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frame theory. In particular, we prove that discretizing a continuous frame to obtain
a discrete frame which does stable phase retrieval requires discretizing both the
Lo norm and the L; norm on the range of the analysis operator of the continuous
frame.
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1. Introduction

Many problems in applied math, physics, and engineering are stated in terms of some continuous struc-
ture, but only become computationally feasible when appropriately discretized. Some examples of this are
using numerical integration to estimate the integral of a function over a measure space, or using a fast
Fourier transform as a discretization of the Fourier transform. We will be considering the problem of dis-
cretizing the L, norm on finite dimensional subspaces of L,(£2) where 1 < p < oo and € is a probability
space. We let XV C L,(2) be an N-dimensional subspace and note that

915 = [1F@OP dute)  torall 1 € XV (1)
Q
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Given some A < 1 < B, we are interested in the problem of discretizing (1.1) by choosing sampling points
(t;)iL, € Q such that

M
1
AllflE = 57 E 1 [f(t)P < BIfI  forall fe X7 (1.2)
j:

As XV is finite dimensional, the law of large numbers gives that if M € N is large enough and (tj)jj\il cQ
are chosen randomly and independently then (1.2) is satisfied with probability arbitrarily close to one.
We provide a proof of this result in the appendix. However, the law of large numbers does not give any
bounds on how large M must be for a given X~ C L,(2), and as one of our motivations is to make a
problem computationally feasible, it is of fundamental importance to obtain good bounds on the number
of sampling points M. This problem was first considered by Marcinkiewicz and later by Zygmund for the
case of discretizing the L, norm on spaces of trigonometric polynomials [22][27]. Because of this, modern
papers on the subject often refer to this class of problems as Marcinkiewicz-type discretization problems.
It has been recently proven that for all 1 < p < oo there are certain entropy conditions on X~ C L,(Q)
which guarantee that the L,-norm on X N can be discretized to satisfy (1.2) using M on the order of
N(log(N))? sampling points for 1 < p < oo [10],[11],[19],[26]. These entropy conditions can be fairly
technical, but they imply in particular that the subspace satisfies a (2, c0)-Nikol’skii-type inequality, which
implies a (p, 00)-Nikol’skii-type inequality for 1 < p < 2. Here, we say that an N-dimensional subspace
XN C L,(Q) satisfies a (p, 00)-Nikol’skii-type inequality for some 1 < p < oo if there exists 8 > 0 such
that

2|l < ﬂNl/pHxHLp for all z € XV, (1.3)

Having XV C L,(Q) satisfy inequality (1.3) is a very natural Banach space condition as it is equiva-
lent to for all t+ € Q point evaluation at ¢ is a bounded linear functional on X with norm at most
BN'/P. For the case p = 2, the celebrated solution to the Kadison-Singer problem [23] can be applied
to show that if  is a probability space and X C Ly(fQ) satisfies the inequality (1.3) then the Lo-
norm on X% can be discretized using M on the order of N sampling points [21]. The main theorem in
[23] was first used in discretization to prove that if Q& C R is a subset with finite measure then Lo(2)
has a frame of exponentials [24], and was later used to prove that if (z{):cq is a bounded continuous
frame of a Hilbert space H then there is a sampling (;)je; C € such that (z,);es is a frame of H
[17].

It was not previously known that if X~ C L,(Q) satisfied the Nikol’skii-type inequality (1.3) for some
1 < p < co with p # 2 then the L,-norm on XN could be discretized using M on the order of N sam-
pling points. In Section 2 we give a construction of a class of subspaces X~ C L;(Q) which uniformly
satisfy (1.3) but the L;-norm on XV cannot be discretized using M on the order of N sampling points,
and in Section 3 we give for each 1 < p < 2 a construction of a class of subspaces XV C L,(2) which
uniformly satisfy (1.3) but the L,-norm on X% cannot be discretized using M on the order of N sam-
pling points. These subspaces of L,(£2) which we construct in Section 3 are all uniformly isomorphic to
Hilbert spaces. For the case 2 < p < oo, it is shown in section D20 of [18] that if XV C L,(Q2) are
uniformly isomorphic to Hilbert spaces then the L,-norm on X~ cannot be discretized using M on the
order of N sampling points. Furthermore, for all 2 < p < oo, there exist constructions of subspaces of
XN C L,(9) which are uniformly isomorphic to Hilbert spaces and which uniformly satisfy the (2, 00)-
Nikol'skii-type inequality. We complement these results by proving for all 2 < p < oo that if XV C L,(Q)
are uniformly isomorphic to Hilbert spaces then they cannot uniformly satisfy the (p, co)-Nikol’skii-type
inequality.
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In Section 4 we introduce the topics of frame theory and phase retrieval, and then show the important
connection between them and norm discretization of subspaces of L,,. In particular, we prove that discretizing
a continuous frame to obtain a discrete frame which does stable phase retrieval requires discretizing both
the Lo norm and the L; norm on the range of the analysis operator of the continuous frame.

We explain in Section 4 that the solution to the discretization problem for continuous frames [17] implies
that there exist constants A, B > 0 such that if Q is any o-finite measure space and X C Lo(Q) is a
subspace such that there exists § > 0 with ||z||L. < B||=| /L, for all x € X then there exists sampling points
(t;)jes C Q such that B%2A[z||L, < dies lz(t;)|> < B%B||z||1, for all x € X. In Section 5 we use the finite
dimensional results in Sections 2 and 3 to prove that the corresponding result strongly fails for 1 < p < 2.
That is, for all 1 < p < 2 there exists a subspace X C L,(R) with X isomorphic to £, and ||z||L. < |z[L,
for all 2 € X such that if (;)jes € R is such that 3, ; [x(t;)[" > 0 for all z € X \ {0} then there exists
y € X with 32, [y(t;)[P = oo.

We thank the anonymous referee for their helpful comments which allowed us to improve the paper.

2. Constructing subspaces of L4

In this section we will show how to construct subspaces of L; where the Li-norm cannot be discretized
using a number of sampling points on the order of the dimension of the subspace. In particular, for all
e > 0, we construct a class of subspaces X~ C L;[0,1] of the form XV = Ty (span(]l[(j_1>/N7j/N))§V:1) where
Tn : L1]0,1] — L1[0,1] is a linear operator such that ||I;,01] — Tn|l < € (where I, [,1) is the identity
operator on L1[0,1]). The subspace X C L,[0,1] that we construct satisfies ||f|r.. < (1 + ¢)N| f|z,
for all f € XV and yet the L;-norm on X~ cannot be discretized using M = o(N log(N)/(loglog(N))
sampling points. That is, we can consider the simplest N-dimensional subspace of L;[0,1] and per-
turb it an arbitrarily small amount to create a subspace which still satisfies the boundedness condi-
tion (1.3) and yet the subspace cannot be discretized using M = o(N log(N)/(loglog(N)) sampling
points.

We now describe how to construct the subspace X~ C L1[0,1]. Let ¢ > 0 and n € N. Without loss of
generality, we may assume that 1/e is an integer and let N = n+ (¢~ 'n)". We will construct a basis () ;-Vzl
of XV which will be a perturbation of the sequence of indicator functions (]1[<j71>/N}j/N))§V:1. For1<j<n
we let,

xj = N1G-1/ni/n)-

|
[
=1 n
N N N 1

For each 1 < k < n we partition the interval [(k—1)/n,k/N) into e~ 1n intervals (Ik(z))f;i” each of width
en 'N~'. As N =n+(¢'n)", we can now enumerate {1,2,....e"'n}" as ((ir;)p—;)}p 1. Forn <j < N
we let,

2 =N Lniny + Nz ).

e
k=1
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2z
.

4L

2=

-

I1(i1,5) Ia(iz,5) I (in,;)

We have created a sequence (x;) §V:1 C 4]0, 1], and we now prove that it satisfies the following theorem.

Theorem 2.1. Let n € N and 1 > ¢ > 0 with e~! € N. Consider N = n + (¢~'n)" and XV C L1]0,1] with
basis (osj)é-\’zl as defined above. Then the following holds.

(1) There is a linear map T : L1[0,1] = L1[0, 1] with Ty (N 1{G-1)/n,i/n)) = x5 for all 1 < j < N such that
11z 0, — Tl < €, where Iy, j0,1) s the identity operator.
(2) The basis (z;)N_, of XV satisfies that

N N N
(=Y ol < | Yasas|, <403 lasl  for ali (a)), € €F,
j=1 j=1 ! j=1

(3) For all z € XV, lzllz 01 < (1— 5)*1N||z||L1[0’1}.
(4) Let M € N so that (t;)M, € [0,1] and Y |z(t;)| # 0 for all z € XN\ {0}. Then there exists x € XN
with

N, < = §M3\ (t)]
xr L > xr j
(1+e)M M =

In particular, it follows from (4) that the Ly norm on X* cannot be discretized using M on the order of N
sampling points. Furthermore, the Ly norm on X cannot be discretized using M = o(N log(N)/(loglog(N))
sampling points. However, M can be chosen on the order of Nlog(N)/(loglog(N)) so that there exists
sampling points (tj)jl\/i1 C [0,1] such that ||z||, = Z]M:1 |z(t;)| for all z € XN

Proof. Consider the linear map Py : L1[0,1] — L[0,1] given by Py = Z;V:lIE[(];U/NJ/N) where
E{j-1)/n,i/x) is conditional expectation on [(i—1)/N,i/N). Note that Py is a projection onto the subspace
Span(]l[(j—l)/N’j/N))évzl with ||Py| = 1. We define the operator Sy : Span(]l[<j—1)/N,j/N))§y:1 — L41[0,1] by
SN(Z;V:l aiN1iG-1/n,i/n)) = Zjvzl ajr;. We now let Ty = (Ir,(0,1) — Pn) + Sn Pn. We have the following

estimate.

11210, — In |l = [[Sn Py — P ||

N N
= sw [ Y aas = Y aN TG |
Ya;=1"52 j=1 b
N
< sup Y [lagzs = aiNTg-vmmlly,
Yai=100

N

= sup Z ajNHZEI,C(ik,j)
k=1

Ya;=1 j=n+1

Ly
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=¢ (because I (ix,;) has length en ! N~! for all 1 < k < n).

This shows that || 11,101 — Tv|| < € which proves (1). We have that ||z;|L, <14 ¢ forall 1 <j < N and
hence || Z;\le a;zjll, < (1+¢) Z;\le |aj| for all (a;)}, € 1. We now consider a fixed (a;)}, € ¢ with

N
Zj:l la;| = 1.

N N
H >4t HL = H D AN Gy i) = G5 (NL{o-1,3/) = wj)HLl
j=1 j=1

=

2 Z aj| — Z laj|||(Zp, (0,1 — TN)NIL[(j—n/N,j/z\r)HL1

M= T

laj| = 0,17 — Tl Z |
1 =1

I
— .

— &

Thus, we have proven (2) by showing that

N N
A=Y lasl < | Y aas|, <
j=1 j=1 !

N
(1+¢) Z la;| for all (aj)évzl c .
j=1

Note that ||z;||z., = N for all 1 < j < N. Thus for all (aj)j»v:l € (& we have by (2) that

N

N
HZajxjH Z la;|N < (1—¢) 1NHZaﬂ:]HL
j=1

Thus we have proven (3).

We now let M € N and (t5)al, C [0,1] with Y |x(tg)| # 0 for all € X™. Hence, after reordering
(tx)M, we may assume without loss of generality that |zj(t;)| = N for all 1 < k < n. There exists unique
n < 7 < N such that t; € Ik(z;w) for all 1 < k <n. Thus, we have that

M n
Z |2 (te)] = Z N1r, iy ;) (te) = nN.
k=1 k=1

As ||zj|lL, < 1+ €, this proves (4). To prove that the L; norm on X~ cannot be discretized using M =
o(Nlog(N)/(loglog(N)) sampling points it follows from (4) that we need to prove that there exists C' > 0
and ng € N such that Nlog(N)/(loglog(N) < CNn for all n > ng. We have that N = n + (¢~ 1n)". Thus if
n € N is large enough then N < n2?" and hence log(N) < 2nlog(n). On the other hand, N > (¢7'n)" and
hence log(N) > n which implies that loglog(N) > log(n). Thus we have if n € N is large enough then

ONn > Nlog(N) > Nlog(N) .
log(n) loglog(N)

We now prove that the L; norm on X7 can be perfectly discretized using M on the order of

Nlog(N)/(loglog(N) sampling points. For n € N we let M = e~ 'nN and tj =11 Aseach z € XV is

M
constant on the interval [Z1, ) for all 1 < j < M, we have that [[z]|, = 7 Z]Ail |z(t;)] for all z € XN,
Thus we just need to prove that there exists C' > 0 and ny € N such that CN log(N)/loglog(N) > Nn for

all n > ng.
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As N = n+ (¢7'n)" we have that N > n" and hence log(N) > nlog(n). On the other hand, if n € N
is large enough then log(N) < n? and hence loglog(N) < 2log(n). Thus we have if n € N is large enough
then

Nlog(N) < 2N log(N)

Nn < .
"= log(n) ~ loglog(N)

3. Constructing subspaces of L, for 1 < p < 2

In section 2 we constructed subspaces X~ C L;[0,1] which satisfied the Nikol’skii-type inequality
lzllz.. < (1 + €)||lz|r, for all z € XV and yet the L; norm on X cannot be discretized using
M = o(Nlog(N)/loglog(N)) sampling points. That construction only works for L;, but we now intro-
duce a different method which works for L, when 1 < p < 2.

For n € N, the nth Rademacher function R, on [0, 1] is given by

on

R, = Z(—l)j]l[<j,1)/2n7j/2n).

Jj=1

Note that (R,)52, is an independent sequence of mean-zero +1 random variables on [0, 1]. This sequence is
very useful when using probabilistic techniques in the geometry of Banach spaces, and we will rely on the
following theorem.

Theorem 3.1 (Khintchine’s Inequality). For all 1 < p < oo there exist constants 0 < A, < B, such that if
(Rj)é»v:l is a sequence of Rademacher functions on [0,1] then for all N € N and all scalars (aj)évzl, we have
that

Ap(i o)< () ﬁ;aﬂj(sws)”” < Bp(é )"

We now use the Rademacher functions and Khintchine’s inequality to build a class of subspaces of L, [0, 1]
for 1 < p < 2 where the L, norm cannot be discretized using M on the order of the dimension number of
sampling points.

Proposition 3.2. Let 1 < p < 2 and N € N. For each 1 < j < N let y;(t) = NYP=V2R;(N'=P/%t) and
XN = span(y;)_,. Then,

(1) (yj)j-v:l is 1-equivalent to the Rademacher sequence (Rj)é-\]:1 in Ly.
(2) lzllr.. < A;lNl/pHxHLﬂ for all x € XN where A, is the constant in Khintchine’s inequality.
(3) Suppose that (t;)L, C [0,1] are such that Z?il |z(t;)|P >0 for all z € XN\ {0}. Then

N2-P/2 1 M
i lyally, < MZM(UW’-
=1

Thus, the Ly-norm on XN cannot be discretized using M on the order of N sampling points.

Proof. Let (aj)é\]:1 € (Y. We have that

N
|3 s
j=1

N
’; :/]Zale/”’l/QRj(Nl’p/Zt)]pdt
P =1
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a; ds by substituting § = N1=P/2¢,
| Z iR (s)|”

Thus, (y;)j, is 1-equivalent to the Rademacher sequence (R;)I_, in L,[0,1]. By Khintchine’s inequality
we have that

N N\ 1/2 N N N\ 1/2
Ap(ZMj\ ) < HZ%‘Z/J'HL SBp(ZWj\ ) : (3.1)
i=1 i=1 g =1
Let x = Z;V:1 ajy; € XV. We now give an upper bound for ||z

2L, = sup ‘Za N1P=1/2 R (N1-P/2y)
telo,

N
= NPy N2l
j=1

N 1/2
< NUP(Z ‘Clj‘2> by Cauchy-Schwartz,
< ANV, by (3.1).

Thus we have proven (2). We now suppose that (¢;)2, C [0,1] are such that Z;\/fl |z(t;)[P > 0 for all
z € XN. As XV is N-dimensional and supported on [0, N?/271] we have that there exists a subset (¢;)je; C
[0, NP/2=1] with |J| > N. Note that, |y;(t;)| = N/P=1/2 for all j € J. We thus have that,

Z|y1 )P > |J| NP2 > NN1TP/2 = N27P/2

As [ly1]|z, = 1 we have proven (3). O

In Proposition 3.2 we constructed for all 1 < p < 2 a collection of subspaces (X™)%_; of L,[0, 1] where
XN is (B,/Ap)-isomorphic to £ and satisfies ||z[1. < A x|z, for all 2 € XV, and yet the Ly-norm
on X% could not be discretized using M on the order of N sampling points. Our proof only worked for
1 < p < 2, but it is natural to ask if the result was still true for 2 < p < co. We now show that this
hypothesis fails for all 2 < p. That is, there do not exist uniform constants C}, D, > 0 such that for all
N € N, there is a probability space (M, 3, u) such that ¢) is Cp-isomorphic to a subspace X~ C L,(u)
with [|2]|z_ ) < D Nl/p||a:\|L ) for all z € X™. The proof follows the classical argument in [16] which
proves that for all 2 < p there does not exist a constant C' > 0 so that £5 uniformly embeds into fg".

Proposition 3.3. Let 2 < p < 0o and N € N. Let XV C L,(Q) where Q is a probability space and X has

a basis (x;)}, such that ||z;||p, ) = 1 and the following holds for some A, B, 8 > 0:

(1) For all (a;)}L, € €5

A(i|aj|2)”2<HZ o - (Zw )"
j=1
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(2) For allz € XV,

2] £oc() < BNYP |2 1,0

Then, %Nl/zfl/p < B where By, is the constant from Khintchine’s inequality. In particular, there do not
P
exist constants A, B, 3 > 0 such that for all N € N there exists a subspace X~ C L,(Q) such that XV is

A~!B-isomorphic to €5 and XN C L,(Q) satisfies the boundedness condition ||z| 1) < ﬁNl/pH:cHLP(Q)
for all z € XN.
Proof. Let t € Q. By (2) we have without loss of generality that

z(t)| < BNYP||z| 1, () for all z € X, (3.2)

By scaling (1), we have the following inequality

<B

Lp(Q)

A<

= z;(t) .
= (S 1)

Now using inequality (3.2) for z = 27 210)

_ x; we get that
I (X )

N

(#)[2
|z (t)] s < BNY/?B
=1 (S 5 0)2)
Therefore,

1/2

N
S lz)*)  <ANYPB (3.3)
j=1

Let (R;)32, be the sequence of Rademacher functions on [0, 1]. For s € [0, 1] we have by (1) that

APNP/? < H f:Rj(s)xjH’; = / ‘ g:Rj(s)xj(t)‘pdt
@ )

Jj=1

By integrating with respect to s we get

1 N
APNP/? < / / ’ZRj(S)xj(t)’pdtds
0o o J=t

1 N »
:Q/O/’ZRJ-(S)%@)] ds dt

Jj=1
1/2\ P

< / B, Z |l‘j (t)|2 dt (by Khintchine’s inequality)
J ‘

Jj=1
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15\’ q
< [ (B,sNV?BY" at by (3.3)

Q
= (B,oN'7B)"

Thus we have that AN'/2 < B,AN'/?B and hence %BPN”H/” < . As 2 < p, we have that N1/2-1/p
is unbounded and hence a uniform constant § cannot exist. O

4. Discretization and frame theory

In previous sections we have considered the problem of discretizing the L, norm on a subspace X C L.
We now show how this problem is naturally connected with frame theory. A family of vectors (z;),ecs in a
Hilbert space H is called a frame of H if there are constants 0 < A < B < oo so that for all z € HY,

Aljal? <Y Kz, z5)? < Bllz|*. (4.1)
JjeJ

A frame is called tight if the optimal frame bounds satisfy A = B, and a frame is called Parseval if the
optimal frame bounds satisfy A = B = 1. The analysis operator of a frame (z;);e; of H is the map
T : H — ly(J) given by T'(z) = ({z,z;));cs. Note that (z;);cs has upper frame bound B and lower frame
bound A if and only if the analysis operator is an embedding and satisfies A||z||?> < ||Tz|* < B||z||? for all
rxeH.

The notion of a frame can be generalized to a continuous frame by changing the summation in (4.1) to
integration over a measure space. A collection of vectors (2¢)icq in a Hilbert space H is called a continuous
frame of H over a measure space (2,3, u) if there are constants 0 < A < B < oo so that for all x € H,

Allz|l* < /I(w,ﬁﬂﬁlzdu < Bllz|*. (4.2)
Q

A continuous frame is called tight if the optimal frame bounds satisfy A = B, and a continuous frame is
called Parseval if the optimal frame bounds satisfy A = B = 1. The analysis operator of a continuous frame
(2¢)teq of H is the map T : H — Ly(Q) given by T'(x) = ({x, x¢))tecq. Note that the analysis operator of a
frame (z;);es is an embedding of H into ¢5(.J) and that the analysis operator of a continuous frame (z)co
is an embedding of H into Ly ().

Continuous frames are widely used in mathematical physics and are particularly prominent in quantum
mechanics and quantum optics. Though continuous frames such as the short time Fourier transform naturally
characterize many different physical properties, discrete frames are much better suited for computations.
Because of this, when working with continuous frames, researchers often create a discrete frame by sampling
the continuous frame and then use the discrete frame for computations instead of the entire continuous frame.
That is given, a continuous frame (7;)cq of H we are interested in choosing (t;)jcs C €2 so that (2,);es
is a frame of H. The notion of creating a frame by sampling a continuous frame has its origins in the very
start of modern frame theory. Indeed, Daubechies, Grossmann, and Meyer [12] popularized modern frame
theory in their seminal paper “Painless nonorthogonal expansions”, and their constructions of frames for
Hilbert spaces were all done by sampling different continuous frames. Sampling continuous frames continues
to be an important subject in applied harmonic analysis, and there are many modern research papers on
the subject in various contexts [2][14][13]. The discretization problem, posed by Ali, Antoine, and Gazeau
in their physics textbook Coherent States, Wavelets, and Their Generalizations [3], asks when a continuous
frame of a Hilbert space can be sampled to obtain a frame. They state that a positive answer to the
question is crucial for practical applications of coherent states, and chapter 16 of the book is devoted to
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the discretization problem. The first author with Darrin Speegle solved the discretization problem in its full
generality by characterizing exactly when a continuous frame may be sampled to obtain a frame [17].

Theorem 4.1 ([17]). Let (x¢)icq be a continuous frame of a separable Hilbert space H over a measure space
(0,3, 1) such that singletons are measurable. Then there exists (tj)jes C Q such that (v¢;)jes is a frame
of a H if and only if there is a measure v on (2,%) such that (x¢)icq s a continuous frame of a H over
the measure space (2, 2,v) and there is a constant > 0 so that ||x¢|| < B for almost every t € Q.

Furthermore, they prove the following quantized version.

Theorem 4.2 ([17]). There exist uniform constants A, B > 0 such that the following holds. Let (zi)tcq be a
continuous Parseval frame of a separable Hilbert space H over a measure space (€, 3, u) such that ||x¢]] < 1
for all t € Q. Then there exists (t;)jcs C Q such that (x;)jes is a frame of H and

Aljz|]? < Z [z, 2,)> < Bllz|? forallx € H.
jeJ

We now consider how these results are connected to the problem of discretizing L, norms for subspaces.
If (x¢)teq is a continuous Parseval frame for a Hilbert space H then the analysis operator T : H — L2(1)
is an isometric embedding of H into Lo(2). Being able to discretize the continuous frame (x4):cq to get a
frame (zy,);es of H with lower frame bound A and upper frame bound B is then equivalent to discretizing
the Lo norm on the range of the analysis operator T'(H) C Lo(2) so that

Allyl® < > ly(t;)1> < Blly|l* for all y € T(H)
JjEeJ

where if y = Tz then y(t) = (x, z;) for all t € Q. Furthermore, suppose that Y C L2(€2) is a closed subspace
and > 0. Then, Y C Ly(Q) satisfies that ||y||r.. < Blly|lz, for all y € Y if and only if Y is the range of
the analysis operator of a continuous Parseval frame (x;).cq of a Hilbert space H such that |z, < 8 for
all t € . This gives the following corollary.

Corollary 4.3. There exist uniform constants A, B > 0 such that the following holds. Let (2, u) be a o-finite
measure space and 5 > 1. Suppose that Y C Lo(§2) is a closed subspace such that ||ly||r.. < BllyllL, for all
y € Y. Then there exists (t;)jes C Q such that

BEAlyll* < ly(t)* < B2Blly? forally €Y.
=

Note that Corollary 4.3 applies to €2 being either a finite or infinite measure space and to Y C Ly () being
either finite or infinite dimensional. In the case that ) is a probability space then the following theorem
gives the relationship between the dimension of the subspace, the L.,-bound on the subspace, and a bound
on the number of sampling points required for discretization.

Theorem 4.4 ([21]). There exist uniform constants A, B,C > 0 such that the following holds. Let (€2, 1) be
a probability space and 3 > 1. Suppose that Y C Ly(Q) is a closed subspace such that ||yl r.. < BNY?|yl L,
for ally € Y. Then there exists M < CB2N and sampling points (tj)jM:1 C Q such that

M
1
Ally|l* < i >yt < 8Byl for ally €Y.
j=1
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One of the many applications of frame theory is in the implementation of phase retrieval. A frame
(xj)jes € H for a Hilbert space H allows for any vector « € H to be linearly recovered from the collection
of frame coefficients ((z,z;));cs. However, there are many instances in physics and engineering where one
is able to obtain only the magnitude of linear measurements such as in speech recognition [5] and X-ray
crystallography [25]. Let T : H — {5(J) be the analysis operator of (z;);es given by T'(z) = ((x,z;)) et
for all z € H. For « € H, the goal of phase retrieval is to recover  (up to a unimodular scalar) from the
absolute value of the frame coefficients |T'(z)| = (|(x,x;)|)jes. We say that a frame (z;);e; does phase
retrieval if whenever x,y € H and |Tz| = |Ty| we have that + = Ay for some scalar A\ with [A| = 1.
We say that (z;)jes does C-stable phase retrieval if minjy— [z — Ayl < C||Tz| — |Ty||ls, ) for all
x,y € H. If we consider the equivalence relation ~ on H to be x ~ y if and only if x = Ay for some
[A] = 1 then a frame (z;);cs does C-stable phase retrieval is equivalent to the map |Tz| — z/~ is well
defined and is C-Lipschitz. As any application will involve some error, having a good stability bound for
phase retrieval is of fundamental importance in applications. Likewise, if (2:)teq is a continuous frame
of H with frame operator T' : H — L3()) then we say that (x:)icq does C-stable phase retrieval if
min |y =1 [|2 = Ayl < Cll[Tz] = |Ty[l|L, (o) for all 2,y € H.

Every frame for a finite dimensional Hilbert space which does phase retrieval does C-stable phase retrieval
for some constant C' > 0 [4][7]. On the other hand, phase retrieval using a frame or continuous frame for
an infinite dimensional Hilbert space is always unstable [6][1]. Given some C' > 0 and dimension N € N,
it is very difficult to explicitly construct a frame of £ which does C-stable phase retrieval. However, there
are random constructions where it is possible to choose C' > 0 such that a frame ()}, of random vectors
does C-stable phase retrieval with high probability and the number of vectors m can be chosen on the order
of the dimension N [9][15][20][8]. Each of these results can be thought of as sampling a continuous Parseval
frame over a probability space which does stable phase retrieval to obtain a frame which does stable phase
retrieval. This naturally leads to the following problem.

Problem 4.5. Let «, 8 > 0. Do there exist constants C', D > 0 so that for all N € N there exists M < DN such
that the following holds? Suppose that H is an N-dimensional Hilbert space, (£2, u) is a probability space,
and (¢)seq is a continuous Parseval frame of H which does k-stable phase retrieval such that ||z;| < SV N

for all t € . Then there exists a sequence of sampling points (tj)jl‘/il C Q such that (ﬁxtj)M is a frame

j=1
of H which does C-stable phase retrieval.

This problem seems particularly difficult as Theorem 4.4 which relies on [23] can be thought of as a
random sampling result which produces a good frame with low but positive probability. However, all known
methods of producing frames which do stable phase retrieval using a number of vectors on the order of the
dimension use sub-Gaussian random variables where a random sampling will produce a good frame with
high probability. In the following theorem we connect the problem of constructions of frames which do stable
phase retrieval to the problem of discretizing the Li-norm on a subspace of Li(2). In particular, we prove
that in order to sample a continuous Parseval frame to obtain a frame which does stable phase retrieval, it
is necessary to simultaneously discretize both the Li-norm and the Lo-norm on the range of the analysis
operator.

Theorem 4.6. Let (x)icq be a continuous Parseval frame for an N-dimensional real Hilbert space H over a
probability space Q which does r-stable phase retrieval and ||z¢||g < BVN for allt € Q. Let T : H — Ly(Q)
be the analysis operator of (x¢)icq. Suppose that (t;)}L, C € is such that (\/Lﬁaztj)j]‘/il is a frame of H with
upper frame bound B and lower frame bound A which does C-stable phase retrieval. Then both the Lo norm
and the Ly norm on the range of the analysis operator are discretized in the following way for ally € T(H),
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i

(1) Alyl2, 0, Z £)2 < BllyllZ, o,

(2) AVPBT3RCT3 1+ A7) P lyllny ) < Zly )| < B2 (14 852yl 1, 0

Before proving Theorem 4.6 we will prove the following lemma.

Lemma 4.7. Let Q be a probability space and let X~ be an N-dimensional subspace of Lo(Q). Suppose
K, >0 are such that ||z| .. < BVN||z|L, for all z € XN and that

min(|lf = gllea If + ) < I/ =lgl|  forauifige XN, (4.3)
2

Then, |l2llz, < [l2ll, < K*(L+ 822 |allL, for allx € XV,

Proof. Let € XV with ||z||z, = 1. Note that ||z||, < ||z|L, as Q is a probability space. Let v = ||a:||1L/13
We have by Markov’s inequality that

||z, > yProb(|z| > 7).

Hence, Prob(|z| > v) < Hsc||2L/13 Let S = {t € Q: |z(t)] > v} and Ps be the restriction operator from
L3(€) to Ly(S). Let (e;); be an orthonormal basis for XV. For each ¢ € S there exists 1, € X such that
(z,v;) = x(t) for all z € XN. Note that ||1|z, < 8vVN for all t € S. We have that

Z Peslt, =3 [lestoya

Jls

/ ejawt | dt

=13

N
Z| e]awt | dt

Jj=

I
M= 1

<.
Il

I
"U B R

=

e[t

IN

ob(S)B*N

Thus, there exists 1 < j < N such that ||Pse;||r, < (Prob(S))Y/23. In particular, there exists y € X~ with
lyllz, = 1 and ||Psyllz, < (Prob(S))'/?5.

Let f=xz+yand g =2 —vy. As |||z, = ||lyllz, = 1 we have that ||f — gllz, = ||f + 9llz, = 2. We now
obtain an upper bound for ||| f| — \g|||L2.

£ = 1alll7, = 1z + vl — o —yl|},
— [ min(allu6)?d:
=4 [ (win(o(0)lp(6))dt +4 [ (mino(®)la(0)*dt
S

Sc
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<4 [ ly®Pdt+4 [ 2(0)dt
vt

< 4P7‘0b(5)52 + 472 (as ||Psyll7, < Prob(S)B? and |z(t)| < v for all t € S°).

2/3 2/3
< 4|22 8% + 4|}

Thus, we have that

sl =1al], = 62220l (4.4)

As ||z||p, =1 and ||f — gll, = I|f + gllz, = 2 we have by (4.3) and (4.4) that

1 3
lolza = o, = g min(lf = gl 17 + glE,) < 5ol - 1ol < w0+ el ©

We now show that Theorem 4.6 follows from Lemma 4.7

Proof. Let y = T(x) € T(H) with ||y|l,) = 1. As (2t)teq is a Parseval frame for H, we have that
lyllL,) = llz]|lz = 1. Note that y(t) = (x,2;) for all t € Q. As ( =T, )iL, is a frame of H with lower
frame bound A and upper frame bound B, we have that

M
Allyll7, @) < +5 Z t)1? < Blyl?, -

We now have the following upper bound.

Ly t)] < s )
37 2 v < (szlym )

< B 2|lyl 1o
< B1/2,€3(1 + 62)3/2||y||L1(Q) by Lemma 4.7.

We have that ( \/—:rt] )Jj‘il is a frame with lower frame bound A and upper frame bound B which does
C-stable phase retrieval. Let the set [M] = {1,2,.., M} be given the uniform probability measure. Then,
(7¢;)jear is a continuous frame with lower frame bound A and upper frame bound B which does C-stable
phase retrieval. Let Tjy : H — Lo([M]) be the analysis operator of (z¢;);ecar. Thus, we have for all
f,g € H that

Imln 1 Tian f = ATiangll o) < BY? mln in |[f = Agllm < BY2C|||Tian f| = | Tian Q\HLQ([M])

Furthermore, as ||z¢||z < BN'/2 for all t € Q, we have for all f € H that

1Tiae) fll Lo cpayy = sup 10 ze))| < | flaBNY? < ATV2ENY2 g £l o any)-
JjE

We can thus apply Lemma 4.7 to the subspace TiyH C Lo(2) with stability constant B2C and L,
bound A~'/24 to calculate the following.
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| M
17 2 vt = Iyl
j=1

> B0 (1 4+ A7 B) T2y by Lemma 4.7
> AY2B32C3(1+ A7 8272 ly| Ly e
> AV2BT203 (14 AT ) 2yl ) D

5. Discretizing infinite dimensional subspaces of L,

In sections 2 and 3 we showed that Theorem 4.4 does not hold for finite dimensional subspaces of L, |0, 1]
for 1 < p < 2. We now show that Corollary 4.3 fails in a strong way for infinite dimensional subspaces of
L,(R)for1<p<2.

Proposition 5.1. For all 1 < p < 2 there exists a subspace Y C L,(R) such that Y is isomorphic to £, and
Izl < lz|lz, for all x € Y, and the following holds. If J C R is such that sup,c;|z(t)| # 0 for all
x €Y \ {0} then there evists y € Y such that ), ; |y(t)|P = co.

Proof. We first consider the case 1 < p < 2. By Proposition 3.2 we have for all N € N that there exists a
subspace X~ C L,[0,1] such that XN is A;pr—isomorphic to ¢ and the following hold,

(D) lzllz, < A;lNl/pHxHLp for all z € XV,
(2) If (t;)3L, C [0,1] are such that (Z]Ai1 |z(t;)[?)1/P > 0 for all z € XN \ {0} then

M
NQ_p/2||$||1£p < Z |z (t;)|P for some z € X
=

Let (My)S_; be an increasing sequence of real numbers such that My41 > My + A;pN for all N € N.
For each N € N, we let Dy : XV — Ly([My, My + A, PN]) be the operator defined by for = € XN,

(Dnz)(t) = ApN~ Pz (APN~Y(t — My)) for all t € [My, My + A,PN].

Note that Dy is an isometric embedding of XV into Ly([My, My + A;PN]). We let YN = Dy (XV). By
(1) we have that [jy|[L.. < [lylz, for all y € Y. Let Jy C R such that (Xtern ly(t)[P)1/P > 0 for all
y € YN\ {0}. Let Iy = (Jy — My)APN~'. By (2), there exists 2y € X" with Ha:NHip = NP/2-2 and
Yorery 1N ()]P > 1. We let yy = Dyay and hence |lyn7 = NP/2=2 and ey lun(@)P > APNTL

We now let Y = span(YV)yeny C L,y(R). As each YV is A;pr-isomorphic to ¢) and is composed
of functions which are supported on the interval [My, My + APN ], we have that Y is isomorphic to
(kY )¢, and hence Y is isomorphic to £, by Pelczynski’s decomposition theorem. For all y € Y, we have
that [[yllr.. < llyllz,. As, lynll7, = NP/272 and 1 < p < 2, we have that S %_, |lyn|? < oo. Thus,
> Nv—1Yn €Y. We now suppose that J C R is such that sup,c; [y(t)| # 0 for all y € Y \ {0}. As (yn)F_y
have pairwise disjoint support, we have that

S S ] = X S = 3 ANt = o
N=1

teJ N=1 N=1teJ

Thus, we have completed the proof for the case 1 < p < 2. Note that the exact same proof does not
work for p = 1 as (P€)e, is not isomorphic to ¢;. However, if we instead use Theorem 2.1 instead of
Proposition 3.2 then the proof follows in the same way. O
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6. Appendix

In terms of integral norm discretization, the law of large numbers essentially states that if f € L,(£2) for
some probability space 2 and 1 < p < oo, then for all € > 0 there exists m € N such that if M > m and
(t;))M j=1 € Q are independent random samples then with probability at least (1 — ) we have that

M

(T=9llfll} < Z t)IP < (L+ o)l fII7 (6.1)

Note that the Law of Large Numbers applies to only a fixed f € L,(£2). The following proposition extends
(6.1) to any finite dimensional subspace of L, (€2). We expect that this is well known, but we include a proof
for completeness.

Proposition 6.1. Let 1 < p < oo and let X C L,(Q) be a finite dimensional subspace, where (Q, p) is
a probability space. Then for all ¢ > 0 there exists m € N such that if M > m and (¢ );\41 C Q are
independent random samples then with probability at least (1 — €) we have that

M

(L=alfIp < Z )P < (X+e)lfll;  forall feX.

Proof. As X is a finite dimensional subspace of L,(£2) we have for almost every ¢ €  that point evaluation
at t defines a linear functional on X. After discarding a set of measure zero, we may assume for each t € )
that there exists 1y € X* so that ¢(f) = f(t) for all f € X. We now claim that [,_, [[¢+[|Pdp < oo.

Indeed, let (z;)?_; C Sx be a finite (1/2)-net in the unit sphere of X. Thus, for all ¢ € {2 there exists
1 < j < n such that |¢¢(x;)| > (1/2)]|¢¢||. Thus, we have that

Jlwransz [ s jwepran <2 [ 3 pa)rdi=2 35 [ lepd=2m
1<j<n - -
teQ teQ teq 1<isn 1<j<n g

This proves our claim that [, , [[1:][Pdp < oo.
Let € > 0 and choose K > 0 so that for Qg = {t € Q : ||¢¢| < K} we have that fteﬂg( le]|Pdp < e. In
particular, we have for all f € X that,

/\fl”dMZ / [ (f)IPdp < / [elPIANG di < ell 117 (6.2)
a5

teQs, teQs,

Hence, we have for all f € X that

(1-9)lslp < / S dn <171 (63)

We now choose 0 < § < K~1e?. Let (fj)jes C Sx be a finite 6-net. We apply the law of large numbers
to the functions ¢ and (f;);cs to obtain m € N such that if M > m then with probability at least 1 —e we
have that if (tj)jM:l C Q are independent random samples then for Tk = (tj)jle N Qg we have that

1 1
Dl <25 and (1-26) < o2 D IFOF < (14¢) forall j €
teTg teTx
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We now let f € Sx. Choose j € J such that || f — f;|| < 6. We have for all ¢t € T}, that |f(¢) — f;(t)] <
Vel f — f;]| < K. The sum over Tk satisfies that for all j € J,

(5 S ron)” - (5 X nor) | < (5 > i) ~hor) " <Ko <

Thus, we have that

(1—2e)P —g)p < — Z B < ((1+2)YP 4 ¢)P (6.4)

The sum over T, satisfies that

SO < 17 Y el <22 (6.5)

teTg teTy

By summing (6.4) and (6.5) we have that
M
((1—2¢)Y/7 — Z P < (4P +e)P +2¢ O
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