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A B S T R A C T

This paper aims to quantify the performance of Model Predictive Control (MPC) for a typical commercial
building heating, ventilation and air conditioning (HVAC) system across a wide range of climate and weather
conditions. The motivation of the study comes from the fact that although there is a large body of work on MPC
for HVAC systems, there is a lack of studies that examine the range of possible performance of MPC, in terms
of both energy savings and maintaining indoor climate (temperature and humidity) as a function of outdoor
weather. A challenge in conducting such a study is developing an MPC controller that can be used in a wide
range of weather. The root cause of this challenge is the need for a tractable cooling and dehumidification coil
model that can be used by the MPC controller, since the coil may operate in quite distinct modes depending on
weather. We present such an MPC controller, and then leverage it to conduct an extensive simulation campaign
for fourteen climate zones in the United States and four weather conditions (winter, spring, summer, and fall) in
each climate zone. The performance of the proposed controller is compared with not only a rule-based baseline
controller but also with a simpler MPC controller that ignores humidity and latent heat considerations. There
are several results the arise from this comparative study. One such result is that energy savings from MPC over
baseline can vary dramatically based on climate and season. Another is that the effect of ignoring humidity
in the MPC formulation can lead to poor indoor humidity control more in milder weather rather than in
hot weather. The results from this study can help practitioners and researchers assess costs and benefits of
proposed MPC formulations for HVAC control.
1. Introduction

Model predictive control (MPC) for heating, ventilation, and air
conditioning (HVAC) systems in commercial buildings for energy ef-
ficiency improvement has been an active area of research; see the
review papers [1,2]. One of the reasons for the interest in MPC is
he high energy consumption of HVAC systems, and a recognition that
n advanced control algorithm can be a cost-effective way to reduce
heir energy use. In MPC, at every time instant control commands
re decided by solving an optimization problem over a finite planning
orizon into the future, implementing only the first segment of the plan,
nd then repeating the process ad infinitum. In case of building climate
ontrol, the advantage of MPC is that it can explicitly take into account
ompeting requirements such as reducing energy use while maintaining
ndoor climate variables within allowable ranges.
Many distinct MPC schemes have been proposed in the context of

nergy efficient HVAC operation, differing in the type of HVAC system
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considered, the objective function to minimize, types of models used as
constraints by the optimizer, etc. Each study, whether simulation-based
or experimental, uses a different HVAC system configuration, outdoor
weather, and optimization problem formulation. The effect of outdoor
weather can be particularly strong. In experimental studies, outdoor
weather cannot be varied beyond what is observed at the location of
the test.

A gap in the existing literature on MPC for energy efficient HVAC
operation is the lack of information on the range of performance that
MPC can exhibit for a wide range of outdoor weather conditions.
Here performance includes both energy savings and indoor climate
(temperature and humidity). To the best of our knowledge, the only
work that studies energy savings potential of HVAC control algorithms
over a large number of climate zones is [3], but the controllers tested
in that paper are rule-based, not MPC.
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Nomenclature

𝐴 Area
𝐴𝑒 Effective area
𝐶 Capacitance
𝐶𝑂𝑃 Coefficient of performance
𝐸 Energy
ℎ Specific enthalpy
𝑁 Planning horizon
𝑛𝑝 Number of persons
𝑃 Power (electrical)
𝑞 Power (thermal)
𝑞𝑜𝑡ℎ𝑒𝑟 Rate of heat generated by people etc. inside

the building
𝑅 Resistance
𝑟𝑜𝑎 Outdoor air ratio
𝑅𝐻 Relative humidity
𝑇 Temperature (dry bulb, if air)
𝑢 Control command
𝑉𝐻 Humidity violation
𝑉𝑇 Temperature violation
𝑊 Humidity ratio
𝑤 Disturbance
𝑥 State
𝛥𝑡 Sampling period
𝜂 Efficiency
𝜂𝑠𝑜𝑙 Solar irradiance
𝜆 Weights
𝜔 Water vapor generation rate
𝜔𝑜𝑡ℎ𝑒𝑟 Rate of moisture generated by people etc.

inside the building
R Set of real numbers
𝜁 Slack variable
𝑏𝑝 Building pressurization
𝑜𝑐𝑐 Occupied mode
𝑢𝑛𝑜𝑐𝑐 Unoccupied mode
𝑐𝑎 Conditioned air
𝑐𝑐 Cooling coil
𝑑𝑎 Dry air
𝑖𝑎 Indoor air
𝑗, 𝑘 Time index
𝑚𝑎 Mixed air
𝑜𝑎 Outdoor air
𝑝ℎ𝑎 Pre heat air
𝑟𝑎 Return air
𝑟ℎ𝑎 Reheat air
𝑠𝑎 Supply air
𝑤 Water
𝑤𝑖 Water at inlet
𝑤𝑜 Water at outlet

This paper addresses the aforementioned gap by conducting an ex-
ensive simulation campaign with two distinct MPC controllers applied
o an HVAC system, for fourteen distinct climate zones – for all the
tates and territories of the United States – and for four seasons (winter,
pring, summer, and fall) in each climate zone. Though limited to one
ountry, these 14 × 4 = 56 scenarios span a wide range of outdoor
eather conditions seen in many parts of the world.
2

M

The HVAC system used for the study is a single duct variable air
volume hydronic system with pre-heat, cooling and dehumidification,
and reheat coils (see Fig. 1). This configuration is common in medium
and large commercial buildings across the USA.

This paper makes three contributions to the existing literature on
MPC for HVAC systems. The first contribution is that the study provides
a preliminary answer to the question: in which climate zones MPC
is likely to provide significant energy savings and thermal comfort
performance to be competitive with simpler rule-based controllers that
are currently in use? While a decision by a building owner to invest
in MPC will require a study specifically designed for the building in
question, this study can be used as a preliminary guide.

To describe the second contribution, we have to first describe the
challenge in designing an MPC controller that can be used in a wide
range of weather conditions without making it computationally in-
tractable or requiring a human expert to redesign the controller for that
weather. A large subset of MPC formulations in the literature ignore
humidity and latent heat, focusing only on the (dry bulb) space temper-
ature. The inclusion of moisture makes the problem considerably more
challenging, primarily since a model of the cooling and dehumidifying
coil is needed. The heat transfer and condensation (moisture removal)
process on the coil surface is highly complex and difficult to model.
In addition, the model must be simple, since MPC uses the model as
a constraint in an optimization problem that has to be solved in real
time. A complicated model will increase the computational complexity
of the optimization problem, potentially rendering it unusable. Such a
control-oriented dehumidification coil model was described in our prior
work [4] which was used successfully to perform MPC simulations for
hot-humid weather. However, this simplified model was not accurate
enough for all climate zones. To obtain a high prediction accuracy
while keeping the same model structure, a sequence of models, each
parameterized by certain coil inlet conditions, can be used. But doing so
leads to a high-dimensional mixed-integer nonlinear program (MINLP),
with integer variables corresponding to which model among the set of
models is to be used at any given time instant. Such MINLPs are nearly
impossible to solve in a real-time setting.

In this paper we use a reformulation of the optimization problem
that retains the non-linear program (NLP) nature of the optimization
problem without any integer-valued variables. NLPs are far easier to
solve than mixed integer problems. In fact, simulations show that the
real-time computational cost of the proposed MPC controller is quite
low. The proposed MPC formulation, which we call WISL-MPC here
(for Weather-Independent-Sensible-Latent-MPC), was introduced in our
reliminary work [5], but it was tested only for two specific climate
ones and seasons in that study. The simulations presented in this paper
erifies the claim that the proposed MPC scheme can be indeed used in
wide range of climate zones without either having to solve a high
imensional MINLP or having to retune the MPC formulation by a
uman expert depending on the climate. This is the second contribution
f the paper.
The third contribution is the comparison between the proposed
ISL-MPC controller – that takes into account latent heat balance
nd humidity constraints explicitly in the optimization problem – and
nother MPC controller (S-MPC, from [4]) - that only considers sensible
eat balance and temperature constraints but ignores latent heat bal-
nce and humidity constraints. The S-MPC scheme is representative of
he majority of MPC schemes proposed in the literature and studied in
xperimental demonstrations. The WISL-MPC controller is more expen-
ive than S-MPC: both real-time computation and the modeling effort
equired are higher for WISL-MPC. On the other hand, S-MPC may lead
o poor humidity control and thus poor thermal comfort and even mold
rowth [6]. So a natural question arises: when is the extra cost of WISL-
PC warranted, and when can one deploy the less expensive S-MPC
cheme? The simulation study presented here provides an answer to
his question as well, since it compares the performance of both the

PC schemes in every climate zone and season. Somewhat surprisingly,
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S-MPC – which ignores humidity and latent heat – successfully provides
humidity control in hot-humid climates during peak summer but fails
to meet humidity requirements in milder weather in the same climate
zone. More generally, S-MPC leads to humidity violations in moist and
marine climates. Both the MPC controllers provide similar performance
in dry climates.

Overall, it is found that WISL-MPC provides significant amount
of energy savings over the baseline controller, and is able to main-
tain the thermal comfort constraints as well or better than the base-
line controller. The energy savings vary considerably by climate zone
and weather. The humidity-agnostic MPC controller, S-MPC, provides
nearly the same amount of energy savings as the WISL-MPC controller
n many scenarios, but it often causes poor humidity control, especially
n moist climate zones and in mild seasons. These results validate the
eed for incorporating humidity and latent heat in MPC, as well as the
eed for a study of MPC performance as a function of climate zone.
The baseline controller used in the study is the so called Dual
aximum controller [7]. The Single Maximum controller is in fact more
idely used in practice than the Dual Maximum controller, but Dual
aximum is more energy efficient [7,8]. So the actual savings with
ISL-MPC in practice are likely to be higher than those reported.
The rest of the paper is organized as follows. Section 1.1 provides

a detailed review of relevant literature, including a description of
the contribution over our own prior works [4,5] that this paper is
an extension of. Section 2 describes the HVAC system under study.
Section 3 describes the two MPC schemes and the baseline controller.
Section 4 describes the simulation setup, and Section 5 describes the
imulation results. Section 6 makes concluding remarks.

.1. Review of prior work, and contributions

Since the aim of this paper is to study the effect of weather spanning
any climate zones, including hot and humid climates, on MPC perfor-
ance, and both humidity and temperatures are important metrics for
erformance, we limit our review to those papers on HVAC MPC that
ave considered at least humidity if not both humidity and latent heat.
Based on the objective function to be minimized, a MPC formulation

an be classified into (i) economic MPC and (ii) set point tracking
PC [9]. In set point tracking MPC, the objective function is typically
deviation from the setpoint, so that minimizing would drive the
elevant output(s) to the desired set point(s). In economic MPC, the
bjective function can be any performance measure, not necessarily
eviation from setpoints.
The MPC controllers studied in this paper, and those in Refs. [8,10–

9] belong to the economic MPC category. In [17], it is assumed
hat the relative humidity of the conditioned air after the cooling coil
s always 100%. In [10], this value is assumed to be always 90%,
hile [8] assumes both the temperature and the humidity ratio of the
onditioned air are constant. These assumptions avoid the need for
odeling the cooling and dehumidification process at the coil, though
he validity of these assumptions is questionable. Such simplifying
ssumptions are not made in this paper. An economic MPC scheme for
nergy use minimization with humidity and latent heat considerations
s presented in [12]. Unlike the hydronic system used in this work, the
ocus in [12] is on direct expansion systems. MPC is used to control a
ariable refrigerant flow HVAC system in [13]. In [14], space humidity
s controlled using a proportional–integral controller, but humidity is
ot considered directly in their MPC formulation while it is in this
aper.
In [15], MPC is used to control an environmental chamber located

t the Pennsylvania State University campus. Latent heat is ignored in
he MPC formulation, though humidity is indirectly considered through
data-driven thermal comfort model. In [18], a token based scheduling
lgorithm is used to minimize the energy consumption for a building
ocated at the Nanyang Technological University, Singapore. Humidity
3

onstraint is incorporated through a thermal sensation model used but w
atent heat is ignored. In contrast to [15,18], latent heat is directly
onsidered here. An enthalpy control algorithm is used in [16] to
egulate the amount of outdoor air supplied to a building. Several more
ommands – in addition to outdoor air – are decided by the controller
n this paper.
A few works have used a hybrid between economic and setpoint
PC: the objective function consist of both energy use and devia-
ion from set point terms, e.g. [20–22]. Multiple MPC strategies are
ompared for an air handling unit in [20]. It is assumed that the
emperature and humidity ratio after the cooling coil can be chosen
ndependently, thereby eliminating the need for a cooling coil model.
his assumption will not hold in reality, since only inlet conditions of
he coil can be independently manipulated. Unlike the cooling-based
ir dehumidification considered in this work, Ref. [21] uses a liquid
esiccant system for cooling and dehumidification.
Ref. [22] is more relevant to our work; they use a cooling coil model

n their optimization. Temperature and humidity of the conditioned air
re modeled correctly as coupled. Unlike our formulation, the supply
ir flow rate is not a control command in [22]. The MPC optimizer
n [22] uses short prediction horizon of 10 min, so it cannot plan for
isturbances in longer time scales. In contrast, we use a prediction
orizon of 24 h. Genetic algorithm (GA) is used in [22] to perform the
inimization involved in computing control commands. Nondetermin-
stic optimization algorithms such as GA are challenging for real-time
omputation. In contrast, we use a deterministic search method through
nonlinear programming (NLP) solver.
MPC works that report experimental evaluations in real buildings

re of special interest even if they do not consider humidity and latent
eat in their MPC formulation. After all, if an MPC controller – irre-
pective of the optimization formulation – can maintain temperature
nd humidity constraints in real buildings while saving energy, then
ncorporating humidity related features into the controller—which nec-
ssarily increases complexity—is perhaps not necessary. In particular,
efs. [23–26] describe experimental demonstrations that have been
arried out with MPC-based controllers on real buildings. The problem
ormulations in [23–25] do not consider latent heat and humidity,
nd they do not report humidity measurements. Ref. [26] reports a
implified comfort index that is based on measurements of humidity
nd temperature, which shows comfort constraints are maintained in
heir experiments, but these experimental results for a specific building
n Singapore. Our focus is to study MPC under a wide range of climate
nd weather conditions.
Our previous work [4] addressed the problem of incorporating

atent heat and humidity by developing a reduced order cooling and
ehumidification coil model that was used as a constraint in the MPC
ptimization. As discussed above, the model was not suitable for all
limate zones, and a straightforward extension with a bank of models,
ach suitable for a range of coil inlet conditions, would lead to an in-
ractable high dimensional MINLP. A workaround was proposed in [5]
hat avoided the need for MINLP, but kept the optimization as an NLP.
The contributions of this paper over our preliminary study [5]

re twofold. The study [5] tested the MPC formulation only on two
limate zones: hot-humid and hot-dry, and thus did not establish that
he proposed controller can indeed be applied to a wide range of
utdoor weather conditions successfully without requiring a redesign
y a human expert. This paper establishes that claim by applying it to
4 distinct climate zones that covers the contiguous USA (i.e., the lower
8 states), Alaska and Puerto Rico, Guam and Hawaii. In each climate
one, weather from four different seasons are used for simulations.
ogether, these 56 combinations represent a wide range of outdoor
eather conditions. The proposed WISL-MPC controller is seen to per-
orm well in all of these scenarios. Second, the poor performance of the
PC formulation that ignores latent heat in many climate zones is seen
n this study for the first time. Finally, many details were omitted in [5],

hich are described here to make the presentation self contained.
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2. System description

We consider a single-zone variable-air-volume hydronic HVAC sys-
tem, whose schematic is shown in Fig. 1. Throughout the manuscript,
he subscripts 𝑚𝑎, 𝑝ℎ𝑎, 𝑐𝑎, and 𝑠𝑎 are used to denote the four locations
ndicated in Fig. 1: 𝑚𝑎 stands for mixed air (before the preheating coil),
𝑝ℎ𝑎 stands for preheat air (between the preheating and the cooling
oils), 𝑐𝑎 stands for conditioned air (between the cooling coil and the
reheating coil), and 𝑠𝑎 stands for supply air (after the reheating coil).

In such a system, part of the air supplied to the building is recir-
culated and mixed with fresh outdoor air. If this mixture is too cold,
it is heated at the preheating coil so that the downstream cooling
coil is protected from freezing and bursting. This air is sent through
the cooling and dehumidification coil, thereby reaching conditioned
air temperature (𝑇𝑐𝑎) and humidity ratio (𝑊𝑐𝑎) after the coil. If the
air before the cooling coil is dry, then there is only cooling but no
dehumidification, i.e., 𝑇𝑐𝑎 ≤ 𝑇𝑝ℎ𝑎 and 𝑊𝑐𝑎 = 𝑊𝑝ℎ𝑎. The conditioned air
is typically quite cold and is therefore reheated at the reheating coil
to the supply air temperature (𝑇𝑠𝑎) and finally supplied to the zone.
There is no phase change of the moisture in the air (water vapor ↔
water) across the reheating or preheating coils, so the humidity ratio
of the supply air is the same as the conditioned air (𝑊𝑠𝑎 = 𝑊𝑐𝑎), and
the humidity ratio of the preheated air is the same as the mixed air
(𝑊𝑝ℎ𝑎 = 𝑊𝑚𝑎).

The configuration shown in Fig. 1 is quite common in commercial
uildings in the continental U.S. The reason is reliability under extreme
onditions that are not uncommon. Even in typically cold climates
uch as that in Chicago, Illinois, hot-humid weather occurs in the
ummer, requiring the cooling and dehumidification coil and thus the
eheating coil. Similarly, in many warm-humid climates extremely cold
eather occurs on certain winter days; such as Gainesville, Florida.
hat necessitates the preheating coil, since otherwise the cooling coil
an freeze and burst, causing expensive disruption. Thus, a minimal
equirement for a climate-independent HVAC control algorithm is that
s must be applicable to the configuration shown in Fig. 1.
The role of an HVAC control system is to maintain thermal comfort

nd indoor air quality by varying control commands. In the HVAC
ystem shown in Fig. 1, the following commands can be manipulated
y the controller:

(1) supply air flow rate (𝑚𝑠𝑎),
(2) outdoor air ratio (𝑟𝑜𝑎 ∶= 𝑚𝑜𝑎

𝑚𝑠𝑎
= 𝑚𝑜𝑎

𝑚𝑜𝑎+𝑚𝑟𝑎
, where 𝑚𝑜𝑎 and 𝑚𝑟𝑎 are

the flow rates of outdoor air and return air, respectively),
(3) preheated air temperature (𝑇𝑝ℎ𝑎),
(4) conditioned air temperature (𝑇𝑐𝑎), and
(5) supply air temperature (𝑇𝑠𝑎).

o the control command vector is:

∶= [𝑚𝑠𝑎, 𝑟𝑜𝑎, 𝑇𝑐𝑎, 𝑇𝑠𝑎, 𝑇𝑝ℎ𝑎]𝑇 ∈ R5 (1)

hese five control commands are sent as set points to low-level control
oops comprised of proportional–integral (PI) controllers.

.1. Virtual building (VB) simulator

To avoid confusion between the model the MPC controller uses for
aking decisions, which is simpler than the model used to simulate
he HVAC system, the latter will be referred to as the ‘‘virtual building’’
VB) in the sequel. The overall virtual building consists of hygrothermal
ynamics of a single-zone building coupled with a model of the cooling
oil, heating coil, and preheating coil. The virtual building is of the
orm 𝑥(𝑘 + 1) = 𝑓

(

𝑥(𝑘), 𝑢(𝑘), 𝑤(𝑘)
)

, where 𝑥 is the state vector, 𝑢 is the
ontrol command vector, and 𝑤 is the exogenous input (disturbance)
ector. The state vector consists of indoor (dry bulb) air temperature
𝑇𝑖𝑎), wall temperature (𝑇𝑤𝑎𝑙𝑙), indoor air humidity ratio (𝑊𝑖𝑎), and
onditioned air humidity ratio (𝑊 ), i.e., 𝑥 ∶= [𝑇 , 𝑇 ,𝑊 ,𝑊 ]𝑇 ∈
4

𝑐𝑎 𝑖𝑎 𝑤𝑎𝑙𝑙 𝑖𝑎 𝑐𝑎
Fig. 1. Schematic of a single-zone variable-air-volume hydronic HVAC system.

4. The control command vector 𝑢 is defined in (1). The exogenous
nput vector consists of solar irradiance (𝜂𝑠𝑜𝑙), outdoor air temperature
𝑇𝑜𝑎), outdoor air humidity ratio (𝑊𝑜𝑎), internal heat load (𝑞𝑜𝑡ℎ𝑒𝑟) due
o occupants, lights, equipments, etc., and rate of internal water vapor
eneration (𝜔𝑜𝑡ℎ𝑒𝑟) due to occupants, equipments, etc. Therefore, 𝑤 ∶=
𝜂𝑠𝑜𝑙 , 𝑇𝑜𝑎,𝑊𝑜𝑎, 𝑞𝑜𝑡ℎ𝑒𝑟, 𝜔𝑜𝑡ℎ𝑒𝑟]𝑇 ∈ R5.
The parameters of virtual building – the combined hygrothermal
odel and cooling coil model – are chosen to mimic a real building
nd its HVAC system; a 465 m2 (5000 sq.ft.) auditorium in Pugh Hall
ocated at the University of Florida campus which is served by an air
andling unit that has the same configuration as shown in Fig. 1.

.1.1. Hygrothermal model in the VB
The hygrothermal model is a discretized form of a coupled ordinary

ifferential equation (ODE) model with three states. Two of the ODEs
orrespond to the two temperature states of a resistance–capacitance
RC) network model, specifically, a 2R2C model. The third ODE cor-
esponds to the zone humidity state, which is affected by the zone
emperature. The parameters of the RC-network (temperature) sub-
odel were obtained by fitting the model to measured data from the
ugh Hall auditorium mentioned above. The reader interested in the
etails of the model and the parameter fitting method used is referred
o [27]. Details of the humidity dynamic model can be found in [28].
he only parameter in the humidity sub-model is the volume of the
one.
Inputs to the hygrothermal model include the conditioned air tem-

erature and flow rate, which are outputs of the cooling coil model
described next), thereby coupling the two models to create the virtual
uilding simulator.

.1.2. Cooling and dehumidifying coil model in the VB
The cooling and dehumidification coil model strongly informs the

roposed MPC formulation. The interested readers are referred to our
rior work [4] for a detailed description of the cooling coil model
nd how its parameters are fitted; here we describe it briefly. The
ooling coil model is a gray box data-driven model which was devel-
ped in [29]. The model consists of five inputs and two outputs; see
ig. 2. The inputs are: (i) supply airflow rate (𝑚𝑠𝑎), (ii) preheated air
emperature (𝑇𝑝ℎ𝑎), (iii) preheated air humidity ratio (𝑊𝑝ℎ𝑎), (iv) chilled
ater flow rate (𝑚𝑤), and (v) inlet water temperature (𝑇𝑤𝑖). The outputs
re conditioned air temperature (𝑇𝑐𝑎) and humidity ratio (𝑊𝑐𝑎). The
arameters of this model are fitted using data obtained from Energy-
lus [30]. The EnergyPlus model is constructed by using manufacturer’s
nformation on the coil used in Pugh Hall.
It was observed during modeling that for a fixed mixed temperature

nd relative humidity of the air entering the coil, the outputs 𝑇𝑐𝑎 and
𝑐𝑎 can be predicted quite well by a 5th degree polynomial function
f the remaining inputs, namely, the mass flow rates of chilled water
nd supply air. Fig. 3 shows an example of such predictions. A single
polynomial, however, leads to large errors when used at different
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Fig. 2. Schematic of a cooling coil; model inputs in rectangles, and outputs in circles.

Fig. 3. A slice of the predictions from the cooling coil model used in the virtual
building.

mixed air temperatures and relative humidities. We therefore used a
bank of such polynomials, by first binning the inputs according to
𝑇𝑝ℎ𝑎 and 𝑅𝐻𝑝ℎ𝑎 into 1159 bins, and then fitting the parameters of
the polynomial for each bin. The resulting model is called a ‘‘binned
model’’. During simulation, given the current coil inlet air conditions,
the right polynomial from this bank of polynomials is picked, and then
used to predict coil outlet conditions based on the flow rates of chilled
5

water and mixed air.
3. Control algorithms

In this section, we describe three control algorithms: (i) the pro-
posed MPC controller that incorporates humidity and latent heat, called
WISL-MPC (for Weather-Independent-Sensible-Latent-MPC), (ii) an MPC
controller that considers only sensible heat, called S-MPC (for Sensible-
nly-MPC), and (iii) a rule-based controller that serves as the baseline
𝐵𝐿). All three controllers need to decide the same five control commands
efined in (1). The underlying optimization problems in both the MPC
ontrollers are nonconvex, but always feasible due to the use of slack
ariables.
The focus of this paper is energy efficiency, and the total energy

onsumed over a time duration [𝑗𝛥𝑡, (𝑗+𝑁)𝛥𝑡], where 𝛥𝑡 is the sampling
eriod, is:

𝑡
𝑗+𝑁−1
∑

𝑘=𝑗
𝑃𝑡𝑜𝑡𝑎𝑙(𝑘) (2)

here 𝑃𝑡𝑜𝑡𝑎𝑙(𝑘) is the total power consumption of the HVAC system at
he 𝑘th time instant, meaning, during [𝑘 (𝑘 + 1))𝛥𝑡):

𝑡𝑜𝑡𝑎𝑙(𝑘) ∶= 𝑃𝑓𝑎𝑛(𝑘) + 𝑃𝑝𝑟𝑒ℎ𝑒𝑎𝑡(𝑘) + 𝑃𝑐𝑐 (𝑘) + 𝑃𝑟𝑒ℎ𝑒𝑎𝑡(𝑘). (3)

𝑓𝑎𝑛 is the fan power consumption [31]:

𝑓𝑎𝑛(𝑘) = 𝛼𝑓𝑎𝑛𝑚𝑠𝑎(𝑘)2. (4)

he cooling and dehumidifying coil power consumption 𝑃𝑐𝑐 is propor-
ional to the heat it extracts from the preheated air stream as follows:

𝑐𝑐 (𝑘) =
𝑚𝑠𝑎(𝑘)[ℎ𝑝ℎ𝑎(𝑘) − ℎ𝑐𝑎(𝑘)]

𝜂𝑐𝑐𝐶𝑂𝑃𝑐
, (5)

where ℎ𝑝ℎ𝑎 and ℎ𝑐𝑎 are the specific enthalpies of the preheated air and
onditioned air respectively. We refer the interested reader to [4] for
etails about the enthalpy terms and the efficiency and coefficient of
erformance (𝜂𝑐𝑐 and 𝐶𝑂𝑃𝑐).
Recall that there is no change in the humidity ratio across the

preheating or reheating coils. Therefore, their power consumptions
depend only on the temperatures before and after the coils and not
on humidities. The preheating and reheating coil power consumptions
𝑃𝑝𝑟𝑒ℎ𝑒𝑎𝑡 are modeled as the heat they add to their respective air streams
with efficiency factors and boiler COPs:

𝑃𝑝𝑟𝑒ℎ𝑒𝑎𝑡(𝑘) =
𝑚𝑠𝑎(𝑘)𝐶𝑝𝑎[𝑇𝑝ℎ𝑎(𝑘) − 𝑇𝑚𝑎(𝑘)]

𝜂𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝐶𝑂𝑃ℎ
, (6)

𝑃𝑟𝑒ℎ𝑒𝑎𝑡(𝑘) =
𝑚𝑠𝑎(𝑘)𝐶𝑝𝑎[𝑇𝑠𝑎(𝑘) − 𝑇𝑐𝑎(𝑘)]

𝜂𝑟𝑒ℎ𝑒𝑎𝑡𝐶𝑂𝑃ℎ
. (7)

3.1. Proposed weather-independent model predictive controller
(WISL-MPC)

Fig. 4 shows the control architecture for the proposed WISL-MPC
controller.

The decision variables in the optimization problem underlying the
proposed MPC controller consists of the following: (i) the states of the
process 𝑥(𝑘) ∶= [𝑇𝑖𝑎(𝑘),𝑊𝑖𝑎(𝑘)]𝑇 ∈ R2, (ii) the vector of control com-
mands and internal variables 𝑣(𝑘) ∶= [𝑢(𝑘)𝑇 , 𝑚𝑤,𝑇 (𝑘), 𝑚𝑤,𝑊 (𝑘),𝑊𝑐𝑎(𝑘)]𝑇

∈ R8, where 𝑢(𝑘) is the control command vector defined in (1), and
𝑚𝑤,𝑇 (𝑘), 𝑚𝑤,𝑊 (𝑘) are fictitious cooling coil water flow rate variables that
will be described in Section 3.1.1, and (iii) the vector of nonnegative
slack variables 𝜁 (𝑘) ∶= [𝜁 𝑙𝑜𝑤𝑇 (𝑘), 𝜁ℎ𝑖𝑔ℎ𝑇 (𝑘), 𝜁 𝑙𝑜𝑤𝑊 (𝑘), 𝜁ℎ𝑖𝑔ℎ𝑊 (𝑘), 𝜁𝑚𝑤

(𝑘)] ∈ R5

which are introduced for feasibility. The controller needs forecast of the
exogenous input vector 𝑤(𝑘) ∈ R5 (defined earlier) over the planning
horizon 𝑁 .

In simulations reported later, we use 𝛥𝑡 = 10 minutes and planning
horizon 𝑁 = 144, corresponding to 24 h. Therefore, there are 2160 (=

144×{2 +8 +5}) decision variables. Mathematically the optimization
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Fig. 4. WISL-MPC, control architecture. In this figure, OA: outdoor air, EA: exhaust
air, RA: return air, MA: mixed air, PHA: preheated air, CA: conditioned air, and SA:
supply air.

problem at time index 𝑗 consists of the following minimization (subject
to constraints that will be described soon):

min
𝑉 ,𝑋,𝑍

𝑗+𝑁−1
∑

𝑘=𝑗

[

𝑃𝑓𝑎𝑛(𝑘) + 𝑃𝑐𝑐 (𝑘) + 𝑃𝑟𝑒ℎ𝑒𝑎𝑡(𝑘) + 𝜆𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝑃𝑝𝑟𝑒ℎ𝑒𝑎𝑡(𝑘)

+ 𝑃𝑠𝑙𝑎𝑐𝑘(𝑘)
]

𝛥𝑡, (8a)

here 𝑉 ,𝑋,𝑍 are tall vectors obtained by stacking together
(𝑘), 𝑥(𝑘), 𝜁(𝑘)’s over the planning horizon, and 𝑃𝑓𝑎𝑛, 𝑃 𝑆𝐿

𝑐𝑐 , 𝑃𝑟𝑒ℎ𝑒𝑎𝑡, and
𝑝𝑟𝑒ℎ𝑒𝑎𝑡 are given by (4), (5), (7), and (6) respectively. The last term,

𝑃𝑠𝑙𝑎𝑐𝑘, penalizes the zone temperature, zone humidity, and chilled
water flow rate slack variables:

𝑃𝑠𝑙𝑎𝑐𝑘(𝑘) ∶= 𝜆𝑙𝑜𝑤𝑇 𝜁 𝑙𝑜𝑤𝑇 (𝑘) + 𝜆ℎ𝑖𝑔ℎ𝑇 𝜁ℎ𝑖𝑔ℎ𝑇 (𝑘)

+ 𝜆𝑙𝑜𝑤𝑊 𝜁 𝑙𝑜𝑤𝑊 (𝑘) + 𝜆ℎ𝑖𝑔ℎ𝑊 𝜁ℎ𝑖𝑔ℎ𝑊 (𝑘) + 𝜆𝑚𝑤
𝜁𝑚𝑤

(𝑘),

where the 𝜆s are penalty parameters. The minimization (8a) together
with the following constraints define the MPC optimization problem at
time 𝑗:

𝑇𝑖𝑎(𝑘 + 1) = 𝑇𝑖𝑎(𝑘) +
𝛥𝑡
𝐶

[

(𝑇𝑜𝑎(𝑘) − 𝑇𝑖𝑎(𝑘))
𝑅

+ 𝑞HVAC(𝑘)

+ 𝐴𝑒𝜂𝑠𝑜𝑙(𝑘) + 𝑞𝑜𝑡ℎ𝑒𝑟(𝑘)
]

(8b)

HVAC(𝑘) = 𝑚𝑠𝑎(𝑘)𝐶𝑝𝑎(𝑇𝑠𝑎(𝑘) − 𝑇𝑖𝑎(𝑘)) (8c)

𝑖𝑎(𝑘 + 1) = 𝑊𝑖𝑎(𝑘) +
𝛥𝑡𝑅𝑔𝑇𝑖𝑎(𝑘)

𝑉 𝑃 𝑑𝑎

[

𝜔𝑜𝑡ℎ𝑒𝑟(𝑘)

+ 𝑚𝑠𝑎(𝑘)
𝑊𝑠𝑎(𝑘) −𝑊𝑖𝑎(𝑘)

1 +𝑊𝑠𝑎(𝑘)

]

(8d)

𝑐𝑎(𝑘) = 𝑓𝑐𝑜
(

𝑇𝑝ℎ𝑎(𝑘),𝑊𝑝ℎ𝑎(𝑘), 𝑚𝑠𝑎(𝑘), 𝑚𝑤,𝑇 (𝑘)
)

(8e)

𝑐𝑎(𝑘) = 𝑔𝑐𝑜
(

𝑇𝑝ℎ𝑎(𝑘),𝑊𝑝ℎ𝑎(𝑘), 𝑚𝑠𝑎(𝑘), 𝑚𝑤,𝑊 (𝑘)
)

(8f)

𝑤,𝑊 (𝑘) = 𝑚𝑤,𝑇 (𝑘) − 𝜁𝑚𝑤
(𝑘) (8g)

𝑙𝑜𝑤
𝑖𝑎 (𝑘) − 𝜁 𝑙𝑜𝑤𝑇 (𝑘) ≤ 𝑇𝑖𝑎(𝑘) ≤ 𝑇 ℎ𝑖𝑔ℎ

𝑖𝑎 (𝑘) + 𝜁ℎ𝑖𝑔ℎ𝑇 (𝑘) (8h)
𝑎𝑙𝑜𝑤𝑇𝑖𝑎(𝑘) + 𝑏𝑙𝑜𝑤 − 𝜁 𝑙𝑜𝑤𝑊 (𝑘) ≤ 𝑊𝑖𝑎(𝑘)

≤ 𝑎ℎ𝑖𝑔ℎ𝑇𝑖𝑎(𝑘) + 𝑏ℎ𝑖𝑔ℎ + 𝜁ℎ𝑖𝑔ℎ𝑊 (𝑘) (8i)

max
(

𝑚𝑠𝑎(𝑘) − 𝑚𝑟𝑎𝑡𝑒
𝑠𝑎 𝛥𝑡, 𝑚𝑙𝑜𝑤

𝑠𝑎
)

≤ 𝑚𝑠𝑎(𝑘 + 1)

≤ min
(

𝑚𝑠𝑎(𝑘) + 𝑚𝑟𝑎𝑡𝑒
𝑠𝑎 𝛥𝑡, 𝑚ℎ𝑖𝑔ℎ

𝑠𝑎
)

(8j)
max

(

𝑇𝑝ℎ𝑎(𝑘) − 𝑇 𝑟𝑎𝑡𝑒
𝑝ℎ𝑎 𝛥𝑡, 𝑇

𝑙𝑜𝑤
𝑝ℎ𝑎 , 𝑇𝑚𝑎(𝑘 + 1)

)

≤ 𝑇𝑝ℎ𝑎(𝑘 + 1)

≤ min
(

𝑇𝑝ℎ𝑎(𝑘) + 𝑇 𝑟𝑎𝑡𝑒
𝑝ℎ𝑎 𝛥𝑡, 𝑇

ℎ𝑖𝑔ℎ
𝑝ℎ𝑎

)

(8k)

max
(

𝑟 (𝑘) − 𝑟𝑟𝑎𝑡𝑒𝛥𝑡, 𝑟𝑙𝑜𝑤
)

≤ 𝑟 (𝑘 + 1)
6

𝑜𝑎 𝑜𝑎 𝑜𝑎 𝑜𝑎
≤ min
(

𝑟𝑜𝑎(𝑘) + 𝑟𝑟𝑎𝑡𝑒𝑜𝑎 𝛥𝑡, 𝑟ℎ𝑖𝑔ℎ𝑜𝑎
)

(8l)
max

(

𝑇𝑐𝑎(𝑘) − 𝑇 𝑟𝑎𝑡𝑒
𝑐𝑎 𝛥𝑡, 𝑇 𝑙𝑜𝑤

𝑐𝑎
)

≤ 𝑇𝑐𝑎(𝑘 + 1)

≤ min
(

𝑇𝑐𝑎(𝑘) + 𝑇 𝑟𝑎𝑡𝑒
𝑐𝑎 𝛥𝑡, 𝑇𝑝ℎ𝑎(𝑘 + 1)

)

(8m)
max

(

𝑇𝑠𝑎(𝑘) − 𝑇 𝑟𝑎𝑡𝑒
𝑠𝑎 𝛥𝑡, 𝑇𝑐𝑎(𝑘 + 1)

)

≤ 𝑇𝑠𝑎(𝑘 + 1)

≤ min
(

𝑇𝑠𝑎(𝑘) + 𝑇 𝑟𝑎𝑡𝑒
𝑠𝑎 𝛥𝑡, 𝑇 ℎ𝑖𝑔ℎ

𝑠𝑎
)

(8n)

𝑊𝑐𝑎(𝑘) ≤ 𝑊𝑝ℎ𝑎(𝑘) (8o)

𝜁 𝑙𝑜𝑤𝑇 (𝑘 + 1), 𝜁ℎ𝑖𝑔ℎ𝑇 (𝑘 + 1) ≥ 0 (8p)

𝜁 𝑙𝑜𝑤𝑊 (𝑘 + 1), 𝜁ℎ𝑖𝑔ℎ𝑊 (𝑘 + 1), 𝜁𝑚𝑤
(𝑘) ≥ 0 (8q)

where constraints (8b)–(8g) and (8o)–(8q) are for 𝑘 = 𝑗,… , 𝑗 +𝑁 − 1,
constraints (8h) and (8i) are for 𝑘 = 𝑗 + 1,… , 𝑗 + 𝑁 , and constraints
(8j)–(8n) are for 𝑘 = 𝑗 − 1,… , 𝑗 +𝑁 − 2.

Note that the cooling coil power consumption 𝑃𝑐𝑐 (𝑘) used in the
objective function (8a) is given by (5) which is a function of enthalpy
and thus accounts for both sensible and latent heat transfers.

Constraints (8b) and (8d) are for the discretized temperature and
humidity dynamics model of the indoor air, respectively. The temper-
ature model (8b) is a discretized form of a 1st order resistor–capacitor
model, with 𝑅,𝐶 being thermal resistance and capacitance of the
building, and 𝑞HVAC is the heat influx into the building due to the HVAC
system’s action. The continuous-time version of humidity dynamics
(8d) is derived in [28], where 𝑉 is the air volume of the building, 𝑅𝑔
is the specific gas constant of dry air, 𝑃 𝑑𝑎 is the partial pressure of dry
air.

Constraints (8e), (8f), and (8g) are for the control-oriented cooling
coil model which is presented in the next subsection (Section 3.1.1).

Constraints (8h) and (8i) are box constraints to maintain temper-
ature and humidity of the zone within the allowed comfort limits.
Usually the limits during the unoccupied mode are more relaxed than
the occupied mode, i.e., [𝑇 𝑙𝑜𝑤,𝑜𝑐𝑐

𝑖𝑎 , 𝑇 ℎ𝑖𝑔ℎ,𝑜𝑐𝑐
𝑖𝑎 ] ⊆ [𝑇 𝑙𝑜𝑤,𝑢𝑛𝑜𝑐𝑐

𝑖𝑎 , 𝑇 ℎ𝑖𝑔ℎ,𝑢𝑛𝑜𝑐𝑐
𝑖𝑎 ] and

[𝑅𝐻 𝑙𝑜𝑤,𝑜𝑐𝑐
𝑧 , 𝑅𝐻ℎ𝑖𝑔ℎ,𝑜𝑐𝑐

𝑧 ] ⊆ [𝑅𝐻 𝑙𝑜𝑤,𝑢𝑛𝑜𝑐𝑐
𝑧 , 𝑅𝐻ℎ𝑖𝑔ℎ,𝑢𝑛𝑜𝑐𝑐

𝑧 ], as shown in Fig. 10.
𝑅𝐻𝑧 is the relative humidity of the zone, which is a highly nonlinear
function of dry bulb temperature and humidity ratio [32, Chapter 1].
We linearize this function which gives us the coefficients 𝑎𝑙𝑜𝑤, 𝑏𝑙𝑜𝑤,
𝑎ℎ𝑖𝑔ℎ, and 𝑏ℎ𝑖𝑔ℎ in (8i), and thus form convex sets, as shown in Fig. 10.

Constraint (8j) accounts for the capability of the fan. The minimum
supply airflow rate is computed based on the ventilation requirements
specified by ASHRAE 62.1 [33] and to maintain positive building
pressurization.

Constraints (8k)–(8n) account for the capabilities of the preheating
coil, damper actuators, cooling coil, and reheating coil. In constraints
(8k) and (8n), the inequalities 𝑇𝑝ℎ𝑎(𝑘 + 1) ≥ 𝑇𝑚𝑎(𝑘 + 1) and 𝑇𝑠𝑎(𝑘 + 1) ≥
𝑇𝑐𝑎(𝑘 + 1) ensure that the preheating and reheating coils can only add
heat; they cannot cool the air. Similarly, in constraints (8m) and (8o),
the inequalities 𝑇𝑐𝑎(𝑘+1) ≤ 𝑇𝑝ℎ𝑎(𝑘+1) and𝑊𝑐𝑎(𝑘+1) ≤ 𝑊𝑝ℎ𝑎(𝑘+1) ensure
that the cooling coil can only cool and dehumidify the air stream;
it cannot add heat or moisture. Inequality constraints (8p) and (8q)
ensure that the slack variables are nonnegative.

Even though the temperature dynamics used in the optimization
problem are linear, the humidity dynamics – which form part of the
constraints – are nonlinear, which make the optimization problem
nonconvex. Some of the terms in the objective function are nonconvex
as well.

3.1.1. Control-oriented cooling coil model used in WISL-MPC
Constraints (8e), (8f), and (8g) are for the control-oriented cooling

coil model, which is a modified version of the model developed in [4].
Fig. 2 shows all the relevant variables (inputs and outputs) of a cooling
and dehumidification coil model. First we describe the control oriented
model proposed in [4], before discussing the modifications needed to
make the MPC formulation climate/weather independent. The model
proposed in [4] is
𝑇𝑐𝑎(𝑘) = 𝑇𝑝ℎ𝑎(𝑘)+
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𝑚𝑤(𝑘) 𝑓𝑐𝑐
(

𝑇𝑝ℎ𝑎(𝑘),𝑊𝑝ℎ𝑎(𝑘), 𝑚𝑠𝑎(𝑘), 𝑚𝑤(𝑘)
)

(9)
𝑊𝑐𝑎(𝑘) = 𝑊𝑝ℎ𝑎(𝑘)+

𝑚𝑤(𝑘) 𝑔𝑐𝑐
(

𝑇𝑝ℎ𝑎(𝑘),𝑊𝑝ℎ𝑎(𝑘), 𝑚𝑠𝑎(𝑘), 𝑚𝑤(𝑘)
)

(10)

where 𝑚𝑤 is the chilled water flow rate. Note that when the chilled
water flow rate is zero, no cooling or dehumidifying of the air occurs.
That is, when 𝑚𝑤 = 0 the conditioned air temperature and humidity
atio must be equal to the preheated air temperature and humidity
atio: 𝑇𝑐𝑎 = 𝑇𝑝ℎ𝑎 and 𝑊𝑐𝑎 = 𝑊𝑝ℎ𝑎. The form of the right hand sides
of (9)–(10) were chosen make the model exhibit this behavior. The
functions 𝑓 and 𝑔 are chosen as quadratic in their arguments; higher
degree polynomials did not show substantial gain in accuracy. The
validation reported in [4] showed that the maximum prediction errors
observed are 1.61 ◦C (3 ◦F) and 1.1 × 10−3 kg𝑤∕kg𝑑𝑎 for 𝑇𝑐𝑎 and 𝑊𝑐𝑎,
espectively.
Depending on the condition of the preheat air and other inputs, one

f three scenarios can occur: (i) neither cooling nor dehumidification
ccurs (𝑇𝑐𝑎 = 𝑇𝑝ℎ𝑎 and 𝑊𝑐𝑎 = 𝑊𝑝ℎ𝑎), (ii) both cooling and dehumidifi-
ation occurs (𝑇𝑐𝑎 ≤ 𝑇𝑝ℎ𝑎 and 𝑊𝑐𝑎 ≤ 𝑊𝑝ℎ𝑎), and (iii) only cooling but no
ehumidification occurs (𝑇𝑐𝑎 ≤ 𝑇𝑝ℎ𝑎 and𝑊𝑐𝑎 = 𝑊𝑝ℎ𝑎). The first situation
s handled by the model well since it occurs only when 𝑚𝑤 = 0, and by
esign the model predicts that behavior. It turns out that the second
ituation is also predicted reasonably well by the model.
However, the third situation occurs in the extreme range of the

nput values of the model: when the preheated air is quite dry but
lso quite hot. No matter how much chilled water is supplied the
oil can only cool down the air but cannot dehumidify it further.
ue to the simple structure of the model, it is unable to predict that
ituation well. Instead, the model—when fitted to reduce the overall
rediction error—might predict that the air is humidified further as it
oves across the coil, which is physically impossible, and furthermore,
onflicts with the constraint (8o) that is imposed precisely to prevent
uch behavior.
To improve predictions of the model in the third scenario without having

o switch among a set of models, we split the chilled water flow rate 𝑚𝑤 into
wo fictitious variables 𝑚𝑤,𝑇 and 𝑚𝑤,𝑊 :

𝑇𝑐𝑎(𝑘) = 𝑇𝑝ℎ𝑎(𝑘)+

𝑚𝑤,𝑇 (𝑘) 𝑓𝑐𝑐
(

𝑇𝑝ℎ𝑎(𝑘),𝑊𝑝ℎ𝑎(𝑘), 𝑚𝑠𝑎(𝑘), 𝑚𝑤,𝑇 (𝑘)
)

(11)

𝑐𝑎(𝑘) = 𝑊𝑝ℎ𝑎(𝑘)+

𝑚𝑤,𝑊 (𝑘) 𝑔𝑐𝑐
(

𝑇𝑝ℎ𝑎(𝑘),𝑊𝑝ℎ𝑎(𝑘), 𝑚𝑠𝑎(𝑘), 𝑚𝑤,𝑊 (𝑘)
)

(12)

he right hand sides of these equations are precisely the functions 𝑓𝑐𝑜(⋅)
nd 𝑔𝑐𝑜(⋅) in (8e)–(8f). If needed, the optimizer can choose 𝑚𝑤,𝑊 to be
ero while choosing a non-zero 𝑚𝑤,𝑇 , thus providing cooling but no
ehumidification (𝑇𝑐𝑎 < 𝑇𝑝ℎ𝑎 and𝑊𝑐𝑎 = 𝑊𝑝ℎ𝑎). The flexibility due to the
wo fictitious water flow rates is the key for the optimizer to provide
ooling without dehumidification. The equality constraint (8g) with the
igh penalty on the slack variable (𝜁𝑚𝑤

) ensures that the two chilled
ater flow rate variables are equal most of the time. The optimizer
ets them take distinct values only when the mixed air conditions force
he equality 𝑊𝑐𝑎 = 𝑊𝑝ℎ𝑎 (i.e., no dehumidification) and high heat
ain requires cooling to be provided to avoid zone temperature from
xceeding the allowed range.

.2. Model predictive controller incorporating only sensible heat (S-MPC)

Fig. 5 shows the control architecture of S-MPC . This controller is
imilar toWISL-MPC, with the main difference being that humidity and
atent heat of air are not considered. This MPC controller is represen-
ative of the majority of MPC controllers proposed in the literature for
VAC control, e.g., [35].
As in case of the previous MPC controller, the decision variables

onsists of 𝑥(𝑘), 𝑣(𝑘), and 𝜁 (𝑘), which are defined as follows: 𝑥(𝑘) ∶=
5 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ 2
7

𝑖𝑎(𝑘) ∈ R, 𝑣(𝑘) ∶= 𝑢(𝑘) ∈ R , and 𝜁 (𝑘) ∶= [𝜁𝑇 (𝑘), 𝜁𝑇 (𝑘)] ∈ R , where
Fig. 5. S-MPC, control architecture. In this figure, OA: outdoor air, EA: exhaust air,
RA: return air, MA: mixed air, PHA: preheated air, CA: conditioned air, and SA: supply
air.

Table 1
Representative locations chosen for the various climate zones defined in IECC [34].
Climate zone Location (City, County, State)

1 Miami, Miami-Dade, Florida
2A Gainesville, Alachua, Florida
2B Tucson, Pima, Arizona
3A Dallas, Dallas, Texas
3B El Paso, El Paso, Texas
3C Santa Barbara, Santa Barbara, California
4A Washington, D.C.
4B Albuquerque, Bernalillo, New Mexico
4C Seattle, King, Washington
5A Chicago, Cook, Illinois
5B Denver, Denver, Colorado
6A Portland, Cumberland, Maine
6B Helena, Lewis and Clark, Montana
7 Fargo, Cass, North Dakota

𝑢(𝑘) is the control command vector defined in (1). The value of 𝛥𝑡 = 10
minutes and 𝑁 = 144 (corresponding to a planning horizon of 24 h),
which are the same as those in WISL-MPC. Therefore, there are 1152
(= 144×{1 +5 +2}) decision variables.

The optimization problem at time index 𝑗 is:

min
𝑉 ,𝑋,𝑍

𝑗+𝑁−1
∑

𝑘=𝑗

[

𝑃𝑓𝑎𝑛(𝑘) + 𝑃 𝑆
𝑐𝑐 (𝑘) + 𝑃𝑟𝑒ℎ𝑒𝑎𝑡(𝑘) + 𝜆𝑝𝑟𝑒ℎ𝑒𝑎𝑡𝑃𝑝𝑟𝑒ℎ𝑒𝑎𝑡(𝑘)

+ 𝑃𝑠𝑙𝑎𝑐𝑘(𝑘)
]

𝛥𝑡, (13)

ubject to the constraints: (8b), (8h), (8j)–(8n), and (8p).
In the objective function (13), 𝑃𝑓𝑎𝑛, 𝑃𝑟𝑒ℎ𝑒𝑎𝑡, and 𝑃𝑝𝑟𝑒ℎ𝑒𝑎𝑡 are given by

(4), (7), and (6) respectively. The cooling coil power consumption is
omputed based only on sensible heat balance:

𝑆
𝑐𝑐 (𝑘) ∶=

𝑚𝑠𝑎(𝑘)𝐶𝑝𝑎
[

𝑇𝑝ℎ𝑎(𝑘) − 𝑇𝑐𝑎(𝑘)
]

𝜂𝑐𝑐𝐶𝑂𝑃𝑐
, (14)

The overall penalty on slack variables is defined as

𝑃𝑠𝑙𝑎𝑐𝑘(𝑘) ∶= 𝜆𝑙𝑜𝑤𝑇 𝜁 𝑙𝑜𝑤𝑇 (𝑘) + 𝜆ℎ𝑖𝑔ℎ𝑇 𝜁ℎ𝑖𝑔ℎ𝑇 (𝑘).

The exogenous inputs needed to compute the constraints in the opti-
mizer are: 𝑤(𝑘) ∶= [𝜂𝑠𝑜𝑙(𝑘), 𝑇𝑜𝑎(𝑘), 𝑞𝑜𝑡ℎ𝑒𝑟(𝑘)]𝑇 ∈ R3.

There are five main differences when compared to WISL-MPC : (i) S-
MPC does not need zone humidity measurement. (ii) The cooling power
term (14) in the objective function (13) is based only on the sensible heat;
latent heat is ignored. (iii) Since S-MPC does not consider humidity
and latent heat, humidity constraints at various locations in the air
loop as well as the zone—(8d), (8i), (8o), and (8q)—are no longer

present. (iv) The cooling and dehumidifying coil model equations–(8e),
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(8f), and (8g) – are also not present as constraints. (v) Prediction of
he exogenous inputs 𝑊𝑜𝑎 and 𝜔𝑜𝑡ℎ𝑒𝑟 are not needed. The optimization
roblem in this MPC controller too is nonconvex.

.3. Plant-model mismatch in MPC

A dynamic model used by an MPC controller appears as equality
onstraints in the underlying optimization problem. The hygrothermal
ynamic model used by WISL-MPC is distinct from the one used by
he virtual building (VB) simulator, since the former is a 2-state (1
emperature and 1 humidity) model while the latter is a 3-state (2
emperature and 1 humidity) model. There is also mismatch between
he cooling coil model used by WISL-MPC and that used by the VB.
he plant-model mismatch between S-MPC and the VB is even larger
ince S-MPC does not use a zone humidity model and does not model
he change in humidity across the cooling coil. If closed loop simula-
ions indicate that an MPC controller can maintain indoor temperature
nd humidity within prespecified bounds, this plant-model mismatch
rovide confidence in the simulation results.

.4. Baseline controller (𝐵𝐿)

For the baseline, we consider the rule-based Dual Maximum [7]
ontroller whose schematic representation is shown in Fig. 6. The
ual Maximum controller operates in three modes based on the zone
emperature: (i) Cooling, (ii) Deadband, and (iii) Heating. The sup-
ly airflow rate (𝑚𝑠𝑎) and temperature (𝑇𝑠𝑎) are varied based on the
ode. The controller makes decisions to change mode based on room
emperature, and computes setpoints based on the mode it is in. Lower-
evel PI control loops are used for tracking setpoints. Time-duration
ased guard logic is used to prevent excessive switching of modes. The
ecision logic for switching modes is explained below. The reader is
eferred to [7] for more details about the Dual Maximum controller.

• Cooling mode: If the zone temperature is warmer than the cool-
ing set point, the controller is in cooling mode. The supply airflow
rate is varied between the minimum and cooling maximum values
as needed to maintain the zone at the cooling set point.

• Deadband mode: If the zone temperature is between the heating
and cooling set points, the controller is in deadband mode. The
supply airflow rate is kept at the minimum and the supply air
temperature is equal to the conditioned air temperature, i.e., no
reheat.

• Heating mode: If the zone temperature is cooler than the heating
set point, the controller is in heating mode. First, the supply air
temperature is increased up to the maximum allowed value as
needed, to maintain the zone temperature at the heating set point.
If the zone temperature still cannot be maintained at the heating
set point, the supply airflow rate is varied between the minimum
and the heating maximum values.

he conditioned air temperature (𝑇𝑐𝑎) is kept at a constant value (typi-
ally 12.8 ◦C), which ensures that dry air is supplied to the building
lways [36]. The outdoor air ratio is varied to maintain the venti-
ation requirements as per ASHRAE 62.1 [33] and positive building
ressurization requirements. If the mixed air temperature is too low,
he preheating coil is used to bring up 𝑇𝑝ℎ𝑎, typically to 12.8 ◦C (55 ◦F),
hich protects the cooling coil from freezing and getting damaged.

. Simulation setup

.1. Climate zones

In order to compare the performance of the three controllers as a
unction of climate and weather, simulations are done on the same
irtual building, but by varying the geographic location. These loca-
ions are selected to represent the various climate zones in the U.S. as
8

a

Fig. 6. Schematic of Dual Maximum control algorithm.

defined in the International Energy Conservation Code (IECC) [34]. The
IECC map divides the U.S. into 8 temperature-oriented climate zones;
see Fig. 7. It also divides the U.S. into 3 moisture-based climate zones:
A (moist), B (dry), and C (marine) as shown in Fig. 7. In this paper,
we choose 14 different locations which are listed in Table 1 and are
shown as red stars in Fig. 7. The weather data for these locations are
obtained from the National Solar Radiation Database (NSRDB) [37].
Climate zone 8 is not discussed in this paper because of the lack of
weather data, but only a few locations fall in zone 8.

4.1.1. Choice of simulation periods
For each climate zone discussed in Section 4.1, we classify outdoor

weather data into four seasons: (i) spring comprising of March, April,
and May, (ii) summer comprising of June, July, and August, (iii)
winter comprising of December, January, and February, and (iv) fall
comprising of September, October, and November.

For each climate zone, simulations are run for four distinct weeks,
each week (7 days) being representative of the corresponding season.
A representative location is picked for each climate zone as described
previously. For a given climate zone (thus, location) the week whose
average temperature is closest to the average temperature of the entire
season is chosen as the representative week for that season and for
that climate zone. As an example, Fig. 8 (bottom) shows the four
representative weeks of the year 2016 for climate zone 2A. The top
plot of Fig. 8 zooms in to spring: the data shows that the second week
s representative of spring for this particular climate zone in 2016.
Because of the way these weeks are selected, the representative

eek for the same season maybe distinct for distinct climate zones.
able 2 shows the start dates for these weeks for each of the climate
ones.

.2. Virtual building parameters

The parameters of the virtual building are chosen based on a large
lassroom/auditorium (∼ 6 m high and floor area of ∼ 465 m2) in Pugh
all located at the University of Florida, USA. We present only the
elevant details here, the interested readers are referred to [4] for a
omplete list of the parameter values used.
The scheduled occupancy is from 7:30 AM to 7:00 PM, Monday

o Friday, during which the following constraints are used: 𝑇 𝑙𝑜𝑤,𝑜𝑐𝑐
𝑖𝑎 =

1.1 ◦C (70 ◦F), 𝑇 ℎ𝑖𝑔ℎ,𝑜𝑐𝑐
𝑖𝑎 = 23.3 ◦C (74 ◦F), 𝑅𝐻 𝑙𝑜𝑤,𝑜𝑐𝑐

𝑧 = 10%, and
𝐻ℎ𝑖𝑔ℎ,𝑜𝑐𝑐

𝑧 = 60%. The unoccupied hours are from 7:00 PM to 7:30 AM,
onday to Friday, and all of Saturday and Sunday, during which the
ollowing constraints are used: 𝑇 𝑙𝑜𝑤,𝑢𝑛𝑜𝑐𝑐

𝑖𝑎 = 18.9 ◦C (66 ◦F), 𝑇 ℎ𝑖𝑔ℎ,𝑢𝑛𝑜𝑐𝑐
𝑖𝑎 =

5.6 ◦C (78 ◦F), 𝑅𝐻 𝑙𝑜𝑤,𝑢𝑛𝑜𝑐𝑐
𝑧 = 10%, and 𝑅𝐻ℎ𝑖𝑔ℎ,𝑢𝑛𝑜𝑐𝑐

𝑧 = 60%.
Fig. 9 shows the occupancy profile used in the simulations. 𝑞𝑜𝑡ℎ𝑒𝑟 and

𝑜𝑡ℎ𝑒𝑟 are computed based on the number of occupants (𝑛𝑝) in the zone,
ssuming that each person produces 100 W of heat and 1.39×10−5 kg∕s
50 g/h) of water vapor [32]. For 𝑞𝑜𝑡ℎ𝑒𝑟, an additional heat load of
000 W is considered based on lighting/equipment power density of
2.92 W/m2 (1.2 W/ft2), during the scheduled occupied hours. This

dditional heat load is reduced to 3000 W during the unoccupied hours.
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Fig. 7. Climate zones defined by IECC [34, Figure C301.1]. The representative cities chosen for each climate zone are shown as red stars. As the map legend shows, zone 7
includes most of Alaska, while Zone 1 includes Hawaii, Puerto Rico, Guam and U.S. Virgin Islands, which are not shown in the map.
Fig. 8. Selection of representative weeks for climate zone 2A. Top: Average outdoor
temperature of week 2 in spring is closest to the average temperature over all 12 weeks
of spring, which is shown as the red horizontal line. (Bottom) The four representative
weeks – shown as shaded bars – for the four seasons in 2016 in Gainesville, FL (climate
zone 2A).

4.3. Controller parameters

MPC: The MPC controllers require prediction of exogenous inputs
over the planning horizon, which is taken as 24 h (𝑁 = 244) in this
study. We compute the loads due to occupants in 𝑞𝑜𝑡ℎ𝑒𝑟 and 𝜔𝑜𝑡ℎ𝑒𝑟
by assuming designed number of occupants (175 persons) during the
scheduled occupied hours. Forecasts of remaining exogenous distur-
bances are assumed to be known exactly and come from weather
data.

We do not assume that the building is equipped with specialized
sensors, especially occupancy counters. So the minimum airflow rate
is computed based on the designed number of occupants (𝑛𝑝 = 175)
during the scheduled occupied hours and used by the MPC controllers,
so that the ventilation requirements by ASHRAE 62.1 [33] are satisfied.
During unoccupied hours, the minimum allowed airflow rate is reduced
to satisfy the building pressurization requirements.
9

For WISL-MPC , the coefficients for the convexified humidity con-
straint in (8i) are 𝑎ℎ𝑖𝑔ℎ = 0.000621 kg𝑤∕kg𝑑𝑎∕◦C, 𝑏ℎ𝑖𝑔ℎ = −0.173323
kg𝑤∕kg𝑑𝑎, 𝑎𝑙𝑜𝑤 = 0.000101 kg𝑤∕kg𝑑𝑎∕◦C, and 𝑏𝑙𝑜𝑤 = −0.028104
kg𝑤∕kg𝑑𝑎. Fig. 10 shows the convex sets for the thermal comfort
constraints which are used in WISL-MPC .

The parameters of the hygrothermal model used by the MPC con-
trollers are specified as follows. Recall from Section 2.1.1 that a second
order model of the temperature dynamics is used in the virtual build-
ing simulator, whose parameters are obtained by fitting the model’s
prediction to measured data. The parameters of the first order 1R-
1C model used by both the MPC controllers are obtained by creating
a 1R-1C approximation to the 2R-2C model in the virtual building,
so that the DC gains and time constants of the transfer functions of
the two models, with 𝑇𝑜𝑎 and the heat gains as inputs and the zone
temperature as output, are approximately equal. The DC gain of a stable
transfer function 𝐺(𝑠), where 𝑠 is the Laplace variable, is 𝐺(0), which
determines the gain between a constant input and the corresponding
constant steady state output [38]. The only parameter that needs to be
chosen for the humidity dynamic model for WISL-MPC is the volume of
the building, which was computed from architectural drawings of the
auditorium of Pugh Hall.

𝐵𝐿 parameters: The conditioned air temperature (𝑇𝑐𝑎) is always
maintained at 12.8 ◦C (55 ◦F). The preheated air temperature is varied
as follows:

𝑇𝑝ℎ𝑎(𝑘) =

{

12.8 ◦C, if 𝑇𝑚𝑎(𝑘) < 12.8 ◦C
𝑇𝑚𝑎(𝑘), otherwise.

(15)

The minimum outdoor airflow rate is computed in the same way as
for the MPC controllers. The maximum heating airflow rate is 2.8 kg/s
and the maximum cooling airflow rate is 4.6 kg/s. To ensure that the
zone temperature is within the allowed comfort limits by the start of
scheduled occupancy (7:30 AM), indoor temperatures constraints are
changed from [18.9 ◦C, 25.6 ◦C] to [21.1 ◦C, 23.3 ◦C], 2 h prior to the
start time, at 5.30 AM.

4.4. Performance metrics

We use three performance metrics to compare all three controllers:
(i) the total energy consumed over a week, (ii) zone temperature
violation over a week, and (iii) zone humidity violation over a week.
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Table 2
Weeks for which simulations are conducted.
Location (climate) Season Start date

Miami (1A)

Spring 14/Mar/2016
Summer 25/Jul/2016
Fall 31/Oct/2016
Winter 25/Jan/2016

Gainesville (2A)

Spring 07/Mar/2016
Summer 18/Jul/2016
Fall 17/Oct/2016
Winter 18/Jan/2016

Tucson (2B)

Spring 14/Mar/2016
Summer 06/Jul/2016
Fall 31/Oct/2016
Winter 25/Jan/2016

Dallas (3A)

Spring 07/Mar/2016
Summer 18/Jul/2016
Fall 07/Nov/2016
Winter 01/Feb/2016

El Paso (3B)

Spring 11/Apr/2016
Summer 25/Jul/2016
Fall 07/Nov/2016
Winter 01/Feb/2016

Santa Barbara (3C)

Spring 11/Apr/2016
Summer 25/Jul/2016
Fall 07/Nov/2016
Winter 25/Jan/2016

Washington, DC (4A)

Spring 28/Mar/2016
Summer 25/Jul/2016
Fall 31/Oct/2016
Winter 25/Jan/2016

Albuquerque (4B)

Spring 11/Apr/2016
Summer 25/Jul/2016
Fall 31/Oct/2016
Winter 25/Jan/2016

Seattle (4C)

Spring 28/Mar/2016
Summer 25/Jul/2016
Fall 31/Oct/2016
Winter 25/Jan/2016

Chicago (5A)

Spring 28/Mar/2016
Summer 18/Jul/2016
Fall 31/Oct/2016
Winter 25/Jan/2016

Denver (5B)

Spring 04/Apr/2016
Summer 18/Jul/2016
Fall 31/Oct/2016
Winter 25/Jan/2016

Portland (6A)

Spring 11/Apr/2016
Summer 18/Jul/2016
Fall 31/Oct/2016
Winter 25/Jan/2016

Helena (6B)

Spring 11/Apr/2016
Summer 18/Jul/2016
Fall 31/Oct/2016
Winter 25/Jan/2016

Fargo (7)

Spring 11/Apr/2016
Summer 18/Jul/2016
Fall 31/Oct/2016
Winter 25/Jan/2016

The total energy consumed when using the controllers for a week is
omputed as follows:

𝑡𝑜𝑡𝑎𝑙 = ∫168 h
(𝑃𝑓𝑎𝑛(𝑡) + 𝑃𝑝𝑟𝑒ℎ𝑒𝑎𝑡(𝑡) + 𝑃𝑐𝑐 (𝑡) + 𝑃𝑟𝑒ℎ𝑒𝑎𝑡(𝑡)) 𝑑𝑡, (16)

where 𝑃𝑓𝑎𝑛, 𝑃𝑝𝑟𝑒ℎ𝑒𝑎𝑡, 𝑃𝑐𝑐 , and 𝑃𝑟𝑒ℎ𝑒𝑎𝑡 are computed using (4), (6), (5),
and (7) respectively.

The weekly zone temperature violation is computed as follows:

𝑉𝑇 = 𝛥𝑇𝑖𝑎(𝑡)𝑑𝑡, (17)
10

∫168 h o
Fig. 9. Occupancy profile used in simulating the virtual building.

Fig. 10. Thermal comfort envelope in terms of indoor air temperature and humidity.
Comfort envelope from [32] is shown as the hatched areas, and that chosen for the
proposed WISL-MPC controller is shown as the shaded area during scheduled hours of
ccupancy and the unshaded area enclosed by dashed line during unoccupied hours.

here the term 𝛥𝑇𝑖𝑎(𝑡) is defined as [4]:

𝑇𝑖𝑎(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑇𝑖𝑎(𝑡) − 𝑇 ℎ𝑖𝑔ℎ
𝑖𝑎 , if 𝑇𝑖𝑎(𝑡) > 𝑇 ℎ𝑖𝑔ℎ

𝑖𝑎
𝑇 𝑙𝑜𝑤
𝑖𝑎 − 𝑇𝑖𝑎(𝑡), if 𝑇𝑖𝑎(𝑡) < 𝑇 𝑙𝑜𝑤

𝑖𝑎
0, otherwise.

(18)

he unit of 𝑉𝑇 is ◦C-hours. Similarly, we define the weekly zone
umidity violation as:

𝑅𝐻 = ∫168 h
𝛥𝑅𝐻𝑖𝑎(𝑡)𝑑𝑡, (19)

here the term 𝛥𝑅𝐻𝑖𝑎(𝑡) is defined as:

𝑅𝐻𝑧(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑅𝐻𝑖𝑎(𝑡) − 𝑅𝐻ℎ𝑖𝑔ℎ
𝑖𝑎 , if 𝑅𝐻𝑖𝑎(𝑡) > 𝑅𝐻ℎ𝑖𝑔ℎ

𝑖𝑎
𝑅𝐻 𝑙𝑜𝑤

𝑖𝑎 − 𝑅𝐻𝑖𝑎(𝑡), if 𝑅𝐻𝑖𝑎(𝑡) < 𝑅𝐻 𝑙𝑜𝑤
𝑖𝑎

0, otherwise.
(20)

he unit of 𝑉𝑅𝐻 is %-hours. The larger 𝑉𝑇 and 𝑉𝑅𝐻 are, greater the
dverse impact on occupants’ comfort and health. A value of 0 is ideal.

. Results

The simulation results for fall are found to be similar to those in spring,
o we do not discuss the results for fall in the interest of space.
Real-time computation: The optimization problem within MPC
for both the MPC controllers - is solved using CasADi [39] and
POPT [40], a nonlinear programming (NLP) solver, on a Desktop Linux
omputer with 16 GB RAM and a 3.60 GHZ × 8 CPU. On average, it
akes 4.48 s to solve the optimization problem in WISL-MPC and it
akes 1.54 s to solve the optimization problem in S-MPC . Since the
ptimization problem is nonconvex for both the MPC controllers, there
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Fig. 11. Spring: Performance of the three controllers, along with statistics of outdoor weather, as a function of climate zone.
O
r
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s no guarantee that the solution returned by the solver is the global
inimum. Warm-start was used to help the solver find a local minimum
uickly. In actual real-time implementation (as opposed to a simulation
s in this case), other features can be added to help with real-time
pplication. For instance, if the solver took more than a user-specified
alue to return a solution, the control command from the previously
omputed solution can be used. By design, the optimization problem
s always feasible in both the MPC controllers due to the use of slack
ariables.

.1. Results by season

The indoor air temperature violation (𝑉𝑇 ) was found to be essen-
tially zero for all the three controllers in all the simulations, so it is not
discussed in the rest of this section.

5.1.1. Spring
Figs. 11(a) and 11(b) show the energy consumption (𝐸𝑡𝑜𝑡𝑎𝑙) and

umidity violation (𝑉𝑅𝐻 ) respectively, of each climate zone for a week
n spring. The simulations results indicate the following (for spring):

• Both WISL-MPC and BL meets indoor temperature and humidity
constraints in all climate zones, but S-MPC does not: it causes
large humidity violations in the warm-humid climate zones (1,
2A, and 3A).

• Both the MPC controllers have similar energy saving potential
since the difference in their energy savings over BLis quite small
11

in all climate zones.
• The energy savings from the MPC controllers over BL are substan-
tial in all climate zones except zone 1, and vary significantly as a
function of climate zone (13%–25%).

• (Not shown in plots in the interest of space) In the dry climate
zones (2B, 3B, 4B, 5B, and 6B), the control commands computed
by both the MPC controllers are similar. This happens since the
outdoor weather is dry.

There are four main reasons MPC saves energy in comparison to 𝐵𝐿.
ne, in the cold regions, WISL-MPC avoids preheating completely by
ecirculating as much warm air from the zone as possible. It satisfies the
utdoor air requirements (𝑚𝑜𝑎) using a lower outdoor air ratio (𝑟𝑜𝑎) and
a higher supply airflow rate (𝑚𝑠𝑎). Whereas, 𝐵𝐿 is in the heating mode
because of the somewhat cold weather in spring, so it uses a lower 𝑚𝑠𝑎
and thus a higher 𝑟𝑜𝑎 (recall that 𝐵𝐿 varies 𝑟𝑜𝑎 to maintain the minimum
outdoor air requirements) to satisfy the same 𝑚𝑜𝑎 requirements. The
usage of higher 𝑚𝑠𝑎 by WISL-MPC /S-MPC leads to a slightly higher fan
energy consumption but a substantial decrease in the preheating energy
consumption; see the results for climate zones 4A, 4B, 4C, 5A, 5B, 6A,
6B, and 7 in Fig. 11(a).

Two, 𝐵𝐿 maintains the conditioned air temperature (𝑇𝑐𝑎) at a
constant low value of 12.8 ◦C (55 ◦F). On the other hand, WISL-MPC
varies 𝑇𝑐𝑎 as long as the humidity constraints are not violated, which
leads to reduction in cooling energy consumption.

Three, when the outdoor weather is pleasant (mild/cold and dry,
like in climate zone 3C), MPC uses ‘‘free’’ cooling by bringing in
more than the minimum outdoor air required which leads to further

reduction in cooling energy consumption.
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Fig. 12. Summer: Performance of the three controllers, along with statistics of outdoor weather, as a function of climate zone.
Four, 𝐵𝐿 leads to simultaneous cooling and reheating. As mentioned
above, 𝐵𝐿 keeps 𝑇𝑐𝑎 at a constant low value mainly in the interest
f maintaining indoor humidity [36]. Since 𝑟𝑜𝑎 is varied to bring in
only the minimum amount of outdoor air needed, even if the outdoor
air is moderately cold in spring, the remaining part of the mixed air
which is recirculated from the zone is warm. So there is always some
need for cooling. When there is not much internal heat load and the
outdoor weather is cold, there is a need to reheat to maintain the zone
temperature within the comfort limits. All these factors lead to cooling
and reheating at the same time. On the other hand, MPC avoids this
phenomenon leading to energy savings.

In the warm-humid climate zones (1, 2A, and 3A), the energy
savings by WISL-MPC is moderate (4 to 13%) when compared to 𝐵𝐿.
This is mainly because of reasons two and three explained above. The
scope for using free cooling is low in these climate zones as the outdoor
weather is humid. Moreover, 𝑇𝑐𝑎 cannot be varied much as the humidity
constraints are found to be active most of the time. In the remaining
moist (type A) climate zones, and the marine (type C) climate zones,
the energy savings is substantial (20% to 38%). The outdoor weather
is milder and, therefore, drier, especially during nighttime in these
climate zones. Therefore, there is a lot of room for optimization that
WISL-MPC exploits.

The large humidity violations by S-MPC in the warm-humid climate
zones 1, 2A, and 3A, can be attributed to two main factors. First, in an
attempt to use free cooling, S-MPC decides to bring in more outdoor
air, especially during nighttime, as the outdoor air temperature is lower
than the return air. But the outdoor air is humid (which it is unaware
12
of). Second, S-MPC increases the conditioned air temperature trying
to reduce cooling energy consumption. Both these factors lead to an
increased supply air humidity, which in turn causes humidity constraint
violations.

Unlike the warm-humid climate zones, the outdoor weather condi-
tions for the remaining moist (type A) climate zones 4A, 5A, 6A, and
7, the marine (type C) climate zones 3C, and 4C are not very humid in
spring; see Fig. 11(d). Therefore, the humidity violations by S-MPC is
minimal for these zones.

Since the outdoor weather is always dry for climate zones 2B, 3B,
4B, 5B, and 6B, – see Fig. 11(d) – the control commands computed
by both the MPC controllers are similar (not shown in the interest of
space). The slack variable for chilled water flow rate (𝜁𝑚𝑤

) in WISL-
MPC is found to be nonzero, i.e., 𝑚𝑤,𝑇 ≠ 𝑚𝑤,𝑊 . This enables cooling
without any dehumidification in the cooling coil, i.e., 𝑇𝑐𝑎 ≤ 𝑇𝑝ℎ𝑎 and
𝑊𝑐𝑎 = 𝑊𝑝ℎ𝑎.

5.1.2. Summer
Figs. 12(a) and 12(b) show the simulation results for summer, which

indicate the following:

• There are no humidity violations byWISL-MPC and BL, but S-MPC
causes humidity violations in several climate zones. The humidity
violations due to S-MPC are large in a few moist and marine
climate zones (4A, 5A, 6A, 7, 3C, and 4C) but are small in the
warm-humid and hot-humid climate zones (1, 2A, and 3A), but
in most of climates (2A and 3A) S-MPC consumes more energy

than both WISL-MPC and 𝐵𝐿.
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Fig. 13. Winter: Performance of the three controllers, along with statistics of outdoor weather, as a function of climate zone.
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• The energy savings by both the MPC controllers over BL in all
the climate zones, are small (at most 7%). In three of the warm
and moist climate zones (2A, 3A and 4A), S-MPC consumes more
energy than the BL.

• (Not shown in plots in the interest of space) In the dry climate
zones (2B, 3B, 4B, 5B, and 6B), the control commands computed
by both the MPC controllers are similar, as the outdoor weather
is dry.

The reasons for small energy savings by WISL-MPC (and S-MPC) in
omparison with 𝐵𝐿 are as follows. Recall that there are five control
ommands that a climate controller needs to decide. Since the outdoor
eather is warm in most climate zones in summer, there is no preheat
r reheat required, i.e., 𝑇𝑝ℎ𝑎 = 𝑇𝑚𝑎 and 𝑇𝑠𝑎 = 𝑇𝑐𝑎. So the controllers
eed to decide only the remaining three control commands: 𝑚𝑠𝑎, 𝑟𝑜𝑎,
nd 𝑇𝑐𝑎. 𝐵𝐿 is in the cooling mode most of the time, and therefore
aries 𝑚𝑠𝑎 as needed to maintain the zone temperature at the cooling set
oint. A similar behavior is found in WISL-MPC . Since the outdoor air
emperature is warmer than the return air most of the time, WISL-MPC
aries 𝑟𝑜𝑎 to bring in only the minimum outdoor air required to satisfy
he ventilation and positive building pressurization requirements; this
ehavior is similar to 𝐵𝐿. WISL-MPC varies 𝑇𝑐𝑎, mainly during night-
ime, while 𝐵𝐿 always maintains 𝑇𝑐𝑎 at a constant low value of 12.8 ◦C
55 ◦F). This leads to small energy savings by WISL-MPC .
The large humidity violations by S-MPC in climate zones 4A, 5A,

A, 7, 3C, and 4C, can be attributed to the same two factors explained
or humidity violations in the hot-humid and warm-humid climate
13

ones (1, 2A, and 3A) during spring; see Section 5.1.1.
The humidity violations with S-MPC are small in the warm-humid
limate zones (1, 2A, and 3A) – see Fig. 12(b) – since it decides to
eep 𝑇𝑐𝑎 low In order to satisfy the high (sensible) cooling load in the
uilding. That has an unintended, but good, side effect of maintaining
ndoor humidity.
In climate zones 2A and 3A, the slightly higher energy consumption

y S-MPC in comparison with WISL-MPC and 𝐵𝐿 is mainly because of
he following reason. During night time, S-MPC attempts to use free
ooling by bringing in more outdoor air, as it is cooler than the return
ir from the room. But it fails to realize that the outdoor air is humid,
hich leads to a higher latent load on the cooling coil, and thus an
ncrease in energy consumption.

.1.3. Winter
Simulation results are shown in Figs. 13(a) and 13(b), which indi-

ate the following:

• WISL-MPC and BL successfully maintain space humidity, with
small humidity violation in general.S-MPC leads to large hu-
midity violations in climate zones 1 and 3C (hot-humid and
warm-humid).

• WISL-MPC leads to substantial energy savings over 𝐵𝐿 in all the
climate zones (11% to 27%), and savings vary significantly by
climate zone. S-MPC performs similarly to WISL-MPC in terms
of energy savings, with zone 1 being an exception: S-MPC con-
sumes more energy than BL (+4%) while WISL-MPC consumes

significantly less than BL (−14%) in this zone.
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• (Not presented in the interest of space) In the dry zones (2B,
3B, 4B, 5B, and 6B), the optimal control decisions made by both
WISL-MPC and S-MPC are similar.

The reasons for energy savings by WISL-MPC in comparison with
𝐵𝐿 are the same as discussed in Section 5.1.1. Since the outdoor
eather is cold and dry in most of the zones in winter, there is a lot of
oom for energy savings by appropriately varying control commands.
The higher energy use than BL and high humidity violations in the

ot humid zone (zone 1) when using S-MPC occur because of the same
easons discussed in Section 5.1.2. Namely, S-MPC mistakenly believes
hat it can use ‘‘free cooling’’ from the colder outdoor air but does not
ecognize that humidity is not small enough to do so.

.2. Discussion of results

The results discussed in the previous section lead to the following
bservations.
In all the climate zones and seasons tested, the proposed MPC con-

rollerWISL-MPC reduces energy use over BL, and it is able to maintain
hermal comfort constraints as well or better than BL. The energy sav-
ngs vary considerably depending on climate zone and season. Among
he four seasons, summer presents the least opportunity for energy
avings in every climate.
The temperature violation (𝑉𝑇 ) was found to be nearly zero for

he three controllers in all scenarios tested. The only difference was
n humidity and energy consumption. The MPC scheme that ignore
umidity and latent heat, S-MPC, performs close to the proposed WISL-
PC controller in both energy savings and indoor climate control in

many scenarios, but with some critical exceptions. In particular, S-MPC
causes humidity violations in both moist (type A) and marine (type
C) climate zones, and in a subset of these scenarios, the humidity
violations are quite large. Poor humidity control can not only lead
to thermal discomfort of the occupants but also, in extreme cases,
mold growth and associated health issues [6]. Conversely, in summer,
in the climate zones in which S-MPC is able to maintain humidity
ell, it typically consumes more energy than even the rule-based baseline
ontroller, though the increase is small. Even though in some scenarios,
-MPC consumes less energy than WISL-MPC, when that happens the
mprovement is small, about 1%–2%.

. Conclusion

Many MPC formulations in the literature ignore humidity and latent
eat considerations (i.e., dehumidification at the cooling coil). This
tudy shows that such an MPC controller can fail to provide adequate
erformance – in terms of both energy use and/or humidity control –
n type A (humid) and type C (marine) climate zones. The root cause
f both – lack of humidity control and low energy savings (and even
igher than baseline energy consumption) – is the same: the optimizer
elieves that there is ‘‘free cooling’’ from colder outdoor air while in
act the air has a high latent heat.
The primary job of an HVAC control system is to control indoor

limate. High energy savings alone will not be enough for adoption of
ew control technologies such as MPC. The study thus confirms the
eed for incorporating humidity and latent heat considerations in MPC
esign.
Recall that the two MPC controllers studied here are designed

o minimize energy use while maintaining indoor conditions: indoor
emperature in case of S-MPC and indoor temperature and humidity
n case of WISL-MPC . The energy consumption and indoor temper-
ture/humidity performance of both the MPC controllers is similar
n many climate zones and seasons. The difference occurs only in
ertain scenarios. In fact, somewhat surprisingly the MPC controller
hat ignores latent heat and humidity provided good indoor humidity
ontrol in hot-humid climate (zone 1) in summer. Its poor performance
14
ccurred mostly in spring and fall in milder climates. Without this study
hat spans a wide range of climates and seasons, the benefit of the
igher complexity MPC controller – that explicitly accounts for latent
eat and humidity – would not have been clear.
This study is a first step; a more thorough assessment of costs

nd benefits of the two MPC formulations presented here, each with
istinct levels of complexity, will require much more extensive simu-
ations, including a study of the sensitivity to forecast errors. Although
he MPC controllers in this study have significant plant-model mis-
atch, they have perfect prediction of thermal loads and occupancy
chedules. Dependence of controller performance on the accuracy of
hese forecasts need to be studied carefully. Another topic for future
ork is to extend the current study to multi-zone buildings. Perhaps
formulation as in [41], with suitable modifications, can be used.
he two MPC controllers in this paper were designed to minimize
nergy consumption. We suspect the effect of ignoring latent heat in
he MPC formulation will be far more profound if the controller were
sed to provide demand-side services. This is another topic for future
xploration.
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