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Abstract—The problem of reconstructing a sequence of inde-
pendent and identically distributed symbols from a set of equal
size, consecutive, fragments, as well as a dependent reference se-
quence is considered. First, in the regime in which the fragments
are relatively long, and typically no fragment appears more than
once, the exact scaling of the failure probability of maximum
likelihood reconstruction algorithm is determined, both for per-
fect reconstruction as well as partial reconstruction. Second, the
regime in which the fragments are relatively short and repeating
fragments abound is characterized. A trade-off is stated between
the fraction of fragments that fail to be adequately reconstructed
vs. the distortion level allowed for the reconstruction of each
fragment, while still allowing vanishing failure probability.

I. INTRODUCTION

We consider the problem of reconstructing a sequence
XN e XN from its non-overlapping M = N/L consecu-
tive fragments of length L each, and a reference sequence
YN ¢ YN, This problem is motivated by settings in which
data is observed out of order, and ordering is made possible
through side information. The problem can also be seen
as a dataset alignment problem, where one needs to find
a matching between two pairwise approximately matched
data-sets (potentially for subsequent joint compression). For
example, DNA sequencing of a genomic sequence based on a
reference sequence [17], or the transmission of short encoded
packets over packet networks [13], while decoding them with
a side-information sequence. More specifically, we assume
that XV is drawn from a memoryless source, and that YV
is obtained by passing X* in a discrete memoryless channel
Py|x. Furthermore, we assume that the fragment length is
logarithmic in M, that is L = [logM for some 3 > 0.
For this scaling, the problem described above is also closely
related to the bee identification (BI) problem [5], [12], [22]-
[24], for which the M unordered fragments of X* represent
noisy measurements of A/ ordered fragments of YV, and the
matching between the corresponding fragments enables us to
identify bees from a picture. A codebook for this problem
is thus comprised of the M fragments of YV, where X%~
is drawn in a memoryless fashion according to the reverse
channel Px|y. A plausible method to generate this codebook
is via random coding, and specifically drawing the N = LM
symbols of the fragments, in an independently and identically
distributed (IID) manner. The average error probability over
the random ensemble of codebooks is similar to the recon-
struction error in the fragments ordering problem (with the
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inconsequential notational changes of Py |x <> Px|y, L <> n
and M < m.).

Nonetheless, there are two main differences between the
ordering and BI problems. First, in the ordering problem, one
is interested in recovering the sequence, and not necessarily the
permutation. Second, the source sequence and the reference
sequence are random, and there is no design freedom to
optimally choose the source fragments. By contrast, in the BI
problem, only a single optimal codebook is sought. As shown
in [22], [23], improved bounds are obtained by considering the
average error of the typical random code [1], [15], or via ex-
purgation techniques [22]. This is impossible for the ordering
problem. In fact, these two matters are interrelated. As an ex-
treme example, in the event that all fragments of XV are equal,
the order reconstruction is trivially perfect, whereas maximal
error probability is obtained if these identical fragments are
chosen as a codebook for the BI problem. More generally,
repeated fragments in the sequence make the ordering and BI
problems different. This typically happens when the fragments
are relatively short (small 3), or the entropy of X is low.

Our main contributions are twofold: First, we consider the
regime of no repeating-fragments, and upper bound the failure
probability both for perfect reconstruction, as well as for
imperfect reconstruction, i.e., allowing a fraction £ € (0, 1) of
erroneous reconstructed fragments (this was proposed in the
future research part of [23], as well as in [22], although with
&M being replaced by a constant). For £ = 0, this revisits
the setting of random coding analysis for joint decoding in
the BI problem [23]. We show the following in Theorem 1:
As long as 8 > m, then the reconstruction algorithm
succeeds with high probability, where ¥9(Pxy ) is given in
(6). Specifically, if £ = 0 then failure occurs with probability
at most O(M>2I1=F¥2(Pxx)l) that is, a polynomial decay in M
. If € > 0 then the failure probability occurs with probability at
most e~ M1og M-£(B¥2(Pxv)=1) that is, exponential decay with
respect to (w.r.t.) M log M. Our Theorem 3 then shows that
these rates of failure probability are in fact fight, under mild
assumptions. In the ¢ = 0 case, the improvement of Theorem 1
over [23] is by generalizing it to any source Pxy, and not just
symmetric (uniform) binary source with a binary symmetric
channel (BSC), and strictly tightening it, even for the afore-
mentioned binary case. Second, we consider the regime of
repeating-fragments. As a technical contribution, we show that
this regime is characterized by the condition 5 < 1/H(Px).
Essentially, this assures that the number of distinct sequences



that can be constructed by ordering the fragments is roughly
ePH(Px)-Mlog M+o(Mlog M) " \hich is strictly less than M! <
eMlog M+O(log M) - This is shown to hold with probability
1 — e~ ©M)_ Fyrthermore, we note that similar fragments are
also expected to be present in X, and so it is unreasonable
to require perfect reconstruction. Therefore, we propose to
tolerate a distortion level § between fragments (for some given
distortion measure). The reconstruction is then successful if at
most a fraction £ € [0, 1] of the fragments were reconstructed
with low distortion. Evidently, this leads to a trade-off between
& and 6. In Theorem 5 we state an achievable bound on this
trade-off, and show that as long as 5 < 1/H (Px), the condi-
tion ¢ > H(Px)/ dp, (9) suffices to obtain vanishing failure
probability. Here, d}SY‘X (6) is the minimal Bhattacharyya
distance for fragments of distortion larger than ¢ (see (14)).

Other Related Work: An information-theoretic study of
DNA sequence reconstruction from short fragments taken at
random locations was initiated in [18], and its reference-based
counterpart was considered in [17]. In [3], the problem of
compressing a non-probabilistic source was considered when
the encoder has a possible list of reference vectors. In [8],
[9], compression methods were proposed and analyzed for the
setting in which fragments are compressed at the encoder side
and are reconstructed at the decoder side using a reference
sequence. The ordering problem is also related to the DNA
storage sampling-shuffling channel [20], in which short un-
ordered fragments store the information, or, more generally, to
permutation channels [13], [14], [21], in which the output se-
quence is a permuted and noisy version of the input sequence.

Outline: In Sec. II we formulate the problem, in Sec.
III we state our main results, and in Sec. IV we conclude
the paper. Main proofs (and proof sketches for some of the
results) are presented in the Appendix.

II. PROBLEM FORMULATION

For j >4, X] := (X;, Xit1,...,X;) and is shorthanded
as XN = X for i = 1. Let PL(X) denote the set of all
types of length L on X, and let P(X’) be the set of all PMFs
on X. The type class [6, Ch. 2] of a type Qx € Pr(X) is
denoted by T7.(Q x ). The Rényi entropy of order e > 0, v # 1
is denoted by Ho(Qx) := 12 1log(>,cr Q% (2)), and the
Shannon entropy is denoted by H(Qx) = limy 1 Ho(Qx) =
— > wex @x(x)log Qx (x). For a pair of PMFs Qx and
Px, the Kullback-Leibler (KL) divergence is denoted by
Dx1.(Qx || Px). For an integer M, [M] :={1,...,M}.

Let (XN, YN) ~ PZY be a pair of length N IID se-
quences, over the finite alphabet X x ), and assume without
loss of generality (WLOG) that Px is fully supported on
X. Let L denote a fragment length, and assume for nota-
tional simplicity that M := N/L is integer (and ignore in
what follows any integer constraints on asymptotically large
numbers, as they are inconsequential to the results). The
sequence XV is partitioned into M equal-length and non-
overlapping fragments denoted by X (i) := X(iiL_l) i1 A
reconstruction algorithm observes the multiset of fragments
{X (i) }ie(rr) and the reference sequence Y, and is required
to output the original ordered sequence X*V. Let S); denote

the symmetric group of order M (the group of all bijections
from [M] to itself). A permuted sequence of fragments is
denoted by 7[XV] := (X (7(1)), X (7(2)),..., X (7(M))),
and Ap(XN) := {n[X"] }rreSM is then the set of all possible
reconstructed sequences from fragments of X* of length L.
In essence, conditioned on X%, the reconstruction problem
is a multiple hypothesis testing problem between a random
number of |Az(X™)| hypotheses. A maximum likelihood
reconstruction algorithm chooses

XN =

argmax P {YN | )N(N} , €))

XNeAL(XN)

or equivalently, a proper permutation (ordering) of the frag-
ments {X (i)};e(n. The fragments of XV are similarly
denoted by X (i) = X(iiL—l)L-i-l’ and the fragments of YV
by Y (i) = Y(ZiLf1)L+1'

Let A : X x X — R, be a distortion measure. With a
slight abuse of notation, the distortion measure is additively
extended to length-L fragments X, X € XL as

AX,X) = % S AKX, X). %)

Given a desired distortion level § > 0, X (4) is said to fail to

reconstruct X (¢) if A(X (¢), X (¢)) > 0. Let

(XN, XN = % > L{A(X (i), X (1) > 6} (3)
i€[M]

be the relative number of fragments that failed to be properly
reconstructed at distortion level §. The failure probability at
distortion level 6 > 0 and failure level £ € [0,1) is then

FP(5,¢) := P {Eg(XN, XNy > el &)

Our goal is to establish conditions under which FP(J, &)
asymptotically vanishes, as M — oo. We assume that the
length of the fragments scales logarithmically with the
number of fragments M, and the scaling is determined by a
fragment length parameter 3 >0 as L = 3 - log M.

In what follows, the probability of a reconstruction failure
will be bounded using the Chernoff distance between T, T €
X, and s € (0,1) is denoted by

dPY\x,S(fa ‘i‘) = IOg Z P;’\X[y | f} : Pil/T)? [y ‘ ‘i‘] (5)
yey

For brevity, the dependence of the Chernoff distance on Py |x
will often be suppressed henceforth. Moreover, this distance
will mostly be used for s = 1/2. In this case dp, , 1/2(T, T) is
symmetric, it will be referred to as the Bhattacharyya distance,
and s will be omitted from the notation. The Chernoff distance
for a pair of sequences &, & € X'” is additively defined by
ds(®, @) = > ;i) ds(Ti, &;). This additive distance only
depends the joint type of (&, &). Accordingly, for a given
joint type Q5 € Pr(X?) for some L € N, we denote (with
a slight abuse of notation) ds(Qx) = +ds(T,&) where
(@, &) € Tr(Qxy) is arbitrary. The definition can then be
continuously extended to any joint PMF () 5 in the interior



of P(X?). Similarly, the distortion A(Z, %) only depends on
the joint type Q¢ of T and &, and so we also denote it by
A(Q+x). The definition is then continuously extended to any
Qxx in the interior of P(X?).

ITI. MAIN RESULTS
A. The No Repeating-Fragments Regime with Zero Distortion

In this section, we address the regime in which all fragments
of X are typically unique, and no fragment distortion is
allowed, i.e., § = 0. We thus abbreviate the failure probability
to FP(€). Let

1
P2(Pxy) == min =D (Qx,x, | PY*)+dpy « (Qx,x.)-

X1Xo 2
(6)
1) An Upper Bound on the Reconstruction Error:
Theorem 1. If 5 > m then for € =0
FP(€=0)=0 (M2(1—/3w2(ny>>> (7

for all M > My(Pxy ), and for & > 0

FP(€) = exp [-Mlog M - € (By2(Pxy) — 1~ O(M™1))].
(®)

Discussion: The bound of Theorem 1 shows a sharp
threshold as a function of £. For perfect reconstruction, £ = 0,
the failure probability decays polynomially in M, whereas for
& > 0 it decays exponentially with M log M, i.e., much faster.
The error bound for £ = 0 is dominated by transposition errors,
i.e., an almost perfect reconstruction of the sequence, except
for a single pair of fragments that has exchanged location. The
rate function determining the threshold is given by ¥ (Pxy ),
which can be computed for any Pxy, as a convex optimization
problem over P(X?) (6). In addition, the symmetry of the
Bhattacharyya distance and convexity of the KL divergence
imply that the solution Q% x, of the minimization problem
in (6) must have equal marginals, i.e., Q}l = Qjﬁ. When
& > 0, a wrong placement of less than £M fragments is not
considered to be a failure, and so transpositions and other
permutations with M — K fixed points, K fixed, do not lead
to a failure. For £ > 0, the dominant error event in this bound
turns out to be a set of % transpositions.

Proof sketch of Theorem 1: As in [23], the main technical
part of the proof of Theorem 1 is the analysis of the pairwise
error probability from the true source vector to the permutation
of its fragments, when the permutation is a cycle. This is
achieved using the Bhattacharyya upper bound (e.g., [25, Sec.
2.3]). Specifically, for a cycle of length K:

Lemma 2. Let X ~ PS?K IID over a finite alphabet X.
Let m € Sk be a cycle of length K, and let X; = X ;) for
j € [K]. Let Py|x be a transition probability kernel. Then,

E {exp (—dpy‘X(Xf(,Xf())} < e KvaPxy) - (9)

where 1o(Pxy) is defined in (6).

The proof of Lemma 2 is based on first upper bounding the
expected Bhattacharyya upper bound (left-hand side of (9))
using the Donsker-Vardhan variational formula. The resulting
upper bound is given by e~ ¥« (Pxv) ‘where the rate function
Vi (Pxy) is a generalized version of 15 (Pxy ) for cycles of
length K, given as a minimization problem over P(X¥). The
proof of the lemma then continues by establishing that trans-
positions, i.e., cycles of length 2, are the worst case, that is,
Vi (Pxy) > ¥9(Pxy) for all K > 2. The proof of this claim
involves two different arguments. First, the special symmetry
of the case K = 3 is used to show that 13(Pxy) > ¥2(Pxy).
Specifically, the Bhattacharyya distance for a length-3 cycle is
given by d(Qx, x,) +d(Qx,x,)+d(Qx, x, ), which is half of
the Bhattacharyya distance of 3 length-2 cycles. Favorably, the
third-order KL divergence involved in the optimization prob-
lem of 13 (Pxy ), to wit, D1 (Qx, x,x || PE>). is analogously
lower bounded by the KL divergence of the marginal pairs
using Han’s inequality for the KL divergence [2, Theorem
49] [11]. For K > 4, such a symmetry does not seem
possible to easily exploit. Instead, we consider a relaxed lower
bound Yk (Pxy) > ¢x(Pxy), where i (Pxy) is obtained
by a relaxation of the minimization problem involved in the
definition of ¥k (Pxy ), and show that ok (Pxy) > ¥2(Pxy)
for all K > 4. The relaxation from ¢'x (Pxy) to ¢k (Pxy),
essentially breaks the cycle, by removing the constraint that

X1 = Xg. This enables to show that the minimizer of
o (Pxy) in P(XE) must satisfy a Markov chain condition
X1 — X9 — -+ — Xk, and consequently reduces the problem

from a K-dimensional joint PMF in P(X%) to a simple
pairwise joint PMF in P(X'2). This Markov condition clearly
cannot be satisfied with the original cyclic constraint of
X 1 = X k. Substituting the estimate of Lemma 2 to the afore-
mentioned union bound over all permutations, while taking
into account the fact that different cycles of a permutation are
independent, then leads to the upper bounds in Theorem 1.
A comparison with [23]: The setting in [23]
assumed that Px is a uniform binary source
Px(X =0) = Px(X =1) = 1/2, and that Py|x is a BSC
(as well as & = 0, although the results therein most likely
can be extended to £ > 0 in a simple way). For this setting,
it was only established that the worst permutation is either a
transposition (length-2 cycle) or a length-3 cycle. As we show
here, it in fact holds for a general Pxy, that the worst case is a
transposition. The proof of this property leads to the improved
bound on the failure probability with polynomial decrease
O(M1_5¢2(PXY)) compared to O(M1—5(¢2(PXY)V¢3(PXY)))
that can be conjectured from [23]. A similar effect holds for
the & > 0 case. In [23] the “break of the cycle” that was
obtained here by the relaxation to @i (Pxy) was obtained
by ignoring the contribution of the Bhattacharyya distance of
the last pair of fragments d(Xg, X ).
2) A Lower Bound on the Reconstruction Error: The next
lower bound on FP (&) establishes the tightness of Theorem 1.

Theorem 3. Assume that d(xzi,z2) < oo and that
209 (Pxy) < Ho(Px). If B > ny) then it holds that

FP(£=0) > MPAA=BY2(Pxy)lto(1) (10)



and for € > 0 it holds that

FP() > exp [—EM log M - [Bus(Pxy) — 1+ o(1)]]. (11)

The qualifying assumptions: The condition d,(z1, z2) <
oo is somewhat technical, and is related to a continuity
requirement. The condition 25 (Pxy) < Ha(Px) is related to
the fact that if X (1) = X (2) has occurred then the probability
that the reconstruction algorithm erroneously transposes X (1)
and X (2) is zero, simply because they are identical (this is
where the design goal in the ordering problem setting defers
from that of the BI problem). This is gauged by the second-
order Rényi entropy, which is related to the collision proba-
bility via P[X (1) = X (2)] = e~ #2(PX)_ and the assumption
assures that this probability is negligible compared to the
probability of erroneous reconstruction exchanging X (1) and
X (2), whenever they are different.

Proof sketch of Theorem 3 : The proof of Theorem
3 first considers the error probability of a transposition,
i.e., exchanging the order of X(i;) and X (i3) for some
i1,i2 € [M],i; < ig. The probability of this event can be
lower bounded using the technique of Shannon, Gallager and
Berlekamp [19, Corollary to Thm. 5]. In turn, this technique is
based on Chernoff’s bound, and hence, involves an optimized
version over s € [0, 1] of the Chernoff distance, rather than
the Bhattacharyya distance. For £ = 0, the lower bound on the
reconstruction failure then considers a union over all possible
(M) = MUTZD ifferent transpositions. As is well known,
the union bound clipped to 1 is order-tight for independent
events (or just pairwise independent events). However, these
transpositions are not pairwise independent events, and so it is
not obvious that the union bound is actually tight in this case.
We use two techniques to lower bound this probability of a
union of events. For £ = 0, we use de Caen’s inequality [7] (as
was also used in [23]). For £ > 0, we identify that the sequence
of error indicators for such transpositions is a sequence of in-
finitely exchangeable binary random variables (or interchange-
able). We then use de-Finetti’s theorem [4, Ch. 7.3] to show
that the union bound is tight for this case too. This technique
may be of independent interest for other lower bounds.

Example 4 (y2(Pxy) for symmetric general sources). Con-
sider Px to be uniform over X = ), and let the channel Py |x
be symmetric, in the sense that

l—a, y==z
Pyix(ylza): =9 4 herwise (12)
=1 Ootherwise
For the case | X|= 2 a simple closed-form solution is
1
Yo (Pxy) = 5[10g2—log(1+4a(1 —a))]. (13)

The value of 19(Pxy) as a function of « (solved using the
CVX solver [10] for the case |X|> 2) appears in Fig. 1. As
might be expected when s (Pxy) increases with |X|, and
hence the lower bound on 3 decreases — ordering the fragments
is easier for larger entropy sources.

—xT=2
—| x| = 3|

L L L L L L T 1l
0 0.05 0.1 015 02 025 03 035 04 045 05
a

Figure 1. 12 (Pxy ) for Example 4.

B. The Repeating-Fragments Regime with Positive Distortion

In this section, we address the small 8 regime, or low
entropy Px. This is where the difference between the BI
problem and the ordering problem is most pronounced, since
when fragments repeat themselves in the sequence, reconstruc-
tion of the sequence is possible without a reconstruction of
the permutation. In this regime, multiple identical fragments
are typically present in the sequence X*, and so fragments
that are close according to the distortion measure A also
abound. Thus, we propose to tolerate a positive distortion
level. Intuitively, in this setting, a successful reconstruction
is possible, because if a pair of fragments has distortion larger
than the threshold d, then it also has large Bhattacharyya
distance, and so the correct order can be identified using the
corresponding fragment in the reference sequence. Concretely,
let

min

dpy  (Q@x,x
Qx; x5 EP(X2):A(Qx, x5)>0 vix (@x1x5);

(14)
be the minimal Bhattacharyya distance possible for any joint
PMF of a pair of fragments whose distortion level is above §.
Clearly, there is a trade-off between the distortion level § and
the fraction ¢ of failed reconstructed fragments that is tolerated
by a successful reconstruction — increasing the distortion level
0 allows to obtain a reduced £. Our main result in this section
characterizes the trade-off between & and §, which still allows
for vanishing failure probability, as follows:

dp,  (0) =

H(Px)

MO then

Theorem 5. Assume that § < H(P ik Ife> T,
FP(5,&) = e~ %),

Discussion: Theorem 5 states a trade-off between ¢
and ¢ in the repeating-fragments regime 8 < 1/H(Px).
Interestingly, the minimal possible £ for a given § does not
depend on S (as long as the later is sufficiently small). The
resulting reconstruction failure probability then decays as fast
as exponential with M, though in an unspecified rate. This is
a slower rate compared to the no-repeating fragments regime,
for which the reconstruction failure probability decays as
e~ ©EMlog M) for ¢ > (). Evidently, the lower bound on &
can be improved by increasing the Bhattacharyya distance,
which can be considered as a measure of the signal strength,
or signal-to-noise ratio. Specifically, given any £ > 0, the



“quality” of Py|x should be such that dp (6) > H(Px)/¢.
In other words, any arbitrarily small £ > 0 can be compensated
by taking dj;y'X((S) — 00, that is, making the channel Py |x
“cleaner”. Theorem 5 states an achievable trade-off between
(£,6) and 3, and evaluating the tightness of this trade-off (and
its possible dependence on /) is an interesting open problem.

Proof of Theorem 5: As stated in the problem for-
mulation, the reconstruction problem is a hypothesis testing
problem between a random number of |.Az (X )| hypotheses,
or equivalently, all possible different reconstructed sequences.
Upper bounds on the error probability in multiple hypothesis
testing typically involve some sort of a union bound over
the alternative hypotheses, and similarly so is our upper
bound on the failure probability. Therefore, a main technical
part is to establish a tight upper bound on the number
of alternative hypotheses. If all fragments {X (i)};c[as are
unique, then the number of possible reconstruction vectors
is M= ¢MlogM+O(M) However, if the source PMF Px
is such that some fragments in X'” are expected to repeat
multiple times, then it is expected that 7 log| Az (X V)| will
be significantly smaller than M log M + O(M). The main
ingredient of the analysis of the reconstruction failure in
this regime shows that log| AL (X™)|< BH(Px) - M log M
essentially holds with probability 1—e~®(™)_ This cardinality
can be much smaller for low 3 or sources with low entropy.

Proposition 6. Assume that H(Px) > 0. There exists a
constant ¢ > 0 so that for any n € (0,1), the log-cardinality
of AL(XN) is concentrated for all M > My(Px, 3,7) as

1
P i log |AL(XM)| > L H(Px)+nlogM| < e=em M
(15)

To outline the proof of Prop. 6, let us assume, for notational
simplicity, that X7 = {a;...,ays}, where |XF|= M5,
Then, for any 2V € XY and any j € [MP], G(j) =
>icry H{X () = a;} is the number of times that a; € X"
appears in the fragments of z%V, and G := (G(1),...,G(M?))
is the histogram vector of zV for length-L fragments. The
proof is based on the standard entropy bound on the multino-
mial coefficient, which leads to

%log |AL(XN)| < - Z %log %
JE[MP]

(16)

Given the fragments model, the histogram vector G =
(G(1),...,G(MP)) is distributed as a multinomial random
variable (RV), whose components are statistically dependent.
The upper bound in (16) is thus a complicated function of
G, and it is difficult to directly analyze its concentration
properties. Nonetheless, the probability of an event under
the multinomial distribution can be upper bounded by the
probability of the same event under a Poisson distribution that
has independent components [16, Sec. 5.4]. We thus consider
a Poissonized version G of G, and analyze the tail behavior
of f(%) for f(t) := —tlogt. We show using concentration
bounds for Lipschitz functions of Poisson random variables

that f (%) is a sub-gamma random variable [2, Ch. 2], and

Figure 2. The trade-off between £ and § for Example 7.

thep bqund thf: concer.lt.ration of 3 je(MP] f (%) Via.Bern-
stein’s inequality. Additional approximation and truncation ar-
guments are required since, strictly speaking, the function f(¢)
involved in the upper bound is not Lipschitz continuous on R .

Example 7 (A symmetric channel and Hamming distortion
measure). Assume that X' = ) and that Py x is a symmetric
channel parameterized by «, as in (12). In this case, it holds

that d ) (x,Z) = dq - 1[T # Z] where
Y|X
41 —-a)a  a(|Y|-2)
dy = —1 . 17
b [ DRV E

Further assume that the distortion measure is the Hamming
distortion measure A(Z, %) = 1[T # Z|. Then, it is simple
to obtain that d*(§) = § - dy, and the bound of Theorem 5
results & > h;(_g)‘). The achievable trade-off between & and
§ is shown in Fig. 2 for @ = 0.1 and H(Px) = 0.1[nats],
for varying alphabet sizes. As can be seen, the minimal £ is
improving for larger alphabet sizes, though this improvement
has diminishing returns. We remark that computing d}‘gy‘x (9)
for general channels is a linear program (14) that can be easily
computed for any arbitrary Py-|x and distortion measure A.

IV. CONCLUSION AND FUTURE RESEARCH

We have considered the problem of ordering the multiset
of the consecutive fragments of a sequence based on a ref-
erence sequence. We considered the regime of no-repeating
fragments, and sharply characterized the failure probability for
both perfect and imperfect reconstruction (£ = 0 and £ > 0),
thus improving and generalizing [23]. We then characterized
the repeating fragments regime as 8 < 1/H(Px), and
obtained an achievable trade-off between the distortion level
0 > 0 and failure level ¢ for vanishing failure probability. As
said, evaluating the tightness of the trade-off is an interesting
open problem, and specifically, whether the optimal trade-off
depends on 3 or not. Furthermore, it is of interest to investigate
whether the optimal decay rate of the reconstruction failure
probability is e=©) or faster, and how it depends on the
problem parameters.
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