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A b s t r a c t .  We study the analogue of the Montgomery’s pair correlation function
F ( )  for a family of  1(q) L-functions. Assuming the Generalized Riemann Hypoth-esis,
we evaluate this analogous pair correlation function in the range jj <  2; where the o-
diagonal terms also contribute to the main term. As applications, we obtain that more
than 93.5% of the low-lying zeros of  1(q) L-functions are simple, and we achieve upper
and lower bounds for the number of pairs of zeros which are closer than  times the
average spacing apart.

1. Int roduc t i on

1.1. Background and main results. In this paper, we examine the pair correlation
function of a family of L-functions attached to automorphic forms on GL(2).  In the
context of the Riemann zeta function (s), Montgomery [19] introduced the function

F ( )  : =
2 X

T i(0  )w(0 )
0<;0 T

where + i  and 0 + i0  are nontrivial zeros of ,  is real, T  2 and w(u) =  4=(4 + u2).

Assuming RH, he showed that
s ! !

(1.1) F ( )  =  T  2jj log T +  jj 1 +  O
log log T

uniformly for 0  jj  1. Understanding F ( )  for wider ranges of  is a deep and dicult
problem. In this direction, Montgomery conjectured that F ( )  =  1 +  o(1) as T !  1
uniformly in bounded intervals 1  jj  b <  1  for any constant b.

The function F ( )  is closely related to the distribution of the dierences j0 j. For
instance, understanding F ( )  in the range jj  1 quickly leads to understanding of (1.2)

X X  
! (  0)f

log T 
( 0) ;

0<;0 T

for Schwartz class functions f  with the Fourier transform f  supported on ( 1; 1). In-
deed, understanding the quantity in (1.2) quickly reduces to understanding F ( )  by
writing f  as an inverse transform of its Fourier transform f .  Note that the restriction

Date: May 28, 2023.
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Key words and phrases. Pair Correlation function, G L ( 2 )  L-functions,  1(q)L-functions, simple

zeros.
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on the support of f  is the same as on the range of  in (1.1). Further, (1.2) is visibly
related to the quantity

(1.3) N (T ; ) : =
X

1;
0<;0 T 0<0

log T

which gives a count of those pairs ;0 which are closer than  times the average spacing
apart.

Montgomery’s work suggested zeros of the Riemann zeta function are vertically dis-
tributed like the eigenvalues of a random unitary matrix, and this has led to signicant
further work. Notably, the quantities introduced above are also intimately connected to
other deep arithmetic questions.

For instance, understanding these pair correlation functions is related to the existence
of Siegel zeros [7], the distribution of primes in short intervals ([10, 11, 12]), as well as
to the Simple Zero conjecture. Indeed, Montgomery used (1.1) to show that at least
2/3 of the zeros of the Riemann zeta function are simple.

In all these applications, it is of great interest to extend our understanding of F ( )  to
wider ranges of , or equivalently, understand (1.2) for test functions f  with f  having
larger support. In the context of large families of Dirichlet L-functions, Ozlu•k [24, 25]
and Chandee, Lee, Liu and Radziwill [4] extended the range of .

In particular, Ozlu•k’s studied the pair correlation of low lying zeros of Dirichlet L-
functioins L(s; ) on average over  mod q for Q  q  2Q. More recently, Chandee, Lee, Liu
and Radziwill [4] were able to improve upon Ozlu•k’s results by averaging over primitive
characters. This yielded superior results since it avoided the over-counting inherent in
Ozlu•k’s work. In these two works, it is apparent that the larger size of the family,
compared to the conductor, yields superior ranges of . As a consequence of their work,
Chandee, Lee, Liu and Radziwill [4] improve upon Ozlu•k’s work to get that 91% of the
nontrivial zeros of all primitive Dirichlet L-functions are simple assuming GRH. This
was later improved by Sono [26] to over 93.22% and by Chirre, Goncalves and de Laat [6]
to over 93:5%.

In this paper, we consider a large family of GL(2)  L-functions. To  be precise, let k
and q be positive integers, and Sk (  0(q); ) be the space of cusp forms of weight k  3
for the group   (q) and the nebentypus character  (mod q), where as usual,

 
 0(q) = c d

 ad bc =  1; c  0 (mod q) :

Let S  (  (q)) be the space of holomorphic cusp forms for the group
 

 1(q) = c d  ad bc =  1; c  0 (mod q); a  d  1 (mod q) :

Note that
Sk (  1(q)) =

M
Sk (  0(q); ):

 (mod q)



p
n p ps s 2s

= 1 1  ;

1 1

sq k
2 2

 = ;

R
0

b
Z

2 X X

f

b

(q)
b

2
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Let H   Sk (  0(q); ) be an orthogonal basis of Sk (  0(q); ) consisting of Hecke cusp
forms, normalized so that the rst Fourier coecient is 1. For each f  2  H,  we let L(f ; s)  be
the L-function associated to f ,  dened for Re (s) >  1 as

L(s; f )  =  
X  

f (n) 
=  

Y
1    f (p) 

+  
(p)  1

(1.4)
n1

Y f (p)  1
f (p)  1 

p

ps                                       ps

where f f (n)g are the Hecke eigenvalues of f .  When f  is a newform, L(s; f )  can
analytically continued to the entire complex plain and satises the functional equation
(1.5)

 
2 +  s; f

 
=  i k

f
 

2 s; f

where the completed L-function (s; f ) is dened by 
1 +  s; f

 
=  

42
 2   s +  

2 
L

 
1 +  s; f ;

and the root number f  satises jf j =  1.
Suppose for each f  2  H ,  we have an associated number f . Then we dene the

harmonic average of f  over H  to be
X h  (k 1) X f

f 2 H         

f             (4)k  1 
f 2 H  

kf k2

where kf k2 =    (q )nH jf (z)j2yk 2 dx dy:
Throughout this paper, we will assume the Generalized Riemann Hypothesis (GRH)

for L(s; f )  and Dirichlet L-functions. We also assume q is a prime number. Let  be a
smooth function which is real and compactly supported in (a; b) with 0 <  a <  b, and its
Mellin transform is dened to be

1

(s) = (x)xs  1dx: 0
We consider the  1(q)-analogue of the pair correlation function

(1.6) F(q ) : =  
N(q)(q )  

 mod q f 2 H

h X
( i f ) q i f  

2

: (  1 ) = (

1)k

where

(1.7) N(q ) : =
2 X X h  X

( i f )
2

;
 mod q f 2 H      f

(  1 ) = (  1)k

and 1 +  i f  are the non-trivial zeros of L(s; f ):  Note that F(q ) is an even function in .
Our main result is below.
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Theorem 1.1. Assume GRH. Let q be a prime number. Then for any xed  >  0 and k
3,

Z  1
!

F(q ) =  (1 +  o(1)) f ( )  +  (q jj )2 log q 
2

j(it)j2 dt

+  O(q j j )
p

f ( )
 
log

 
q +  (q jj )q  jj

holds uniformly for jj  2  as q !  1  where
(

f ( )  : =
jj jj  1 jj >

1:

The implied constant in the error terms depend on k and :

For the rest of the paper, we will x the  >  0 appearing in Theorem 1.1. Our
Theorem 1.1 yields results about the statistics of zeros of L(s; f )  that support a pair
correlation conjecture for  1(q) L-functions. In the theorem, our acceptable range for  is
essentially ( 2; 2). This should be compared with the range ( 1; 1) in Montgomery’s work
[19] in the case of the Riemann zeta function. A  major dierence is that when the range is
extended to ( 2; 2), the o diagonal terms contribute to the main term and need to be
precisely understood.

Naively, it is natural to assume GRH for the L-functions L(s; f )  but the assumption
of GRH for Dirichlet L-functions may appear odd at rst sight. Actually, the phenom-
enon that one needs to assume GRH for GL(1)  L-functions when studying the vertical
distribution of zeros of GL(2)  L-functions was previously observed in the context of low
lying zeros of certain GL(2)  L-functions in the work of Iwaniec, Luo and Sarnak [16].
Note also that this phenomenon closes o an avenue of attack towards the Siegel zero
problem (assuming GRH for GL(2)  L-functions) by proceeding along similar lines to [7]
for instance. From a technical point of view, the necessity of assuming GRH for Dirichlet L-
functions arises because of the appearance of Kloosterman sums in the o-diagonal term.
This o-diagonal term needs to be understood well when the support of  ex-tends
beyond ( 1; 1). In our work, this is done by inputting strong information on the
distribution of primes in arithmetic progressions, which reduces to GRH for Dirichlet
L-functions through standard lines. More structurally, in our family, this phenomenon is
related to the observation of Iwaniec and Xiaoqing Li  [17] that the  1(q) harmonics are
not perfectly orthogonal. To  be more precise, their work showed that f (n) tend to point
in the direction of Kloosterman-Bessel products. Practically speaking, this forces us to
input information that implies certain coecients (which, in this case, morally look like
(n)) do not correlate with Kloosterman-Bessel products.

As usual, an application of the explicit formula reduces the proof of Theorem 1.1 to
studying a mean square of a sum over primes. Indeed, Theorem 1.1 follows quickly from
the Proposition below.



fc (n) =(1.8)

p
n(q) 2

b

(q )N (q)
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Proposition 1.2. Assume GRH. Let q be a prime number,  >  0, k  3, and X  =  q. Let

f (p) ‘  +  f (p) ‘ if n =  p ‘

0                   otherwise:

Then

2 X X h X  (n)cf (n)(n=X )
2 

 
f
(
) log q 

Z 
j(it)j2 dt

 mod q f 2 H n R

(  1 ) = (  1)k

uniformly for 0    2  as q !  1 .  Here (n) is the usual von Mangoldt function,
which is log p when n =  p ‘  and 0 otherwise.

For completeness, we provide the standard proof of Theorem 1.1 assuming Proposition
1.2 in detail in Section 10. The bulk of our paper is devoted to proving Proposition
1.2 which is provided in Sections 4 through 9. Before diving into the proof of our main
results we discuss two illustrative applications of Theorem 1.1.

1.2. Applications. As with other primitive L-functions, it is hypothesized that all
non-real zeros of L(s; f )  are simple. Roughly speaking, we can show that more than
93.5% of the zeros of  1(q) L-functions are simple on GRH. To  be precise, we show the
following.

Theorem 1.3. Assume GRH. Let q be a prime number. The proportion of simple zeros
of all  1(q) L-functions is greater than or equal to L  in the sense of the inequality

2 X X h      X  
j(if )j2  0:9350 +  o(1);

 mod q f 2 H f

(  1 ) = (  1)k

where  is chosen so that ( i)  = sin :

Chirre, Goncalves and De Laat [6] showed that at least 93:5% of zeros of a large
family of primitive Dirichlet L-functions are simple, and our result is analogous. In
particular, the proof of the theorem follows from Theorem 5 in [6], and we refer the
reader there for details. In the approach for deriving such a proportion of simple zeros,
one wants to minimize

2

(1.9)
gb(0)

 +  
gb(0)  2 

g(x)(1 (1 jxj)+ )  dx;

where a     =  maxf0; ag for certain nice test functions g. In [4], the function g(x) is

chosen so that gb(u) =      sin((2 )u)     
2
, where  is a small positive number. Later, Sono

[26] considered the family of functions g(x), where gb(x) is a non-negative even-valued
function in L1 (R) ,  gb(0) =  1, and g is compactly supported in ( 2; 2). He improves
the simple zero proportion by choosing a g satisfying these conditions which minimizes
(1.9). Chirre, Goncalves and de Laat [6] further improve this proportion by studying an



(q)
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even larger family of functions. In their case, their choice of g is eventually non-positive
1 and is not compactly supported.

As a further application of Theorem 1.1, we achieve bounds on the limsup and liminf
of the pair correlation function. To  state the result, we rst dene the  1(q)-analogue of
Montgomery’s pair correlation function N (T ; ) introduced in (1.3). To  be precise, we let

0 1

N(q; ) : =
2 X X h B

X
(if )(i0 ) C :

 mod q f 2 H  ;0

(  1 ) = (  1)k
0 <

f   0 
log q

Similarly to the denition of N(q ) in (1.7), dene

N (q ) : =
2 X X h  X

( i f )
2

m f  ;
 mod q f 2 H      f

(  1 ) = (  1)k

where m      denotes the multiplicity of the zero 1=2 +  i f  of L(s; f ).  If all the zeros of
 1(q) L-functions are simple then

N (q ) =  N(q ) : =
2 X X h  X

( i f )
2

:
 mod q f 2 H      f

(  1 ) = (  1)k

The analogue of the Pair Correlation conjecture implies that

N(q; )  N(q )    
2

 +  
22 

+  O 2

as  !  1  suciently slowly and q is large. In support of this we prove the following.

Theorem 1.4. Assume GRH. Let q be a prime number and let " >  0 be arbitrary.
Then for  >  0, we have

lim sup 
N

(
(q )

) 
    

4 
+  " +  

22 
+  O

2

and, if N (q )  N(q), as q !  1

lim inf 
N

(
(q )

) 
    

4
 " +  

22 
+  O2

 :

The bounds in Theorem 1.4 below are similar to those found by Carneiro et al. in
[1]. The proof uses Beurling-Selberg majorants and minorants and follows similarly to
that of Theorem 18 in Section 2.3 of [1] so we omit the proof for brevity.

1f  is eventually non-positive if f ( x )   0 for all suciently large jxj.
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2. P r e l i m i n a ry  Results

We collect necessary lemmas in this section. We start with the orthogonality relation
for Dirichlet characters (e.g. see [8]) and Petersson’s formula (e.g. see [14]). We conclude
this section with an asymptotic for N(q ) and an explicit formula for L(s; f ).

Lemma 2.1. For q  3, the orthogonality relation for Dirichlet characters is

<  1 if m  n (mod q); (mn; q) =  1
(m)(n) = ( 1)k if m   n (mod q); (mn; q) =  1

 (mod q) 0 otherwise:
(  1 ) = (  1)k

Petersson’s formula gives

(2.2)  
X h  

f (m)f (n) =  m = n  +  (m; n); f 2 H

where

(m; n) =  2i k
X

c 1S(m; n; c)Jk  1
4p

mn; 

c0 (mod

q)

and S  is the Kloosterman sum dened by

(2.3) S(m; n; cq) =
X

(a)e 
am +  an 

: aa1

(mod cq)

The next lemma collects some well known properties and formulas for the J -Bessel
function.

Lemma 2.2. Let J k  1 be the J -Bessel function of order k 1. We have
 
J k

1 (2x) =  
2

p x
 

Wk (2x)e x    
4

 +  
8

+  W k (2x)e  x  +  
4 

  
8

where W ( j ) (x) j ;k  x  j . Moreover,
1 2 ‘ + k  1

(2.4) J k  1 (2x) =  
‘ = 0  

( 1) 
‘ ! ( ‘  

+
 k 1)!

and
J k  1 (x)  min(x 1=2; xk 1):

The Mellin integration representation of J k  1 is
k  w 1

(2.5) J k  1 (x) =  
2i ( )  

2 w 1 
k + w + 1 xw  dw

where 0 <   <  k 1.
The proof of the rst three claims of Lemma 2.2 can be found in [28], and the

statement of the last claim is modied from Equation 16 of Table 17.43 in [13].
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=
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The following standard lemma is a slight extension of Lemma 3.5 in [3], with a similar
proof.

Lemma 2.3. Assume GRH for L(s; ) with  mod q. Let  be a smooth function
supported in (a; b), where 0 <  a <  b: Write z =   + i t  with  2 2   log q

 ; 2 +  log q and
t real. If  is a non-principal character, then

X  (p) log(p) (p=X ) 
 log2(q +  jtj) max j (3) (x)j:

p

If  is the principal character, then
X  (p) log(p) (p=X ) 

 log2(q +  jtj) max j p

for any A  >  0.

Proof. When   2 +  log q
 , under GRH,

p
(3) (x)j +  

(1
 
+  jtj)A max j (A) (x)j;

L
 
(z; ) =  O

 
log2(q +  jtj)

(see Chapter 19 of [8]). By Lemma 2 of [4],
X  (p) log(p) 

p

pz

(p=X ) X  (n)(n) 
n

nz

(n=X ) 
+  O(1)

Let  be 1 if  is principal, and 0 otherwise.
Recall that

(2.6) b (s) =  
1

(x)xs  1 dx:
0

By doing integration by parts B  times, we have that
1 s + B  1

(s) =  
0

(x)
s(s +  1)::::(s B  +  1) 

dx:

Thus if s =  1 +  iv, where 1 >  0, then

(2.7) jb (s)j  
j1 +  ivj(jvj

 
+  1

) B  1 axb 
j ( B ) (x)j

By (2.6) and (2.7), we have
X  (n)(n) (n=X ) 1 s 

X  (n)(n) 
n

nz                                2i (1)                            n
nz + s

0

=   
2i 

Z(1)
(s )X  

L  
(z +  s; ) ds

=   
2i  20        

b (s)X s  

L
 
(z +  s; ) ds +   b (1 z )X 1  z

log q



b 20 b
p

Z 1

 20

1 X
(1 +  jtj)A axb

axb

X
axb

2

Z
b

N (f ; T ) = log +  O

f

Z
b b

1 b log q

1
Z 1 b log q

(q)
b

2 X X h
Z

b1 log q

og
Z

1

b log q
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Z 1   

 
 1 log q 

+  iv log2(q +  jtj +  jvj)) dv +  j (1  it)j X

By choosing A  =  2 for the rst term and B  =  A  for the second term, the above is
bounded by

p
 log2(q +  jtj +  jvj)) dv +  max j ( A ) (x)j

 1  
log q +  iv(jvj +  1)2

p
 log2(q +  jtj) max j (3) (x)j +   (1 

+
 jtj)A max j (A) (x)j;

for any A  >  0 by the decay of b on vertical lines.

The following lemma provides an asymptotic formula for N(q ) as dened in (1.7).

Lemma 2.4. Assume GRH. We have

N(q )  
log q

j(it)j2 dt

as q !  1 .                                                                   
R

Proof. Let N (f ; T ) denote the number of zeros of L(s; f )  for s =   +  it satisfying 0
<   <  1 and  T  t  T . Assuming GRH, the number of critical zeros of L(s; f )  below
height T is

T qT 2 log(q(T +  jkj)2)
(2e)2                   

 log log(q(T +  jkj)2)
uniformly (e.g. see [2]). By integration by parts, we have

X
j ( i f ) j 2  =

1  

j(it)j2 dN (f ; t)
0

Z 1  =
log q 

0       
j(it)j2 dt +  Ok      log log q

=  
2 

log q 
 1  

j(it)j2 dt +  Ok log log q 
;

where an implied constant depends on k, and so

N(q ) : =
2 X X h  X

( i f )
2

 mod q f 2 H      f
(  1 ) = (  1)k

1

=  
(q)  

 mod q f 2 H  
2 

log q 
 1  

j(it)j2 dt +  Ok log log q
(  1 ) = (  1)k

=  
l
2

q 

 

1  

j(it)j2 dt +  Ok log log q 
:
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Finally, we have an explicit formula which relates zeros of L(s; f )  with a sum over its
prime power coecients.

Lemma 2.5. Assume GRH for L(s; f ).  Let X   1. Then
X

( i f ) X i f  =  
X  (n=X )(n)cf (n) 

+  ( X  1) log
 q

2
 
 
+  O

 
X  1 log jkj; f n = 1

where cf (n) is dened in (1.8).

Proof. We will rst examine the integral
1 L0

s +  
1

; f (s )X s  ds (3=4)

Note that we assume GRH for L(s; f ),  and L(s; f )  is entire. Thus
(2.8) Z

2i (3=4) L
s +  

2
; f (s )X s  ds =  

2i (  1) L
s +  

2
; f (s )X s  ds +  

     

( i f ) X i f

For the integral on the right hand side along the line Re(s) =   1, we will examine
the logarithmic derivative of the functional equation in (1.5). We then have

0 0

2 
log 

42 +  
 

s +  
2

+  
L

s +  
2

; f

0 0  
=   

2 
log 

42

s +  
2     

  
L     

 
2 

     s; f :

For s =   1 +  it,  L0        1 s; f  1 and the Gamma terms contribute  log(jtj +  jkj).
Thus the integral on the right hand side of (2.8) is

0

2i (  1) L
s +  

2
; f (s )X  ds

=   
2i (  1) 

log 
42     

(s )X s  ds +  O ( X  1 log jkj)

=  log 
42     ( X  1) +  O ( X  1 log jkj)

We conclude the proof by expressing the original integral in terms of the series rep-
resentation for L  (s; f ): To  be precise, since

 
L0

 (s; f ) =  
X  (n)cf (n)

n = 1

for Re(s) >  1, hence

1 
Z

L0 
s +  

1
; f (s)X s  ds =  

X  (n)cf (n) 1 
Z

(s )
X

 

s 

ds (3=4)

n = 1                                                (3=4)



 

1

p
n X

(q)

p  
n

p r

2

 mod q c>0

4

n mod t

e

pm mod t

a a e J pr :

X p + r

q

(p)  p
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=  
X  (n)cf (n)  n 

: n = 1

3. Out l ine  o f  the p r o o f  o f  Propos i t ion 1.2

Since the proof of Proposition 1.2 is somewhat lengthy and has some delicate points,
we provide an outline here to help orient the reader.

The main object to be studied is
X X

a p a r       
2 X X h  

f (p) f (r )
p;r  mod q f 2 H

(  1 ) = (  1)k

where

(3.1) an =  
(n)(n=X )

:

Applying Petersson’s formula, we obtain the diagonal term arising from p =  r, which is
easy to evaluate (see Lemma 4.1), and the o-diagonal terms which are

X

;

X
a p a r   (q)

X
2i k

X
c 1 S(p; r; c)Jk  1 c 

p
p r  :

(  1 ) = (  1)k                          c0 mod q

Recall that X  =  q. When 1  jj  2 , there will be the additional main term from
the o-diagonal terms.

By applying orthogonality of Dirichlet characters and rearranging the resulting ex-
ponential sum it suces to understand

X X  2 X X *  X *      mx nx
 
+

 
qs

 X X p +  r
 
4 p

s;t
qst 

x  (mod t)          m mod t                                 
t p;r              

p r              qst         k  1      qst
(x (x+ q s ) ; t ) = 1 r n  mod t

We express the congruence conditions p  m (mod t) and r   n (mod t) using Dirichlet
characters modulo t. The o-diagonal main contribution comes from the principal
characters, and the rest give error terms. In contrast to the diagonal term, the evaluation of
the o-diagonal main terms requires careful analysis which is performed in §6.

To  illustrate what happens with the error terms, let us consider only the transition
region for the Bessel function where st  q . In this region, the factor e qst has small
derivatives and can be absorbed as a smooth function. Applying Cauchy-Schwarz’s
inequality and orthogonality relations, we would like to bound the sum of the form

1 X X  1 X  X log p
2

q S sS
; t

T
 
(t) 

 (mod t ) p X
p

S T   X = 0



 X

p
n

p
p p

+
p

p
p p

p pp

p p

X X X
p

2

(q) p 2

Z
b

n

2

p

X X 2X X X X

p (q)
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This is where we require GRH for Dirichlet L-functions to conclude that the sum over
p is very small and in particular bounded by q when  is a non-principal character.
Executing the rest of the sum trivially gives that the error terms are bounded by q 2 S  q
when X   q2 . This also indicates the barrier of the method, i.e. we cannot evaluate
F ( )  for jj >  2: The full details of this error term bound can be found in §7 and §8.

4. I n i t i a l  Setup f o r  the P r o o f  o f  Propos i t ion 1.2

First, we note that the inner sum in Proposition 1.2 can be expressed as a sum over
primes p:
X  (n)cf (n)(n=X ) 

=  
X  (p)cf (p)(p=X ) 

+  
X  (p2 )cf (p2 )(p2 =X )

n p p

X X  (pk )cf (pk )(pk =X )
k=2

p      k3

=  
X  (p)f (p)(p=X ) 

+  
X  (p2 )(f (p2 ) (p))(p2 =X ) 

+  O(1):
p p

Since  has compact support in (a,b) for some 0 <  a <  b, we see
X  log p(f (p2) (p))(p2 =X ) X log p

p p
a X < p <  b X

=  log bX log a X  +  O(1)
=  O(1):

Thus the asymptotic in Proposition 1.2 is equivalent to

2 h log(p)f (p)(p=X )
  f ()

log q
j(it)j2 dt:

 mod q f 2 H p R

(  1 ) = (  1)k

Let a be dened as in (3.1). By Petersson’s formula (Lemma 2.1), we have

(q)
 mod q f 2 H

h X
a p f ( p )

2  

=
p;r

apar (q)
 mod q f 2 H

h  
f (p) f (r )

(  1 ) = (  1)k (  1 ) = (  1)k

=  
X

a 2  +  
X X

a p a r       
2 X

(p; r)
p p;r  mod q (

1 ) = (  1)k

= :  S D  +  SN :

For the diagonal term, Lemma 3 in [4] shows:



X

p
1 b

8

:

 1 q b

(q)

X X 2

 mod q c>0

4

c

(q) (q) c

a mod c
c
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Lemma 4.1. As X  !  1 ,

S D  =  
p      

log2 p 2 (p=X ) 
=  

2 

Z

R 
j(it)j2dt log X  +  O(1):

The non-diagonal term S N  will contribute to the main term when 1 <    2 . We
evaluate S N  in the following lemma and the proof of Proposition 1.2 follows from this
computation.

Lemma 4.2. Assume GRH. Let q be a prime,  be dened as in Proposition 1.2, k  3, and
X  =  q. Then

S N  =  
<  2 log

 
X  

R
R j(it)j2 dt +  O(1) if 1 <    2 

O(1)                                  if 0    1:

uniformly for 0    2  as q !  1 .  The implied constant depends on  and k.

The bulk of the work of this paper is in proving Lemma 4.2. This will be done in
Sections 5 - 9.

5. The non-diagonal t e r m  S N

First we will extract the main term from SN .  To  do this we aim to rewrite the
congruence in terms of Dirichlet characters but rst we must manipulate the sum.
Recall that

S N  =  
X X

a p a r  
2 X

(p; r)
p;r  mod q (

1 ) = (  1)k

=
p;r

apar  (q)

X
2i k

X
c 1 S(p; r; c)Jk  1 c 

p
p r  ;

(  1 ) = (  1)k                          c0 mod q

where from (2.3)

S(p; r; c) =
X

(a)e
ap +  ar

: 

aa1 (mod

c)

Let K f  : =  i  k f  +  ik f .  Then by orthogonality of Dirichlet characters in (2.1),
2 X

S(p; r; c) =
2 X X

(a)e
ap +  a

r
 mod q  mod q aa1 (mod c)

(  1 ) = (  1)k (  1 ) = (  1)k

=  i k K X *
e 

ap +  ar 
:

a1 mod q



 

X X

c>0

1
cq cq

X *

e

!

e= :

cq cq

st=c

x  mod t
t

p r s;t

2 + 4

p r s;t

2 + 4

p r s;t

+2 4
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Thus, after a change of variable in c, we obtain that

S N  =
p;r

apar  2
 X  

cq
Jk  1

4p
pr  K

 

a mod cq 

e 
ap +  ar 

: 
a1

mod q

Now, we follow Iwaniec and Li  [17] and set a =  1 +  qy with y running modulo c.
Let (y; c) =  s so that c =  st and a =  1 +  qsx with x  running modulo t. Furthermore,
(x(1 +  qsx); t) =  1: We have

X * ap +  ar X X p(1 +  qsx) +  r(1 +  qsx)

a mod cq
cq

st=c x  (mod t)
qst

a1 mod q                                                        ( x (1+q sx) ;t )=1

Then we write 1 +  u  1   u(1 +  u) (mod t) for u =  qsx: Next, we change x  to x and x(1
+  qsx)  x  +  qs (mod t): Thus we have

X *
e 

ap +  a
r

=  e 
p +  r X

V q s ( p ; r ; t )

a mod cq s;t
a1 mod q

where

Vd(p; r; t) : =
X

e
px r x

 
+

 
d

:

(x (x+d ) ; t ) = 1

Therefore

S N  =  
X

;

X
a p a r   K

 

X X  

qst
e 

p
qst

r 
Vqs(p; r; t)Jk 1 qst

p
pr :

We now write

S N  =  M o f f  +  Eof f ;

where Mof f  is the contribution from terms (t; pr) =  1, and Eof f  is the rest. The purpose
is to extract the terms with (t; pr) =  1 and later rewrite the congruence condition
(mod t) in terms of Dirichlet characters.

Lemma 5.1. For k  3, we have

Eof f  : =  
X

;

X
a p a r   K  

X X  

qst
e 

p
qst

r 
Vq s(p; r; t)Jk 1 qst

p
pr  q  1:

(t;pr )=1

Proof. We have

Eof f  =  
X

;

X
a p a r   K  

X X  

qst
e 

p
qst

r 
Vqs(p; r; t)Jk 1 qst

p
pr

p =r pjt



 

X X X 2 + 4

p = r

X p
X X 2 2p 4

p r s;t

pa 2 p +  r 4
p

r

J p        p

E  p p         p

k=2 kp q s

kq X

X

s;t

2

m mod t
n  mod t

X X + 4
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+
p;r

apar  K  
s;t      

qst
e

p
qst

r
Vqs(p; r; t)Jk 1 qst

p
pr

rjt;p-t

+  
p     

a2
  K  

s;t
qst

e 
qst 

Vqs(p; p; t)Jk 1 qst
p

pjt

= :  E1 +  E2 +  E3:

We will focus on bounding E1. The bound for E2 and E3 follows similarly.
By the change of variable t !  tp,

E1 =  
X

;

X  

p
 ar  K  

X X  

qst
e
 

qstp 
Vqs(p; r; tp)Jk 1qst

p
p

: p = r

Using trivial bound for Vqs, the bound in Lemma 2.2, which is

4
p

r  
 
4

p
r  k  1

k  1 qst p qst p

X   q2  and k  3, we obtain that

X X  log p log r  X  1 X  
4

p
r  k  1 1

a X < p ; r < b X
p r

s      
qs 

t
qst p

 
X X  log p

(log r)rk
=2 1 

X 1 
k

a X < p ; r < b X s

1 X X
l o g  p log r

p; r X

 
qk  q  1

upon choosing small enough . By the same arguments, we can show that E2  q  1, and
E3  q 4:

Therefore

S N  =  M o f f  +  O(q  1);

where

M o f f  =  K  
X X  

qst 

X *  X *  
Vqs(m; n; t)

p;r
apar e 

p
qst

r 
J k  1 qst

p
pr :

pm mod t
r n  mod t

Now we express the condition p  m mod t and r   n mod t using Dirichlet charac-ters.
In particular,



X X

n mod t

*2 1X  X X X

p;r
+ 4

s;t

2

m mod t

X X + 4

X X  

p r

+ 4

qst qst

i

8

:

 1 q b

*X Y Y1 1
p p
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M o f f  =  K
s;t

qst 
m mod t 

* 
Vqs(m; n; t)

(t)2     
 mod t 

0(m)(n) 0 mod t

 
X X

0 ( p ) ( r ) a p a r  e 
p

qst
r 

J k  1 qst
p

pr

=  K
 

X X  

qst(t)2 

X *  X *  
Vqs(m; n;

t
)  

h

p;r
apar e

p
qst

r

J
k 1 qst

p
pr

 

n  mod t

(pr;t)=1

+
 mod t

0 (m)(n)
X

;

X
0 (p ) ( r )a p a r  e 

p
qst

r 
J k  1 qst

p
pr

0 mod t
= 0 ; 0 = 0

+  2 
X X  

( n )
X

( r ) a p a r  e 
p +  r  

J k  1
4 p

p r
(p;t)=1  mod t r

= 0

= :  S1 +  S2 +  S3:

When 1 <    2      , S1 contributes to the main term while S2 and S3 are always sub-
sumed in the error term. We will treat S1, S2 and S3 in Section 6, 7 and 8, respectively.

6. Main T e r m  S1

In this section, our goal is to prove the following.

Lemma 6.1. Assume RH. Let q be a prime,  be dened as in Proposition 1.2, k  3,
and X  =  q. Then

S1 =  
<  2 log

 
X  

R
R j(it)j2 dt +  O(1) if 1 <    2 

O(1)                                   if 0    1

uniformly for 0    2  as q !  1 .  The implied constant depends on  and k.

6.1. Preliminary lemmas for evaluating S1 . We will collect necessary lemmas to
calculate S1 in this section. The rst lemma taken from [5], and its proof can be found
there.

Lemma 6.2. Let (a; ‘) =  1: We have
 1

f (c; ‘)  : = 1 =  c          1           =  (c)             1              :
x  (mod c ‘ ) pjc pj(‘;c)

xa (mod ‘ ) p-‘

The next lemma is a slight modication of Lemma 7.2 in [5]. The proof follows by
the same arguments.



1X 1
p

 m m n

q

1X

L q q
Z

‘ m ‘ n ‘

2

X ‘ ‘
L L

1

1X

L L1 1
4

Z

t

0

X ‘ X ‘1 1

2

X ‘ 1

2
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Lemma 6.3. Let ; m; n be positive integers satisfying a X   m; n  bX and q  X .  We
recall that X  =  q, where 0    2 . Dene

T =  T (q; ; m; n) : =  
= 1  

J k  1
4 

q

 
n

K  e
q 

+  
q

Further, let L  =  X q      
and w be a smooth function on R +  with w(x) =  1 if 0  x   1,

and w(x) =  0 if x  >  2: Then for any A  >  0, we have
s ! s !

T =  2 w
‘

J k  1      4
m ‘  

J k  1      4
n ‘

‘ = 1      

1
 s ! s !

2 
0

w 
L  

J k  1      4 q
J k  1      4 q

d ‘  +  OA(q  A ):

Our next lemma is similar to Lemma 7.3 in [5], and we will include the proof here for
completeness.

Lemma 6.4. Assume RH. Let w be a smooth function on R +  with w(x) =  1 if 0  x
1; and w(x) =  0 if x  >  2: Also we let L  >  0 be any real parameter. Then for Re (s) =
0, where 0 is a small positive real number, and 0  a  1 ,

1  Z 1  
(6.1) w ‘ s  a  w ‘ s  a d ‘  =  O     L 2   a+ 0 (1 +  jIm (s)j)     :

‘ = 1                                              0

Moreover,

(6.2)
‘ = 1  

w
 
‘  
‘
 1 

s 

Z

0

1  

w
 
‘  
‘
 1 

s d ‘  =  (1 s) +  O L      1  
(1 +  jIm (s)j):

Proof. Let wb(z) be the Mellin transform of w; dened by

wb(z) =  
1  

w(t)
tz 

dt:
0

By integration by parts as in Lemma 7.3 of [5], wb(z) can be analytically continued
to Re z >   1 except a simple pole at z =  0 with residue w(0) =  1. For (6.1), let
 >  1 a +   so we have

1  1 Z   z Z

‘ = 1  

w 
L  

‘ s  a =  
‘ = 1  

2i
 

( )  
wb(z) 

L
‘ s  a dz =  

2i
 

( )  
wb(z)Lz (z s +  a) dz:

Then we shift the contour to Re(z ) =  1  a + 0 , picking up the simple pole of (z  s + a) at
z =  1 +  s a: Thus

1  Z

‘ = 1  

w 
L  

‘ s  a =  wb(1 +  s a)L 1 + s  a +  
2i

 
( 1   a + 0 )  

wb(z)Lz (z s +  a) dz:



 

Z

L
1 1

1

X ‘ 1 1

4

‘ 1
1 s

1
L ‘ 2i

s;t

2

m mod t p r

+ 4

n mod t

t t
x  mod t x  mod t

P

S  =
x  mod t

1 a a K  e J pr
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From the denition of wb,

wb(1 +  s a)L 1 + s  a =  
1  

w
‘

‘ s  a d‘:
0

Since Re(z s +  a) =  2 when Re(z ) =  2 a +  0, and for any  >  0, under RH,

(6.3)                                                     (  +  it)  (jtj +  1)

uniformly for 2    1 1 (e.g. see [27]), we obtain (6.1).

For (6.2), let  >  0; we have
1  Z

(6.4)
‘ = 1  

w 
L ‘1  s  =  

2i
 

( )  
wb(z)Lz (z +  1 s) dz:

Shifting the contour to Re(z ) =   1 , we pass through poles at z =  s and z =  0. Thus
(6.4) is

Z 1  Z
(1 s) + w d ‘  + wb(z)Lz (z +  1 s) dz:

0                                                                       (  1=4)

Equation (6.2) follows from the bound in (6.3).

6.2. Proof of Lemma 6.1. We recall that

S1 =  K  
X X  

qst(t)2 

X *  X *  
V q s ( m ; n ; t )

X

;

X
a p a r  e 

p
qst

r 
J k  1 qst

p
pr :

n  mod t (pr;t)=1

We would like to apply Lemma 6.3 to the sum over s in S1 but some manipulation must be
done rst to t the assumptions. After applying Lemma 6.3, we shift the resulting contours
and use Lemma 6.4 to extract the main term and bound the error (see the proof of
Lemma 6.6).

First we see that

X *  X *  
Vqs(m; n; t) =

X * X *  
e

mx X *  
e 

n
x

 
+

 
qs

 
=  2(t)

X *
1

m mod t                                             
( x+ q s ; t )=1  

m mod t n  mod t                                                                  
( x+ q s ; t )=1

since the sums over m and n are Ramanujan sums, each equal to (t): Next we can
remove the coprimality condition (pr; t) =  1 by the same arguments as bounding Eof f  in
Lemma 5.1. Moreover, we can express the coprimality condition (x  +  qs; t) =  1 as

dj(x+q s;t)  (d). Thus up to O(q  1),

X X  22(t) X * X X p +  r 4 p  1

s;t
qst(t)2                                      

p;
r
           

 p r                     qst         k  1      qst
(x+ q s ; t )=1



d s;t x  mod td

B
@

C
A1 a a K  e= J pr

d pj(t;d)

1= (t) a a K  e J pr

d

S  = a a K  e J pr +  O q  1 :

2pj 1 +  r 4 p

p     ;r1 2 d

K  e J pj r jE : = a a :

E
1     2 p X ; r X

1 1p r p rj j j j
! !8 9

< =

1     2 p X ; r X

s <

+

s

                                              ! !
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X  (d) X X  22(td) 

0
X *

1  
X X p +  r

 
4 p

!  
d

qst(td)2                                                         
 p;

r
            

p r                   qstd       k  1      qstd
x  qs mod d

X  (d) X X  22(td) Y 1  1 X X p +  r 4 p
d

s;t
qst(td)2 p p;

r p r qstd k  1 qstd
(d;q)=1                   (s;d)=1

by Lemma 6.2. In the above, we have noted that the sum over x  mod td is zero if
(qs; d) =  1: Further, the presence of the factor 2(td) forces (t; d) =  1. Therefore

X (d) X X  22(t) X X p +  r
 

4 p   1

d2(d)
s;t

qst(t) p;
r
            

p r                   qstd       k  1      qstd
(d;q)=1 (st;d)=1

Now we will include terms of the form
j  

apj1 ar j

2

 K
 
e

qstd        
J k  1      qstd     

pj 1 r j 2

where maxfj1 ; j2g  2: The contribution of these terms is very small, and we include
them now for technical convenience.

Lemma 6.5. Let
X X X (d) X X  22(t) pj1  +  r j 2 4 p

high power
j j

p j 1       r j 2 d2(d)
s;t

qst(t) qstd k  1 qstd
1 2

maxfj1 ;j2 g2                        (d;q)=1                        (st;d)=1

Then
Ehigh power  q =4:

Proof. From the bound of J k  1 in Lemma 2.2 and the denition of ap in (3.1), we have
that

1 X X X X log p log r  X 1 X 1 X  1
high power q 

j  ; j  log X                1 = j 1                   1 = j 2  
pj1 =2 r j2 =2

d      
d2(d) 

t      
t(t) 

s
s

maxfj1 ;j2 g2

p   1=2 p  k  1

 m i n
: qstd 

2

;
qstd 

2

;

1 X X X X log p log r  X 1 X 1
q 

j  ; j  log X 1 = j 1 1 = j 2  
pj1 =2 r j2 =2

d      
d2(d) 

t
t(t)

maxfj1 ;j2 g2

X 1
p

p j 1 r j 2
 1=2 X 1

p
p j 1 r j 2

k  1

p  s qstd p  s qstd
p j 1 r j 2 p j 1 r j 2
qtd                                                                                                        qtd



1     2 p X ; r X

1     2 p X ; r X
q p r

p

q

d s;t
2

2 d) 2 (t)

m;n

m +  n 4

S  =
d hjd t

a a

X 1 m +  n 4 p

 X  X

 X

 X

S
 X

p

 X

X k

d

X1 1 qdh

qdh
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1 X X X X log p log r  X 1 X 1
q 

j  ; j  log X 1 = j 1 1 = j 2  
pj1 =2 r j2 =2

d      
d2(d) 

t
t(t)

maxfj1 ;j2 g2

1 X X X X log p log r
j1 =2      j2 =2

j  ; j  log X 1 = j 1 1 = j 2
maxfj1 ;j2 g2

X (log X ) 3  
 q =2  q =4

upon choosing small enough .

From the lemma above, we have

S1 =  
X  

d
(
(d) 

X X  

qst(t) 

X X
a m a n  K  e

 

qstd 
J k  1qstd

p
mn

 
+  O

 
q =4:

(d;q)=1 (st;d)=1

Next we remove the condition (s; d) =  1 by replacing it with 
P

h j ( s ; d )  (h). Thus,

2 X (d) X  (h) X  2(t) X X
1 q d2(d) h t(t) m;

n m n

(d;q)=1                 
              

(t;d)=1

 
s

s 
K

 
e

qtdhs
J k  1 qtdhs

mn +  O(q =4)

= :  St;big +  St;small +  O(q =4);

where St;big is the contribution from t  qdh , and the rest is from t <  qdh. Note that
Lemma 6.3 may only be applied to when t <  qdh .

Case 1: t  qdh . For this case, we apply Lemma 2.2 to bound J k  1. Thus

(6.5)

1 X 1 X  1 X  2(t) X X  (m)(n) X  1
p

mn k  1 t;big

q 
d      

d2(d) 
hjd 

h 
tq dh 

t(t) 
aX m; n b X

mn
s

s qtdhs

X k  X 1 X  1 X  2(t)
qk

d      
dk 2(d) 

hjd 
hk 

tqdh 

tk (t)

 
qk 

X  

dk 2(d) 
hjd 

hk X

k 

=  O(1):

When 0    1, St;small is empty as  X    1: Thus S1 =  St;big +  O
 

q =4, and so the above
suces for Lemma 6.1.



qtdh

hjd t < q dh
d ‘ = 1

1

S = w  w d ‘

X X
s

m ‘ n ‘

p
n

4 2 1

2 2

b b   
1 2

2                    2 
1 2

2 2

d hjd t < q dh

2 2 2 2 2 2 2 2

L L
2 2 2 2

1
( )

1
m n1 2+ s   + s1 2

4 2 1
1 1

b b               
1 2

2                    2 

 1 2
2 2

hjd t < q dh
d

w w w w1 1 1 1w w w w2 2 2 2

w1
0w 1 w 1 w2 1 2

1

X ‘ ‘
L L

0 w1
 

1             2

PA I R  C O R R E L AT I O N  O F  Z E R O S  O F   1 (q ) L -FUNC T I ONS 21

Case 2: X  >  qtdh. For this case, we apply Lemma 6.3 to the sum over s with L  =  X q
0 

,
for a small 0 >  0 to be specied later. Therefore, we have

42      X (d) X  (h) X  2 ( t )
(

X   
‘  

Z 1  
‘  

)  
t;small q

d2(d) h
 X       

t(t) L             0                 L

(6.6)
(d;q)=1

(t;d)=1 
! s !

m;
n ama

n

Jk  1      4 qtdh 
J k  1      4 qtdh 

:

Recall that an =  
(n)(n

=X
)
:  Next, we separate variables by introducing the Mellin

transforms for (x)  and J -Bessel functions in (2.5). Then we write for some small 1 >  0

Z Z Z Z  k  w  1   k  w  1

St;small =  
q (2i)4     

 

( 1  + 2 1 )  ( 1  + 2 1 )  (1 )       (1 )  
(s1)(s2)2 w1  w2  2 

 
 k + w

 
+ 1 k + w

 
+ 1

(4)w 1 + w 2 X s 1 + s 2         X (d) X (h) X 2(t)
q

w1 + w 2 d1+ w

1

 + w 2

 

2(d) h1+ w

1

 + w 2
 X       t1+ w

1

 + w 2

 
(t)

(d;q)=1
(
t;d

)=
1

     
X

w
 
‘  
‘

w 1  + w 2  
     

Z 1  

w
 
‘  
‘

w 1  + w 2  
d ‘     

 X X       (m)
w              1

(n)
w  

‘ = 1

0                                                                  
 m;n               2                     2             2                     2

 dw1 dw2 ds1 ds2

Z Z Z Z  k  w  1   k  w  1  =

q (2i)4     
 

( 2  + 2 1 )  ( 2  + 2 1 )  (1 )       (1 )  
(s1)(s2)2 w1  w2  2       k + w

 
+ 1 k + w

 
+ 1

(4)w 1 + w 2 X s 1 + s 2         X (d) X (h) X 2(t)
q 2 +  2 d1+ 2 +  2  2(d) h1+ 2 +  2  X       t1+  2 +  2  (t)

(d;q )=1                                      

       0             
(t;d)=1

 D  L ;  
2 

+  
2

     
2

 +  s1   
2

     
2

 +  s2   
2

dw1 dw2 ds1 ds2

where Re(s1 ) =  Re(s2) =  2 +  21, Re(w1) =  Re(w2) =  1, and 1
 Z 1

D (L; s)  = w ‘ s   w ‘ s  d‘:
‘ = 1                                         0

We move the contour in w1 to the right to Re(w1) =  61 and pick up a simple pole at
w1 =  2s1      1. The residue of the pole is  2 because           

 
2 +  s1   2        =   w

1
 (2s

1
 1) +



8 2

2

1

2 2

b b  
1 2

2                    2

 2 2

2
d hjd t < q dh

1 1 1w w w2 2 2

1 w 1 w2 2

1
4 2 1

q (2i) 4
2 2

b b1 2

1 2

1k + w  + 1 2k + w  + 1

hjd t < q dh
d

(d 1

w w w w1 1 1 1w w w w2 2 2 2

1
0w 1 1w w w2 1 2

1 1

Z Z
1 2

b b  
k  2s1 k  2s2

2 2

  

 1 2
2 2

d

(d)

hjd

2 h)  t)

t <  X
q dh

1 2
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O(1) when w1 is close to 2s1 1. Thus we obtain that

St;small =  C0 +  C1;

where
Z Z Z  k  2s   k  w  1

C0 : =  
q

1     
 
(2i)3     

 

( 1  + 2 1 )  ( 1  + 2 1 )  (1 )  
(s1)(s2)2 2s1  w2  1       k + 2 s 1  k + w 2 + 1

(4)2s1 +w2  1 X s 1 + s 2         X (d) X (h) X 2(t)
q s 1 + w 2                                                    d 2 + s 1 +  2 2(d)         h 2 + s 1 +  2                X       t 2 + s 1 +  2 (t)

(

d;q)=1
0

 
(t;d)=1

D  L; s1   
2

 +  
2        

 
    

 
2 

+  s2   
2         

 
dw2 ds1 ds2;

and

(6.7)
Z Z Z Z  

k  w  1
  

k  w  1

C  : = (s )(s )2 w1  w2  2 2 2

( 1  + 2 1 )  ( 1  + 2 1 )  (1 )       (61 ) 2 2

(4)w 1 + w 2 X s 1 + s 2         X (d)           X       (h)        X            2(t)
q 2 +  2 d1+ 2 +  2  2(d) h1+ 2 +  2  X       t1+  2 +  2  (t)

;q )=

       0             
(t;d)=1

 D  L ;  
2 

+  
2

     
2

 +  s1   
2

     
2

 +  s2   
2

dw1 dw2 ds1 ds2:

For C0, we move the contour integral in w2 to the right to Re(w2) =  61 and encounter
the pole at w2 =  2s2 1 with residue equal to  2. Thus

C0 =  M S 1  +  C2;

where

(6.8)

M S 1  :=
(2i)2 ( 2  + 2 1 )  ( 2  + 2 1 )  

4 
q

X s1 +s2

(s1 )(s2 ) k + 2 s
 

k + 2 s

 
X  

ds1 +s2 2 (d) 

X  

hs( +s 2        

X

      
ts 1 +s

(
(t)

D (L; s1 +  s2 1) ds1 ds2;
(d;q)=1

(t;d)=1



8 2

q
1

(2i) 3

Z

( 1 1) ( )

Z Z
b b  1 2

   

 1 2k + 2 s k + w  + 1

w 2

d hjd t < q dh

1 1 1w w w2 2 2

1 w 1 w2 2

q
1 (2i) 3 ( 1 1) ( )

b b
1 2

2                  2

  

 k + w  + 1 k + 2 s1 2

w 1

d hjd t < q dh

1 1 1w w w1 1 1

1 w 1 w1 1

4 2 1

2 2

Z Z Z Z
b b  1 2

2                    2

   

2 2

hjd t < q dh

w 1

d

w w w w w w w2 1 2 1 2 1 2

w1
0w 1 w 1 w2 1 2
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and
(6.9)

k  2s k  w  1

C2 : = 1 (s1)(s2)2 2s1  w2  1 2                 2
2

2 + 2 1 2 + 2 1 (61 ) 2 2

(4)2s1 +w2  1 X s 1 + s 2         X (d) X (h) X 2(t)
q s 1 +  2 d 2 + s 1 +  2  2(d) h 2 + s 1 +  2  X       t 2 + s 1 +  2  (t)

(

d;q

)=

1

0                                              
(t;d)=1

 D  L; s1   
2

 +  
2

     
2

 +  s2   
2

dw2 ds1 ds2:

Now we consider C1 in (6.7). We move contour integration in w2 to the right to
Re (w2) =  61, and we encounter the pole at w2 =  2s2   1 with residue equal to  2. Thus
we obtain that

C1 =  C3 +  C4;
where

C3 : =  
82 1

Z Z Z
(s1)(s2)2 w1  2s2  1 

k  w
 
 1 k  2s

2
2 + 2 1 2 + 2 1 (61 ) 2 2

(4)w1 +2s2  1 X s 1 + s 2         X (d) X (h) X 2(t)
q 2 + s 2 d 2 +  2 +s 2 2 (d) h 2 +  2 + s 2

 X       t 2 +  2 + s 2 (t)
(d;q )=1      

0
                                          

(t;d)=1

 D  L ;  
2

 +  
2 

+  s2      
2

 +  s1   
2

dw1 ds1 ds2;

and
(6.10)

k  w  1 k  w  1

C4 : =  
q (2i)4 ( 1  + 2 1 )  ( 1  + 2 1 )  (61 )      (61 ) 

(s1)(s2)2 w1  w2  2 
k + w 1 + 1 k + w 2 + 1

(4)w 1 + w 2 X s 1 + s 2         X (d) X (h) X 2(t)
q 2 +  2 d1+ 2 +  2  2(d) h1+ 2 +  2  X       t1+  2 +  2  (t)

(d;q )=1                                      

       0             
(t;d)=1

 D  L ;  
2 

+  
2

     
2

 +  s1   
2

     
2

 +  s2   
2

dw1 dw2 ds1 ds2:

Therefore

(6.11) St;small =  M S 1  +  C2 +  C3 +  C4:

To  prove Lemma 6.1 for X  =  q, where 1 <    2  ; it suces to show the following lemma.



1 q b

b b  
k + 2 s 1 k + 2 s 2

d

1
2

4 X
(2i) q

X
2

X

hjd

(h) X

t < q dh

2

2 2 (

X q 4

i
2 i
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Lemma 6.6. Let X  =  q, where 1 <    2 : With notation as above, we have
Z

(6.12) M S 1  =  
2 

log 
X R  

j(it)j2 dt +  O(1);

(6.13) C2; C3  q 1=4;

and

(6.14) C4  q 1=4;

where the implied constants depend on  and k.

The lemma above along with (6.5) and (6.11) completes the proof of Lemma 6.1.

Proof of (6.12) {  the main term M S 1 .  Now we focus on calculating M S 1  in (6.8). We
move the line integration over si to Re(si ) =  1 so

Z Z 2 s 1 + s 2
 k  2s1 

  k  2s2

M S 1  =                                                         (s1)(s2)          2 2

(1 )       (1 ) 2 2

ds1 +
s (d)

(d) hs 1 +s 2
 X       

ts 1 +s

(t) 
t)

D (L; s1 +  s2 1) ds1 ds2

(d;q)=1                                                                 
(t;d)=1

From (6.2) in Lemma 6.4,

D (L; s1  +  s2 1) =  (1 s1 s2) +  O
0      1

!

qtdh        
 
(1 +  jIm(s1 +  s2)j)     

 :

so

M S 1  =  M 1  +  E S 1;

where M 1  is the contribution from (1   s1   s2) and E S 1 is the contribution of the
rest.

First we consider E S 1. By Stirling’s formula and writing si =  1 +  iti , we have
 k  2s

  k + 2 s
   (jtij +  1) 21 : 2



X
q

b b

d hjd  X

XX X 2 (t)1 1 X q 4

0 X 1 XX 1 1 X4 4

Z Z
1 2

b b

d

(d)

hjd

(h) X

t q dh

 
k  2s1 k  2s2

2 2

  

 1 2
2 2

2 (t)

 X

b

1 4 X b b  
 2 2

   

 1 2
2 2

d

2

hjd t
+ s 2 s + s +2 1 2 2h (

t

2 t)
+ 2

p

1 1

Y 1
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Thus
(6.15)

21 Z 1  Z 1  

E S 1 (1 +  it1)(1 +  it2)(1 +  jt1j) 21 (1 +  jt2j) 21

 1        1
0      1

d21 2(d) h21 t21 (t) qtdh
(1 +  jt1 +  t2j) dt1 dt2

21     1

t< q d h

1  21

q              
q  =4     

d      
d21 2(d) 

hjd 
h21 

(dh) 4         

qdh

 q 0=4:
Next we consider M1 : First we add back terms corresponding to large t and note that

their contribution is small

E M 1  : =  
(2i)2

(1 )       (1 )

4 
q

X s1 +s2

(s1 )(s2 ) k + 2 s
 

k + 2 s

 
X  

ds1 +s2 2 (d) 

X  

hs 1 +s 2
 X       

ts1 +s2 (t)
(1 s1 s2) ds1 ds2

(d;q)=1                                                                 
(
t;d

)=
1

X 21 X 1 X  1 X 2(t) q

d      
d21 2(d) 

hjd 
h21 

t> q d h  

t21 (t)

 1

since  has a rapid decay on vertical lines and by the bound (6.3) for . Therefore
Z Z 2 s 1 + s 2 k  2s1 k  2s2

M 1  =  
(2i)2     

 

(1 )       (1 )              q                
 
(s1)(s2) k + 2 s

 
k + 2 s

 
X  

ds1 

(d)
(d) 

X  (h) X  

ts1s

(t
)
 
t

) (1 s1 s2) ds1 ds2 +  O(1):

(d;q)=1 (t;d)=1

On the other hand, by multiplicativity the sum over t is
X  

ts1s

(
(t) 

=  (1 +  s1 +  s2)G(s1 +  s2)Bd(s1 +  s2);

(t;d)=1

where
G(z ) : =  

Y
1  +  

p(p 1)
pz   

p(p 1)p2z

1

Bd(z) : =  
pjd

1 +  
(p 1)pz :



1 2
b b

d

(d)

hjd

(h) 1 s + k    s2
k

  

k k
2 2

2

4

1
1

4 X b b

d

(d)

hjd

(h)
   

2 2

1  s + k
2  s + k

2 2

M 2 1

q

X 1 b b
X

d

(d) X

hjd

1 b
k
2

 

1  s + 2

d b

d

 d)
2

hjd

(h)

2

2   + k
2

k

1

A

X 1 b b

X 1
Z 1

b b

X 1 1
b
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Note that G(z ) is absolutely convergent when Re(z ) >   1=2, and G(0) =  1: Therefore
M 1  +  O(1) is

(2i)2 

Z

(1 ) 

Z

(1 )

4 
q

X
 

s1 +s2

(s1 )(s2 )(1 s1 s2)(1 +  s1 +  s2)G(s1 +  s2)

 
X  

ds1 +s2 2 (d) 

X  

hs 1 +s 2  
Bd(s1 +  s2)

 
 

 
s1 +  

2

 
 
s2 +

+  2 ds2 ds1

(d;q)=1

Recall that X  =  q, where 1 <    2   : We shift the contour of s to the left to Re(s2 )
=   1 , picking up the contribution of the double poles at s2 =   s1 from (1 s1

s2)(1 +  s1 +  s2). Thus we write that M 1  +  O(1) is
Z Z 2 s 1 + s 2

R M  +  
(2i)2  

(1 )       (      4 ) q
(s1)(s2)(1 s1 s2)(1 +  s1 +  s2)G(s1 +  s2)

X  

ds1 +s2 2 (d) 

X  

hs 1 +s 2  
Bd(s1 +  s2)

   s1 +  k  
 

 s2 +  k

ds2 ds1

(d;q)=1

where R denotes the residue at s =   s . We note that the contour integral above is
X      

 1=4+1 
 1. Further, write

Z
R M  =  log

q 2i (1 )  
(s1)( s1 )G(0) 2(d)

(h)Bd (0) ds1 +  E R

(d;q)=1

where

E R  =  
2i 

Z

(1 ) 
(s1)

   s1 +
k  

ds2 
(42 )s1 +s2 (s2)(s1 +  s2)2(1 s1 s2)(1 +  s1 +  s2)

G(s1 +  s2) 
X  

ds1 +
s (

2 (d) 

X  

hs 1 +s 2  
Bd(s1 +  s2) 

 
 
ss

 
+  2

C
s 2 =  s1

ds1 (d;q)=1

=  O(1):

Since G(0) =  1 and 
P

h j d  (h) =  0 unless d =  1, we obtain that
Z

R M  =  log
 
q

 
2i

 
(1 )  

(s1)( s1) ds1 +  O(1) =  log
 
q

 
2

Z 1  
(it)( it) dt +  O(1)

=  log
q 2  1  

j(it)j2 dt +  O(1):



1 q b

2 2

1 w2

0

1
q

1 3

Z Z Z
b b

d hjd t <
2 2 2

1X 1 q
1

1

1
q

Z Z Z Z
b b

d hjd  X

1

12 11 X q
2

1
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Thus Z
(6.16) M 1  =  

2 
log 

X R  
j(it)j2 dt +  O(1):

Combining (6.15) and (6.16) gives (6.12) in Lemma 6.6.

Proof of (6.13) {  error terms C2; C3. Due to symmetry of C2 and C3, it is sucient to
prove the bound for C2. Recall that C2 is dened in (6.9).

First, we move the lines of integration in s1 and s2 to Re(s1 ) =  1 and Re(s2 ) =  41,
respectively. Under RH, no poles are encountered when moving the lines of integration.
We write Im (si ) =  ti and Im (w2) =  y2. By (6.1) in Lemma 6.4 for a =  1 and s =  s1 + w2

we have that
(6.17) D  L; s1   

2
 +  

2
 L4 1 (1 +  jt1j +  jy2j)

Under RH, we also have the bound

(6.18)      
 
(  +  it)  log2(jtj +  2);

uniformly when 2 +  1    4 (e.g. see [8]), and so we derive that
1 1 1

C2 1 j(1 +  it1)(41 +  it2)j(1 +  jt1j) 21 (1 +  jy2j) 1 61 2          1
1        1

X 5 1  X 1 X 1 X 2(t) X q 0 41

q41 d
1 +41 2 (d) h

1 + 4 1
 X   t

1 +4 1 (t) qtdh
q dh

 (1 +  jt1j +  jy2j) log2(jt2j +  jy2j +  2) dy2 dt1 dt2

9 40

q 2 + 8 1
 q 4 ;

upon choosing small enough 1; 0:

Proof of (6.14) {  error term C4. For C4 as in (6.10), we move the integral in si to
Re(si ) =  41. We encounter no poles under RH. We use the bounds in (6.1) in Lemma 6.4
for a =  0 and (6.18). Thus we obtain that

1 1 1 1

C4 j(41 +  it1)(41 +  it2)j(1 +  jy1j) 1 61 (1 +  jy2j) 1 61

 1        1        1        1

X 8 1  X 1 X  (h) X 2(t) X q 0 2 + 6 1

q61 d1+61 2(d) h1+61 t1+61 (t) qtdh
t< q d h

 (1 +  jy1j +  jy2j) log2(jt1j +  jy1j +  2) log2(jt2j +  jy2j +  2) dy1 dy2 dt1 dt2
1 +14 0 (1=2+6 )

 
q q

1 +121
 q 4

upon choosing small enough 1 and 0.



qst(t)
n  mod t

X X + 4

qst(t)
n  mod t

X X + 4

q S

q S
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7. E r r o r  T e r m  S2

Let us recall the denition of S2:

S2 =  K  
X 2 

2    
 
X *  

Vqs(m; n; t) 
X X  

0(m)(n)
s;t m mod t  mod t

0 mod t
= 0 ; 0 = 0

p;r

0(p)(r)apar e 
p

qst
r 

J k  1 qst
p

pr :

In what follows we will bound S2 by q =4. Note that this is the same  that was xed in
Section 1.1 so that jj  2 .

Lemma 7.1. With notation as above, we have

S2  q =4:

We will consider sums over s and t in dyadic intervals of the form T  t  2T and S
s  2S denoted by t  T and s  S  respectively. Thus in order to prove Lemma 7.1, it is
sucient to show that

(7.1) D(S; T )  q =2;

where

D(S; T ) : =  
X X 1

2 

X *  X*
V q s (m; n; t)  

X X  
0(m)(n)

sS; tT m mod t  mod t
0 mod t

= 0 ; 0 = 0

p;r

0(p)(r)apar e 
p

qst
r 

J k  1 qst
p

pr :

We will apply the power series expansion for J -Bessel function when T is large, but
when T is small, we will use an argument of Deshouillers and Iwaniec [9] to separate
variables in the J -Bessel function. Thus the claimed bound for D(S; T ) follows from
the following lemmas.

Lemma 7.2. Let T  30bX . Then

D(S; T )  q =2:

Lemma 7.3. Let T  30bX . Then

D(S; T )  q =2:



p

1
a :

J
p

 p p

 
= Re W e  + :

y X 2y X 1

y X 1

Z
y X 2y X

1 y X

ic X

v 2 ic X

X
qST

 X

 2 qst(t)

p
p p

X
n mod t 0

X X
0 p +  r X
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7.1. Proof of Lemma 7.2 {  small T . First note that we have a X  <  p; r  bX so the sum
over p and r  remains unchanged if a smooth weight ( pr =X ) is attached to each term
provided that

(

(x)  =
0

if x  2  (a; b]
if x  2= ( 2 ; 2b)

From Lemma 2.2,

4ppr qst 4ppr 2ppr k 1
k  1 qst                   2 pr                    qst                qst 4 8

Now we write

(7.2)

and

(7.3)

where

(y)W
4

qst 
e
 

qst 

 
=  

2i 

Z

(1) 
M1 (s) y  s  ds

Z
(y)e 

qst
=  

2i
 

(1) 
M2 (s) y  s  ds

M 1 (1  +  iv) =  
Z 0

1  

(y)W
4

qst 
e
 

qst 
yiv dy; M 2 (1  +

iv) =  
0

(y)e 
qst

yiv dy:

Moreover,

(7.4) M i ( 1  +  iv)  

(  
(1 +  jvj) 1=2 if jvj  qst if

jvj >  qst

for some absolute constant ci. The bound in (7.4) follows by the same arguments as in
[9]. From (7.4), for s  S  and t  T , we have

Z 1=2

(7.5)                                                    jMi (z )j  djzj
(1)

since q S
T
  1 for this case.

Now Lemma 2.2 and (7.2) give

D(S; T ) =  
1 

  
X X 1

2   
qst X *  X *  

Vqs(m; n; t) 
X X  

0(m)(n) s S

tT                                               m mod t  mod t
 mod t

2 1=4

= 0 ; 0 = 0  

p;r

 (p)(r)apar e      
qst           p

r



pr  k1 1

qst(t) 2

p
p

X
n mod t 0

X X
0 p +  r X

sS;tT

1
p
p

X

Z

x  mod t

 

t t

X qst

X X1 S T 1 1

x  mod t x  mod t

X

x  mod t

X X X

t t

2 2

X
x  mod t

X X X

t t

2 2
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" ( Z p  z
)  #

Re       
2i (1) 

M 1 (z )        
X            

dz     e      
4 

+  
8      

 
:

To  prove Lemma 7.2, it suces to bound

D1 (S; T ) : =  
X X 1

  
qst 

Z
M 1 ( z )

X *  X *  
Vqs(m; n; t) 

X X  
0(m)(n) s S

tT                                               (1)                          m mod t  mod t
 mod t

= 0 ; 0 = 0

2 1=4+z=2

p;r

 (p)(r)apar e qst p
r

dz

=  
X X  

qst(t)2   
qst 

(1) 
M 1 (z )

X
T1(x; z)T2(x; z) dz

(x(x+ q s ) ; t ) = 1

where

T1(x; z) : =  
X *      

e
mx

s1(m);
m mod t

T2(x; z) : =  
X *  

e
 n

x

 
+

 
qs

s1(n);

n  mod t

and

(7.6) s1(m) =  
X  

( m )
X

( p ) a p  

 p  1=4 

z

=2 
e
 

p 
:

 mod t p
= 0

By setting z =  1 +  iv and Cauchy-Schwarz’s inequality, we obtain that

(7.7) D1 (S; T )  
q

S

r
q

X

 

s S  tT 
t(t)2 

Z

 1  
jM1 (1 +  iv )j (S1 S2 )1 = 2  dv;

where

S 1  : =
X

jT1(x; 1 +  iv)j2; and S 2  : =
X

jT2(x; 1 +  iv)j2:

(x (x+ q s ) ; t ) = 1 (x (x+ q s ) ; t ) = 1

Now we bound S i .  By a change of variables and completing the sum over x,

S 1  =
*     

e 
mx 

s1(m) 
*     

e 
xm 

s1(m) ;

(x (x+ q s ) ; t ) = 1  
m mod t x  mod t m mod t

and

S 2  =
        * 

e 
 nx +  qs 

s1(n)         * 
e 

xn 
s1(n) :

(x (x+ q s ) ; t ) = 1  
n  mod t x  mod t n  mod t



t
1

X qst

=  t(t)

= 0

e ;

p

Z
M  (z)e = dz

Z X p) log(p)X
p

p

s
X

X

r
S T X X1 X

1

r s

1
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Opening up the square and applying orthogonality, we obtain that
X   X *      

e
xm

s1(m)
2 

=  t 
X *  

js1(m)j2: 
x  mod

t m mod t m mod t

Now from the denition of s (m), we open up the square and write z =  1 +  iv to get
2

S i   t 
X *   

X  
( m )

X
( p ) a p  

 p  1=4 1=2 iv=2 
e
 

p

(7.8)
m mod t mod t p

X  X  (p) log(p) p  p 
2

 mod t
 

p
p1=2+iv=2 qst 1    

 
X

= 0

by the denition of ap.
In the above, we have written 1(y) =  (y)y 3=4 so that 1 is a bounded real smooth

function supported in (a; b). Since qst  1, we do not absorb the exponential factor into
the smooth function. Instead, we will use Mellin transform in (7.3). Let 2(y) =  y 1

1(y).
Again 2 is a smooth function with compact support in (a; b). Also note that the sum over p
does not change by introducing the smooth weight (p=X ) attached to each term.
Therefore, using (7.3) the sum over p in (7.8) is

X  (p) log(p) p  p 1 X  (p) log(p)  p  z  p  
p

p1=2+iv=2             
 qst       1    

 
X           2i (1)          

2              
p

p1=2+iv=2 X            1    
 
X

 

Z
R 

jM2 (1 +  iw)j 

p      

(  
1=2+iv=2+iw

iw 

2 X
  dw jM2 (1

+  iw)j log2(q +  jv=2 +  wj) dw
R

(7.9)
qST 

log2(q +  jvj)

by applying Lemma 2.3 and the bound (7.5). Hence from (7.8), we have

S i   t2(t)
q

S
T 

log4(q +  jvj):

Then from the above bound, (7.7) and applying (7.5),

D1 (S; T )  
q S

q
X

 

sS

 tT 

Z

 

1  

jM1 (1 +  iv)j 
qST 

log4(q +  jvj) dv

1 q X qST X  X X

q S (qST )        X         qST 
s S  tT



q X

4 p 1

X X

qst(t)

X  X

n mod t

X X

0

p r ‘ = 0

1+ ( 1)‘
p

 p

X
1 2(W W ) ;

x  mod t x  mod t

 

t t

X X p p
qst bX

p  
p X

y X y

‘
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q2

S
 

 q   q =2

upon choosing small enough , which gives us the desired bound for D(S; T ). 
7.2. Proof of Lemma 7.3 {  big T . Note that qst pr  2 . We now use the power
series expansion for the J -Bessel function (2.4) to separate variables. To  be precise, we
have

D(S; T ) =
1

2

* * 
Vqs(m; n; t) 0(m)(n) s S

tT                                m mod t                                            mod t
 mod t

= 0 ; 0 = 0

 
X

;

X
0 ( p ) ( r ) a p a r  e 

p
qst

r X  

‘ ! ( ‘  +  k 1)!
2 

qst 
r  2 ‘ + k  1

1 1 1 2bX 2
‘+
k  1 X X 1 1=2

q S 
‘ = 0  

‘ ! ( ‘  +  k      1)!      qST                  
s S  tT 

t(t)2

where

W1;‘ : =
X

jT3(x; z)j2; and W2;‘ : =
X

jT4(x; z)j2:

(x (x+ q s ) ; t ) = 1

Moreover,

T3(x; z; ‘) : =  
X *  

e
mx

s2;‘(m);
m mod t

(x (x+ q s ) ; t ) = 1

T4(x; z; ‘) : =  
X *  

e
 n

x

 
+

 
qs

s2;‘(n);

n  mod t

and
r 2 ‘ + k  1

(7.10)                  s2;‘(m) =              (m)        (p)ap e                                          :
 mod t p

= 0

By the same arguments as in the proof of Lemma 7.2, we derive that

Wi; ‘   t(t)
X  X  (p) log p

‘

 p 
2

;
 (mod t) p

= 0

where r  2 ‘ + k  1 
‘ (y )

=  (y)e 
qst            

 b
:

Note that ‘  is also a smooth function which is compactly supported in (a; b) with
0 <  a <  b.

By Lemma 2.3, the sum over p is  log2 q maxaxb j 
(3) (x)j, so we have Wi; ‘  k

t(t)2 (log q)2 ‘3 2:



q X ‘ 2bX

X

X q

q S T 2

X X 4

n mod t

*X  X X X

=

r

+ 4

2

X X 1

n mod t

*X  X X X  

r

+ 4

(t) X * X *X X X  

r

r

X p 4 p
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Hence
1 6 2 ‘ + k  1

D(S; T )  
q S 

‘ = 0  

‘
! ( ‘  +

 
k      1)!     

 
qST                

 
S T

X q      1 ‘6 2bX 2
‘+
k  2

q2S 
‘ = 0  

‘ ! ( ‘  +  k 1)! qST

q2

S
 

 q =2

since 2 b X  <  1 so the sum over ‘  is bounded by an absolute constant.

8. E r r o r  t e r m  S3

We recall that

S3 =  K
s;t

qst(t)2
m mod t 

* 
Vqs(m; n; t)

(p;t)=1  mod t 

(n)

X
( r ) a p a r  epqstr

Jk 1 qst p
pr:

0

We will exploit a combination of arguments from the treatment of S1 and S2 to bound
S3 and prove the following.

Lemma 8.1. With notations as above,

S3  q =8:

Again note that this is the same  that was xed in Section 1.1 so that jj  2   .
Similar to bounding S2; it is enough to show

(8.1) D2 (S; T )  q =4

where D  (S; T ) is

sS;tT 
qst(t)2

m mod t 

* 
Vqs(m; n; t)

(p;t)=1  mod t 

( n )
X

( r ) a p a r  epqstr
Jk 1 qst

p
pr: = 0

Moreover, after opening Vqs(m; n; t) the sum over m is a Ramanujan sum, which is equal
to (t). Therefore,

D2 (S; T ) =  
sS;tT 

qst(t)2 
x  (mod t) n  mod t 

e 
 n(

x
t
+

 
q s )

!

 mod t 

( n )
X

( r ) a r  eqst

 
(x+ q s ; t )=1

= 0

 (
p;t)=1 

ap e 
qst 

J k  1 qst
p

r
 :



4 p

q S

q S

D  (S; T ) =  p M  (z) e

!

XX Xr pX X

1
r

X XS T 1 1

x  mod t

1

x  mod t qst X

2

q X

dwdv  q ;
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We will then separate p and r  in the J -Bessel function J k  1     qst pr . Similar to Section
7, we do it in two ways depending on the size of T . The bound of D2 (S; T ) will follow
from the followings lemmas.

Lemma 8.2. Let T  30bX . Then

D2 (S; T )  q =4:

Lemma 8.3. Let T  30bX . Then

D2 (S; T )  q =4:

8.1. Proof of Lemma 8.2 {  small T . We will apply the Mellin transform in equation
(7.2), and by similar reasoning as in Section 7.1, it is sucient to bound

X X 1
p

qst 
Z X * X *  n(x +  qs)

3
s S  tT 

qst(t)2         X      (1)          
1          

 
x
 (mod t) n  mod t                         

t
(x+ q s ; t )=1

1=4+z=2 1=4+z=2

 
 mod t 

(n) 
r      

(r )ar e 
qst r

(p;t)=1 

ap e 
qst p

dz

= 0

By Cauchy-Schwarz’s inequality, we have

(8.2) D3 (S; T )  
q S

q
X

 

sS

 tT 
t(t)2 

Z

 1  
jM1 (1 +  iv)j (U1U2)1=2 dv;

where

U1  : =
X

 
X *  

e

(x (x+ q s ) ; t ) = 1  
n  mod t

 n(x
t
+

 
qs)

!

s1 (n)
2

for s (n) dened in (7.6), and

(8.3) U2  : =
X  X  

ap e     
 
p           p  3=4 iv=2 

:

(x (x+ q s ) ; t ) = 1  
(p;t)=1

By the same argument as bounding S 2  in Section 7.1,

(8.4) U1   t2(t)
q

S
T 

:

For U2, we need a somewhat dierent treatment. For clarity, we rst prove the
following technical lemma.

Lemma 8.4.

(8.5)
Z Z 

jM1 (1 +  iv )M2 (1 +  iw)j
R       

R (1 +  jv=2 +  wj)B



 X  X

 X  v

Z Z
dwdv

Z Z

 X   X

1

 X   X

1

X

a e

X

p

log p p

X

!

 X

x  mod t

p
X

!

X
!

Z
X
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for M i  satisfying (7.4) and any B   2.

Proof. By (7.4), we note that the contribution of the ranges jvj >  c1 qst or jwj >  c2 qst is
O(1). Hence we will assume that jvj; jwj  qst . Further, we write u =  2 +  w, so that the left
side of (8.5) is

jM1 (1 +  iv )M2 (1 +  iw)j

R       
R (1 +  jv=2 +  wj)B

 

Z
jwjqst Z

jvjqst 
(1 +  jvj)1=2(1 +  jwj)1=2(1 +  jv=2 +  wj)B 

dvdw  
jwjqst

jujqst 
(1 +  2ju wj)1=2(1 +  jwj)1=2(1 +  juj)B 

dudw

(8.6)  log 
qst

;

where the last line follows by considering the cases ju      wj >  jwj=2 and ju      wj  jwj=2
separately.

Similarly to (7.9), we write the inner sum of U2  as

 X            p  p  3=4 iv=2
 (

p;t)=1     
p

qst        X
Z   

R

jM2 (1 +  iw)j        
p1=2+iv=2+iw

 
2     X  

dw

Z p

 
R  

jM2 (1 +  iw)j log2(q +  jv=2 +  wj) +  
(1 +  jv=2 +

 
wj

)
20 dw

q
by Lemma 2.3. The contribution from the term log2(q+jv=2+wj) is        q S

T
 log2(q+jvj) as

in (7.9). The bound for this portion then proceeds similarly as when bounding D1.
It follows that

U2  

X Z

R 
jM2 (1 +  iw)j

(1 +  jv=2

 

+  wj)20 
dw 

2

(x (x+ q s ) ; t ) = 1

Z p  2

 t
R  

jM2 (1 +  iw)j
(1 +

 
jv=2 

+
 wj)20

 dw

and it remains to bound the contribution of
p

R  
jM2 (1 +  iw)j

(1 +  jv=2 +  wj)20 
dw

to D3 (S; T ).



p
D  (S; T ) dwdv

p

q

s S  tT

1

n mod

X *
!

mod r

r

a e
1 p

1 1X X X2bX 1

x  mod t

 

t

x  mod t p

 p eV : = :

 p
p

X X Xq ‘ 2bX 1 p p
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Putting this into (8.3) and combining with (8.4) and (8.2) gives

X q  X X  1 
Z Z 

jM1 (1 +  iv )M2 (1 +  iw)j
3 q S

s S  tT 
(t) R       

R (1 +  jv=2 +  wj)20

X q

 q =2+ by

Lemma 8.4.

8.2. Proof of Lemma 8.3 {  big T . Similar to Section 7.2, we will use the power series
expansion for the J -Bessel function (2.4) to separate variables p; r. This gives us

D2 (S; T ) =  
X X  

qst(t)2     
 

x  (mod t)     

X *

t  

e 
 n(

x t
+ qs) X  

t 

( n )
X

( r ) a r  eqst
(x+ q s ; t )=1 = 0

X p X ( 1) ‘ 2 pr 2
‘+
k  1

(
p;t)=1     

p         
 
qst     

‘ = 0  
‘ ! ( ‘  +  k      1)!        qst

1 2 ‘ + k  1

 
q S 

‘ = 0  
‘ ! ( ‘  +  k 1)! qST

s S  tT 
t(t)2 

(V1;
‘

V2;‘)1=2;

where

V1;‘ : =
X  X *  

e
 nx

 
+

 
qs

s2;‘(n)
2

(x (x+ q s ) ; t ) = 1  
n  mod t

for s2;‘(n) dened in (7.10), and

X X  log p 
 

p 
r  

p
 2 ‘ + k 1      p 

2 2;‘ p
qst bX X

(x(x+ q s ) ; t ) = 1

By the same arguments as in Section 7.2, we have

V1;‘  t2(t)((log q)2 ‘3)2:

For V2;‘, we bound the sum over p by
X  log p 

 
p

X
p b X

upon using the prime number theorem. Therefore

V2;‘  (t)X :

Hence
1 3 2 ‘ + k  1

D2 (S; T )  
q S 

‘ = 0  
‘ ! ( ‘  +  k 1)! qST

s S  tT 
t(t)2

X t(t)



1

 q

=

8
 1 q R b

p              p              p

M : = p ;

2 X X h q

2
b

                 

1 q og b
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p X

q  X ‘3 2bX 2 ‘ + k  1
 =4

q
‘ = 0  

‘ ! ( ‘  +  k      1)!      qST

as desired.

9. Conclusion f o r  S N

From Section 5, we have that

S N  =  S1 +  S2 +  S3 +  O(q =2)
where S1 =  M S 1  + O(q  =4) from Section 6, S2  q =4 from Section 7, and S3  q =8 from
Section 8. Thus

S N  =  M S 1  +  O(1)

<  2 log X R  j(it)j2 dt +  O(1)

:                           O(1)

which concludes the proof of Proposition 1.2.

if 1 <    2 

if 0    1:

10. P r o o f  o f  Theorem 1.1

The proof follows similarly to that of Theorem 2 in Section 4 of [4].
As mentioned earlier, F(q ) is an even function in . So we prove it for   0: By the

Cauchy-Schwarz inequality and Lemma 2.5,

F(q ) =  M1 +  M2 +  M3 +  O( M1M2) +  O( M1M3) +  O( M2M3);

where
2 X X h X  (n)cf (n)(n=X )

2
1 N(q)(q)  

 mod q f 2 H
 

n
n  (

1 ) = (  1)k

M2 : =  
N(q)(q)  

 mod q f 2 H

( X  1) log 
42     

2 
(  1 ) = (

1)k

and

M3 =  O X  2 log2 jkj
lo

g
 q 

Z 
j(it)j2 dt

 1
!  

R

By Proposition 1.2,
M1  f ( )

for 0    2 : Also, by Lemma 2.4,

M2  N( q )
(X  1) log

42 

2 
 (q  jj)2(log q)2 l

2
q 

Z

R 
j(it)j2 dt 

 1

:

Finally

M3 +  O(
p

M1 M2 ) +  O(
p

M1 M3 ) +  O(
p

M2 M3 )



p  

1

R

b

p
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=  O (q jj ) f () log q +  O (q jj )q  jj log jkj :

Therefore we have
Z  1

!

F(q ) =  (1 +  o(1)) f ( )  +  (q jj )2 log q 
2

j(it)j2 dt

+  O (q jj ) f () log q +  (q jj )q  jj log jkj :
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