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ABSTRACT

A collection of thermostatically controlled loads (TCLs) - such as air conditioners - can vary their
power consumption within limits to help the balancing authority of a power grid maintain demand
supply balance. Doing so requires loads to coordinate their on/off decisions so that the aggregate power
consumption tracks a grid-supplied reference. At the same time, each consumer’s quality of service
(QoS) must be maintained. While there is a large body of work on TCL coordination, they do not provide
guarantees on the reference tracking performance or QoS maintenance, and they do not provide a
means to compute a suitable reference signal for power demand of a collection of TCLs. In this work
we provide a framework that addresses these two weaknesses. The framework enables coordination
of an arbitrary number of TCLs that: (i) is computationally efficient, (ii) is implementable at the TCLs
with local feedback and low communication, and (iii) enables reference tracking by the collection while
ensuring that temperature and cycling constraints are satisfied at every TCL at all times. The framework
is based on a Markov model obtained by discretizing a pair of Fokker-Planck equations derived in
earlier work by Malhame and Chong (1985). We then use this model to design randomized policies
for TCLs. The balancing authority broadcasts the same policy to all TCLs, and each TCL implements
this policy which requires only local measurement to make on/off decisions. Simulation results are

provided to support these claims. Matlab implementation is made publicly available.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Thermostatically controlled loads (TCLs) - such as residential
air conditioners, heat pumps, space heaters, refrigerators and
water heaters - are recognized to be valuable sources of flexible
demand (Callaway & Hiskens, 2011; Chen, Hashmi, Mathias, Busi¢
and Meyn, 2017; Lee et al, 2020; Mathieu, Koch, & Callaway,
2013). They can vary their demand from the nominal without
adversely affecting consumers’ quality of service (QoS). The flexi-
bility can be used by a balancing authority (BA) to balance supply
and demand in a power grid. Since the rated power of each load
is small, it is necessary to coordinate a collection of loads. Co-
ordination of TCLs involves two conflicting requirements: (i) the
TCLs collectively need to track a reference power demand, and
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(ii) every TCL’s QoS need to be maintained. For air conditioners,
refrigerators and heat pumps with on/off actuation, there are
at least two QoS requirements: the space temperature must be
maintained within a prespecified range and compressor short-
cycling must be avoided. Meaning, once the compressor turns on
it cannot turn off until a prespecified time period elapses, and vice
versa. Variable speed air conditioners are common in commercial
- and increasingly in residential - buildings; but they are outside
the scope of this paper.

A framework for coordinating TCLs needs two parts. A co-
ordination scheme, consisting of an algorithm and information
exchange architecture is one part. The other part is reference
computation: the framework must provide the BA with a method
to determine a suitable reference signal for the TCLs. The ref-
erence should be feasible for the collection, meaning it should
be possible for the TCLs to collectively track the reference while
each TCL maintains its QoS. Otherwise, even the best coordination
scheme will fail to meet either the BA’s need, which is reference
tracking, or the consumers’ need, which is maintaining indoor
temperature etc., or both.

There has been intense research on the problem of designing
TCL coordination schemes to support the power grid. There has
also been some work on computing appropriate references. We
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will discuss these in detail in Section 1.1. These two bodies of
work have been carried out in their own silos, and it is not
easy to combine them. For instance, existing work on reference
computation does not guarantee that there exists a coordination
scheme that can track the computed reference.

This work presents a framework for coordination of a collec-
tion of TCLs for providing demand side services to the power grid.
The framework includes both of the above mentioned compo-
nents, i.e. (i) planning a suitable reference for a collection of TCLs
and (ii) designing an algorithm for coordinating the TCLs to track
the reference, so that both the BA’s requirement and consumers’
QoS are satisfied. To avoid confusion, we use “controller” for
the computations at the BA and “policy” for the on/off decision
maker at each TCL. The proposed framework uses a decentralized
information architecture adopted in many prior works, in which
a controller at the BA broadcasts a signal to all the TCLs and the
on/off decision making policy at each TCL is influenced by that
signal. In particular, the BA computes randomized policies for the
TCLs and broadcasts them to all the TCLs. Each TCL receives the
same policy and implements it — to make on/off decisions — using
locally measurable information. The framework is computation-
ally tractable for an arbitrary number of TCLs. The communication
burden is low: only a few numbers need to be broadcast by the
BA at every sampling instant. Feedback from TCLs to the BA can
be infrequent.

1.1. Literature review and contribution

Centralized control in which the BA directly commands on/off
status of each TCL is not scalable to large populations. Among
non-centralized coordination schemes, an idea that many works
on TCL coordination use is for the BA to broadcast a low dimen-
sional control command to all TCLs, which is translated by each
TCL into its actuation command with a local policy. We classify
the information architecture in such a scheme as decentralized.
Another non-centralized information architecture is distributed,
in which decisions at a TCL are computed based on information
exchanged with a set of neighboring TCLs.

Decentralized: The literature on decentralized coordination of
TCLs differ in their choice of the broadcast signal (i.e., BA’s control
command) and the policy at the TCL that translates this broadcast
to on/off decisions. The literature can be divided into two broad
categories based on these choices: (i) thermostat set point change
and (ii) probabilistic. There are many forms of probabilistic poli-
cies, which can be roughly subdivided into two sub categories:
(ii-A) bin switching and (ii-B) randomized. We discuss these in
detail below.

In coordination schemes based on thermostat setpoint change,
a time-varying thermostat set point is broadcast by the BA to all
TCLs, and each TCL makes on/off decisions based on this new
setpoint, e.g. Bashash and Fathy (2013), Callaway and Hiskens
(2011), Lee and Max Zhang (2021), Mahdavi, Braslavsky, Seron,
and West (2017) and Soudjani and Abate (2015). The underlying
thermostat policy is not changed. This approach may ask for an
extremely small change in thermostat setpoint in response to
small changes in the aggregate power reference, far below the
resolution of the temperature sensor at each TCL. Retrofitting
thermostats to increase the temperature resolution will lead to
chattering due to inevitable measurement noise. Or the method
may ask for large changes which may violate consumers’ QoS.

In probabilistic bin-switching coordination schemes, the TCL
policy - the mapping from BA’s broadcast command to a TCL's
on/off decision - is a non-deterministic mapping, e.g.
Chen, Hashmi et al. (2017), Coffman, Busi¢, and Barooah (2018),
Liu, Shi, and Liu (2016) and Mathieu et al. (2013). Works in
this category typically first model the population of TCLs under
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thermostat control as a Markov chain. The continuous temper-
ature range is divided into a number of discrete bins. A finite
dimensional state vector, a probability mass function, is then
defined. Each entry of the state vector represents “the fraction of
TCLs that are on (or off) and has temperature in a certain range”.
The control command from the BA is chosen so as to affect the
fraction of TCLs in the temperature bins directly (Liu & Shi, 2016;
Liu et al.,, 2016; Mathieu et al., 2013; Totu, Wisniewski, & Leth,
2017). Since the basic Markov model is derived for the thermostat
policy, introduction of the BA’s control to manipulate TCLs’ on/off
state is somewhat ad-hoc. In Mathieu et al. (2013), the BA’s
control command is chosen to be another vector, whose ith entry
represents “the fraction of TCLs in bin i to increase/decrease”. A
policy is then proposed to translate this command to on/off action
at each TCL, which requires knowledge of the state of the Markov
model, leading to a state estimation problem. In Liu et al. (2016),
BA'’s control command is chosen to be a scalar. The probability of
a TCL turning on or off is proportional to this scalar. Subsequent
works have proposed various refinements, such as BA’'s command
affecting the rate of fractions to switch instead of fraction to
switch (Totu et al, 2017). Providing performance guarantees
with bin switching architecture has proved challenging, either on
reference tracking or on QoS maintenance for individual TCLs.

An alternative to bin switching that still uses probabilistic
on/off decision making is randomized policy, e.g. BusSi¢ and Meyn
(2016), Chen, Hashmi et al. (2017) and Coffman et al. (2018). A
randomized policy is a specification of the conditional probability
of turning on or off given the current state of the TCL. On/off
decisions are computed with the help of a random number gen-
erator and the policy. In this architecture it is envisioned that the
thermostat policy at the TCL is replaced with a randomized policy.
The key advantage of doing so is that the control design problem
is converted to controlling the probability of the TCL being “on”.
By the law of large numbers, this fraction is close to the fraction
of TCLs “on” for a large number of TCLs (Meyn, Barooah, Busic,
Chen, & Ehren, 2015). For a homogeneous collection the aggregate
power consumption is equal to the number of TCLs times the frac-
tion of TLCs “on”. Even for a heterogeneous collection the two are
approximately equal except in case of severe heterogeneity. The
coordination problem thus simplifies to the problem of designing
the randomized policy that manipulates the probability of a single
TCL being “on”. Aggregate demand is manipulated by the BA by
changing the policy, as discussed next.

In Busi¢ and Meyn (2016) and Chen, Hashmi et al. (2017),
the randomized policy is parameterized by a scalar ¢(t). Co-
ordination of the population is then achieved by appropriate
design of ¢(t), which is computed and broadcast by the BA. This
scheme also uses a Markov model of the evolution of binned
temperature, but assumes a certain factorization: the next values
of the temperature and mode are conditionally independent given
the current joint pair of temperature and mode values under
the effects of the randomized policy and exogenous disturbances,
especially weather. That is, the transition matrix of the state
process is a point wise product of two controlled transition ma-
trices. In an optimal control setting, computation of the BA’s
control command, ¢(t), for reference tracking is a non-convex
optimization problem (Coffman, Busi¢, & Barooah, 2019). The
probability of turning on when temperature exceeds the upper
limit, or off when temperature dips below the lower limit, is set
to 1 by design. This will ensure the temperature QoS constraint
is maintained. Attempts have been made to maintain the cycling
constraint (Coffman et al.,, 2018). But a formal design method to
incorporate the cycling constraint has been lacking.

Distributed: In distributed coordination schemes, the coordina-
tion problem is typically cast as an optimization problem that
is solved in a distributed fashion by using a iterative algorithm
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that can eventually converge to an optimal solution under cer-
tain conditions. Distributed optimization is not ideally suited for
discrete decisions. Works on TCL coordination using a distributed
scheme, (e.g., Burger & Moura, 2017; Kim & Giannakis, 2013 and
Franceschelli, Pilloni, & Gasparri, 2021), handle this challenge
through various heuristics, principally via relaxing {0, 1} to [0, 1]
and then interpreting a solution in [0, 1] as a probability to make
on/off decisions (Kim & Giannakis, 2013) or choose integer-valued
set point change (Burger & Moura, 2017).

Reference Computation: As mentioned earlier, a complete
framework for coordination of TCL needs not only a control algo-
rithm to make decisions at TCLs, but also a method to compute
a feasible reference signal for the collection’s power demand.
Feasible means that no TCL needs to violate local constraints in
order for the collection to track the reference. Reference com-
putation is related to the topic of “flexibility capacity”, and the
latter has been examined in many recent works with various def-
initions of flexibility (Coffman, Cammardella, Barooah, & Meyn,
2022; Coffman, Guo and Barooah, 2021; Hao, Sanandaji, Poolla,
& Vincent, 2015; Paccagnan, Kamgarpour, & Lygeros, 2015). The
work (Coffman et al,, 2022) developed necessary conditions on
the reference. Meaning, if the reference for the collection does not
satisfy the developed conditions then there will be at least one
TCL that will violate at least one local QoS constraint. However,
they do not guarantee the existence of a coordination algorithm
that can track a reference that satisfies those conditions.

1.1.1. Contributions

The previous discussion shows that existing work TCL co-
ordination have a number of scattered disadvantages. Among
decentralized coordination schemes, thermostat set-point based
methods have implementation issues due to resolution of tem-
perature sensors and measurement noise. Bin switching methods
do not provide guarantees on reference tracking and often re-
quire solving a challenging state estimation problem. Prior works
on randomized control require non-convex optimization and
are based on an assumed conditional independence. Distributed
optimization based coordination schemes are not ideal for integer-
valued optimization. When it comes to reference planning, exist-
ing works do not guarantee existence of a coordination scheme -
whether centralized, decentralized, or distributed - that can track
that reference. In short, a unified framework that treats reference
computation and coordination algorithm design simultaneously is
lacking.

In this work we develop a unified framework for decentral-
ized coordination of TCLs that performs both reference computa-
tion and coordination algorithm design simultaneously. Our major
contributions are as follows.

(1) We provide a framework that allows the BA to compute
(a) an optimal reference signal that is feasible for the col-
lection and (b) optimal randomized policies for the TCLs to
track the said reference. When the TCLs implement these
policies, their aggregate power demand collectively tracks
the reference, while the policies guarantee that tempera-
ture and cycling QoS requirements at each TCL are satisfied.
Optimal reference means it is closest to what the BA wants
while being feasible for the TCLs. Implementation of the
policy at a TCL is easy; it requires only local measurements
and a random number generator but does not require solv-
ing an optimization problem. The communication burden
for coordination is also low. At each sampling time, a ran-
domized control policy - parameterized by a few numbers
- is broadcast to all TCLs. Feedback from TCLs to the BA can
be infrequent.
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Fig. 1. Information architecture of the proposed framework.

(2) Our framework is based on a careful discretization of the
partial differential equation (PDE) model described in Mal-
hame and Chong (1985) which leads to a Markov chain.
We show that a certain “conditional independence” that
was assumed in BuSi¢ and Meyn (2016) indeed holds. This
independence separates the effects of the policy at the
TCL (control) and weather (disturbance) on the transition
matrix, and greatly facilitates computation of policies.

(3) The unified framework is made possible by the low dimen-

sional parameterization of randomized policies with en-

tries of certain condition probability mass functions. Thus
the aggregate reference and policies at each TCLs are posed
as decision variables in an optimization problem whose
solution yields both the components of the unified frame-

work: reference power demand of the collection and a

coordination algorithm.

Numerical experiments are provided to support the claims

made in (i). Matlab implementation is made publicly avail-

able at Coffman (2021).

(4

=

Fig. 1 illustrates the two parts of the proposed framework.

The rest of the paper proceeds as follows. In Section 2 the
model of the individual TCL is introduced. In Section 3 the PDEs
introduced are discretized and in Section 3.3 the structure of
the discretized model is identified. Since the PDE discretization
was previously reported in Coffman, Busi¢, and Barooah (2021a),
technical details including some of the proofs are moved to the
expanded version (Coffman, Busi¢, & Barooah, 2021b); only the
parts necessary for completeness are described in this section.
The proposed framework for reference and policy design is pre-
sented in Section 4 and numerical experiments are reported in
Section 5.

1.2. Notation

The symbol 1 denotes the vector of all ones, e; denotes the ith
canonical basis vector, and 0 denotes the zero matrix or vector,
all of appropriate dimension. For a vector v, diag(v) denotes the
diagonal matrix with entries of v, i.e., diag(v)1 = v. Further, ®
denotes matrix Kronecker product and I4(-) the indicator function
of the set A.

2. TCLs and the control problem

During its operation, a TCL must adhere to certain operational
requirements (QoS constraints). We consider two.

e The temperature constraint: the TCL’s temperature must
remain within a prespecified deadband, [@™", ®@™¥],
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e The cycling constraint: The TCL can only change from “on”
to “off” or vice versa once every t (discrete) time instants,
where 7 is a prespecified constant. The cycling constraint is
to ensure the mechanical hardware is not damaged.

2.1. Temperature dynamics of a TCL
The typical model for the TCL’s temperature 6(t) in the litera-

ture is the following ordinary differential equation (ODE), where
0%(t) is the ambient temperature:

iG(t) = fm(6(t), t), with

at ) (1)
‘1 a prate

mwxﬁrigwm—eu»—mm”c

The rated electrical power consumption of a TCL is denoted pated
with coefficient of performance (COP) n. The parameters R and
C denote thermal resistance and capacitance, respectively. The
quantity m(t) € {0, 1} is the on/off mode, also called mode state:
1 means “on” and 0 means “off’. The thermostat setpoint is
denoted by @, and @t e [@™Min, @™max],

A model for the temperature state that accounts for modeling
errors in (1) - and which will be crucial for the development
in the next section - is the following It6 stochastic differential
equation,

do(t) = fu(6, t)dt + odB(t). (2)

The term B(t) is Brownian motion with parameter o > 0, and the
quantity o dB(t) captures modeling errors in (1). In either model,
the baseline power demand for the TCL, denoted by pB-T¢ is
the value of the quantity m(t)p™®? so that f;(A%, t) = 0, solving
which yields:
a ™ set
pBL,TCL(t) — 9(1-)70 (3)
nR

The mode state of a TCL evolves according to a policy. The fol-
lowing policy, which we denote as the thermostat policy, ensures
the temperature constraint:

1, o(t) > ©MX,
lin% m(t+¢€)= 40, o(t) < @min, (4)
- m(t), o.w.

We assume the following about the individual TCL discussed so
far.

A.1 The thermostat policy does not violate the cycling con-
straint.

A2 Forallt > 0and 0 e [O™" O™, f..(6,t) < 0 and
foff(es t) > 0.

A.3 The TCL's cycling and temperature constraint are both si-
multaneously feasible.

The sizing/design of the TCL is most likely to satisfy A.1 and A.3.
Assumption A.2 states that when the TCL is on, the temperature
does not increase and when the TCL is off the temperature does
not decrease. All prior works focusing on cooling TCLs (e.g., air
conditioners) implicitly make this assumption. Every result that
is to follow is also valid for heating TCLs (e.g., a water heater or a
heat pump) with a sign reversal. Assumption A.3 is also implicit
in any work that considers both the TCLs temperature and cycling
constraint.

2.2. Problem statement

In the sequel the continuous time t will be uniformly sampled
with discretization interval A. Let k be the corresponding discrete
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time index. The total electrical power demand of the collection at
time k, whether with thermostat policy or some other policy, is
denoted by yy:

Nicl

Y 2pey my 5)
=1

where mﬁ is the on/off mode state of the ¢th TCL at k. The goal of
coordinating TCLs is to help the BA balance supply and demand of
electricity in the grid. We denote r,'fA as the desired demand from
all flexible loads and batteries that will reduce the imbalance to
0. It is unreasonable to expect any collection of TCLs to meet the
entire desired demand r}f“‘ while maintaining their QoS. Only a
portion of r,‘f“‘ can be supplied by TCLs, and we denote this portion
by r¢; Fig. 1 shows a discrete-time version of these quantities. The
problem under study is to compute r, - given rkBA as problem data
- and design a decentralized coordination algorithm so that the
aggregate power demand of the collection, the output y; in Fig. 1
— tracks the reference r, without any TCL having to violate its
temperature and cycling QoS constraints.

2.3. PDE model from Malhame and Chong (1985)

We now describe a PDE model of a single TCL's temperature
density with thermostat policy, with ® for the temperature axis
and t for the time axis. This PDF was originally derived in Mal-
hame and Chong (1985). Consider the following marginal pdfs
Mon, Moff:

Lon(©, 1)dO =P (O < 6(t) < © +dO), m(t) = on), (6)
Hofi(©, £)dO =P (@ < 0(t) < © +dO), m(t) = off) , (7)

where P(-) denotes probability, 6(t) evolves according to (2) and
m(t) evolves according to (4). It was shown in Malhame and
Chong (1985) that the densities 1ton and o satisfy the Fokker—
Planck equations,

2

il
o on(©.6) = TV tton(k 1) = Vi (fonl @, Dten(©. 1)) (8)
2

0 o
&Moff(@, t) = 7V(2-;)Moff(@s t) = Vi (forl(©, o, 1)) (9)

that are coupled through their boundary conditions. The bound-
ary conditions are listed in Coffman et al. (2021b).

3. Markov model from PDE and and generalization to non-
thermostat policies

We use the finite volume method (FVM) to discretize the
PDEs (8) and (9) that yield a finite dimensional probabilistic
model - a Markov chain - for a single TCL (Eq. (13)).

3.1. Spatial (temperature) discretization

The FVM bins the continuous temperature into 2N, con-
trol volumes (CV), half for the on modes and half for the off
modes. The layout of the CVs is shown in Fig. 2. The CVs are
defined through the nodal temperature values, ! and @, i =
1, ..., Nui, and their left and right boundaries, with A® is being
the CV width.

The steps taken to obtain the spatially discretized PDEs is
detailed in Coffman et al. (2021b). We describe here the end
result of the derivation. First, define the following quantities

Voii(@', 1) 2 11o( O, 1) AO,

) ) 10
Von(O', ) £ pon(O', £)AO, (10)
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Fig. 2. The control volumes (CVs). The colors correspond to the colors found in Fig. 3. The values in each CV represent the nodal temperature for the CV. The arrows
describe the sign of the convection of the TCL through the CVs. The values are such that Ny, = m + g. The terms involving « model rate of transfer between

the corresponding CVs due to the thermostat policy, where o = y + ﬁA The parameter y > 0 is a design parameter; see Remark 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Sparsity pattern of the matrix A(t) for Ny, = 51 CVs for both the on and
off states. The colors correspond to the colors found in Fig. 2. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

fori=1,..., Nyn, and the row vector v(t) £ [vee(t), von(t)] With
Vort(£) 2 [Vore(© 1, 1), ... ., vorr(O", )],
Von(t) £ [Von(@l, t); ey Von(@Nbina t)]

This spatial discretization leads to 2N;, coupled ordinary dif-
ferential equations (ODEs), one for each of the v(O1,1t),
Von(®1, t)'s, for i 1,..., Nyin. By combining these ODEs we
obtain the linear time varying system

d
V(0 = V(DA().

The sparsity pattern of A(t) is shown in Fig. 3. The system (12)
is the spatially discretized version of the PDEs (8)-(9). The ma-
trix A(t) also satisfies the properties of a transition rate matrix,
described in the following lemma.

(11)

(12)

Lemma 1. For all t, the matrix A(t) is a transition rate matrix. That
is, for all t

(i): A(t)L=0.
(ii):  for alli, A;;(t) <0, and for all j # i A;j(t) > 0.

We omit the proof here since it is a standard result that
has been arrived by several others independently; see Benenati,
Colombino, and Dall’Anese (2019) and Paccagnan et al. (2015).
The interested reader can refer to Coffman et al. (2021b) for a
proof.

Remark 1. The choice of the FVM and how we discretize the
convection and diffusion terms appearing in (8)-(9) is important
for A(t) to satisfy the conditions in Lemma 1. This issue is well
known in the CFD literature (Versteeg & Malalasekera, 2007), and
also recognized in the related work (Benenati et al., 2019). If a
finite difference method had been used with central differences
for both diffusion and convection terms, the resulting A(t) would
require restrictive conditions on both o2 and A® to satisfy the
properties in Lemma 1 (Versteeg & Malalasekera, 2007).

3.2. Temporal discretization

To temporally integrate the dynamics (12) we use a first
order Euler approximation with time step At > 0. Making the
identifications v, £ v(t,) and A, £ A(ty) we have

with P =1+ AtA. (13)

In the continuous time setting elements of the vector v(t) were
referred to as, for example, von(@', t). The counterpart to this,
in the discrete time setting, is referring to elements of v as, for
example, vy [@1, k]. We further have the following.

V1 = ViPy,

Lemma 2 (Coffman et al, 2021a). The matrix P, is a Markov
transition probability matrix if

Vi, andVk, 0< At < |[Ady|™

where [Axli; is the ith diagonal element of the matrix Ay.
3.3. Markov model (with thermostat policy)

Recall that the dynamics (13) derived in the previous section
was for the thermostat policy. We now delve into the structure
of these dynamics so to introduce a BA control input. We first
formalize a discrete state space for the dynamics (13). We will
then show that the transition matrix P in (13) can be written
as a product of two matrices, one that depends solely on the
thermostat policy and the other solely on weather. This condi-
tional independence allows constructing a randomized TCL, one
in which the deterministic TCL policy is replaced by a randomized
policy. The BA can design this policy, which then becomes the
BA'’s control input.

Now denote 6, £ 0(ty), m, £ m(ty), and

Npin

I & Z ilev(iy(Bk, my).

i=1

(14)

The quantity I, indicates which CV the TCL's temperature resides
in at time k. It also is a function of m, since the CV index for the
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on mode is different from the index for the off mode. We then
define the following discrete state space:

» Npin}}s (15)

with cardinality |Z| = 2Ng,. Using the newly defined quantity
I, we rewrite the marginals vo,[©@', k] and vog[@', k] as functions
on Z,

Vonl®', k] =P (I =i, m =on), and (16)
voir[ @', k] = P (I, = i, my = off) . (17)

Z2{me {on,offf, [ €{1,...

From the above, the matrix P, (with the conditions of Lemma 2
satisfied) is the transition matrix for the joint process (I, my) on
the state space Z. The dynamic equation vg.q = Py is then a
probabilistic model for a TCL with state space Z and operating
under the thermostat policy.

In the following, we refer to the values of I with i and j and the
values of my with u and v. We introduce the following notation
to refer to the elements of the transition matrix Py:

P((i, u), (G, v)) £ (18)
P(Ik+l =j, M1 =v |k=i, m=u, 6= wk)«

We will now show that the matrix P, can be written as the
product of two matrices. One depends only on the thermostat
policy (control) and the other depends only on weather and TCL
temperature dynamics. That is, we show that each entry of Py
factors as

Pi((i, u), (, v)) = (v | P, J) (19)
where, for each given value of 6/, P/(i, ) is a controlled transition
matrix:

P 2P (1 =] | e =i, me=u, 0 =wy) (20)
and qﬁs(v | i) is an instance of a randomized policy ¢,(v | i) on Z:
Gu(v | D) EP (M =v | =i, m=u). (21)

The quantity ¢1>(v | i) in (21) is the thermostat policy on Z,
which is formally defined as follows.

Definition 1. The thermostat policy on Z is specified by the two
vectors B, pIS € RNin, where ¢5 2 gfsf(on | )= erm, d)Zﬁ 2
IS(off | -) = ey, and ¢I(off | ) 21— ¢T, dlS(on | ) 21—

The quantity P}(i, j) in (20) represents the open loop evolution
of the TCL on Z. That is, it describes how the TCLs temperature
evolves under a fixed mode. We define matrices with entries
P.(i, j) next.
€ RMNoinxNbin haye (i, j) entries given

Definition 2. Let P, po"

by,
POM(i, j) = Py (i, off), (j, off)), 1% N and j # Ny,
PO™(i, j) = Puy((i, on), (,on)), i 1andj# 1,

with PY(Nyin, Npin) = 1 and PO"(1, 1) = 1.

The quantities defined in Definitions 1 and 2 correspond to
entries of Py. To construct the promised factorization, from these
definitions, the idea is to construct its four sub-matrices that
correspond to all possible combinations of u, v € f{on, off} (see
Fig. 3). For example, the off — off quadrant of Py is given by the
matrix product

(I — diag(pey) P

However, since the temperature associated with the ith CV for the
on mode is not the same temperature associated with the ith CV

Automatica 152 (2023) 111002

for the off state (see Fig. 2) it is not true that the off — on quadrant
of Py is given as diag(¢.5)PS™. The entries of the matrix P{™ need
to be re-arranged so to correctly account for the difference in
CV index between the on/off mode. We define such correctly
re-arranged matrices next.

Definition 3. Let I°T = {m, ... Ny}, " = {1,...,q}, m™ =
m — 1, and S, 5o € RNoin*Noin with (i, j) entries
POff(l ) i, ie Ioff
sij—my={ kP e (22)
0 otherwise.
Pon( ) i, ; c IOrl
s j+moy= ] T e (23)
0 otherwise.

The above definition is based on the construction that Ny, =
q + m. The quantities in Definition 3 let us construct, e.g., the
off — on quadrant of Py as diag(¢13)S™.

The next result provides the promised factorization.

Lemma 3. Let the time discretization period At and the parameter
« that appears as a design choice in discretizing the PDEs to ODEs

be chosen to satisfy o = (At) L Let @,p £ diag(¢,;) and g, 2

dlag( ) where the vectors d)( ’s are defined in Definition 1, and

TS TS
oT 2 I- q)off ¢off 0 0 (24)
0 0 of 1-ofk
T

o s e p
G2 | o . (25)

PY 0 s 0

Then

Py = @7G;. (26)

Proof. See Appendix in Coffman et al. (2021b). O

Remark 2. The condition « = 1/At can be satisfied as long as
time and temperature discretization intervals At, A® are chosen
to satisfy At < (A®)?/o?. To understand how, recall that in the
discretizing the PDE to the coupled ODEs, a design parameter y
appears that must satisfy y > 0, and that « £ D + y where
D = W Thus, as long as 1/At > D, which is equivalent to

At < (A®)?/o?, a positive y can be chosen while meeting the
condition &« = 1/At. As a result, if a fine temperature resolution
is chosen, the temporal resolution must also be fine enough.

Remark 3. The conditional independence factorization (26) has
been a useful assumption in the design of algorithms in Busi¢
and Meyn (2016). In the present it is a byproduct of our spatial
and temporal discretization of the PDEs (8)—(9). There are other
works (Bashash & Fathy, 2013; Benenati et al., 2019; Paccagnan
et al.,, 2015) that develop Markov models for TCLs through dis-
cretization of PDEs. However, to our knowledge, our work is the
first to uncover this factorization.

3.4. Expanded state space for lock-out

We now augment the Markov model of an individual TCL’s
temperature dynamics to include cycling dynamics, following Liu
and Shi (2016) and Totu et al. (2017). Recall the cycling constraint
that the policy needs to enforce: as soon as a TCL switches its
mode, the TCL becomes stuck in that mode for 7 time instances.
This constraint can be represented as the evolution of a counter
variable. Define a binary variable s; as sy = 1 if the TCL is stuck
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in the current mode at time k and 0 if it is not stuck. The counter
variable is defined as follows

Ly +1, s, =1.
L = 27
k1 {O, 50 = 0. (27)

This variable counts the time spent in the “stuck” mode. If Ly > O,
it is stuck in either the on or off mode, and switching the mode
by the policy will violate the cycling constraint.

We now expand the state space to consist not only on/off
state and temperature but also the counter, and denote this newly
expanded state space X as

X & [me{0,1},16{1,...,Nbin},Le{O,...,r}}, (28)

with cardinality |X| = 2Np;,(t + 1). The corresponding marginal
pmf and transition matrix will be presented after we introduce
generalized policies that go beyond thermostat logic.

3.5. Grid support policy (= BA’s control command)

In light of Lemma 3 and the discussion preceding it, an arbi-
trary randomized policy can replace the thermostat policy. From
the viewpoint of the BA this randomized policy is the control
input that it must design and broadcast to a TCL. The TCL now
implements this policy to make on/off decisions instead of using
the thermostat policy. As we shall soon see, if the BA appropri-
ately designs and sends the randomized policy to multiple TCLs
it can achieve coordination of the TCLs for grid support.

To distinguish from thermostat policies in the prior section,
we denote the newly introduced policies with the superscript
‘GQ’ to emphasize that these are policies introduced for providing
Grid support with QoS preservation. We require these randomized
policies to have the following structure

Kk, (M4 1) <j < (Npp — 1), 1=0.

pomon [j,[) =31,  j=Nppn,[=0. (29)
0, o.w.
K, 2<j<(qg-1.1=0.

pom(off |j.)=11 j=11=0. (30)
0, o.W.

with ¢off(off | ) = 1— ¢gglon | -) and gonon | -) =

off

1-— q)on(off | -) and &? ,Kj € [0, 1] for all j. The policies

could also be time varying, for example: «"[k] and «"[k]. The
dependence of the policies on time is denoted as ¢0ff [k] and
q)onQ[k] In the above, we have required q)off(on | j) = 0 for
1 <j < m since the temperatures corresponding to these indices
are below the permitted deadband temperature, @™, Hence,
turning on at these temperature does not make physical sense.
The arguments for the zero elements in d)f,;r? are symmetric. This
construction ensures a TCL will not violate its temperature and
cycling constraints under Assumptions A.2 and A.3.

Deszgnmg such a policy is equivalent to choosing the values of

"”[k] and K [k] for all j and k.

Remark 4 (Implementation at a TCL). For an individual TCL, im-
plementing a randomized policy ¢0n,¢§f? is straightforward:
(i) the TCL measures its current temperature and on/off status,
(i) the TCL “bins” this temperature value according to (14) and
(iii) the TCL flips a coin to decide its next on/off state according
to the probabilities given in (29)-(30). Note that the thermostat
policy is a special case of the grid support policy, and both policies
enforce the temperature constraint. Only the grid support policy
enforces the cycling constraint explicitly.
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3.6. The Markov model (with grid support policy)

The Markovian model of a TCL with grid support policy on the
expanded state space X defined in (28) is

b2 — S2pCaGEe, 31)

where the marginal pmf v°? and the matrices ®°Q, G°Q are
defined below.

Each entry of the grid-support policy is denoted as ¢>0ff(u i, D
and qb (u | j, 1). The corresponding marginals are voff[@f, I, k]
and vm?[@f I, k]. We use vff?“, (resp., Or?l) as shorthand for

Off[ I, k] (resp., von[ 1, k]). In vectorized form, the marginal is

Ve — [vfff?, v where 152 = [, ..., vE% ] and vS¥ =

[von [V R Von‘r]- Define
0 D, ® S" 0 ¢, ® P’

6t o : (32)

T leepm 0 DS o0
where D, 2 17 @ e; € R*T1x7+1 and

1o o,

G 20,1 0, I |eREFDXEHD (33)

1 0o o,

The matrix @72 has the same structure as @5, but with policy
¢0ffv on , e,

— %%k k] 0 0
¢GQ A off off , 34
¢ [ 0 0 Pkl - cbéi?[kJ oY
where
@S2k £ diag(pSk]), SYK] £ diag(pSk]) (35)

The structure of the transition matrix @ %GS? is shown in
Fig. 4. For comparison, the transition matrix w1th policy ¢¢?
and without the cycle counter variable would simply be the four
red shaded blocks appearing in their respective quadrant. In the
expanded system, an on to off mode switch forces probability
mass from the red shaded region (I = 0 and m = on) to the green
shaded region (I = 1 and m = off). Mass must then transition
through the chain of t green blocks until it reaches the red block
again, so to respect the cycling constraint.

In the sequel, we will use “policy” to mean either the pair
(o2, ¢2) or the matrix &¢

4. Proposed framework

We are now ready to present a framework to solve the prob-
lem stated in Section 2.2. We first transition from the viewpoint
of a single TCL to that of a collection of Ny TCLs: £ =1, ..., Nyg.
For example, m, and I‘Z are the mode and binned temperature of
the ¢t TCL at time k. Recall (5): the total power consumptlon Vi
of the collection of Ny TCLs is y, = prated ZN‘C'l mk In addition,
the aggregate baseline demand of a Ny TCLs — denoted by pB-#99
- and the maximum power — denoted by p™®499 are

pP-Aes(r) & Neot p™. (36)

BL, TCL( ) max,Agg I

N p ’ p

4.1. Aggregate model of a collection of TCLs

So far the PDEs and their discrete version (the Markov model)
have been described as a model of a single TCL. They can also
model a collection of TCLs due to the Law of Large Numbers
(LLN), which was in fact the motivation behind the PDE derivation
in Malhame and Chong (1985). See also Chen, Bu$i¢ and Meyn
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Off On

N

with $GQ with ¢T3

Fig. 4. The sparsity pattern of the expanded transition matrix (the dots repre-
sent non-zero entries in the matrix) with T = 5. Each shaded block is over the
entire range of temperature values.

(2017) and Meyn et al. (2015) for a more formal treatment of
the basis in LLN of Markovian models of load collections. The
marginal pmf in our Markov model thus also describes sample
average over a collection of TCLs. Since the state v,f is a marginal
pmf for a single TCL, for a collection of TCLs we expect this pmf
to approximate the histogram hy[-] as Ny, — 00, where:

Nicl

1
el i1 2 —— > (L 0Ol (L), (37)

tel =1
for each state (u, i, I) € X. In the same regard, we define

GQ & ,{GQCGQ, with CGQ 2 [OT, pmax,Agg]lT]T, (38)

Yi
where p™®-A99 is the maximum possible power of the collection,
defined in (36). The control oriented aggregate model of a TCL
collection is the dynamics (31) together with the output (38):

GQ Q(DGQGGQ =, QCGQ (39)

GQ
Vi1 = Yk and y,

Due to the LLN, we expect yk Qs yi for large Ny.

Effectiveness of (39) in modeling a population of TCLs can be
seen in our prior work (Coffman et al., 2021a) and the extended
version (Coffman et al., 2021b).

4.2. Co-design of policy and demand reference

Recall the problem statement from Section 2.2: the BA needs
to determine a reference signal r, - given rkBA as problem data
- and a policy for the TCLs so that with that policy the TCLs
can collectively track r, without any TCL having to violate its
temperature and cycling QoS constraints. Determining r becomes
an optimal control problem due to the time coupling produced
by TCLs’ dynamics. We consider a planning horizon of Ty, and
define T £ {T(0), ..., T(0) + Tpian — 1}, with T(0) denoting the
initial time index.

In the proposed framework, the BA solves the following opti-
mization problem to simultaneously design grid support policies
and a feasible reference signal ry for k € T:

2
: BA _ .,GQ
e (rk Vi ) (40)
k k keT
s.t. Vk+1 = v DGy, vt = vk, (41)
vlel0,1, o eo. (42)
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where kaQ € [0, 1] holds elementwise, the initial condition vg(%)
is given as problem data, and @ is the following convex set:

o2{o ek |1=01

@ satisfies (34)-(35) for some ¢On , ¢§f?,
which in turn satisfy (29)-(30) } . (43)

where R‘[S'ﬁ‘xl is the set of |X| x |X| matrices with entries in [0, 1].
A solution vE* qﬁ,f* to (40) yields, for k € T, two things:
(i) an optimal reference for the power demand of the TCL col-
lection, defined as r, 2 y*(= vGQ*CGQ) and (ii) optimal ran-
domized policies ¢§§*[k] d)GQ’*[k] obtained from the solution
@7%* as follows. Given a @ € @, one recovers vectors ¢S, don
from (34)-(35). Due to (29)-(30) and the [0, 1] constraint in (D
the vectors ¢ff?, ¢§3 are valid conditional pmfs. The reference is
optimal in the following sense: among all power demand signals
the collection can track without requiring any TCL to violate its lo-
cal QoS constraints in so doing, it is the closest to the BA’s desired
demand rB* in 2-norm. The reference is also the predicted power
consumption of the TCLs whilst using the policies ¢§}%*[k] and
GQ “*[k). Recall that the equality constraints (29)-(30) ensure the
temperature and cycling constraints by placing zero probability
on state transitions that would violate QoS.

Remark 5. Since the reference ri(= GQ*) from (40) is the best
the TCLs can do to help the BA without any TCL having to violate
its QoS, Problem (40) therefore also provides an answer to the
“aggregate flexibility” question; see the discussion in Section 1.1.
Unlike earlier works, proposed framework not only characterizes
the aggregate flexibility and an optimal reference within the
flexibility set but also provides a coordination algorithm that can
track that reference.

4.3. Convex policy design

The problem (40) is non-convex due to the product v,fcblf in
the constraint. A well known convexification remedy for (40) is
to optimize over the marginal and joint distributions instead of
the marginal and the policy (Benenati et al., 2019; Manne, 1960).
The joint distribution, in matrix form, is:

Ji = diag(v; )Pt e RX2X, (44)

By construction, we have that vf,, = ]lT]k ©and (v = Ji1
since 1Tdiag( e ) = vk Qand 1 = 45 Q. It is straightforward to
convert the constramt set §DGQ cd to the new decision variables.
We denote the transcription of q§,§ ¢ € @ to the new variables as
Uk v,fQ) € @. For instance, for the equality constraints in @, if
we have ¢S(u | j, 1) = « for some scalar «, then in the decision
variables J; and vaQ we will have a linear constraint of the form

Py =u, I =j, Ly =1, my = off)
= kven[@, 1, k],

where the LHS of the above is some element in the matrix Ji. In
addition, both J; and vkc'Q to be within [0, 1] entrywise. Optimizing
over J and v.® yields the convex program:

(45)

n* _mm n Z(r - )
l’k keT
46)
GQ GQ 6o _ — »9QceQ, (
st Uk+l =1",G, vroy =P, Vk =y C
v Jk € 10,11, (7Y = Jit, Ui, vi%) € @.
Once the convex problem is solved, the matrices ®.%, k € T need

to be recovered from it by using the relation (44). If the matrix
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diag(v,fQ) is invertible, then dﬁ,f obtained trivially from inversion

of diag(ukGQ). If it is not invertible, more care is required. The next
Algorithm describes this reconstruction.

Algorithm 1. For v € {off, on}, if v,[@’, I, k] > O then set
Py =u, k=j, Lk=1, mg=v)
vu[@J, 1, k]

where the value of the joint distribution P (my.1 = u, I =3,

Ly = I, my = v) is obtained from the corresponding entry of the
matrix Ji. If v,[@/, I, k] = 0, consider two scenarios depending on
the value of v. If v = off, choose $S%(on | j, I) to satisfy the equal-
ity constraints (29) and then elect ¢p%(off | j, I) = 1—$S%(on | j, I).
Second, if v = on, choose ¢S%off | j, 1) to satisfy the equality
constraints (30) and then elect $%%(on | j, I) = 1—¢S%(otf | j, I). O

¢S%u|j, 1) = (47)

Note that there is some design flexibility in the case a marginal
entry is 0, since many «'"s can be chosen to meet the equality
constraints (29). Any of these choices are feasible since due to the
constraints (45), the only way the solution has a zero entry in the
marginal v is if the corresponding entry in the joint density J is
also 0.

Lemma 4. Suppose for all k € T that v,fQ and Ji satisfy the
constraints in problem (46). Then, the quantity chGQ constructed
according to Algorithm 1 satisfies (44) and it is a valid randomized
policy, i.e., ¢,EQ e .

Proof. See Appendix A.1. O

The nonconvex problem and its convex relaxation have a
certain equivalence described in the following Theorem.

Lemma 5. Let nyq, and ng,x be the optimal costs for problems (40)
and (46). Then, nf,x = Nxcvx-

Proof. See Appendix A2. O

This result, for a similar problem setup, is also reported in Be-
nenati et al. (2019). While we have no guarantee on the difference
of the argument minimizers (and hence the policies obtained
from both), Lemma 5 says that the policies will produce the
same tracking performance. Further, from Lemma 4, the policies
produced from either problem are guaranteed to ensure TCLs’
QoS.

The sparse nature of the matrix J, can be exploited to reduce
computational burden significantly. For instance, in the numerical
examples reported later in the paper, the problem (46) has ~
500,000 decision variables. We were able to reduce the number of
variables to ~ 75,000 by exploiting sparsity of J. The interested
reader is referred to Coffman et al. (2021b) for details of this and
other computational aspects.

Matlab implementation of (46) and the algorithm to extract
the policies from J is available at Coffman (2021).

4.3.1. Communication burden

Once solved, the policies obtained from (46) need to be sent
to each individual TCL. Many of the policy state values are con-
strained to either zero or one, which could be pre-programmed
into each TCL. At each time index, ¢ — 2 (for the on to off
policy) plus Ny, — m — 1 (for the off to on policy) numbers are
not constrained and need to be sent from the BA to each TCL.
Recall that the numbers m and g are temperature bin indices (see
Fig. 2) and Ny;, is the number of temperature bins. For illustrative
purposes, consider the values used in numerical experiments
reported in the sequel: Ny, = 12 with ¢ = 10 and m = 2 and a
time discretization At = 1 min. Since Ny, = q + m, then the BA
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has to broadcast 2q — 3 = 17 numbers every 1 min to the TCLs.
Each TCL receives the same 18 numbers.

Communication from TCLs to the BA - about their temperature
and on/off state - is needed at the beginning of every planning
period so that the BA can determine the initial condition v in (46).
The frequency of this feedback is a design choice. In our numerical
simulations reported later, a planning horizon of 6 h was used,
and this feedback was necessary only once in six hours. More
frequent loop closure may be needed for higher robustness to
uncertainty in weather prediction etc., a topic outside the scope
of this paper.

Remark 6. The reference tracking objective in the policy design
problem (40) can be changed depending on the application, but
the constraints of Problem (40) will have to be retained so that
TCLs’ QoS are not violated. For instance, a load aggregator par-
ticipating in an ancillary services market seeking to maximize
revenue may simply change the objective without changing the
constraints to compute a reference for its TCL collection and
design the corresponding policies. Depending on the application,
the constraints may have to be augmented with additional ones.
In additional constraints are introduced, the convex reformula-
tion may or may not enjoy the equivalence with the non-convex
problem described in Lemma 5.

5. Numerical experiments

Simulation involving coordination of N = 20,000 TCLs
through our proposed framework is presented here. Recall the
two parts of the coordination architecture shown in Fig. 1:
(i) planning and (ii) real time coordination. Planning refers to the
solution of the problem (46) at the BA to compute the following
two things for each k in the planning period T:

(i) rx: the reference power consumption of the TCL collection,
given the problem data rf*.

(ii) ¢§f%*[k] and ¢§r?’*[k]: grid support control policies for each
TCL.

This computation is performed at T(0). Real time coordination is
the implementation of the grid support policies at each TCL to
make on/off decisions, which is done as explained in Remark 4.
We imagine the BA broadcasts the policies ¢>§f(f1’*[l<] and ¢S2*[k]
at each k, though it can also broadcast all the policies, for all k € T,
at T(0) and not broadcast again until the beginning of the next
planning horizon.

The goal of the numerical simulations of real time control is
to show the following.

(i) When each TCL uses the computed policies ¢>§f%*[k] and

S’r?‘*[k] to decide on/off actuation, the collection’s power
demand indeed tracks ry.

(ii) Every TCL’s QoS constraints — both temperature and cycling

- are satisfied at all times.

There is some “plant-model mismatch” in these simulations:
temperature of each TCL is computed with the ODE model (1)
even though the policy design and reference computation is based
on the Markov model.

5.1. Planning

The demand needed for demand-supply imbalance at the BA,
rkBA, is chosen arbitrarily, and shown in Fig. 5 (top). It is infeasible
for the collection: sometimes negative and sometimes far higher
than the maximum power demand of the collection. This is done
to simulate a realistic scenario in which many sources of demand
and generation, not just TCLs, are managed by the BA.
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Table 1

Simulation parameters.
Par. Unit Value Par. Unit Value
Neet N/A 2x104 n e 25
C kWh/°C 1 preted kW 5.5
emn °C 20 em °C 22
(At)T Min. 5 Pagg MW 110
R °C/kW 2 At Min. 1
q N/A 10 m N/A 2
Nbpin N/A 12 Tplan N/A 360

The baseline demand trajectory is defined by Eq. (36), which
is approximately the power consumption for this collection of air
conditioners under thermostat control. The ambient air temper-
ature is time varying and is obtained from wunderground.com
for a typical summer day in Gainesville, Florida, USA. The other
parameters relevant to the simulations are shown in Table 1.

Planning computations are done with Matlab and CVX (Grant
& Boyd, 2011) using a desktop Linux machine, with N, = 12,
and for a six hour planning horizon with 1 min discretization
(Tplan = 360). The problem (46) takes about a minute to solve.
The quantity rP%, the baseline power p;~* defined in (36), and
the reference signal r, obtained from solving (46), are shown in
Fig. 5 (top). Fig. 5 (bottom) shows the two grid support control
polices for an arbitrarily chosen time instant.

5.2. Real time coordination

The power consumption of the collection making on/off deci-
sions according to the obtained policies is shown in Fig. 6 (top).
The figure shows that the TCLs are able to collectively track the
reference signal r,. We emphasize that the computational effort
at each TCL is negligible. Recall Remark 4: once a TCL receives a
grid support policy (17 floating point numbers, see Section 4.3.1)
it only has to measure its current state (temperature and on/off
mode) and generate a uniformly distributed random number in
[0, 1] to implement the policy.

Verification of the grid support policies in ensuring QoS is
shown in Fig. 6. The bottom plots show a histogram of the times
between switches for 300 randomly chosen TCLs. The middle plot
shows a histogram of temperature from 200 randomly chosen
TCLs' temperature trajectories. The histograms show that the
policies designed with (46) indeed satisfy the QoS constraints,
which is specified by the vertical lines in the figures. Some TCLs
do escape the temperature deadband by a little bit, which is
expected and occurs also in thermostatic control: the sensor must
first register a value outside the deadband in order decide to
switch the on/off state.

6. Conclusion

In this work we present a framework for the decentralized
control of TCLs. The framework unifies: (i) reference planning for
a collection of TCLs and (ii) design of randomized control policies
for individual TCLs by posing them as the solution of a single
optimization problem. The resulting framework is (i) scalable to
an arbitrary number of loads and is implemented through local
feedback and minimal communication, (ii) able to guarantee both
temperature and cycling constraints maintenance in each TCL,
and (iii) based on convex optimization. Matlab/cvx implemen-
tation is publicly available (Coffman, 2021). The exposition is in
terms of a reference demand supplied by a grid authority, but the
framework is flexible enough to aid other applications, such as a
load aggregator bidding in a day-ahead market.

10

Automatica 152 (2023) 111002

BL,Agg
x104  —— P —rpt - - -1y
,,,,,,,,,,,,, - ——
- 10 r ~ \ b
;%« A AR
Y I’ 4
g 5 r\e ) \ . / X ,, \
& / ., \ \I‘
0 77777777777777777777 —
0 4 8 12 16 20 24
Time (hours)
1
L GQ * i
0.8 _e_¢off
5 06 _*_¢gr?,*
o
a 0.4
0.2
0
Amin )\set Amax
Temperature °‘c

Fig. 5. (Top): The optimal reference r; obtained from solving (46), the dashed
horizontal lines represent all of the TCLs on (top line) and off (bottom line).
(Bottom): Grid support control policies, obtained from solving (46), at an
arbitrary time instance.

There are several avenues for future work. The optimal control
problem is solved in an open-loop fashion here. Feedback from
TCLs is used only to compute an initial condition that is needed
as problem data for the off-line planning problem. It is straight-
forward to close the loop between the TCL collection and the BA
with greater frequency for robustness to uncertainty in weather
forecast and TCL parameters. It will be of interest to identify sce-
narios where closing loop, say, by using Model Predictive Control,
is (i) necessary, and (ii) at what frequency should information
be communicated from the TCLs to the BA. Another avenue is to
investigate how the problem (46) could be solved at each TCL, in-
termittently, instead of at the BA. Since the computational power
of the processor at each TCL is lower than that of the processor
at the BA, online distributed algorithms for convex optimization
could play a role. The Fokker-Planck equations from Malhame
and Chong (1985) we used here are convenient for modeling
TCL populations with a small degree of heterogeneity. Distributed
computation of optimal policies locally at each TCLs may help
extend the method to a highly heterogeneous population of TCLs.
The proposed framework performs reference computation and
coordination algorithm design simultaneously by posing both
as decision variables in an optimization problem. The coordi-
nation algorithm is parameterized by a randomized policy. It
is possible that with appropriate parameterization of a policy,
reference+algorithm design can be extended to non-randomized
grid support policies, and to applications beyond coordinating
TCLs.

Appendix. Proofs

A.1. Proof of Lemma 4

Eq. (45) is used to define the individual entries of the policy
¢, which then form the matrix version @ as seen in (44). Hence
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Fig. 6. (Top): Reference tracking results for the TCLs under the influence of the
grid support control policies obtained by solving (46). (Middle): Histogram of the
200 TCL's temperature trajectories over the entire simulation horizon. (Bottom):
Histogram of the time between switches over 3000 TCLs with the vertical line
representing the minimum allowable time between switches.

the constructed policy satisfies (44). It remains to show that the
policy constructed by the algorithm is a valid randomized policy.

The policy will automatically satisfy constraints (34)-(35)
since it represents a structural constraint that specifies how to
build the matrix representation of the policy from its vector-
ized form, which is object constructed in Algorithm 1. When
v,[@, 1, k] = 0 the algorithm choices then ensure constraints (29)
and (30) and 1 = @1 by construction. When v,[@/, [, k] > 0 we
have that

D oSl (A1)
u
_Zp(mkH:U, k=j, k=1 my=v) (A2)
N u Vv[(")jv lv k] '
1
=———— Y Py =u h=j. L=l m=v) (A3)
UU[@]v lv k] u
v [O7, 1, k]
v [67, 1, k] (A4)

by definition of the joint distribution. We also see from the above
that the entries of the vector ¢¢2 sum to 1, and each entry is
nonnegative by construction. Thus, each entry must be in [0, 1],
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meaning ¢E’Q is a valid probability vector. The equality constraints
as specified in (29) and (30) will be satisfied since those appear
as constraint of the form (45) in the optimization problem (46).
The vector ¢S9 is thus a valid randomized policy.

A.2. Proof of Lemma 5

The proof structure is similar to the one in Benenati et al.
(2019). The idea is to exploit the fact that: (i) vaQ is a deci-
sion variable for both optimization problems (46) and (40) and
(ii) the objective function is the same for both problems and
solely a function of the marginal v,fQ. We rewrite these problem

compactly below,

nax = min p(ve9), (A5)
(v6Q ex

= min (%), (A.6)

TINcvx (162 pCQ)ey n

where the sets X and Y collect all of the relevant constraints for
the problems. The variables v°2, #%Q, and | are concatenated over
the considered finite time horizon and hence are not sub-scripted
by k.

To prove that n¢,x < nNcvx Pick any argument minimizer that

achieves value 7y and denote the pair as (vﬁgvx, dﬁﬁgvx). Triv-

ially construct J through the relation (44) so that this constructed
J and vcgvx (that is optimal for (40)) are also feasible for (46),
ie., (vgcvx,]) € X. This is since Jleiag(vaQ) = vaQ and 1 = @,?Q]l.
Hence we have that

min

A7
(veQJEQ)ex (A7

G
novx = n(ve?) < n(UN?VX) = fNevx

where the inequality follows from the fact that vcy. Jxcux is only
a feasible point and need not be a minimizer in X.

To prove the opposite, nicyx < Néyx- Pick any argument mini-
mizer that achieves value 5,y and denote the pair as (vcc'\%(, ]g%().
Then apply Algorithm 1 to construct the corresponding condi-
tional pmf, and call it (the matrix version) @CG\%( Due to Lemma 4,
this is a valid randomized policy and satisfies (44), which means
that the pair (vay, Doy is feasible for the nonconvex problem.
Hence,
min

A8
(veQ,pGQ)ey ( )

G
Mok = n(v°Y) < n(vas) = Nivx

where the inequality follows from the fact that vi, Pory is only

a feasible point and need not be a minimizer over Y. Combining
with (A.7), we have ny~x = n¢vx Which proves the Lemma.
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