PAIR CORRELATION OF ZEROS OF 4(q) L-FUNCTIONS
VORRAPAN CHANDEE, KIM KLINGER-LOGAN, AND XIANNAN LI

Abstract. We study the analogue of the Montgomery’s pair correlation function
F () for a family of 1(q) L-functions. Assuming the Generalized Riemann Hypoth-esis,
we evaluate this analogous pair correlation function in the range jj < 2; where the o-
diagonal terms also contribute to the main term. As applications, we obtain that more
than 93.5% of the low-lying zeros of 1(q) L-functions are simple, and we achieve upper
and lower bounds for the number of pairs of zeros which are closer than times the
average spacing apart.

1. Introduction

1.1. Background and main results. In this paper, we examine the pair correlation
function of a family of L-functions attached to automorphic forms on GL(2). In the
context of the Riemann zeta function (s), Montgomery [19] introduced the function

2 X .
F)i= ——— T dw(® )
TlogT 0<0T

where +i and %i° are nontrivial zeros of , isreal, T 2 and w(u) = 4=(4+u?).

Assuming RH, he showed that -
s !

tortoeT-

(1.1) F()= T ZlogT + jj 1+ O
log T

uniformly for 0 jj 1. Understanding F () for wider ranges of is a deep and dicult
problem. In this direction, Montgomery conjectured that F() = 1+ o(1) asT ! 1
uniformly in bounded intervals 1 jj b< 1 for any constant b.

The function F () is closely related to the distribution of the dierences |° j. For
instance, understanding F () in the range jj 1 quickly leads to understanding of (1.2)
X X log T
oo o,
0<;0T 2

for Schwartz class functions f with the Fourier transform f supported on ( 1;1). In-
deed, understanding the quantity in (1.2) quickly reduces to understanding F () by
writing f as an inverse transform of its Fourier transform f% Note that the restriction
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on the support of f* is the same as on the range of in (1.1). Further, (1.2) is visibly
related to the quantity

X
(1.3) N(T;) := 1;
0<;°T 0<0
log T 2
which gives a count of those pairs ;% which are closer than times the average spacing
apart.

Montgomery’s work suggested zeros of the Riemann zeta function are vertically dis-
tributed like the eigenvalues of a random unitary matrix, and this has led to signicant
further work. Notably, the quantities introduced above are also intimately connected to
other deep arithmetic questions.

For instance, understanding these pair correlation functions is related to the existence
of Siegel zeros [7], the distribution of primes in short intervals ([10, 11, 12]), as well as
to the Simple Zero conjecture. Indeed, Montgomery used (1.1) to show that at least
2/3 of the zeros of the Riemann zeta function are simple.

In all these applications, it is of great interest to extend our understanding of F () to
wider ranges of , or equivalently, understand (1.2) for test functions f with f* having
larger support. In the context of large families of Dirichlet L-functions, ®zlek [24, 25]
and Chandee, Lee, Liu and Radziwill [4] extended the range of .

In particular, ®zlek’s studied the pair correlation of low lying zeros of Dirichlet L-
functioins L(s; ) on average over mod q for Q g 2Q. More recently, Chandee, Lee, Liu
and Radziwill [4] were able to improve upon Ozlek’s results by averaging over primitive
characters. This yielded superior results since it avoided the over-counting inherent in
Ozlek’s work. In these two works, it is apparent that the larger size of the family,
compared to the conductor, yields superior ranges of . As a consequence of their work,
Chandee, Lee, Liu and Radziwill [4] improve upon Ozlek’s work to get that 91% of the
nontrivial zeros of all primitive Dirichlet L-functions are simple assuming GRH. This
was later improved by Sono [26] to over 93.22% and by Chirre, Gonalves and de Laat [6]
to over 93:5%.

In this paper, we consider a large family of GL(2) L-functions. To be precise, let k
and g be positive integers, and Sx( o(q); ) be the space of cusp forms of weight k 3
for the group (q) and the nebentypus character (mod q), where as usual,

o(q) = ? 5’ ad bc=1; ¢ 0(modq)

Let S, ( ,(q)) be the space of holomorphic cusp forms for the group

1(q) = 2 5 ad bc=1; c 0(mod q); a d 1 (modq)
Note that M

Sk( 1(a)) = Sk( ola);):
(mod q)
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Let H Sk( o(q);) be an orthogonal basis of Sx( o(q);) consisting of Hecke cusp
forms, normalized so that the rst Fourier coecient is 1. For each f 2 H, welet L(f; s) be
the L-function associated to f, dened for Re (s) > 1 as

X Y 1
L(s; f) = fn) T «lp), (p)
s S 2s
(1.4) N p o )
Y 1 1
= AL AL ’_
p* ps

where fs(n)g are the Hecke eigenvalues of f. When f is a newform, L(s;f) can
analytically continued to the entire complex plain and satises the functional equation

(1.5) 2t sif=i . sif

where the completed L-function (s; f) is dened by
1 . f — 1 . f.
=+ 5;f = qs+s,2 L _K s; f;

42
2 2
and the root number s satises jsj = 1.
Suppose for each f 2 H, we have an associated number ;. Then we dene the

harmonic average of 1 over H to be
X h (k 1) X f
= w1 2
f2H (4) f2H kfk

where kfk? = N jf(2)j2y* 2 dx dy:
0

Throughout this paper, we will assume the Generalized Riemann Hypothesis (GRH)

for L(s; f) and Dirichlet L-functions. We also assume q is a prime number. Let bea

smooth function which is real and compactly supported in (a; b) with 0 < a < b, and its

Mellin transform is dened to be 2
1

B)=  (x)x® Ydx:o
We consider the 1(q)-analogue of the pair correlation function
2

2 X X nX
(1.6) F(q) := —~———— (i0a'" :( 1)=(
N(q)(q) modq  f2H
1)k '
where
2 X Xn X 2
(1.7) N(q) := —— (i ;
(q) mod g f2H ¢
(1)=( 1)

and %+ it are the non-trivial zeros of L(s; f): Note that F(q) is an even function in.
Our main result is below.
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Theorem 1.1. Assume GRH. Let q be a prime number. Then for any xed > 0 and k
3,

Z 1
. .2
5 RJHt)J dt

+ 0l ) () TogT™ (@ )q !

1
F(g) = (1+ o(1)) f()+ (q ")*logq

holds uniformly for jj 2 asq! 1 where
(
ii TEPETE
£() = il
1 1:

The implied constant in the error terms depend on k and :

For the rest of the paper, we will x the > 0 appearing in Theorem 1.1. Our
Theorem 1.1 yields results about the statistics of zeros of L(s; f) that support a pair
correlation conjecture for 1(q) L-functions. In the theorem, our acceptable range for is
essentially ( 2;2). This should be compared with the range ( 1; 1) in Montgomery’s work
[19] in the case of the Riemann zeta function. A major dierence is that when the range is
extended to ( 2;2), the o diagonal terms contribute to the main term and need to be
precisely understood.

Naively, it is natural to assume GRH for the L-functions L(s; f) but the assumption
of GRH for Dirichlet L-functions may appear odd at rst sight. Actually, the phenom-
enon that one needs to assume GRH for GL(1) L-functions when studying the vertical
distribution of zeros of GL(2) L-functions was previously observed in the context of low
lying zeros of certain GL(2) L-functions in the work of lwaniec, Luo and Sarnak [16].
Note also that this phenomenon closes o an avenue of attack towards the Siegel zero
problem (assuming GRH for GL(2) L-functions) by proceeding along similar lines to [7]
for instance. From a technical point of view, the necessity of assuming GRH for Dirichlet L-
functions arises because of the appearance of Kloosterman sums in the o-diagonal term.
This o-diagonal term needs to be understood well when the support of ex-tends
beyond ( 1;1). In our work, this is done by inputting strong information on the
distribution of primes in arithmetic progressions, which reduces to GRH for Dirichlet
L-functions through standard lines. More structurally, in our family, this phenomenon is
related to the observation of lwaniec and Xiaoqging Li [17] that the (q) harmonics are
not perfectly orthogonal. To be more precise, their work showed that ¢(n) tend to point
in the direction of Kloosterman-Bessel products. Practically speaking, this forces us to
input information that implies certain coecients (which, in this case, morally look like
(n)) do not correlate with Kloosterman-Bessel products.

As usual, an application of the explicit formula reduces the proof of Theorem 1.1 to
studying a mean square of a sum over primes. Indeed, Theorem 1.1 follows quickly from
the Proposition below.
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Proposition 1.2. Assume GRH. Let g be a prime number, > 0, k 3, and X = q. Let

_p) + e(p) if n=p’
(1.8) ¢t (n) = 0 otherwise:
Then

2 X Xn X X)" f)logq”
h n)cs(n)(n= f)lo
(n)ern)n=X)" F)loga" oo b
(CI) mod q f2H n n 2 R
( 1)=( 1)k

uniformly for 0 2 asq! 1. Here (n) is the usual von Mangoldt function,

which is logp when n = p" and 0 otherwise.

For completeness, we provide the standard proof of Theorem 1.1 assuming Proposition
1.2 in detail in Section 10. The bulk of our paper is devoted to proving Proposition
1.2 which is provided in Sections 4 through 9. Before diving into the proof of our main
results we discuss two illustrative applications of Theorem 1.1.

1.2. Applications. As with other primitive L-functions, it is hypothesized that all
non-real zeros of L(s;f) are simple. Roughly speaking, we can show that more than
93.5% of the zeros of 1(q) L-functions are simple on GRH. To be precise, we show the
following.

Theorem 1.3. Assume GRH. Let g be a prime number. The proportion of simple zeros
of all 1(q) L-functions is greater than or equal to L in the sense of the inequality
’ X X, X
- - jbs)j? 0:9350 + o(1);
(a)N (a) modgq  f2H  f
( 1)=( 1) simple
) 2
where is chosen so that (i]P= smo
Chirre, Gonalves and De Laat [6] showed that at least 93:5% of zeros of a large
family of primitive Dirichlet L-functions are simple, and our result is analogous. In
particular, the proof of the theorem follows from Theorem 5 in [6], and we refer the
reader there for details. In the approach for deriving such a proportion of simple zeros,
one wants to minimize

go), 1 %2
(1.9) v T ooy 81 (1 jxj)e) dx;
b(0)  B(O)
where a, = maxf0;ag for certain nice test functions g. In [4], the function g(x) is
. 2
chosen so that p(u) =$) , Where is a small positive number. Later, Sono

[26] considered the family of functions g(x), where §(x) is a non-negative even-valued
function in L*(R), p(0) = 1, and g is compactly supported in ( 2;2). He improves
the simple zero proportion by choosing a g satisfying these conditions which minimizes
(1.9). Chirre, Goncalves and de Laat [6] further improve this proportion by studying an
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even larger family of functions. In their case, their choice of g is eventually non-positive
1and is not compactly supported.

As a further application of Theorem 1.1, we achieve bounds on the limsup and liminf
of the pair correlation function. To state the result, we rst dene the 1(q)-analogue of
Montgomery’s pair correlation function N(T; ) introduced in (1.3). To be precise, we let

0 1

2 X X % X o
N(g;):= —— Q) (0 K

( ) mod q f2H f ' &

( 1)=( 1)k

Similarly to the denition of N(q) in (1.7), dene
> X Xn X 2
N(q):= (i) m;
(q) mod q f2H ¢
( 1)=( 1)k

where m _denotes the multiplicity of the zero 1=2 + if of L(s; f). If all the zeros of
1(q) L-functions are simple then
) X Xn X 2
N(q) = N(q):= (i :
q) mod q f2H ¢
( 1)=( 1)

The analogue of the Pair Correlation conjecture implies that

1 1 1
N(g;) N(q) 5T 2+ 05— —
as ! 1 suciently slowly and q is large. In support of this we prove the following.

Theorem 1.4. Assume GRH. Let q be a prime number and let " > 0 be arbitrary.
Then for > 0, we have

. ( ) "
limsup N 2 A +1" + 52 + 0, 1
ql!1l
and, if N(q) N(q), asq! 1
- () "
liminf N ﬂ 4 E + .1+ O, 1
q!1l
The bounds in Theorem 1.4 below are similar to those found by Carneiro et al. in
[1]. The proof uses Beurling-Selberg majorants and minorants and follows similarly to
that of Theorem 18 in Section 2.3 of [1] so we omit the proof for brevity.

1f is eventually non-positive if f (x) 0 for all suciently large jxj.



PAIR CORRELATION OF ZEROS OF 1(q) L-FUNCTIONS 7

2. Preliminary Results

We collect necessary lemmas in this section. We start with the orthogonality relation
for Dirichlet characters (e.g. see [8]) and Petersson’s formula (e.g. see [14]). We conclude
this section with an asymptotic for N(q) and an explicit formula for L(s; f).

Lemma 2.1. For g 3, the orthogonalgity relation for Dirichlet characters is

<1 if m n(modgq); (mn;q)=1
0.1) 2 (m)(n) = ( 1) ifm n(modq); (mn;q)= 1
. (@) (mod q) ) otherwise:

( 1)=( 1)

Petersson’s formula gives
X
(2.2) f(M)e(n) = m=n + (M; N); f2H

where 0 (mod

X 4p

k c 1S(m;n;c)l 1 mn;
c

(m;n) = 2i
qa)

and S is the Kloosterman sum dened by

X — am+ a
(2.3) S(m; n;cq) = (aJe ————aa
(mod cq) ¢

The next lemma collects some well known properties and formulas for the J-Bessel
function.

Lemma 2.2. Let Jix 1 be the J-Bessel function of order k 1. We have Jy
2X) = 2x)e X + + W (2x)e X +
1(2x) =, px Wh(2x) 4t g ko1 W) ak gl
where Wk(”(x) i;k X 1. Moreover,
Na K21
(2.4) Ji 1(2x) = (1)

"M k1)

‘=0
and
Ji 1(x) min(x % xk 1):
The Mellin integration representation of Ji 1 is
1 z k w 1
(2.5) Joalx) = 5 20 X dw
() 5
where 0< < k 1.
The proof of the rst three claims of Lemma 2.2 can be found in [28], and the
statement of the last claim is modied from Equation 16 of Table 17.43 in [13].
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The following standard lemma is a slight extension of Lemma 3.5 in [3], with a similar
proof.

Lemma 2.3. Assume GRH for L(s;) with mod g. Let be a smooth function
supported in (a; b), where 0 < a< b: Write z= +it with 2 1 03T 1, and
t real. If is a non-principal character, then

X (p)log(p) (p=X)

z

log®(q + jtj) max j ©)(x)j:
0 axb
If is the principal character, then

X (p)log(p) (p=X)

z

for any A > 0.

p

X
log?(q + jtj) max j Blx)j+ ——— maxj “(x)j;
g°(q + jtj) X ] ()] (1% jtj)" x| (x)j

Proof. When | +llogq%under GRH,
L(z;) = O log*(a + jti)
(see Chapter 19 of [8]). By Lemma 2 of [4],
X' (p)log(p)  (p=X) X (n)(n)  (n=X)

+ 0(1)
pZ nZ
Let be 1 if is principal, and O otherwise.
Recall that
Z,
(2.6) b(s) = (x)x® 1dx:
0
By doing integration by parts B times, we have that
1 s+B 1
b(s) = (B) X dx:
(s) o (X)s(s+ 1)::i:(s B + 1) X
Thus if s= 1+ iv, where 1 > 0, then
1
2.7 iP(s)j \ = j
(2.7) PN e 1 e maXx)j
By (2.6) and (2.7), we have
A
X n)(n n=X 1 n)(n
(nn) (n=x) 1% X )
nZ 2i g . nz+s
1 br1ysk®
= — (s)X°>—(z + s;)ds
2i (1) L
Z
1 L¢
= b(s)Xs—(z+ s;)ds+ P(1 z)X1 ¢z
2i (1304) L
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YA 1
p
b 20q +iv log?(q+ jtj+ jvj))dv+ j (1b it)j X
1
By choosing A = 2 for the rst term and B = A for the second term, the above is
bounded by
1 1 P X
log?(q + jtj+ jvi))dv+ = maxj "(x)]
224 iv(jvj + 1)2 (1+ jtj)* axb
g4 o

. (A) ..
(1 + jtJTmaxaij (x)j;

for any A > 0 by the decay of P on vertical lines.

log*(q + jtj) max j B)(x)j +

The following lemma provides an asymptotic formula for N(q) as dened in (1.7).

Lemma 2.4. Assume GRH. We have

logq .
N(q) 2— Jht)lz dt
R
asq! 1.

Proof. Let N(f; T) denote the number of zeros of L(s;f) for s = + it satisfying0
< < land T t T. Assuming GRH, the number of critical zeros of L(s; f) below
height T is
L log(q(T + jkj)?)

13 Tog(a(T + Jki)7)

uniformly (e.g. see [2]). By intezgration by parts, we have
1

X
j(ib)j? = . jbt)j? dN(f; t)

-
N(f;T)= (—255

f

Z1 =
. lo

lo (it)j’mit + O g4

8}1 . JUt)) k log log g
= ,llogg Z 1j(iBj2 dt+ O lo ;
1 1-08—%%—4
where an implied constant depends on k, and so
X X p X 2

N(g):= (ib
(q) mod q f2H ¢
( 1)=( 1)k 5
X X 1
- 2 hziogq j(ith? dt+ Oy I"’#
@ edq 2 1 oglogq
(Zl)=( 1)k
lo ! logq

Q . b -2
—_— dt+ O —
2 1J(I ) k loglogq
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Finally, we have an explicit formula which relates zeros of L(s; f) with a sum over its
prime power coecients.

Lemma 2.5. Assume GRH for L(s;f). Let X 1. Then

X X (n=X)(n)c¢(n) q

(iB)X' = + (X !)log

where c¢(n) is dened in (1.8).

,+ 0 X ‘'logjkj; ¢ n=1
n 4

Proof. We will rst examine thezintegral
1 7L° 1
i
Note that we assume GRH for L(s; f), and L(s; f) is entire. Thus

(2.8)Z 7
! L v Lt byxcds- ! L% e Lt myxodss (b
2i (3omy L 2’ 2i (gL 2’ '
For the integral on the right hand side along the line Re(s) = 1, we will examine
the logarithmic derivative of the functional equation in (1.5). We then have
0 0
1) 9 + + k + L g4 1. = |
2% g2 T — ST o T STy 28 g2
1 0 0
s+ — i -S—,f . E L_ 1
2 L 2
Fors= 1+ it, LL—O % s;f 1 and the Gamma terms contribute log(jtj + jkj).
Thus the integral on the right hand side of (2.8) is
z 0
1 L it )X ds
2i (1) L 2
1 Z
= = log -Ms)k=ds+ O(X logjkj)
2i (g 42

log 4ZL(X H+ O(X Ylogjkj)

We conclude the proof by expressing the original integral in terms of the series rep-
resentation for LL—C(S,' f): To be precise, since

L° x
Y s f) = (n)cfin)
L et n
for Re(s) > 1, hence
Z Z
LO X (n)ce(n) 1 X °

1 1
T s+ f(s)X®dsh=
AN

: — k)" ds -4
2i n

n=1 (3=4) n 2i
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X (n)ee(n) n

= _p_—.n;l.
n X

3. Outline of the proof of Proposition 1.2

Since the proof of Proposition 1.2 is somewhat lengthy and has some delicate points,
we provide an outline here to help orient the reader.
The main object to be studied is

X X 2 X Xy
apa; #(p)e(r)
p;r q mod q f2H
(1)=( 1)k
where
n)(n=X
(3.1) ap = (n)( _):
n

Applying Petersson’s formula, we obtain the diagonal term arising from p = r, which is
easy to evaluate (see Lemma 4.1), and the o-diagonal terms which are

X X X X
apar i 2i K c 1S(p;r;c)i 1 4_Rp-r
pr (q) mod g c>0 ¢
( 1)=( 1) c0 mod q
Recall that X = gq. When 1 jj 2 , there will be the additional main term from

the o-diagonal terms.
By applying orthogonality of Dirichlet characters and rearranging the resulting ex-
ponential sum it suces to understand

e p k 1 or -
s;t gst x (mod t) m mod t € p;" aad —qgst J —gstpr

(x(x+as);t)=1 n modt P mod t

We express the congruence conditions p m (mod t) and r n (mod t) using Dirichlet
characters modulo t. The o-diagonal main contribution comes from the principal
characters, and the rest give error terms. In contrast to the diagonal term, the evaluation of
the o-diagonal main terms requires careful analysis which is performed in §6.

To illustrate what happens with the error terms, let us consider only the transition

region for the Bessel function where st . XIn this region, the factor e qst"i has small

derivatives and can be absorbed as a smooth function. Applying Cauchy-Schwarz’s
inequality and orthogonality relations, we would like to bound the sum of the form

2
— < T -
qs ;t (t) (mod t)p X (p) +p

X =
ST q 0
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This is where we require GRH for Dirichlet L-functions to conclude that the sum over
p is very small and in particular bounded by g when is a non-principal character.
Executing the rest of the sum trivially gives that the error terms are bounded by_>c<IZS q

when X g% . This also indicates the barrier of the method, i.e. we cannot evaluate
F () for jj > 2: The full details of this error term bound can be found in §7 and §8.

4. Initial Setup for the Proof of Proposition 1.2

First, we note that the inner sum in Proposition 1.2 can be expressed as a sum over
primes p:

X (n)er(n)(n=X) _ X (p)ce(p)(p=X) . X (p?)ci(p?)(p?=X)
P M=

n n p p p p
XX (p)ce(p¥)(p*=X)
+ k=2
p k3 P
X =X X 2 2 2_x
_ (p)f(p)(Pp_ ) 7 (p9)e(p?) (p))(p*=X) | 0(1):
p P p P
Since has compact support in (a,b) for some 0 < a < b, we see
X logp(s(p?)  (p))(p2=X) X log p
p p
p pa_X'<p<pb_X'
pP— p___
= log bX log aX + O(1)
= O(1):
Thus the asymptotic in Proposition 1.2 is equivalent to
2 Z
2 X X n X log(p)i(p)(p=X) .  logg b2
- p— () —— jby)j’dt:
(q) mod g f2H p Y 2 R
( 1)=( 1)k
Let a, be dened as in (3.1). By Petersson’s formula (Lemma 2.1), we have
X 2
h h
3 X X "ag(p) = X X 33 2 X X i (p)ebr—
mod g f2H p;r mod q f2H
( 1)=( 1)k p ( 1)=( 1)k
X X X ) X
= a’+ apar — (p;r)
p p;r (q) mod q (
1)=( 1)k
=:Sp + Sy

For the diagonal term, Lemma 3 in [4] shows:
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Lemma 4.1. As X | 1,

Z
X log?p?(p=X
Sp = g PP=X) _ 1 iit)Bdt logX + O(1):
P p 2 &
The non-diagonal term Sy will contribute to the main term when 1< 2 . We

evaluate Sy in the following lemma and the proof of Proposition 1.2 follows from this
computation.

Lemma 4.2. Assume GRH. Let q be a prime, be dened as in Proposition 1.2, k 3, and
X = q. Then

8 1 R . . 2 .
< Stlog & j(ith? dt+ O(1) if 1< 2
SN = .
) 0(1) if 0 1:
uniformly for 0 2 asq! 1. The implied constant depends on and k.

The bulk of the work of this paper is in proving Lemma 4.2. This will be done in
Sections 5 - 9.

5. The non-diagonal term Sy

First we will extract the main term from Sy. To do this we aim to rewrite the
congruence in terms of Dirichlet characters but rst we must manipulate the sum.
Recall that

X X 2 X
SN = apar — (p;r)
p;r (q) mod q (
1)=( 1)
X X X X
= apar (q)i 2i ¢ c 'S(p;r;c) 1 %Rrﬂ* ;
P ( lr)nzo(d ql)k c0 m(‘):d>%
where from (2.3) aa (mod
X —_ap+ a
S(p;r;c) = (a)e PTE,
c)
Let Kf :=i Xf + if. Then by orthogonality of Dirichlet characters in (2.1),
2 X 2 X X ap+ a
- S(p;r;¢)= ta)e
(a) (a) c
mod g mod q ad (mod c)
( 1)=( 1)k ( 1)=( 1)

Lk X ap+ a
=1 e
a mod c ¢
al modq
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Thus, after a change of variable in ¢, we obtain that
X X X 4 X + ap+a
Sn = apar 2 cq‘?Lk 1 —ppr_K e P L

p;r c>0 cq a mod cq cq
mod q

Now, we follow Iwaniec and Li [17] and set a = 1+ gy with y running modulo c.
Let (y;c) = s sothat c= stand a = 1+ gsx with x running modulo t. Furthermore,
(x(1 + gsx);t) = 1: We have

|
X ap+ a X X p(1+ gsx)+ rtt+—ogsx)
a mod cq 9 = st=c  x (mod t) € gst :
al mod q (x(1+gsx);t)=1

Then we write 1+ u 1 u(l+ u) (mod t) for u = gsx: Next, we change x to xand k1
+ gsk x + gs (mod t): Thus we have

X « ap+ a +r X
e 2P e P Vgs(p;r; t)
cqr cq
a mod cq s;t
al mod g st=c
where X
X rx+d
Valp;r;t) := X e
X mod t t
(x(x+d);t)=1
Therefore
X X X X
2 +r 4 p__
Sy = a,a, K —e Vos(ps 15tk 1 — " pr -
. gst gst qst
pr s;t
p

We now write
Sn = Mot + Eort;

where Ms¢ is the contribution from terms (t; pr) = 1, and Ey¢¢ is the rest. The purpose
is to extract the terms with (t; pr) = 1 and later rewrite the congruence condition
(mod t) in terms of Dirichlet characters.

Lemma 5.1. For k 3, we have

X X X X 2 p +r 4 p
Eoff 1= apar K —e Vgs(p;r; t)) — !
of f . pdr qst qst qs(p ) k 1 qst pT q
Jpr s;t
(t;pr)=1
Proof. We have
X X X X
2 p +r 4 p__
Eoff = apar K ~e Vgs(p; r;t)J 1 — " pr
gst gst gst

pr s;t
P pjt
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p r Y
+ X X apa, K X e Vgs(p; r;t))
o pdr . 2 q + qs(p )k lqst pﬂ_ _
rjit;p-t
p=r
X X
+ a, K 2 e 2p Vy(p;p;t)) 4
X qs pr p; k 1 p
. 2 Gt gst gst
pjt
=: E1+ Ex+ Ea:

We will focus on bounding E;. The bound for E, and E3 follows similarly.
By the change of variable t ! tp,

X X X X P
E; = | ?lﬁar K qéteqsgp%s(p; r; tp)Ji 1qst9p-4_p=rf
Using trivial bou;:ﬂ for Vg, the bsc;)tund in Lemma 2.2, which is
) 14prp— 4pr; !
qst” p gst” p

X g% and k 3, we obtain that
X X logplogrX 1X 4

aX<p;r<bX

X X lo X 1
gp“ggr)r =2 1
k22 k qksk
aX<p;r<bX s
1 XX
— I I
X og plogr
p;rX
X 1
gk
upon choosing small enough . By the same arguments, we can show that E, q !, and
Esz q 4:
Therefore
Sn = Moss + O(q  1);
where
X X X« X =« X X
2 P+ r 4
M = K i Ves(m; n; t Apar € J — :
of f qst qs( ) ' pdr qst k 1 qst pT
s;t m mod t p;r
n mod t pm mod t
rn mod t

Now we express the condition p m mod t and r n mod t using Dirichlet charac-ters.
In particular,
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X X 2 X «X = 1 X X
Mors = K — Vgs(m; n; t) —— O(m){N) °mod t
gst (t)?
s;t m mod t mod t
n modt X X
0 p r p—
ryapa, e 4 4 r
. y . p;(rp)( )hp r gst k 1 st p
* * X X p r p
= K 2 Voo (m;n; a,a,e 1 L
stz as( ) o; PIrT gst—* gst Pl oat
s;t m mod t t ’ J
(pr;t)=1
X X X X p r 4+ 4 p
+ otmJin)  °(p)(r)asa e e —_"pr
: gst qst
mod t ’ pr
Omod t
=0;%=0
X X X +r 4 i
+ 2 (n) (r)apare P — 31 _p—p,—
(p;t)=1 mod t r qSt qst
=0
=:S5:+ S, + S3:

When 1< 2 ,S; contributes to the main term while S, and Sz are always sub-
sumed in the error term. We will treat S;, S; and S3 in Section 6, 7 and 8, respectively.
6. Main Term S

In this section, our goal is to prove the following.

Lemma 6.1. Assume RH. Let q be a prime, be dened as in Proposition 1.2, k 3,
and X = g. Then

8 R
< slog xiRj(itji}2 dt+ O(1) if 1< 2
Sl = .
O(1) if 0 1
uniformly for 0 2 asq! 1. The implied constant depends on and k.

6.1. Preliminary lemmas for evaluating S;. We will collect necessary lemmas to
calculate S; in this section. The rst lemma taken from [5], and its proof can be found
there.

Lemma 6.2. Let (a; ‘) = 1: We have

fl;):= X = 1=¢" 1 1 =() ¥ 1 1
(mod ¢’) j i(';c)
xa (mod ‘) o P m P

The next lemma is a slight modication of Lemma 7.2 in [5]. The proof follows by
the same arguments.
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Lemma 6.3. Let ;m; n be positive integers satisfying aX m;n bX and g X. We

recall that X = g, where 0 2 . Dene
4 "n
T=T(g;mn):= X1 K(%ﬁ
o, Kt omo on

=1

Further, let L = *% and w be a smooth function on R* with w(x) = 1if 0 x 1,
and w(x) = 0 if x L 2: Then for any A > 0, we have

S | S |
Xl { ml nl
T=2 w — Jk 1 4 — Jk 1 4 —
SO . | ) |
S S
7 ! !
1 ‘ ml nl
2 w o o1 4 Jy 1 4 T d'+ Oalg ?)
0 L q q

Our next lemma is similar to Lemma 7.3 in [5], and we will include the proof here for
completeness.

Lemma 6.4. Assume RH. Let w be a smooth function on R* with w(x) = 1if 0 x
1; and w(x) = 0if x > 2: Also we let L > 0 be any real parameter. Then for Re (s) =
o, where ¢ is a small positive real number, and 0 a %

! 2
X . Z1 .
(6.1) w o— ‘@ W — ‘S 23d‘= 0 Lz 21+ jim (s)j) :
o, L 0 L
Moreover,
V4 1
X 1 1, 1 . .
(6.2) woo w o d'= (1 s)+ OL (1+ jlm (s)j):
1 L 1 0 L "1
Proof. Let Ww(z) be the Mellin transform of w; dened by
Z 2
W(z) = w(t) — dt:
0 t

By integration by parts as in Lemma 7.3 of [5], W(z) can be analytically continued

to Re z > 1 except a simple pole at z = 0 with residue w(0) = 1. For (6.1), let
> 1 a+ ,so we have
X ‘ X 1 z 2 1 z
w I — W(2) — S 3dz= — w(z)Ll*(z s+ a)dz:
2i 0 L 2i 0
‘=1 ‘=1
Then we shift the contour to Re(z) = % a+o, picking up the simple pole of (z s+a) at

z=1+s a: Thus

X ‘ 1 z
— S 3= \p(l+s a)Llts s+ W (z)L*(z s+ a)dz:
‘=1 L 2| (L 23+0)
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From the denition of \p,

z 1 ‘
Ww(l+ s a)Ll*s 2= w — ‘¢ ad:
0 L
Since Re(z s+ a) = % when Re(z) = % a+ o, and for any > 0, under RH,
(6.3) (+it) (jti+ 1)
uniformly for % 1 1 (e.g. see [27]), we obtain (6.1).

For (6.2), let > ,; we have

A 4
(6.4) DL ol (e 1 s) dz:
' LT T '
Shifting the contour to Re(z) = %, we pass through poles at z = s and z = 0. Thus
(6.4) is
z, z
1 s)+ w — _togs L W(Z)l2(z+ 1 s)dz:
0 L s i 1=a)
Equation (6.2) follows from the bound in (6.3).
6.2. Proof of Lemma 6.1. We recall that
X X X« X « X X r
S, =K _ 2 ° Vgs(m; n; t) apare P_+ Jv 1 4_p_r
gst(t)? . gst gst
m mod t pr
n mod t (pr;t)=1

We would like to apply Lemma 6.3 to the sum over s in S; but some manipulation must be
done rst to t the assumptions. After applying Lemma 6.3, we shift the resulting contours
and use Lemma 6.4 to extract the main term and bound the error (see the proof of
Lemma 6.6).

First we see that

X« X o X« Xo meX s+ neas X
Vgs(m; n; t) = e e x 45— (t) 1
m mod t m mod t t n modt t
(x» oot £ 1 (x* qaot) £1
n mod t

since the sums over m and n are Ramanujan sums, each equal to (t): Next we can

remove the coprimality condition (pr;t) = 1 by the same arguments as bounding E,¢¢in

|Demma 5.1. Moreover, we can express the coprimality condition (x + gs;t) = 1 as
ditxsgs;t) (d). Thus up to O(q 1),

gst(t)2

s;t x mod t p;
(x+qgs;t)=1

S
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0 1 |
X (d)X X 22(td) 8 X X X D+ r 4 p d
= — — 1& pa Ke 1 —— pr
2 r
) ot gst(td) ke o gstd gstd
X (X X 2%(d) Y 1 X X p+r 4 p
= 5 y gstEd)z (t) 1 ) p;, apar K e std Jk 1 gstd pr

(dd)=1 (s:d)=1 pi(t;d)

by Lemma 6.2. In the above, we have noted that the sum over x mod td is zero if
(gs;d) = 1: Further, the presence of the factor ?(td) forces (t; d) = 1. Therefore

SdXd) - ast(t)—— Pa’ Ke gstd J' gstd pr +Oq
(d;d)=1 (st;d)=1

Now we will include terms of the form

pjl + rjz 4 p - n
J Jirpl)2
qstd k 1 p

a
gstd

a,Ke

2

pi1

where maxfji;j.g 2: The contribution of these terms is very small, and we include
them now for technical convenience.

Lemma 6.5. Let
X X X (d) X X 22(t) pit + riz 4 D

Ke Jk 1 —— pitri2
L ot gst(t) gstd gstd
i ’

maffjl;jng (d;q)=1 (st;d)=1

Ehigh power := Api1 Ari2 W

Then

=4,
Ehigh power { .

Proof. From the bound of Jx 1 in Lemma 2.2 and the denition of a, in (3.1), we have
that

X X X X logp logr X 1 X 1 X 1
pi1=2 riz2=2 g d2(d) . t(t) S s

1
Ehigh power a
JpiplogX gy isin Ly 1i2
maxfj1;j282

& b l 1 p 12
. lerJz lerJZ
min —_— ;o ———
gstd gstd ;
X X X X logplogr X 1 X 1

o

j1=2 rj2=2 2
jq3i,logX px ipx T2 P r d d(d) t t(t)
maxfj1;j282 ’
p .l 1= L
X 1 pITrT X 1 piTriT
— —_— + — —_—
p s gstd p s  gstd
pi1ri2 piiri2
e

s<
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1 X X X X logp logr X 1 X 1
q . . phe2zrizsz d2(d t(t
i r#%;i?jlfﬁzxgz px  Tligex 2 P d (d) t (t)
1 X X X X logplogr
q j1=2 (j2=2
i njwla;iﬁlf%zxgz pX Tirx 1R T
b
X(log X)3 ) )
————q ?%q™
q
upon choosing small enough .
From the lemma above, we have
X (d) X X 5 X X p 4 .
Si = ﬁtg anma, Ke m} mrt+ O_g—":
1 | (l} q m n qstl tqqstd -4
(d;€)=1 (stieh=1 m;n

P
Next we remove the condition (s; d) = 1 by replacing it with .4, (h). Thus,

2 X (d) X (h) X )X X
S1= — e n dman
q d2(d)  h t(t) .
(d;§)=1 hid  (ta)=1 " '
X i
lge Mm+n 4 Pon + O(q ™)

S qtdhs "* ' gtdhs

S

= St;big + St;small + O(q =4);

where Si;pig is the contribution from t qdhi, and the rest is from t < qdhi. Note that

Lemma 6.3 may only be applied to when t < q%h
Case 1: t qdhi. For this case, we apply Lemma 2.2 to bound Jx 1. Thus
1X 1 X 1 X 2 X X (m)n)X 1Pmnk 1uve
q d?2(d) h t(t) _ mn s qtdhs
S _ d hjd ‘t'qdh aXm;nbX p—— s _
X k X 1 X £ X 2(¢)
6.5 Tk k2 kK otk
(6.5) g, de2(d) o h tqdhti(t)
X% 1 X 1 gdh ©_ oL}
gk dk2(d)  hk X B '
d hjd

When 0 1, St;small is empty as X 1:Thus S; = St:wig + O g =4, and so the above
suces for Lemma 6.1. qdh
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0

Case 2: X > qtdh. For this case, we apply Lemma 6.3 to the sum over s with L = Xq‘idH
for a small °> 0 to be specied later. Therefore, we have
4 X (d) X (h) X 2 ( t) (X L. Z 1 ‘ ) t;small
Sd2(d) = "h .t L A w — w — d
§=1 hjd t< ‘=1
(6.6) (d;q)=1 (t;dq)d:hl
S ! S I
X X " =
amal 4 - 4
m'n " 1 qtdh ko1 qtdh
4 n

Recall that a, = —#X: Next, we separate variables by introducing the Mellin

(i n)’

transforms for (x) and J-Bessel functions in (2.5). Then we write for some small;> 0

2 Z Z z z k w 1 k w 1
4 1 wy, 2 1= -
St; n= —'('2-—)-4— (51)(52)2 gy w2 - ',__1_—2— - p— 2-
i q I (l;21) (l+221) (1) (1) kiw £ Zl _24_
(arewaxsis X @ X X
v TS T
g 2 p d 21 2 (d) hid h 21 2 t<;ﬁ t 21 T(t)
(d;q)=1 , i
( . ya . ) t;d 1
X Coagee o XX (m) o (n) e
—W 2 2 W- 2 > d w " w
L 0 L m:n m%+51 = nats2 2
dW1 sz dSl dSz
12 1 Z Z Z Z Kw 1 k_w_z_1=
— (51)(s2)d ™ & *— w2 2
q TZT) (2+21)l(2+21) 1(1) (1) kiw +1 _}_ 2;
(arwexssvs X @ X X
qulJ'WTZ g d1+WT1+ Wz—zz(d) . h1+WT1+WT2 M t1+WT1+ WTZ(t)
(d;a)=1 (td)-1 ! t<qan
o .d)=
D L; C 1+ s 1+ s dw; dw, ds; ds
Pl LI M e

where Re(s;) = Re(s;) = %+ 21, Re(wq) = Re(w;) = 1, and ;
Z1

X { {
D(L;s) = w — w — “°d-
-1 L 0 L

We move the contour in w; to the right to Re(wy) = 6; and pick up a simple pole at

w1 = 2s; 1. The residue of the pole is 2 because = lz +s; M = %+
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O(1) when w; is close to 2s; 1. Thus we obtain that

S'c;smaII = Co+ Cy;

where
y4 4 4
Co := 82 1 (s1b(s2) 2o 25t W2 1 — —z—k = k_wzZi
. —— + + FI
aq, —('2"')'3—| (lz+21) (l;21) (1) k+2s1 , k w2;_
(4)2s1+w2 1xsi+s2 X (d) X (h) X 2(t)
gt o dirEad)  hede L ey
d;0|)=10 (t;dq):hl
1 w1 w2
D L;s; 5 + 5 5 + s 5 dw, dsq dsy;
and
(6.7) - ,
C .= 4 2 1 @ )4Sb)2 wp wp 2 X WT1_1 k_Z'z’_l
1- T H 2 A\ \\
g (2i) % (L421) (4421) (1) (1) kewirl  kworl
(a)viewaxeies: X (@ X () X
| )_qWTlJ'WTZ . d1+le+ WTZZ(d) e |,11+""T1+""T2 <ﬁ t1+WT1+ WTZ(t)
;q)= (d 1 o (t;d)=1 q
DL ZW_T W2 _( ;_11"' 1 Wi o ;_11"' 2. W dwy dw, ds; ds;:

For Cp, we move the contour integral in w; to the right to Re(w;,) = 6; and encounter
the pole at w, = 2s, 1 with residue equal to 2. Thus

Co= MSl+ Cz;

where
(6.8)
1 Z Z 4 X S1+5) k 2s; k 2s,
MS{ 1= — 3 e v— (bl)(Sp) k+%s k+%s
(2i) 1+21) (,%21) q o 2"
X (d) X h)X (%
4)9-(4_: + 1) ds; dsy;
d51+522(d) hs(+521 tsits (t)l ; S1 S, ) S1 ASy,
(d; =1 hid £ i
(t; =1
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and
(6.9)
8 2 1 YA z z k 25; k W;_l
Crim —/——— B1)(sh)2 # w2 * 2 2
g2 (2|) 3 (%+21 ) (%+21 ) (61) k+551 k+W2;+_
(4)251+wz 1y si+s2 X (d) X (h) X Z(t)
g o dEmEAd) kiR gt (g)
d;qg 1 (t:d)=1 qdh
()= 0 1 W, 1 W>
D L;s + +'s dw, dsq ds;:
1 2 2 2 2 2 2 1 2

Now we consider C; in (6.7). We move contour integration in w, to the right to
Re (w;) = 61, and we encounter the pole at w, = 2s, 1 with residue equal to 2. Thus
we obtain that

C1 = C3 + C4,'
where
g2 1 2 Z Z ul(sh o kw1 k 25,
Cyi= —— 1)(sh)2 W =2 —t— %
q% (2i) 3 (3+21 ) (3+21) (62) ‘ Wzl_1 ‘ ;s;
(a)wi2s2 txats X (@ X (X 2y
qul"'SZ ) d%+ WTl"'SZZ(d) e h%+ Sl+sy o t%+ WTlJ'SZ(t)
(d;q)=1 (t:d)=1 t< 4dn
0 .d)=
D L; ) % 2W_j' Sy . % + S & dw; ds; dSz,'
and
(6.10)
4 2 1 VA z z Z " k w,_ 1 k w, 1
—_ w w
T (s R e ==
(3+21) (%21) (61) (61) 5 5
(4)witwaxsitsz X (d) X (h) X 2(t)
qul"'sz ) d1+le+ WTZZ(d) e hl"'le*'sz o t1+le+ WTZ(t)
(d;q)=1 . (t:d)=1 qdh
D L; zw—t 2& _‘ %+ S1 Eﬁl B %+ Sz gg dw; dw, ds; ds;:
Therefore
(6.11) St;small = MS1 + Cy + C3 + Cyu:

To prove Lemma 6.1 for X = g, where1< 2 ; it suces to show the following lemma.



24 V. CHANDEE, K. KLINGER-LOGAN, AND X. LI

Lemma 6.6. Let X = q, where 1< 2 : With notation as above, we have
Z
1
(6.12) MS1 = —log xi jkt)j2 dt+ O(1);
R

(6.13) Cy; C3 g %
and
(6.14) Ca q %

where the implied constants depend on and k.

The lemma above along with (6.5) and (6.11) completes the proof of Lemma 6.1.

Proof of (6.12) { the main term MS ;. Now we focus on calculating MS; in (6.8). We
move the line integration over s; to Re(s;) = 1 so

Z Z 2 S1+S2 k 2s5 k 2s;
Msy=_1 AX_ a)(sH—2 2
(2i) 2 (1) () q kegsr  k4gs,
X .(d) X (h) X 2(t)
D(L;s1+ s, 1)ds;ds;
d @ 5(d) hsisy N f“”“_t')z( 1 1
(d;q)=1 hid Gt
From (6.2) in Lemma 6.4,
N !
Xq P . .
D(L;Sl‘l' S> 1)= (1 S1 Sz)+ O m (1+ Jlm(51+ SZ)J)

SO
M51 = Ml + ESl,

where M, is the contribution from (1 s; s;) and ES; is the contribution of the
rest.
First we consider ES;. By Stirling’s formula and writing s; = 1 + it;, we have
k_2s
i (jtij+ 1) 21:2

JR— i
k+25;
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Thus
(6.15)
X 21Z 1 z 1
ES, — (P+ it1) (1 +bity)(1 + jtaj) (1 + jtaj) >
q 1 1
1
X 1 X 1 X &) X q 0 Ty
- 1+ jty+ tyj) dt; dt
d2:12(d) hid h21 et t21(t) qtdh ( U 2J) dty dtp
q
1 1
S S SO S S
_ 212 21\ -
q ) d2:12(d) hjdh1 qdh
0=4,

Next we consider M : First we add back terms corresponding to large t and note that
their contribution is small
zZ Z s1+s2

1 4 2X k_2s; k_2s,
EM1 = o (81)(sh) + 2
' (2')2 (1) (1) q ! k%; k ;52
X 4 X ) X @
d51+522(d) hsi+s2 W(—l S1 Sz) dS1 dsz
X e ¢ 9
(d;a)=1 g 1
X X 1 X 1 X 2(t) q
T 4212 2 ) E—
d d=2(d) hjd h* t> gah t()

1

since thas a rapid decay on vertical lines and by the bound (6.3) for . Therefore

1 ax U k 253  k_2s;
M = i ;Z — b 2 2
1 21 (1) (1) q (sH(s2) IS k+Zs)
X (d) X (h) X t 2 2
dsid 0o(1):
dr +sidp hsi+s IR s1 s7)dsids; + O(1)

(d:8)=1 hid (tid)=1
On the other hand, by multiplicativity the sum over t is
X L(1+ S1+ S2)G(s1 + S2)By(s1 + s2);
to* (1) ’

where
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Note that G(z) is absolutely convergent when Re(z) > 1=2, and G(0) = 1: Therefore
M, + O(l) is

Z 7 S1ps
1 4 X S22
W q —(51)(529’(1 b s1 S2)(1+ s1+ s3)G(s1+ s3)
(1) (1)

X d) X h ko 4 k
7 h sy St 2 gs,ds,

g d51+522(d) yl;};“sz S, + ?;2_'_
(d;q)=1
Recall that X = g, where 1 < 2 : We shift the contour of s to the Igft to Re(s;)
= 1 picking up the contribution of the double poles at s, = s; from (1 S1
s>)(1+ s1+ s3). Thus we write that M1 + O(1) is
z z 2., Si1*s2

N =

Ql)(sl?)(l s1 S2)(1+ si+ s2)G(s1+ s2)

(2i)? W (9 q
X X k k
(d) Bloy s sy SHEEYE o g,

d51+522 d h51+52 + + £
( ) hid S1 S, 2

N |~

(d;q)=1

where R, denotes the residue at s, = s;. We note that the contour integral above is
XE e 1. Further, write
z
Rw = log = = (sh( sbe(0)
q 2i ()

(d)
2(d)

hjd
(d;a)=1 !

(h)B4(0) ds; + Eg

Z k

S1+ k
. - 2452 (s, ) (s D's5)3(1 s1 S2)(1+ s1+ sy)
2i s++ds;
(1) 1 > 1
k

X ( X

s C

&1+ S2) doit 2(%% hsiesd BH(S1+ S2) s +k_E Adsl<d;q)=1
d hid -

2

o(1):
P
Since G(0) = 1and ;4 (h) = O unless d = 1, we obtain that
VA
Rm = log X Msy)( By)d+ O(1)= log
120w q2

log X 1 tj(ipj2dt+ O(1):
T 2= B)

(it)( xit) d

1
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Thus
qZ

(6.16) M, = 2—1log L ihui dex o)
R

Combining (6.15) and (6.16) gives (6.12) in Lemma 6.6.

Proof of (6.13) { error terms C,; C3. Due to symmetry of C, and Cs, it is sucient to
prove the bound for C,. Recall that C, is dened in (6.9).

First, we move the lines of integration in s; and s, to Re(s;) = 1 and Re(s;) = 44,
respectively. Under RH, no poles are encountered when moving the lines of integration.
We write Im (s;) = tjand Im (w;) = y,. By (6.1) in Lemma 6.4 for a = lzand s = sl+""—22
we have that

(6.17) D L;s; _le+gv}z L4 (1 + jtaj + jyi)

Under RH, we also have the bound

C
(6.18) £+ it) log?(jtj + 2);
uniformly when 2+ ; , (e.g2see [8]), and so we derive that
1 1 1
C. R+ it (40l ita)j(1+ jtaj) (14 jyaj) T O 1
1 1
x51 X 1 X 1 X ) Xq'
4 Llig lig lig
q- ) d2*412(d) hid ha** t<qut2 1(t) qtdh
(1+ jtaj+ jya2j) log?(jtaj + jyaj + 2) dy, dty dt;
X ° 1q40 ! .o L
q%+81 q !

upon choosing small enough 5; ;:

Proof of (6.14) { error term C4. For C4 as in (6.10), we move the integral in s; to
Re(s;i) = 4;. We encounter no poles under RH. We use the bounds in (6.1) in Lemma 6.4

for a= 0 and (6.18). Thus we obtain that
Z1 2121 21

Cs = g+ i) (A0 it)j(1 4 jyag) TS+ jyaj) t O
q 1 1 1 1
x 81 X 1 X (h) X Z(t) qu 7461
q61 d1+612(d) h1+61 tl+61(t) qtdh
d hid t<

(1+ jyij+ Jy2i) log®(jtaj + jyai + 2)log®(jtaj + jy2j + 2) dyi dy, dts dt,
1X §+14 1q°(1=2+6 )

q - q§+121 q !

upon choosing small enough 1 and °.

1
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7. Error Term S»

Let us recall the denition of S5:

X 5 X X X
S5 =K —— V(min;t) o(m)(n)
s;t qSt(t) m mod t mod t
n mod t Omod t
=0;%=0
0 p M+ 4 p__
(p)(rJapare = —k 1 —pr
osr gst gst

In what follows we will bound S, by q =*. Note that this is the same that was xed in
Section 1.1 so that jj 2

Lemma 7.1. With notation as above, we have

=4,

S2 ¢

We will consider sums over s and t in dyadic intervals of the form T t 2T andS$S
s 2S denoted by t T and s S respectively. Thus in order to prove Lemma 7.1, it is
sucient to show that

(7.1) D(S;T) g 7%
where
X X 1 X * X* X
D(S;T) := — Vgs(m; n; t) °(m)(n)
sS; tT qSt(t) m mod t mod t
n mod t Omod t
=0;%=0
p ® |9
%(p)(r)apar e — ) - :
(p)() pdr qst k 1 qst rrr

pir

We will apply the power series expansion for J-Bessel function when T is large, but
when T is small, we will use an argument of Deshouillers and Iwaniec [9] to separate
variables in the J-Bessel function. Thus the claimed bound for D(S; T) follows from
the following lemmas.

Lemma 7.2. Let T %s Then

D(S;T) q ~%

Lemma 7.3. Let T %s Then

D(S;T) q =%
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7.1. Proof of Lemma 7.2 { small T. First note that we haveaX < p;r bX so thesum
over p and r remains unchanged if a smooth weight ( pr=5)()_|s attached to each term
provided that

(

1 ifx 2 (a;b]
(x) = 0 i a Ay
if x 2 (5;2b)

From Lemma 2.2,
4ppr_ p—qst 4ppr_ pr_r k
st T B %%Re w gqst € gst "

Jk 1

Now we write

Z
4 yXx 2y X S
W e = M d
(7.2) (y) gst Sast - 21 T%—s) y " ds

and ) 1 7
Yy s
- - M d
(7.3) (v)e gst TR 2(s)y °*ds
where 2 1 4
M1(1+ iv) = (y)W y X y29% M, (1 +
! 0 qst—gst = —— 2
iv) = Yy)e yx y“dy:
0 th_
Moreover,
1+ jvj) 2 if jvj cif
(7.4) Mi(1+ iv) (1+4vi) X M ast

jvj > aX

v gst

for some absolute constant ¢;. The bound in (7.4) follows by the same arguments as in
[9]. From (7.4), fors S and t T, we have

Z X 1=2
(7.5) iMi(z)j djzj —
(1) qST
since q—’éT 1 for this case.
Now Lemma 2.2 and (7.2) give
1 X X 1 PmtX« X X X
D(S; T) = —p— o Vas(m; n; 1) o(m)(n) ss
P I — q
2 tT qSt(t) %modt mod t
n mod t fnod t
=0;%=0
XX ¢ p+ T X_21=4 p;r

(p)(r)apare st 0



30 V. CHANDEE, K. KLINGER-LOGAN, AND X. LI

( 1 ‘ p—pr £ ) k 1#
Re — Mq(2) ——dz e +—
2i (1) X 4 8
To prove Lemma 7.2, it suces to bound
X X 1 Rgst? Xs X« X X
D1(S;T) := —— = Mi(z) Vos(m; n; 1) °(m)(n) ss
tT CISt(t) (X) m mod t mod t
n mod t mod t
=0;%=¢
X X ( p+ r X 2 1=4+z=2
L, —r
(p)(r)apare ; dz
pir p__ 7 as P
X X X
- 1 _FE M) T1(x; 2)Ta(x; 2) dz
gst(t) (1)
sS;tT x mod t
(x(x+qgs);t)=1
where
X X « n + _qs
Ti(x;2) := em_xs_l_(m); Ta(x;z) := e si1(n);
m mod t t t
n modt
and
X X p =4 =2 p
(7.6) si(m) = tm (p)ap _ e o
X z gst
mod t p

=0

By setting z = 1+ iv and Cauchy-Schwarz’s inequality, we obtain that
r

Ig sTX X = ¢ 1 122
(7.7) Di(S;T) s— x— , — M1+ iv)j(S1S2) " dv;
g sS tT t(t) 1

where

X X

S, := iTi(x; 1+ iv)j*>;  and S, := iTL(x; 1+ iv)j?:
x mod t x mod t
(x(x+qgs);t)=1 (x(x+qgs);t)=1

Now we bound S;. By a change of variables and completing the sum over x,

2 2
X X o+ mx X X = xm
Si= e —si(m) e — si(m);
x mod t m mod t x modt m modt
(x(x+gs);t)=1
and
* nx + gs 5 * Xn 2
Sy = X X e s1(n) X X e si(n) :
X mod t n mod t Xx modt n modt -
(x(x+gs);t)=1 t t
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Opening up the square and applying orthogonality, we obtain that
2

X X = xXm X = . 5 X mod
e si(m) =t js1(m)j*:
t mmodt t m mod t

Now from the denition of s (m), we open up the square and write z = 1+ iv to get
2

X+« X X 1=4 1=2 iv=2
Si t (m (p)ap P e P
m mod t mod t p —_— e
(7.8) = o X qst
2
XX (p)log(p) p p
= t(t)

T=2+iv=2 © Got 1 X} s
modt p P ' qSt X
=0

by the denition of aj.
In the above, we have written 1(y) = (y)y 3% so that ; is a bounded real smooth

function supported in (a; b). Since e 1, we do not absorb the exponential factor into

the smooth function. Instead, we will use Mellin transform in (7.3). Let »(y) = y 1i(y).
Again ; is a smooth function with compact supportin (a; b). Also note that the sum over p
does not change by introducing the smooth weight (p=X) attached to each term.
Therefore, using (7.3) the sum over p in (7.8) is

X" (p) log(p) p p 1 Z X (p)log(p) p * P,
— o> € — -~ = = M Z — o v - dz
p1—2+|v—2 qst 1 X 2i (1) 2( )p p1-2+|v—2 X 1 X

Z X( iw
iMa(1+ iw)j  © Pl log(P)X dw jM,(1
ZR p p
+ iw)jlog?(q + jv=2+ wj) dw
R
s
(7.9) X log?(q + jvj)
. ST g\q+ Jv)

by applying Lemma 2.3 and the bound (7.5). Hence from (7.8), we have
Si tz(t)qul(eg“(q + jvj):

Then from the above bound, (7.7) and applying (7.5),

' %
1 qsT X o o X .
Di(s;T)  — R iM1(1+ iv)j __Tog*(q+ jvi)dv
qS qST

tT 1

r s
1 gX gST X X X

9S (qST) X qST

1

sS tT
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upon choosing small enough , which gives us the desired bound for D(S; T).
7.2. Proof of Lemma 7.3 { big T. Note that 4s pr ,. We now use the power

1
series expansion for the J-Bessel function (2.4) to Separate variables. To be precise, we
have

X X 1 X #X = X X
D(S;T) = — Vgs(m; n; t) o(m)(n) ss
tT qSt(t m mod t mod t
n mod t fmod t
=0;%=0
(p)(r)apar e - T
gst ) I+ k 1)! gst
pr =0
p
1 X 1 2bx 2K XX 1 o
_S o k 1 I ST * 2 (WIWZ) ;
as ., M+ ) oq o7 H()
where
X X
Wy, = jT3(x;z)j2; and Wy, := jT4(X;Z)j21
x mod t x mod t
(x(x+qgs);t)=1 (x(x+qgs);t)=1
Moreover,
X « X x n _:l-_q_s_
Ta(x;z;°) := e 155, (m); Ta(x;2;%) 2= e " sy(n);
m mod t t n mod t t
and
X X 0 r D 2+k 1
(7.10) S2;(m) = (m)  (p)age — bX
mod t p qSt

=0

By the same arguments as in the proof of Lemma 7.2, we derive that

2
XX (p)logp p

Wi, t(t) —h—
(mod t) p P X
=0
where R 2
e Y2 y
=W st

Note that - is also a smooth function which is compactly supported in (a; b) with
0< a< b

By Lemma 2.3, the sum over p is log® g maXays j (3)(x)j, so we have W,

t(t)? (logq)2? *:
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Hence
Xl .6 2+k 1
p(s;T) L7 _ 2bX ST
qS o I(‘+ k 1) qgST
Xq X 6 2bx k2
%S ,_ 1+ k 1)1 gST
X
AL
g

since %XT < 1,50 the sum over ‘ is bounded by an absolute constant.

8. Error term S;

We recall that

X X 4 X «X « -
S3 =K _ Vgs(mM; n; t n
3 qst(t)z qs( ) ( )
s;t odt (p;t)=1 mod t
n mod t =
X
(r)apare Jk_+1_ pr: 4_ -
pgstr gqstp

r
We will exploit a combination of arguments from the treatment of S; and S, to bound
Sz and prove the following.

Lemma 8.1. With notations as above,
S3 ¢ =8,
Again note that this is the same that was xed in Section 1.1 so that jj 2
Similar to bounding S,; it is enough to show

(8.1) D»(S;T) g ™
where D,(S; T) is

* X
X S Valmimn XX (ay—(nasace Por: ot
qs ’ ’ par k +_[ pl’. —o_
sS;tT 4s m mod t (p;t)=1 mod t pqStr_q'St
r
Moreover, after opeAfg Vgs(m; n; t) the sum over m is a Ramanujan sum, which is equal

to (t). Therefore,

X X X « X « n( +as X X )=
D5(S; T) = ) e " TS (o) HTa, e MY
gst(t)? t gst
sS;tT x (mod t) n mod t mod t r
=0
X | 4
( p qst k 1 gst P
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We will then separate p and r in the J-Bessel function Jy 1 qﬂst P pr . Similar to Section

7, we do it in two ways depending on the size of T. The bound of D,(S; T) will follow
from the followings lemmas.

Lemma 8.2. Let T %s Then
D2(S;T) q ~*

Lemma 8.3. Let T %s Then

Do(S;T) q =*

8.1. Proof of Lemma 8.2 { small T. We will apply the Mellin transform in equation
(7.2), and by similar reasoning as in Section 7.1, it is sucient to bound
7 o

X X 1 Rq‘gt‘ X+ X« n(x + gs)
Ds(S;T) = st(t)z—xt 1M {z) e v
sS tT q (1) (mod t) n mod t
(x+qs;t)=1
X X 1=4+z=2 X 1=4+z=2
(n) (r)a, e X ape L X dz
qst r gst P
mod t r (p;t)=1
=0
By Cauchy-Schwarz’s inequality, we have
r_ﬁ X Z 1
82)  Das;T) - BT LM (L + v)j (UsU2) 7 dy;
qS o t(t)2
where I
X X n(x +gs . ’
Ul t= e ﬁ S]_(n)
x mod t n mod t t
(x(x+gs);t)=1
for s,(n) dened in (7.6), and
X X ?
3=4 iv=2
(8.3) U, := ape LIS
gst X

d it)=
(x(§+znf);tt)=1 (pit)=1

By the same argument as bounding S, in Section 7.1,
X
(8.4) U, t2(t) s 3%
qT

For U,, we need a somewhat dierent treatment. For clarity, we rst prove the
following technical lemma.
L 4.

emma 8.4 77 . o
g.c jM1(1 + iv)M, (1 + iw)j
(8.5) R R (1+ jv=2+ wj)B

dwdv q ;
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for M, satisfying (7.4) and any B 2.

Proof. By (7.4), we note that the contribution of the ranges jvj > c; qstLor jwj > ¢ Xis

gst
O(1). Hence we will assume that jvj; jwj Fukther, we write u = , + w, so that the left

gst”
side of (8.5) is
z Zz jM1(1 + iv)My(1 + iw)j
R 1+ jv=2+ wj)B dwdv
: 3 7
L — ! . ———ehvelw
s M (14 jvj)t=2(1 + jwj)t=2(1 + jv=2+ wj)® Wig,
1
dudw
w1+ 200 w2 jwi) (T + juj)®
X
(8.6) log ——
gst
where the last line follows by considering the cases ju wj > jwj=2 and ju wj jwj=2
separately.
Similarly to (7.9), we write the inner sum of U, as
( p
X 3=4 iv=2 p;t)=1
ae’P e
gst X
Z
X log p P
iM2(1 + iw)j p1=2p,iv=2+iw2 X dw |
z P '
X )
iM, (1 + iw)j log?(q+ jv=2+ wj)+ ’ dw
N 2 )i log™(a+ ] ) (1+ jv=2+ wj 20
q___

by Lemma 2.3. The contribution from the term log?(q+jv=2+wj) is qsT—%gz(q+jvj) as

in (7.9). The bound for this portion then proceeds similarly as when bounding D;.

It follows that |

X Z p T2
U iM, (1 + iw)j X
2 SN (1+ jv=2 + wj)2°
(x (T =1
z P o P
t iM>(1 + iw)j + dw
RJ 2 )J(1+ V=2 wj)o
and it remains to bound the contribution of 0
Z
iM5 (1 + iw)j X
Ve Y1+ jv=2+ wj)o

to D3(S; T)
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36
Putting this into (8.3) and combining with (8.4) and (8.2) gives
_ Z Z
qu X X 1 iM1(1 + iv)Ma(1 + iw)j
Ds(ST) 5~ () & ® T+ jv=2+ wjo_awdv
sS tT
p X q
q by
Lemma 8.4.

8.2. Proof of Lemma 8.3 { big T. Similar to Section 7.2, we will use the power series
expansion for the J-Bessel function (2.4) to separate variables p;r. This gives us

X X X « n(—+gs) X
D,(S;T) = 1 X e ( (n) (r)a,e ; r
x (mod t) t t 4s
sStT (x+gs;t)=1 N mod =mod r
X p X (1) 2Rkt
( ape . K |
D)1 ast ., _, '+ k  1)! gst
1 X 1 2bX 24k 1 X X 1
— V5 V)
K | 2 ’ ’
as ._, M+ k 1)! ST o qp T 1
where R
X X nX+ G5
Vo= e Ts-[;z(n)
x mod t n mod t
(x(x+qgs);t)=1
for s,.<(n) dened in (7.10), and
r 2w 1 25,
X X dogp p T pT kT op ¥ p
Vo= gst PbX¥ X — -
(x(Xe9dh=1 P
By the same arguments as in Section 7.2, we have
Vi t2(t)((log q)2)2:
For V3;, we bound the sum over p by
X o p
i
pbX P
upon using the prime number theorem. Therefore
Vz;f (t)X:
Hence
Xl .3 2+k 1X X
q 2bX 1 JO_X p t(t)

D>(S; T -
2(5;T) S, N+ K 1)1 ST o )2
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Px 1 . 24k 1
q X 3 2bX o

g ., M+k 1P aoST

as desired.

9. Conclusion for Sy
From Section 5, we have that

Sy = S1+ S+ S5+ O(q )
where S; = MS; +0(q =*) from Section 6, S, q = from Section 7, and Sz q “8from
Section 8. Thus

SN

g/lsl + O(1)
R
< dlog ,& . jft)j2dt+ O(1) if 1< 2

0(1) if 0 1:
which concludes the proof of Proposition 1.2.

10. Proof of Theorem 1.1

The proof follows similarly to that of Theorem 2 in Section 4 of [4].
As mentioned earlier, F(q) is an even function in . So we prove it for 0: By the
Cauchy-Schwarz inequality and Lemma 2.5,

F(q) = Ma+ Mo+ Ms+ O virvig) + o(° wirvis) + o (- viwvs);

where My N " N 5 .
. N(C|) ) mod q 1‘2Hh n (n)cf(n)‘f"rh—-X) ('
1)=( 1)k
2 X 2
205 ?X 1)|0g 2 —((]—1)=(
N(q)(q) mod q f2H 4
1)k
and 7 1!

|
Ms= O X 2log?jKj og;— j(ith2dt  «

By Proposition 1.2,

M1 f()
for0 2 : Also, by Lemma 2.4,
z 1
1 2 i lo .
M | GTH* Y)log,, (g H2(l10g q)? 28 (b dt
R

Finally
b b b
M;+ O( M;M;)+ O( M;M3)+ O( M,M;)
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, o] . .
=0 (q %) f{JTogag + O (q ")g Ylogjkj :

Therefore we have |

X.

Z 1 )
Fla) = (1+ o(1) f()+ (o ") loga B at

+0 (g 1) f0Toga+ (g ")q Vlog jkj
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