but the Lp-norm on XN cannot be discretized using M on the order of N sam-
pling points. These subspaces of Lp(Ω) which we construct in Section 3 are all uniformly isomorphic to 
Hilbert spaces. For the case 2 < p < ∞, it is shown in section D20 of [18] that if XN ⊆ Lp(Ω) are 
uniformly isomorphic to Hilbert spaces then the Lp-norm on XN cannot be discretized using M on the 
order of N sampling points. Furthermore, for all 2 < p < ∞, there exist constructions of subspaces of 
XN ⊆ Lp(Ω) which are uniformly isomorphic to Hilbert spaces and which uniformly satisfy the (2, ∞)-
Nikol’skii-type inequality. We complement these results by proving for all 2 < p < ∞ that if XN ⊆ Lp(Ω)
are uniformly isomorphic to Hilbert spaces then they cannot uniformly satisfy the (p, ∞)-Nikol’skii-type 
inequality.
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In Section 4 we introduce the topics of frame theory and phase retrieval, and then show the important 
connection between them and norm discretization of subspaces of Lp. In particular, we prove that discretizing 
a continuous frame to obtain a discrete frame which does stable phase retrieval requires discretizing both 
the L2 norm and the L1 norm on the range of the analysis operator of the continuous frame.

We explain in Section 4 that the solution to the discretization problem for continuous frames [17] implies 
that there exist constants A, B > 0 such that if Ω is any σ-finite measure space and X ⊆ L2(Ω) is a 
subspace such that there exists β > 0 with ‖x‖L∞ ≤ β‖x‖L2 for all x ∈ X then there exists sampling points 
(tj)j∈J ⊆ Ω such that β2A‖x‖L2 ≤

∑
j∈J |x(tj)|2 ≤ β2B‖x‖L2 for all x ∈ X. In Section 5 we use the finite 

dimensional results in Sections 2 and 3 to prove that the corresponding result strongly fails for 1 ≤ p < 2. 
That is, for all 1 ≤ p < 2 there exists a subspace X ⊆ Lp(R) with X isomorphic to #p and ‖x‖L∞ ≤ ‖x‖Lp

for all x ∈ X such that if (tj)j∈J ⊆ R is such that 
∑

j∈J |x(tj)|p > 0 for all x ∈ X \ {0} then there exists 
y ∈ X with 

∑
j∈J |y(tj)|p = ∞.

We thank the anonymous referee for their helpful comments which allowed us to improve the paper.

2. Constructing subspaces of L1

In this section we will show how to construct subspaces of L1 where the L1-norm cannot be discretized 
using a number of sampling points on the order of the dimension of the subspace. In particular, for all 
ε > 0, we construct a class of subspaces XN ⊆ L1[0, 1] of the form XN = TN (span(1[(j−1)/N,j/N))Nj=1) where 
TN : L1[0, 1] → L1[0, 1] is a linear operator such that ‖IL1[0,1] − TN‖ < ε (where IL1[0,1] is the identity 
operator on L1[0, 1]). The subspace XN ⊆ L1[0, 1] that we construct satisfies ‖f‖L∞ ≤ (1 + ε)N‖f‖L1

for all f ∈ XN and yet the L1-norm on XN cannot be discretized using M = o(N log(N)/(log log(N))
sampling points. That is, we can consider the simplest N -dimensional subspace of L1[0, 1] and per-
turb it an arbitrarily small amount to create a subspace which still satisfies the boundedness condi-
tion (1.3) and yet the subspace cannot be discretized using M = o(N log(N)/(log log(N)) sampling 
points.

We now describe how to construct the subspace XN ⊆ L1[0, 1]. Let ε > 0 and n ∈ N. Without loss of 
generality, we may assume that 1/ε is an integer and let N = n +(ε−1n)n. We will construct a basis (xj)Nj=1
of XN which will be a perturbation of the sequence of indicator functions (1[(j−1)/N,j/N))Nj=1. For 1 ≤ j ≤ n

we let,

xj = N1[(j−1)/N,j/N).

!

"

N

j−1
N 1n

N
j
N

xj

For each 1 ≤ k ≤ n we partition the interval [(k−1)/N, k/N) into ε−1n intervals (Ik(i))ε
−1n

i=1 each of width 
εn−1N−1. As N = n +(ε−1n)n, we can now enumerate {1, 2, ..., ε−1n}n as ((ik,j)nk=1)Nj=n+1. For n < j ≤ N

we let,

xj = N
n∑

k=1
1Ik(ik,j) + N1[ j−1

N , j
N ).
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!

"

N

I1(i1,j) I2(i2,j) In(in,j) 1

xj

j
N

j−1
N

n
N

We have created a sequence (xj)Nj=1 ⊆ L1[0, 1], and we now prove that it satisfies the following theorem.

Theorem 2.1. Let n ∈ N and 1 > ε > 0 with ε−1 ∈ N. Consider N = n + (ε−1n)n and XN ⊆ L1[0, 1] with 
basis (xj)Nj=1 as defined above. Then the following holds.

(1) There is a linear map TN : L1[0, 1] → L1[0, 1] with TN (N1[(j−1)/N,j/N)) = xj for all 1 ≤ j ≤ N such that 
‖IL1[0,1] − TN‖ ≤ ε, where IL1[0,1] is the identity operator.

(2) The basis (xj)Nj=1 of XN satisfies that

(1 − ε)
N∑

j=1
|aj | ≤

∥∥∥
N∑

j=1
ajxj

∥∥∥
L1

≤ (1 + ε)
N∑

j=1
|aj | for all (aj)Nj=1 ∈ #N1 ,

(3) For all x ∈ XN , ‖x‖L∞[0,1] ≤ (1 − ε)−1N‖x‖L1[0,1].
(4) Let M ∈ N so that (tj)Mj=1 ⊆ [0, 1] and 

∑
|x(tj)| &= 0 for all x ∈ XN \ {0}. Then there exists x ∈ XN

with

nN

(1 + ε)M ‖x‖L1 ≤ 1
M

M∑

j=1
|x(tj)|

In particular, it follows from (4) that the L1 norm on XN cannot be discretized using M on the order of N
sampling points. Furthermore, the L1 norm on XN cannot be discretized using M = o(N log(N)/(log log(N))
sampling points. However, M can be chosen on the order of N log(N)/(log log(N)) so that there exists 
sampling points (tj)Mj=1 ⊆ [0, 1] such that ‖x‖L1 = 1

M

∑M
j=1 |x(tj)| for all x ∈ XN .

Proof. Consider the linear map PN : L1[0, 1] → L1[0, 1] given by PN =
∑N

j=1 E[(j−1)/N,j/N) where 
E[(j−1)/N,j/N) is conditional expectation on [(j−1)/N, j/N). Note that PN is a projection onto the subspace 
span(1[(j−1)/N,j/N))Nj=1 with ‖PN‖ = 1. We define the operator SN : span(1[(j−1)/N,j/N))Nj=1 → L1[0, 1] by 
SN (

∑N
j=1 ajN1[(j−1)/N,j/N)) =

∑N
j=1 ajxj . We now let TN = (IL1[0,1] −PN ) + SNPN . We have the following 

estimate.

‖IL1[0,1] − TN‖ = ‖SNPN − PN‖

= sup∑
aj=1

∥∥∥
N∑

j=1
ajxj −

N∑

j=1
ajN1[(j−1)/N,j/N)

∥∥∥
L1

≤ sup∑
aj=1

N∑

j=n+1

∥∥ajxj − ajN1[(j−1)/N,j/N)
∥∥
L1

= sup∑
aj=1

N∑

j=n+1
ajN

∥∥∥
n∑

k=1
1Ik(ik,j)

∥∥∥
L1



D. Freeman, D. Ghoreishi / J. Math. Anal. Appl. 519 (2023) 126846 5

= ε (because Ik(ik,j) has length εn−1N−1 for all 1 ≤ k ≤ n).

This shows that ‖IL1[0,1] − TN‖ ≤ ε which proves (1). We have that ‖xj‖L1 ≤ 1 + ε for all 1 ≤ j ≤ N and 
hence ‖ 

∑N
j=1 ajxj‖L1 ≤ (1 + ε) 

∑N
j=1 |aj | for all (aj)Nj=1 ∈ #N1 . We now consider a fixed (aj)Nj=1 ∈ #N1 with 

∑N
j=1 |aj | = 1.

∥∥∥
N∑

j=1
ajxj

∥∥∥
L1

=
∥∥∥

N∑

j=1
ajN1[(j−1)/N,j/N) − aj(N1[(j−1)/N,j/N) − xj)

∥∥∥
L1

≥
N∑

j=1
|aj |−

N∑

j=1
|aj |

∥∥(IL1[0,1] − TN )N1[(j−1)/N,j/N)
∥∥
L1

≥
N∑

j=1
|aj |− ‖IL1[0,1] − TN‖

N∑

j=1
|aj |

= 1 − ε

Thus, we have proven (2) by showing that

(1 − ε)
N∑

j=1
|aj | ≤

∥∥∥
N∑

j=1
ajxj

∥∥∥
L1

≤ (1 + ε)
N∑

j=1
|aj | for all (aj)Nj=1 ∈ #N1 .

Note that ‖xj‖L∞ = N for all 1 ≤ j ≤ N . Thus for all (aj)Nj=1 ∈ #N1 we have by (2) that

∥∥∥
N∑

j=1
ajxj

∥∥∥
L∞

≤
N∑

j=1
|aj |N ≤ (1 − ε)−1N

∥∥∥
N∑

j=1
ajxj

∥∥∥
L1
.

Thus we have proven (3).
We now let M ∈ N and (tk)Mk=1 ⊆ [0, 1] with 

∑
|x(tk)| &= 0 for all x ∈ XN . Hence, after reordering 

(tk)Mk=1 we may assume without loss of generality that |xk(tk)| = N for all 1 ≤ k ≤ n. There exists unique 
n < j ≤ N such that tk ∈ Ik(ik,j) for all 1 ≤ k ≤ n. Thus, we have that

M∑

k=1
|xj(tk)| ≥

n∑

k=1
N1Ik(ik,j)(tk) = nN.

As ‖xj‖L1 ≤ 1 + ε, this proves (4). To prove that the L1 norm on XN cannot be discretized using M =
o(N log(N)/(log log(N)) sampling points it follows from (4) that we need to prove that there exists C > 0
and n0 ∈ N such that N log(N)/(log log(N) ≤ CNn for all n ≥ n0. We have that N = n +(ε−1n)n. Thus if 
n ∈ N is large enough then N ≤ n2n and hence log(N) ≤ 2n log(n). On the other hand, N ≥ (ε−1n)n and 
hence log(N) ≥ n which implies that log log(N) ≥ log(n). Thus we have if n ∈ N is large enough then

2Nn ≥ N log(N)
log(n) ≥ N log(N)

log log(N) .

We now prove that the L1 norm on XN can be perfectly discretized using M on the order of 
N log(N)/(log log(N) sampling points. For n ∈ N we let M = ε−1nN and tj = j−1

M . As each x ∈ XN is 
constant on the interval [ j−1

M , j
M ) for all 1 ≤ j ≤ M , we have that ‖x‖L1 = 1

M

∑M
j=1 |x(tj)| for all x ∈ XN . 

Thus we just need to prove that there exists C > 0 and n0 ∈ N such that CN log(N)/ log log(N) ≥ Nn for 
all n ≥ n0.



6 D. Freeman, D. Ghoreishi / J. Math. Anal. Appl. 519 (2023) 126846

As N = n + (ε−1n)n we have that N ≥ nn and hence log(N) ≥ n log(n). On the other hand, if n ∈ N
is large enough then log(N) ≤ n2 and hence log log(N) ≤ 2 log(n). Thus we have if n ∈ N is large enough 
then

Nn ≤ N log(N)
log(n) ≤ 2N log(N)

log log(N) . !

3. Constructing subspaces of Lp for 1 ≤ p < 2

In section 2 we constructed subspaces XN ⊆ L1[0, 1] which satisfied the Nikol’skii-type inequality 
‖x‖L∞ ≤ (1 + ε)‖x‖L1 for all x ∈ XN and yet the L1 norm on XN cannot be discretized using 
M = o(N log(N)/ log log(N)) sampling points. That construction only works for L1, but we now intro-
duce a different method which works for Lp when 1 ≤ p < 2.

For n ∈ N, the nth Rademacher function Rn on [0, 1] is given by

Rn =
2n∑

j=1
(−1)j1[(j−1)/2n,j/2n).

Note that (Rn)∞n=1 is an independent sequence of mean-zero ±1 random variables on [0, 1]. This sequence is 
very useful when using probabilistic techniques in the geometry of Banach spaces, and we will rely on the 
following theorem.

Theorem 3.1 (Khintchine’s Inequality). For all 1 ≤ p < ∞ there exist constants 0 < Ap ≤ Bp such that if 
(Rj)Nj=1 is a sequence of Rademacher functions on [0, 1] then for all N ∈ N and all scalars (aj)Nj=1, we have 
that

Ap

( N∑

j=1
|aj |2

)1/2
≤

(∫ ∣∣
N∑

j=1
ajRj(s)

∣∣pds
)1/p

≤ Bp

( N∑

j=1
|aj |2

)1/2

We now use the Rademacher functions and Khintchine’s inequality to build a class of subspaces of Lp[0, 1]
for 1 ≤ p < 2 where the Lp norm cannot be discretized using M on the order of the dimension number of 
sampling points.

Proposition 3.2. Let 1 ≤ p < 2 and N ∈ N. For each 1 ≤ j ≤ N let yj(t) = N1/p−1/2Rj(N1−p/2t) and 
XN = span(yj)Nj=1. Then,

(1) (yj)Nj=1 is 1-equivalent to the Rademacher sequence (Rj)Nj=1 in Lp.
(2) ‖x‖L∞ ≤ A−1

p N1/p‖x‖Lp for all x ∈ XN where Ap is the constant in Khintchine’s inequality.
(3) Suppose that (tj)Mj=1 ⊆ [0, 1] are such that 

∑M
j=1 |x(tj)|p > 0 for all x ∈ XN \ {0}. Then

N2−p/2

M
‖y1‖pLp

≤ 1
M

M∑

j=1
|y1(tj)|p.

Thus, the Lp-norm on XN cannot be discretized using M on the order of N sampling points.

Proof. Let (aj)Nj=1 ∈ #N2 . We have that

∥∥∥
N∑

j=1
ajyj

∥∥∥
p

Lp

=
∫ ∣∣

N∑

j=1
ajN

1/p−1/2Rj(N1−p/2t)
∣∣pdt
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=
∫ ∣∣

N∑

j=1
ajRj(s)

∣∣pds by substituting s = N1−p/2t.

Thus, (yj)Nj=1 is 1-equivalent to the Rademacher sequence (Rj)Nj=1 in Lp[0, 1]. By Khintchine’s inequality 
we have that

Ap

( N∑

j=1
|aj |2

)1/2
≤

∥∥∥
N∑

j=1
ajyj

∥∥∥
Lp

≤ Bp

( N∑

j=1
|aj |2

)1/2
. (3.1)

Let x =
∑N

j=1 ajyj ∈ XN . We now give an upper bound for ‖x‖L∞ .

‖x‖L∞ = sup
t∈[0,1]

∣∣∣
N∑

j=1
ajN

1/p−1/2Rj(N1−p/2t)
∣∣∣

= N1/p
N∑

j=1
N−1/2|aj |

≤ N1/p
( N∑

j=1
|aj |2

)1/2
by Cauchy-Schwartz,

≤ A−1
p N1/p‖x‖Lp by (3.1).

Thus we have proven (2). We now suppose that (tj)Mj=1 ⊆ [0, 1] are such that 
∑M

j=1 |x(tj)|p > 0 for all 
x ∈ XN . As XN is N -dimensional and supported on [0, Np/2−1] we have that there exists a subset (tj)j∈J ⊆
[0, Np/2−1] with |J | ≥ N . Note that, |y1(tj)| = N1/p−1/2 for all j ∈ J . We thus have that,

M∑

j=1
|y1(tj)|p ≥ |J |N1−p/2 ≥ NN1−p/2 = N2−p/2

As ‖y1‖Lp = 1 we have proven (3). !

In Proposition 3.2 we constructed for all 1 ≤ p < 2 a collection of subspaces (XN )∞N=1 of Lp[0, 1] where 
XN is (Bp/Ap)-isomorphic to #N2 and satisfies ‖x‖L∞ ≤ A−1

p ‖x‖Lp for all x ∈ XN , and yet the Lp-norm 
on XN could not be discretized using M on the order of N sampling points. Our proof only worked for 
1 ≤ p < 2, but it is natural to ask if the result was still true for 2 < p < ∞. We now show that this 
hypothesis fails for all 2 < p. That is, there do not exist uniform constants Cp, Dp > 0 such that for all 
N ∈ N, there is a probability space (M, Σ, µ) such that #N2 is Cp-isomorphic to a subspace XN ⊆ Lp(µ)
with ‖x‖L∞(µ) ≤ DpN1/p‖x‖L∞(µ) for all x ∈ XN . The proof follows the classical argument in [16] which 
proves that for all 2 < p there does not exist a constant C > 0 so that #n2 uniformly embeds into #Cn

p .

Proposition 3.3. Let 2 < p < ∞ and N ∈ N. Let XN ⊆ Lp(Ω) where Ω is a probability space and XN has 
a basis (xj)Nj=1 such that ‖xj‖Lp(Ω) = 1 and the following holds for some A, B, β > 0:

(1) For all (aj)Nj=1 ∈ #N2 ,

A
( N∑

j=1
|aj |2

)1/2
≤

∥∥∥
N∑

j=1
ajxj

∥∥∥
Lp(Ω)

≤ B
( N∑

j=1
|aj |2

)1/2
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(2) For all x ∈ XN ,

‖x‖L∞(Ω) ≤ βN1/p‖x‖Lp(Ω)

Then, A
BBp

N1/2−1/p ≤ β where Bp is the constant from Khintchine’s inequality. In particular, there do not 
exist constants A, B, β > 0 such that for all N ∈ N there exists a subspace XN ⊆ Lp(Ω) such that XN is 
A−1B-isomorphic to #N2 and XN ⊆ Lp(Ω) satisfies the boundedness condition ‖x‖L∞(Ω) ≤ βN1/p‖x‖Lp(Ω)
for all x ∈ XN .

Proof. Let t ∈ Ω. By (2) we have without loss of generality that

|x(t)| ≤ βN1/p‖x‖Lp(Ω) for all x ∈ XN . (3.2)

By scaling (1), we have the following inequality

A ≤

∥∥∥∥∥

N∑

j=1

xj(t)
(∑N

j=1 |xj(t)|2
)1/2 xj

∥∥∥∥∥
Lp(Ω)

≤ B

Now using inequality (3.2) for x =
∑N

j=1
xj(t)(∑N

j=1 |xj(t)|2
)1/2xj we get that

N∑

j=1

|xj(t)|2
(∑N

j=1 |xj(t)|2
)1/2 ≤ βN1/pB

Therefore,




N∑

j=1
|xj(t)|2




1/2

≤ βN1/pB (3.3)

Let (Rj)∞j=1 be the sequence of Rademacher functions on [0, 1]. For s ∈ [0, 1] we have by (1) that

ApNp/2 ≤
∥∥∥

N∑

j=1
Rj(s)xj

∥∥∥
p

Lp(Ω)
=

∫

Ω

∣∣∣
N∑

j=1
Rj(s)xj(t)

∣∣∣
p
dt

By integrating with respect to s we get

ApNp/2 ≤
1∫

0

∫

Ω

∣∣∣
N∑

j=1
Rj(s)xj(t)

∣∣∣
p
dt ds

=
∫

Ω

1∫

0

∣∣∣
N∑

j=1
Rj(s)xj(t)

∣∣∣
p
ds dt

≤
∫

Ω



Bp




N∑

j=1
|xj(t)|2




1/2



p

dt (by Khintchine’s inequality)
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≤
∫

Ω

(
BpβN

1/pB
)p

dt by (3.3)

=
(
BpβN

1/pB
)p

Thus we have that AN1/2 ≤ BpβN1/pB and hence A
BBp

N1/2−1/p ≤ β. As 2 < p, we have that N1/2−1/p

is unbounded and hence a uniform constant β cannot exist. !

4. Discretization and frame theory

In previous sections we have considered the problem of discretizing the Lp norm on a subspace X ⊆ Lp. 
We now show how this problem is naturally connected with frame theory. A family of vectors (xj)j∈J in a 
Hilbert space H is called a frame of H if there are constants 0 < A ≤ B < ∞ so that for all x ∈ HN ,

A‖x‖2 ≤
∑

j∈J

|〈x, xj〉|2 ≤ B‖x‖2. (4.1)

A frame is called tight if the optimal frame bounds satisfy A = B, and a frame is called Parseval if the 
optimal frame bounds satisfy A = B = 1. The analysis operator of a frame (xj)j∈J of H is the map 
T : H → #2(J) given by T (x) = (〈x, xj〉)j∈J . Note that (xj)j∈J has upper frame bound B and lower frame 
bound A if and only if the analysis operator is an embedding and satisfies A‖x‖2 ≤ ‖Tx‖2 ≤ B‖x‖2 for all 
x ∈ H.

The notion of a frame can be generalized to a continuous frame by changing the summation in (4.1) to 
integration over a measure space. A collection of vectors (xt)t∈Ω in a Hilbert space H is called a continuous 
frame of H over a measure space (Ω, Σ, µ) if there are constants 0 < A ≤ B < ∞ so that for all x ∈ H,

A‖x‖2 ≤
∫

Ω

|〈x, xj〉|2dµ ≤ B‖x‖2. (4.2)

A continuous frame is called tight if the optimal frame bounds satisfy A = B, and a continuous frame is 
called Parseval if the optimal frame bounds satisfy A = B = 1. The analysis operator of a continuous frame 
(xt)t∈Ω of H is the map T : H → L2(Ω) given by T (x) = (〈x, xt〉)t∈Ω. Note that the analysis operator of a 
frame (xj)j∈J is an embedding of H into #2(J) and that the analysis operator of a continuous frame (xt)t∈Ω
is an embedding of H into L2(Ω).

Continuous frames are widely used in mathematical physics and are particularly prominent in quantum 
mechanics and quantum optics. Though continuous frames such as the short time Fourier transform naturally 
characterize many different physical properties, discrete frames are much better suited for computations. 
Because of this, when working with continuous frames, researchers often create a discrete frame by sampling 
the continuous frame and then use the discrete frame for computations instead of the entire continuous frame. 
That is given, a continuous frame (xt)t∈Ω of H we are interested in choosing (tj)j∈J ⊆ Ω so that (xtj )j∈J

is a frame of H. The notion of creating a frame by sampling a continuous frame has its origins in the very 
start of modern frame theory. Indeed, Daubechies, Grossmann, and Meyer [12] popularized modern frame 
theory in their seminal paper “Painless nonorthogonal expansions”, and their constructions of frames for 
Hilbert spaces were all done by sampling different continuous frames. Sampling continuous frames continues 
to be an important subject in applied harmonic analysis, and there are many modern research papers on 
the subject in various contexts [2][14][13]. The discretization problem, posed by Ali, Antoine, and Gazeau 
in their physics textbook Coherent States, Wavelets, and Their Generalizations [3], asks when a continuous 
frame of a Hilbert space can be sampled to obtain a frame. They state that a positive answer to the 
question is crucial for practical applications of coherent states, and chapter 16 of the book is devoted to 
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the discretization problem. The first author with Darrin Speegle solved the discretization problem in its full 
generality by characterizing exactly when a continuous frame may be sampled to obtain a frame [17].

Theorem 4.1 ([17]). Let (xt)t∈Ω be a continuous frame of a separable Hilbert space H over a measure space 
(Ω, Σ, µ) such that singletons are measurable. Then there exists (tj)j∈J ⊆ Ω such that (xtj )j∈J is a frame 
of a H if and only if there is a measure ν on (Ω, Σ) such that (xt)t∈Ω is a continuous frame of a H over 
the measure space (Ω, Σ, ν) and there is a constant β > 0 so that ‖xt‖ ≤ β for almost every t ∈ Ω.

Furthermore, they prove the following quantized version.

Theorem 4.2 ([17]). There exist uniform constants A, B > 0 such that the following holds. Let (xt)t∈Ω be a 
continuous Parseval frame of a separable Hilbert space H over a measure space (Ω, Σ, µ) such that ‖xt‖ ≤ 1
for all t ∈ Ω. Then there exists (tj)j∈J ⊆ Ω such that (xtj )j∈J is a frame of H and

A‖x‖2 ≤
∑

j∈J

|〈x, xtj 〉|2 ≤ B‖x‖2 for all x ∈ H.

We now consider how these results are connected to the problem of discretizing Lp norms for subspaces. 
If (xt)t∈Ω is a continuous Parseval frame for a Hilbert space H then the analysis operator T : H → L2(Ω)
is an isometric embedding of H into L2(Ω). Being able to discretize the continuous frame (xt)t∈Ω to get a 
frame (xtj )j∈J of H with lower frame bound A and upper frame bound B is then equivalent to discretizing 
the L2 norm on the range of the analysis operator T (H) ⊆ L2(Ω) so that

A‖y‖2 ≤
∑

j∈J

|y(tj)|2 ≤ B‖y‖2 for all y ∈ T (H)

where if y = Tx then y(t) = 〈x, xt〉 for all t ∈ Ω. Furthermore, suppose that Y ⊆ L2(Ω) is a closed subspace 
and β > 0. Then, Y ⊆ L2(Ω) satisfies that ‖y‖L∞ ≤ β‖y‖L2 for all y ∈ Y if and only if Y is the range of 
the analysis operator of a continuous Parseval frame (xt)t∈Ω of a Hilbert space H such that ‖xt‖ ≤ β for 
all t ∈ Ω. This gives the following corollary.

Corollary 4.3. There exist uniform constants A, B > 0 such that the following holds. Let (Ω, µ) be a σ-finite 
measure space and β ≥ 1. Suppose that Y ⊆ L2(Ω) is a closed subspace such that ‖y‖L∞ ≤ β‖y‖L2 for all 
y ∈ Y . Then there exists (tj)j∈J ⊆ Ω such that

β2A‖y‖2 ≤
∑

j∈J

|y(tj)|2 ≤ β2B‖y‖2 for all y ∈ Y.

Note that Corollary 4.3 applies to Ω being either a finite or infinite measure space and to Y ⊆ L2(Ω) being 
either finite or infinite dimensional. In the case that Ω is a probability space then the following theorem 
gives the relationship between the dimension of the subspace, the L∞-bound on the subspace, and a bound 
on the number of sampling points required for discretization.

Theorem 4.4 ([21]). There exist uniform constants A, B, C > 0 such that the following holds. Let (Ω, µ) be 
a probability space and β ≥ 1. Suppose that Y ⊆ L2(Ω) is a closed subspace such that ‖y‖L∞ ≤ βN1/2‖y‖L2

for all y ∈ Y . Then there exists M ≤ Cβ2N and sampling points (tj)Mj=1 ⊆ Ω such that

A‖y‖2 ≤ 1
M

M∑

j=1
|y(tj)|2 ≤ β2B‖y‖2 for all y ∈ Y.
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One of the many applications of frame theory is in the implementation of phase retrieval. A frame 
(xj)j∈J ⊆ H for a Hilbert space H allows for any vector x ∈ H to be linearly recovered from the collection 
of frame coefficients (〈x, xj〉)j∈J . However, there are many instances in physics and engineering where one 
is able to obtain only the magnitude of linear measurements such as in speech recognition [5] and X-ray 
crystallography [25]. Let T : H → #2(J) be the analysis operator of (xj)j∈J given by T (x) = (〈x, xj〉)j∈J

for all x ∈ H. For x ∈ H, the goal of phase retrieval is to recover x (up to a unimodular scalar) from the 
absolute value of the frame coefficients |T (x)| = (|〈x, xj〉|)j∈J . We say that a frame (xj)j∈J does phase 
retrieval if whenever x, y ∈ H and |Tx| = |Ty| we have that x = λy for some scalar λ with |λ| = 1. 
We say that (xj)j∈J does C-stable phase retrieval if min|λ|=1 ‖x − λy‖H ≤ C‖|Tx| − |Ty|‖#2(J) for all 
x, y ∈ H. If we consider the equivalence relation ∼ on H to be x ∼ y if and only if x = λy for some 
|λ| = 1 then a frame (xj)j∈J does C-stable phase retrieval is equivalent to the map |Tx| -→ x/ ∼ is well 
defined and is C-Lipschitz. As any application will involve some error, having a good stability bound for 
phase retrieval is of fundamental importance in applications. Likewise, if (xt)t∈Ω is a continuous frame 
of H with frame operator T : H → L2(Ω) then we say that (xt)t∈Ω does C-stable phase retrieval if 
min|λ|=1 ‖x − λy‖H ≤ C‖|Tx| − |Ty|‖L2(Ω) for all x, y ∈ H.

Every frame for a finite dimensional Hilbert space which does phase retrieval does C-stable phase retrieval 
for some constant C > 0 [4][7]. On the other hand, phase retrieval using a frame or continuous frame for 
an infinite dimensional Hilbert space is always unstable [6][1]. Given some C > 0 and dimension N ∈ N, 
it is very difficult to explicitly construct a frame of #N2 which does C-stable phase retrieval. However, there 
are random constructions where it is possible to choose C > 0 such that a frame (xj)mj=1 of random vectors 
does C-stable phase retrieval with high probability and the number of vectors m can be chosen on the order 
of the dimension N [9][15][20][8]. Each of these results can be thought of as sampling a continuous Parseval 
frame over a probability space which does stable phase retrieval to obtain a frame which does stable phase 
retrieval. This naturally leads to the following problem.

Problem 4.5. Let κ, β > 0. Do there exist constants C, D > 0 so that for all N ∈ N there exists M ≤ DN such 
that the following holds? Suppose that H is an N -dimensional Hilbert space, (Ω, µ) is a probability space, 
and (xt)t∈Ω is a continuous Parseval frame of H which does κ-stable phase retrieval such that ‖xt‖ ≤ β

√
N

for all t ∈ Ω. Then there exists a sequence of sampling points (tj)Mj=1 ⊆ Ω such that ( 1√
M
xtj )Mj=1 is a frame 

of H which does C-stable phase retrieval.

This problem seems particularly difficult as Theorem 4.4 which relies on [23] can be thought of as a 
random sampling result which produces a good frame with low but positive probability. However, all known 
methods of producing frames which do stable phase retrieval using a number of vectors on the order of the 
dimension use sub-Gaussian random variables where a random sampling will produce a good frame with 
high probability. In the following theorem we connect the problem of constructions of frames which do stable 
phase retrieval to the problem of discretizing the L1-norm on a subspace of L1(Ω). In particular, we prove 
that in order to sample a continuous Parseval frame to obtain a frame which does stable phase retrieval, it 
is necessary to simultaneously discretize both the L1-norm and the L2-norm on the range of the analysis 
operator.

Theorem 4.6. Let (xt)t∈Ω be a continuous Parseval frame for an N -dimensional real Hilbert space H over a 
probability space Ω which does κ-stable phase retrieval and ‖xt‖H ≤ β

√
N for all t ∈ Ω. Let T : H → L2(Ω)

be the analysis operator of (xt)t∈Ω. Suppose that (tj)Mj=1 ⊆ Ω is such that ( 1√
M
xtj )Mj=1 is a frame of H with 

upper frame bound B and lower frame bound A which does C-stable phase retrieval. Then both the L2 norm 
and the L1 norm on the range of the analysis operator are discretized in the following way for all y ∈ T (H),
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(1) A‖y‖2
L2(Ω) ≤

1
M

M∑

j=1
|y(tj)|2 ≤ B‖y‖2

L2(Ω),

(2) A1/2B−3/2C−3(1 + A−1β2)−3/2‖y‖L1(Ω) ≤
1
M

M∑

j=1
|y(tj)| ≤ B1/2κ3(1 + β2)3/2‖y‖L1(Ω).

Before proving Theorem 4.6 we will prove the following lemma.

Lemma 4.7. Let Ω be a probability space and let XN be an N -dimensional subspace of L2(Ω). Suppose 
κ, β > 0 are such that ‖x‖L∞ ≤ β

√
N‖x‖L2 for all x ∈ XN and that

min(‖f − g‖L2 , ‖f + g‖L2) ≤ κ
∥∥∥|f |− |g|

∥∥∥
L2

for all f, g ∈ XN . (4.3)

Then, ‖x‖L1 ≤ ‖x‖L2 ≤ κ3(1 + β2)3/2‖x‖L1 for all x ∈ XN .

Proof. Let x ∈ XN with ‖x‖L2 = 1. Note that ‖x‖L1 ≤ ‖x‖L2 as Ω is a probability space. Let γ = ‖x‖1/3
L1

. 
We have by Markov’s inequality that

‖x‖L1 ≥ γProb(|x| > γ).

Hence, Prob(|x| > γ) ≤ ‖x‖2/3
L1

. Let S = {t ∈ Ω : |x(t)| > γ} and PS be the restriction operator from 
L2(Ω) to L2(S). Let (ej)Nj=1 be an orthonormal basis for XN . For each t ∈ S there exists ψt ∈ X such that 
〈x, ψt〉 = x(t) for all x ∈ XN . Note that ‖ψt‖L2 ≤ β

√
N for all t ∈ S. We have that

N∑

j=1
‖PSej‖2

L2 =
N∑

j=1

∫

S

|ej(t)|2dt

=
N∑

j=1

∫

S

|〈ej ,ψt〉|2dt

=
∫

S

N∑

j=1
|〈ej ,ψt〉|2dt

=
∫

S

‖ψt‖2dt

≤ Prob(S)β2N

Thus, there exists 1 ≤ j ≤ N such that ‖PSej‖L2 ≤ (Prob(S))1/2β. In particular, there exists y ∈ XN with 
‖y‖L2 = 1 and ‖PSy‖L2 ≤ (Prob(S))1/2β.

Let f = x + y and g = x − y. As ‖x‖L2 = ‖y‖L2 = 1 we have that ‖f − g‖L2 = ‖f + g‖L2 = 2. We now 
obtain an upper bound for 

∥∥|f | − |g|
∥∥
L2

.

∥∥|f |− |g|
∥∥2
L2

=
∥∥|x + y|− |x− y|

∥∥2
L2

=
∫

(2 min(|x(t)||y(t)|)2dt

= 4
∫

S

(min(|x(t)||y(t)|)2dt + 4
∫

Sc

(min(|x(t)||y(t)|)2dt
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≤ 4
∫

S

|y(t)|2dt + 4
∫

Sc

|x(t)|2dt

≤ 4Prob(S)β2 + 4γ2 (as ‖PSy‖2
L2 ≤ Prob(S)β2 and |x(t)| ≤ γ for all t ∈ Sc).

≤ 4‖x‖2/3
L1

β2 + 4‖x‖2/3
L1

Thus, we have that

1
8
∥∥∥|f |− |g|

∥∥∥
3

L2
≤ (1 + β2)3/2‖x‖L1 (4.4)

As ‖x‖L2 = 1 and ‖f − g‖L2 = ‖f + g‖L2 = 2 we have by (4.3) and (4.4) that

‖x‖L2 = ‖x‖3
L2 = 1

8 min(‖f − g‖3
L2 , ‖f + g‖3

L2) ≤
1
8κ

3
∥∥∥|f |− |g|

∥∥∥
3

L2
≤ κ3(1 + β2)3/2‖x‖L1 . !

We now show that Theorem 4.6 follows from Lemma 4.7

Proof. Let y = T (x) ∈ T (H) with ‖y‖L2(Ω) = 1. As (xt)t∈Ω is a Parseval frame for H, we have that 
‖y‖L2(Ω) = ‖x‖H = 1. Note that y(t) = 〈x, xt〉 for all t ∈ Ω. As ( 1√

M
xtj )Mj=1 is a frame of H with lower 

frame bound A and upper frame bound B, we have that

A‖y‖2
L2(Ω) ≤

1
M

M∑

j=1
|y(tj)|2 ≤ B‖y‖2

L2(Ω).

We now have the following upper bound.

1
M

M∑

j=1
|y(tj)| ≤

( 1
M

M∑

j=1
|y(tj)|2

)1/2

≤ B1/2‖y‖L2(Ω)

≤ B1/2κ3(1 + β2)3/2‖y‖L1(Ω) by Lemma 4.7.

We have that ( 1√
M
xtj )Mj=1 is a frame with lower frame bound A and upper frame bound B which does 

C-stable phase retrieval. Let the set [M ] = {1, 2, .., M} be given the uniform probability measure. Then, 
(xtj )j∈[M ] is a continuous frame with lower frame bound A and upper frame bound B which does C-stable 
phase retrieval. Let T[M ] : H → L2([M ]) be the analysis operator of (xtj )j∈[M ]. Thus, we have for all 
f, g ∈ H that

min
|λ|=1

‖T[M ]f − λT[M ]g‖L2([M ]) ≤ B1/2 min
|λ|=1

‖f − λg‖H ≤ B1/2C
∥∥|T[M ]f |− |T[M ]g|

∥∥
L2([M ]).

Furthermore, as ‖xt‖H ≤ βN1/2 for all t ∈ Ω, we have for all f ∈ H that

‖T[M ]f‖L∞([M ]) = sup
j∈[M ]

|〈f, xtj 〉| ≤ ‖f‖HβN1/2 ≤ A−1/2βN1/2‖T[M ]f‖L2([M ]).

We can thus apply Lemma 4.7 to the subspace T[M ]H ⊆ L2(Ω) with stability constant B1/2C and L∞
bound A−1/2β to calculate the following.
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1
M

M∑

j=1
|y(tj)| = ‖y‖L1([M ])

≥ B−3/2C−3(1 + A−1β2)−3/2‖y‖L2([M ]) by Lemma 4.7

≥ A1/2B−3/2C−3(1 + A−1β2)−3/2‖y‖L2(Ω)

≥ A1/2B−3/2C−3(1 + A−1β2)−3/2‖y‖L1(Ω) !

5. Discretizing infinite dimensional subspaces of Lp

In sections 2 and 3 we showed that Theorem 4.4 does not hold for finite dimensional subspaces of Lp[0, 1]
for 1 ≤ p < 2. We now show that Corollary 4.3 fails in a strong way for infinite dimensional subspaces of 
Lp(R) for 1 ≤ p < 2.

Proposition 5.1. For all 1 ≤ p < 2 there exists a subspace Y ⊆ Lp(R) such that Y is isomorphic to #p and 
‖x‖L∞ ≤ ‖x‖Lp for all x ∈ Y , and the following holds. If J ⊆ R is such that supt∈J |x(t)| &= 0 for all 
x ∈ Y \ {0} then there exists y ∈ Y such that 

∑
t∈J |y(t)|p = ∞.

Proof. We first consider the case 1 < p < 2. By Proposition 3.2 we have for all N ∈ N that there exists a 
subspace XN ⊆ Lp[0, 1] such that XN is A−1

p Bp-isomorphic to #N2 and the following hold,

(1) ‖x‖L∞ ≤ A−1
p N1/p‖x‖Lp for all x ∈ XN ,

(2) If (tj)Mj=1 ⊆ [0, 1] are such that (
∑M

j=1 |x(tj)|p)1/p > 0 for all x ∈ XN \ {0} then

N2−p/2‖x‖pLp
≤

M∑

j=1
|x(tj)|p for some x ∈ XN .

Let (MN )∞N=1 be an increasing sequence of real numbers such that MN+1 > MN + A−p
p N for all N ∈ N. 

For each N ∈ N, we let DN : XN → L2([MN , MN + A−p
p N ]) be the operator defined by for x ∈ XN ,

(DNx)(t) = ApN
−1/px

(
Ap

pN
−1(t−MN )

)
for all t ∈ [MN ,MN + A−p

p N ].

Note that DN is an isometric embedding of XN into L2([MN , MN + A−p
p N ]). We let Y N = DN (XN ). By 

(1) we have that ‖y‖L∞ ≤ ‖y‖Lp for all y ∈ Y N . Let JN ⊆ R such that (
∑

t∈JN
|y(t)|p)1/p > 0 for all 

y ∈ Y N \ {0}. Let IN = (JN − MN )Ap
pN

−1. By (2), there exists xN ∈ XN with ‖xN‖pLp
= Np/2−2 and 

∑
t∈IN

|xN (t)|p ≥ 1. We let yN = DNxN and hence ‖yN‖pLp
= Np/2−2 and 

∑
t∈JN

|yN (t)|p ≥ Ap
pN

−1.
We now let Y = span(Y N )N∈N ⊆ Lp(R). As each Y N is A−1

p Bp-isomorphic to #N2 and is composed 
of functions which are supported on the interval [MN , MN + A−p

p N ], we have that Y is isomorphic to 
(⊕#N2 )#p and hence Y is isomorphic to #p by Pełczyński’s decomposition theorem. For all y ∈ Y , we have 
that ‖y‖L∞ ≤ ‖y‖Lp . As, ‖yN‖pLp

= Np/2−2 and 1 < p < 2, we have that 
∑∞

N=1 ‖yN‖p < ∞. Thus, ∑∞
N=1 yN ∈ Y . We now suppose that J ⊆ R is such that supt∈J |y(t)| &= 0 for all y ∈ Y \ {0}. As (yN )∞N=1

have pairwise disjoint support, we have that

∑

t∈J

∣∣∣
∞∑

N=1
yN (t)

∣∣∣
p

=
∞∑

N=1

∑

t∈J

|yN (t)|p ≥
∞∑

N=1
Ap

pN
−1 = ∞.

Thus, we have completed the proof for the case 1 < p < 2. Note that the exact same proof does not 
work for p = 1 as (⊕#n2 )#1 is not isomorphic to #1. However, if we instead use Theorem 2.1 instead of 
Proposition 3.2 then the proof follows in the same way. !
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6. Appendix

In terms of integral norm discretization, the law of large numbers essentially states that if f ∈ Lp(Ω) for 
some probability space Ω and 1 ≤ p < ∞, then for all ε > 0 there exists m ∈ N such that if M ≥ m and 
(tj)Mj=1 ⊆ Ω are independent random samples then with probability at least (1 − ε) we have that

(1 − ε)‖f‖pp ≤ 1
M

M∑

j=1
|f(tj)|p ≤ (1 + ε)‖f‖pp (6.1)

Note that the Law of Large Numbers applies to only a fixed f ∈ Lp(Ω). The following proposition extends 
(6.1) to any finite dimensional subspace of Lp(Ω). We expect that this is well known, but we include a proof 
for completeness.

Proposition 6.1. Let 1 ≤ p < ∞ and let X ⊆ Lp(Ω) be a finite dimensional subspace, where (Ω, µ) is 
a probability space. Then for all ε > 0 there exists m ∈ N such that if M ≥ m and (tj)Mj=1 ⊆ Ω are 
independent random samples then with probability at least (1 − ε) we have that

(1 − ε)‖f‖pp ≤ 1
M

M∑

j=1
|f(tj)|p ≤ (1 + ε)‖f‖pp for all f ∈ X.

Proof. As X is a finite dimensional subspace of Lp(Ω) we have for almost every t ∈ Ω that point evaluation 
at t defines a linear functional on X. After discarding a set of measure zero, we may assume for each t ∈ Ω
that there exists ψt ∈ X∗ so that ψt(f) = f(t) for all f ∈ X. We now claim that 

∫
t∈Ω ‖ψt‖pdµ < ∞.

Indeed, let (xj)nj=1 ⊆ SX be a finite (1/2)-net in the unit sphere of X. Thus, for all t ∈ Ω there exists 
1 ≤ j ≤ n such that |ψt(xj)| ≥ (1/2)‖ψt‖. Thus, we have that

∫

t∈Ω

‖ψt‖pdµ ≤ 2p
∫

t∈Ω

sup
1≤j≤n

|ψt(xj)|pdµ ≤ 2p
∫

t∈Ω

∑

1≤j≤n

|ψt(xj)|pdµ = 2p
∑

1≤j≤n

∫

t∈Ω

|xj |pdµ = 2pn

This proves our claim that 
∫
t∈Ω ‖ψt‖pdµ < ∞.

Let ε > 0 and choose K > 0 so that for ΩK = {t ∈ Ω : ‖ψt‖ ≤ K} we have that 
∫
t∈Ωc

K
‖ψt‖pdµ < ε. In 

particular, we have for all f ∈ X that,
∫

Ωc
K

|f |pdµ =
∫

t∈Ωc
K

|ψt(f)|pdµ ≤
∫

t∈Ωc
K

‖ψt‖p‖f‖pp dµ ≤ ε‖f‖pp (6.2)

Hence, we have for all f ∈ X that

(1 − ε)‖f‖pp ≤
∫

ΩK

|f |p dµ ≤ ‖f‖pp (6.3)

We now choose 0 < δ < K−1εp. Let (fj)j∈J ⊆ SX be a finite δ-net. We apply the law of large numbers 
to the functions ψ and (fj)j∈J to obtain m ∈ N such that if M ≥ m then with probability at least 1 − ε we 
have that if (tj)Mj=1 ⊆ Ω are independent random samples then for TK = (tj)Mj=1 ∩ ΩK we have that

1
M

∑

t∈T c
K

‖ψt‖p < 2ε and (1 − 2ε) ≤ 1
M

∑

t∈TK

|fj(t)|p ≤ (1 + ε) for all j ∈ J.
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We now let f ∈ SX . Choose j ∈ J such that ‖f − fj‖ < δ. We have for all t ∈ Tk that |f(t) − fj(t)| ≤
‖ψt‖‖f − fj‖ < Kδ. The sum over TK satisfies that for all j ∈ J ,

∣∣∣
( 1
M

∑

t∈TK

|f(t)|p
)1/p

−
( 1
M

∑

t∈TK

|fj(t)|p
)1/p∣∣∣ ≤

( 1
M

∑

t∈TK

|f(t) − fj(t)|p
)1/p

< Kδ < ε

Thus, we have that

((1 − 2ε)1/p − ε)p ≤ 1
M

∑

t∈TK

|f(t)|p ≤ ((1 + ε)1/p + ε)p (6.4)

The sum over T c
K satisfies that

1
M

∑

t∈T c
K

|f(t)|p ≤ 1
M

∑

t∈T c
K

‖ψt‖p < 2ε (6.5)

By summing (6.4) and (6.5) we have that

((1 − 2ε)1/p − ε)p ≤ 1
M

M∑

j=1
|f(tj)|p ≤ ((1 + ε)1/p + ε)p + 2ε !
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