a' frontiers ‘ Frontiers in Astronomy and Space Sciences

@ Check for updates

OPEN ACCESS

EDITED BY
Jaroslav Chum,

Institute of Atmospheric Physics (ASCR),
Czechia

REVIEWED BY
David R. Shklyar,

Space Research Institute (RAS), Russia
Zbysek Mosna,

Institute of Atmospheric Physics (ASCR),
Czechia

*CORRESPONDENCE
L. A. Da Silva,
ligia.alvesOl@gmail.com

SPECIALTY SECTION
This article was submitted to Space
Physics,

a section of the journal

Frontiers in Astronomy and Space
Sciences

RECEIVED 15 June 2022
ACCEPTED 17 August 2022
PUBLISHED 28 September 2022

CITATION
Da Silva LA, Shi J, Resende LCA,
Agapitov OV, Alves LR, Batista IS, Arras C,
Vieira LE, Deggeroni V, Marchezi J,
Wang C, Moro J, Inostroza A, Li H,
Medeiros C, Cardoso FR, Jauer P,
Alves MV, Chen SS, Liu Z, Denardini CM
and Gonzalez W (2022), The role of the
inner radiation belt dynamic in the
generation of auroral-type sporadic E-
layers over south American

magnetic anomaly.

Front. Astron. Space Sci. 9:970308.
doi: 10.3389/fspas.2022.970308

COPYRIGHT

© 2022 Da Silva, Shi, Resende, Agapitov,
Alves, Batista, Arras, Vieira, Deggeroni,
Marchezi, Wang, Moro, Inostroza, Li,
Medeiros, Cardoso, Jauer, Alves, Chen,
Liu, Denardini and Gonzalez. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Frontiers in Astronomy and Space Sciences

TypE Original Research
PUBLISHED 28 September 2022
Dol 10.3389/fspas.2022.970308

The role of the inner radiation
belt dynamic in the generation of
auroral-type sporadic E-layers
over south American magnetic
anomaly

L. A. Da Silva'?*, J Shi*, L. C. A. Resende’?, O. V. Agapitov?,

L. R. Alves?, I. S. Batista?, C. Arras?, L. E. Vieira?, V. Deggeroni?
J. P. Marchezi'?, C. Wang?, J. Moro?, A. Inostroza?, H. Li?,

C. Medeiros?, F. R. Cardoso?, P. Jauer'?, M. V. Alves?, S. S. Chen?,
Z. Liu*, C. M. Denardini? and W. Gonzalez'?

State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of
Sciences, Beijing, China, 2National Institute for Space Research—INPE, Sdo José dos Campos, Brazil,
SUniversity of California, Berkeley—UCB—Space Sciences Laboratory, Berkeley, CA, United States,
“German Research Centre for Geosciences—GFZ, Potsdam, Germany, *University of Sdo Paulo—USP,
Lorena School of Engineering (EEL), Sdo Paulo, Brazil

The dynamics of the electron population in the Earth's radiation belts affect the
upper atmosphere’'s ionization level through the low-energy Electron
Precipitation (EP). The impact of low-energy EP on the high-latitude
ionosphere has been well explained since the 1960's decade. Conversely, it
is still not well understood for the region of the South American Magnetic
Anomaly (SAMA). In this study, we present the results of analysis of the strong
geomagnetic storm associated with the Interplanetary Coronal Mass Ejection
(May 27-28, 2017). The atypical auroral sporadic E layers (Es,) over SAMA are
observed in concomitance with the hiss and magnetosonic wave activities in
the inner radiation belt. The wave-particle interaction effects have been
estimated, and the dynamic mechanisms that caused the low-energy EP
over SAMA were investigated. We suggested that the enhancement in pitch
angle scattering driven by hiss waves result in the low-energy EP (=10 keV) into
the atmosphere over SAMA. The impact of these precipitations on the ionization
rate at the altitude range from 100 to 120 km can generate the Es, layer in this
peculiar region. In contrast, we suggested that the low-energy EP (<1 keV)
causes the maximum ionization rate close to 150 km altitude, contributing to
the Es, layer occurrence in these altitudes.

KEYWORDS

inner radiation belt, auroral-type sporadic E-layers, South American Magnetic
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Key points

« Pitch angle scattering driven by hiss waves could cause the
electron precipitation > 0.5 keV over the SAMA.

o Electron precipitation < 10 keV is the main ingredient to
generate Es, detected 100-120 km
over SAMA.

o Electron precipitation < 1keV is the main ingredient to
generate Es, layer detected close to 150 km over SAMA.

layer close to

Introduction

Coupling between the solar wind structures and the Earth’s
magnetosphere can affect the upper atmosphere’s ionization
through charged particle precipitation. The high-latitude
dynamic after the low-energy Electron Precipitation (EP) has
been well understood since the 1960’s decade. Rees (1963) and
Cai and Ma (2007) found that the low-energy EP (>1 keV) can
cause maximum ionization at altitudes below 150 km. These
charged particles can be an essential source to generate the
auroral-type sporadic E layer (Es,) at high Ilatitudes
(Whitehead, 1970). Nath et al. (1980) suggested that low-
energy EP is usually the major cause for the generation of
such a layer, once the modified wind shear mechanism is
important under low-energy EP conditions only.

The Es, layer over the South American Magnetic Anomaly
(SAMA) has been observed since the 1970’s, in which the
theoretical discussions regarding the inner radiation belt
dynamic were suggested as the main mechanisms responsible
for the low-energy EP over this region (Batista and Abdu, 1977).
SAMA is a weak magnetic field region that results from the
(Pinto
1989) and has pronounced departures in its

geomagnetic field’s geometric configuration and
Gonzalez,
symmetry. This peculiar region presents the trapped particle
mirror points considerably lowered in altitude compared to other
areas around the Earth (Roederer, 1967).

The dynamic mechanisms in the inner radiation belt are
crucial to understanding the mechanisms responsible for the
low-energy EP over the SAMA (Paulikas, 1975; Batista and Abdu,
1977; Pinto and Gonzalez, 1989; Nishino et al., 2006). Therefore,
observing the magnetospheric wave activities inside the inner
radiation belt and slot region allows us to understand the physical
processes that cause these atypical layers over the SAMA, as
Gonzalez et al. (1987) suggested. In this context, the plasma
waves can be detected, such as the hiss (Meredith et al., 2004) and
magnetosonic (Boardsen et al., 2016) waves. The plasmaspheric
hiss waves are regarded as Extremely Low Frequency (ELF)
whistler-mode emission (20 Hz - few kHz) (Meredith et al,,
2004; Cao et al., 2005). The fast magnetosonic (MS) waves are
typically detected between the proton gyrofrequency (f.,) and the
lower hybrid resonance frequency (fLHR) (e.g., Russell et al.,
1969; Ma et al., 2013).
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The lightning-generated whistlers could also play an
important role in electron precipitation from the Earth’s inner
radiation belt and slot region (see, e.g., Inan et al., 1989, Green
etal,, 2005; Green et al., 2020). Generally, the lightning-generated
wave power could be mixed into the high frequency (>~ 2 kHz)
portion of plasmaspheric hiss in the observation (Meredith et al.,
2007). However, they are distinguishable using the wave
polarization properties observations and could affect the
electrons at lower energies than hiss (Green et al., 2020).

The pitch angle scattering is the main dynamic mechanism
responsible for the EP driven by hiss waves (Lyons et al., 1972;
Abel and Thorne 1998). On the other hand, the MS wave-particle
interaction can result in EP in the atmosphere through the
bounce resonance mechanism (Chen et al., 2015; Maldonado
et al, 2016; Maldonado and Chen, 2018), Landau resonance
mechanism (Li et al., 2014; Bortnik et al., 2015; Ma et al., 2016),
and transit-time scattering mechanism (Bortnik and Thorne,
2010; Lei et al., 2017).

This work proposes to study the inner radiation belt/slot
dynamic during the low-energy EP into the ionized
atmosphere. The confirmation of the low-energy EP
occurrence is through the Es, layer’s signatures in two
digital ionosondes installed close to the SAMA region.
Then, the main physical processes responsible for this Es,
layers’ generation over SAMA are determined for the first
time, using in situ satellite measurements in the inner
radiation belt and an empirical model of the atmospheric
ionization. Finally, the dynamic mechanisms responsible for
the extra atmosphere’s ionization over the SAMA region are
identified,
magnetosphere-ionosphere coupling, and answering many

leading to a better understanding of the
open questions, as follows below:

1. Why the auroral-type sporadic E layer is detected over the
SAMA region (outside the auroral region)?

2. What are the magnetosphere waves and the main dynamic
mechanism that cause the electron precipitation over the
SAMA region?

3. What energy levels of electrons precipitate over the SAMA
region?

4. What energy levels of electrons can generate the Esa layers
close to 100-120 km over SAMA?

5. What energy levels of electrons can generate the Esa layers
close to 150 km over SAMA?

Approach

We aim to investigate the low-energy EP (tens of keV) in the
ionosphere over the SAMA. For this purpose, we use space and
ground-based observations recorded over several decades.
However, we have constraints on how we can proceed in this
investigation. For example, we need simultaneous observations
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FIGURE 1

(A) Solar wind speed (Vp); (B) density (Np); (C) Interplanetary Magnetic Field (IMF) Bx (red) and By (blue) components; (D) IMF intensity (Bt) and

Bz component, in red and blue colors, respectively; (E) AE Index; (F) Symmetric disturbance index (SYM-H). The Vp, Np, Bt, Bz, Bx and By are
obtained by ACE satellite in the Lagrangian L1 point. AE and SYM-H geomagnetic indices are obtained at OMNI database: High Resolution OMNI (5-
min averaged). The vertical dashed red lines refer to the onset time of the geomagnetic storm'’s phases.

of the solar wind, the magnetosphere, and ionospheric
conditions. Additionally, it would be simpler to investigate
periods in which the low-energy EP effects would be easily
distinguishable from the background patterns. In this work,
we select an event to study the signatures in the inner
radiation belt that are associated with the ionosphere.
Assuming that low-energy EP occurs during geomagnetic
storm conditions, it is reasonable in the first moment to search
for signatures in the ionosphere during intense geomagnetic
(1994),
geomagnetic storms are usually related to the transit of

storms. As defined by Gonzalez et al intense

interplanetary counterparts of coronal mass ejections (ICMEs)
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through Earth’s orbit. In this way, we identify the candidate
events in the ICME events catalog compiled by Cane &
Richardson (2003) and Richardson & Cane (2010). Currently,
the event list is available at http://www.srl.caltech.edu/ACE/ASC/
DATA/level3/icmetable2.htm.

This work investigates the solar wind structure employing
parameters measured by instruments onboard the Advanced
Composition Explorer (ACE) satellite, which provided the
solar wind parameters at the L1 Lagrangian point since 1997
(Stone et al., 1998). Specifically, we use observations from the
Magnetic Field Experiment (MAG) and Solar Wind Electron,
Proton, and Alpha Monitor (SWEPAM).
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FIGURE 2
Electron density from Van Allen Probe A (A) and B (C), and frequency-time spectrogram of magnetic spectral density from Van Allen Probe A (B)
and B (D). The red line represents the lower hybrid resonance frequency (fLHR). The electron densities and fLHR are obtained from the EMFISIS
instrument. The geomagnetic storm period analyzed here is approximately 2 hours before the sudden commencement phase and about 8 hours
after the beginning of the recovery phase. The vertical dashed red lines refer to the onset time of the geomagnetic storm'’s phases.

On the other hand, we need to identify a signature of the low-
energy EP in the ionosphere appropriate for this study. The Es,
layer is a suitable signature for such investigation as low-energy
EP is associated with these sporadic E layers in the auroral region.
Here, we use the data collected by Digisondes installed in
Cachoeira Paulista, Brazil (22.7°S, 45.0°W, dip: -35°, L = 1.13),
from the Embrace Network (Denardini et al., 2016), and installed
in Santa Maria, Brazil (29.7°S, 53.8°W, dip: -37°, L = 1.16) from
the China-Brazil Joint Laboratory for Space Weather (Moro et al.,
2019) to monitor the occurrence of Es, layer over the SAMA
region. The ionograms are graphs of virtual height versus
frequency, which provide the ionospheric profile, and from
which the ionospheric parameters, including the sporadic-E
layer types, can be obtained. These graphs are obtained from

Frontiers in Astronomy and Space Sciences

04

the ionosondes, a radar that transmits radio waves continuously
into the ionosphere ranging from 1 to 30 MHz and 5/10 min of
time resolution (Reinisch et al., 2009). It is important to mention
that virtual heights are calculated based on the time interval
between pulse transmission and echo received through the
antennas (Reinisch et al., 1997).

The Van Allen Probes Mission (VAP), which was designed to
investigate the dynamics of the Earth’s radiation belts, has been
providing observations of low-energy electron flux and the wave
activity for approximately 7 years since its launch on 12 August 2012
(Mauk et al,, 2013). The proton flux contamination in the Magnetic
Electron Ion Spectrometer (MagEIS - Blake et al., 2013) data of the
Van Allen Probes has been removed (Claudepierre et al.,, 2015),
providing the low-energy electrons trapped without contamination.
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FIGURE 3

geomagnetic storm’s phases.

RBSPB - Electron Flux 32 - 70 keV

108
B
; o
g 10° w
> 1)
§ E
5 )
104~
c 103
15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00
L 3785 6.017 4230 3.650 6.045 4254 3.707 6.283 4.462
MLT 13.177 16.004 18.688 13.430 16.466 19.124 13.142 15.974 18.361
2017-05-27 (147) 15:00 to 2017-05-28 (148) 15:00
RBSPB - Electron Flux 32 - 70 keV
108
3
; )
< 10° @,
> [
. )
5 g
104~
10°
06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30 10:00
L 4254 3.414 2.388 1.438 1.493 2.649 3.707 4.540 5.171
MLT 19.124 19.955 21.366 1.064 8.876 11.847 13.142 13.924 14.489

2017-05-28 (148) 6:00 to 10:00

Low-energy electron flux (32-70 keV) from Van Allen Probe B during the geomagnetic storm time (top) and R-P time (bottom). The start time of
the geomagnetic storm is considered here as approximately 2 hours before the sudden commencement phase and it ends approximately 8 hours
after the beginning of the recovery phase. The low-energy electron flux is obtained from MagEIS instrument onboard Van Allen Probe (B). This
decontaminated data is available for this period only from Van Allen Probe (B). The vertical dashed red lines refer to the onset time of the

In contrast, the low-energy electrons precipitated over SAMA are
still challenging to measure due to the strong proton contamination
(e.g., Rodger et al,, 2013; Andersson et al., 2014). In this way, we
analyze and discuss the low-energy electrons in the inner radiation
belt/slot as well as the plasma waves. The plasma waves, such as hiss
waves (Meredith et al, 2004), can interact with these electrons
through the pitch angle scattering mechanism to cause EP to the
atmosphere. In contrast, the MS waves (Ma et al., 2013) can interact
with these electrons through bounce resonance, Landau resonance,
or transit-time scattering mechanisms to cause EP to the
atmosphere. Furthermore, an empirical model (Fang et al., 2010)
is used to estimate the atmospheric ionization rate (100-150 km)
and confirm the role of the low-energy EP in the Es, layer generation
over this peculiar region.

The hiss and MS wave power spectral densities are estimated
using observations from the Electric and Magnetic Field
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Instrument  Suite and (EMFISIS)
instrument (Kletzing et al., 2013). We infer the total electron
density from the data measured by the Electric Field and Waves

(EFW) instrument (Wygant et al., 2013) and the frequency ratio

Integrated ~ Science

of electron plasma oscillation to electron cyclotron gyration (f,/
fee) from the EMFISIS instrument. We compute the Wave
Normal Angle (WNA), ellipticity, and planarity based on the
singular value decomposition method (Santolik et al., 2003). For
this, we use data from the waveform receiver (WFR) integrated
into EMFISIS.

Based on these constraints, we selected one ICME event
observed on May 27-28, 2017, which is concomitant to an intense
geomagnetic storm and the occurrence of the Es, layer over
SAMA. For these analyses, we consider that the geomagnetic
storm evolves in different phases related to the structure of
the ICME.
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FIGURE 4

(A) Dynamic spectrum of chorus wave magnetic field from Van Allen Probe B, obtained from EMFISIS on 2017-05-28 (08:00-09:30UT) below

10 kHz and HFR (electric field was recalculated into magnetic field magnitude under the approximation of field aligned propagation) above 10 kHz.
(B) Chorus waves amplitude, B,, (pT). (C) Time scale for electron (10-1,000 keV) quasi-linear scattering by lower band chorus waves, = 1/D,, (D) The
10-250 keV electron lifetime () dynamics at L* = 2.5 during the time interval from Figure 2 (electron energies are color coded). Electron
cyclotron frequency f. and lower hybrid frequency fLHR are indicated by the red curves, 0.5 f.. and 0.1 f.. are indicated by the white curves. The
vertical dashed red lines refer to the onset time of the geomagnetic storm’s phases.

Interplanetary medium conditions
and geomagnetic storm

The scenery of this study occurred under the influence of an
ICME, which can drive a geomagnetic storm (Gonzalez et al,
1999; Echer et al., 2008; Richardson and Cane, 2012), and deposit
energy in the magnetosphere (Ponomarev et al., 2006). An ICME
reached the L1 Lagrangian point at 15:30 UT on 27 May 2017, in
which the solar wind speed (Figure 1A) and the proton density
(Figure 1B) abruptly increased, from ~ 290 to 365 km/s and from
~ 7 to 30 proton/cm®, respectively. These abrupt increases
occurred concomitantly with the signature of the storm’s
sudden commencement (SC-P) (first vertical dashed red line)
observed in the SYM-H (Figure 1F). This SC-P (SYM-H positive)
persists until ~ 23:00 UT on May 27, and the maximum positive
value is ~ +60 nT. By component (Figure 1C red line) fluctuates
between -10 nT and +12 nT during the SC-P. The Bz component
(Figure 1D blue line) is southward oriented, and the AE index
(Figure 1E) oscillates below 500 nT, except at ~ 23:00 UT when it
reached ~ 500 nT.

The storm’s main phase (M-P) started at ~ 23:00 UT on May
27 (the second vertical dashed red line), in which the SYM-H
(Figure 1F) values crossed zero, and it persisted decreasing until
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0900 1200 15:00

07:15 UT on May 28. During this M-P, the proton density
(Figure 1B) decreases significantly (<10 proton/cm™), Bz
component (Figure 1D red line) reached ~ -20 nT, and the
AE index (Figure 1E) reached a maximum value of
approximately 1,600 nT at ~ 02:00 UT and 05:30 UT on May
28, persisting above ~ 1,000 nT on average. The storm’s recovery
phase (R-P) started at ~ 07:15 UT on May 28 (the third vertical
dashed red line), in which the SYM-H (Figure 1F) began to
increase. The AE index (Figure 1E) reached ~ 1700 nT at ~ 07:
30 UT on May 28.

Inner radiation belt dynamic and low-
energy EP over SAMA

The energy deposited in the inner magnetosphere, under the
influence of this ICME, is considerably strong (Ponomarev et al.,
2006). This energy can generate magnetospheric waves in a wide
range of frequencies (e.g., Da Silva et al., 2021), especially during
the geomagnetic storm’s phases. The magnetospheric waves can
interact with the electron and can cause particle precipitation to
the atmosphere. The electron particle precipitation can be
observed over both the auroral and SAMA regions. Precisely,
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TABLE 1 The Magnetic Local Time (MLT) and L values of the VAP-A/B and the ionosonde stations during the conjunctions. The conjunctions were

observed only during the storm’s main and recovery phases.

Storm’s main phase (M-P)

05/28/2017 Van Allen Probe A Cachoeira Paulista Santa Maria

1:36 UT MLT = 21.86, L = 2.48 MLT = 2238, L = 1.13 MLT = 21.78, L = 1.16

1:44 UT MLT = 22,51, L = 2.17 MLT = 22,51, L = 1.13 MLT = 21.90, L = 1.16
Storm’s recovery phase (R-P)

05/28/2017 Van Allen Probe B Cachoeira Paulista Santa Maria

7:40 UT MLT =375, L > 1.17 MLT =431, L = 1.13 MLT =371, L = 1.16

7:42 UT MLT = 4.37,L > 1.17 MLT =435, L = 1.13 MLT = 3.75,L = 1.16
Storm’s recovery phase (R-P)

05/28/2017 Van Allen Probe A Cachoeira Paulista Santa Maria

11:21 UT MLT = 7.36, L = 1.32 MLT = 801, L = 1.13 MLT = 7.41,L = 1.16

11:24 UT MLT = 8.08, L = 1.34 MLT = 8.05, L = 1.13 MLT = 7.46, L = 1.16

over the SAMA region, the low-energy EP (tens to hundreds
keV) arising from the inner radiation belt can be estimated
through the measurements of the X-rays emission, as
observed by Pinto and Gonzalez (1989); Pinto et al. (1989)
and Kuznetsov, (2007).

Due to trapped particle mirror points being considerably
lowered in altitude as they drift through the SAMA (Roederer,
1967), this region is significantly contaminated by the protons. It
implies the difficulty of measuring the electron flux in the inner
radiation belt and the electron precipitation (e.g., Rodger et al.,
2013; Andersson et al, 2014). However, the background
contamination of the electron flux measurements from
MagEIS was removed (Claudepierre et al.,, 2015) and is used
here to discuss the low-energy electron flux variability in the
inner radiation belt and their possible relationship with the
plasma waves. Consequently, the main physical processes
responsible for launching the electron particles in the loss
cone over this region are identified.

Plasma wave activities and low-energy
electron flux variability during the
geomagnetic storm'’s phases

The plasma waves, such as the plasmaspheric hiss and
magnetosonic waves can be detected in the inner radiation
belt. This region can be coincident with the plasmasphere
region and will be identified by the total electron density. The
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total electron density is a fundamental parameter of plasma;
here specifically, it is used to map regions of the
magnetosphere, such as the plasmasphere. This parameter
is estimated through the higher-frequency measurements
obtained from the EMFISIS instrument onboard Van Allen
Probes, which is able to measure a single electric field
component of waves in the frequency range of 10-500 kHz.
These the

determination of the total electron density at the spacecraft,

higher-frequency = measurements  allow

which can be inferred from the upper hybrid resonance
frequency fUH. The upper hybrid resonance frequency is
defined as wj, =}, +w,,. Where fp.=wp/2n and
fee =q|Bl/m, in which f, is given in hertz and |B| in
nanotesla, measured by in-situ magnetometer. The total
electron density is obtained by substituting the appropriate
values for the electron charge and mass (e.g., Kurth et al,
2015).

The plasmaspheric hiss waves, regarded as Extremely Low
Frequency (ELF) whistler-mode emission (20 Hz to a few kHz)
(Meredith et al., 2004; Cao et al., 2005), are commonly observed
over a broad spatial region in the plasmasphere or plasmaspheric
plumes. The MS waves are typically detected between the proton
gyrofrequency (f,) and the fLHR (e.g., Russell et al., 1969; Ma
et al, 2013). These waves can play an essential role in the loss
process of energetic electrons in the inner magnetosphere, being
able to cause electron precipitation (Li J. et al., 2019; Yahnin et al.,
2019). Thus, analyzing the global spatiotemporal evolution of
these waves’ intensities during the geomagnetic storm’s phases is
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Spatial distribution in two dimensions of electron density for L values 1.5, 2, 3, 4, and 5 using a dipolar model of Earth’s magnetic field lines in the
Solar Magnetic coordinate (SM) for plane YZ (top panel) and XY (bottom panel). The total electron density measurements were obtained from the

EMFISIS instrument onboard the Van Allen Probes A (blue lines) and B (red lines). The color bar is the total

important to identify the main dynamic mechanisms responsible
for launching the electron particles in the loss cone, which can
result in particle precipitation over SAMA. For that, we use the
spectrograms of the magnetic field from the EMFISIS instrument
onboard the Van Allen Probes to detect the plasma wave
activities, considering the periods when the Van Allen Probes
orbit was next to the perigee (~ L < 3.5).

Figure 2 presents the electron densities, the spectrograms
of the magnetic field and fLHR obtained from the EMFISIS
instrument onboard Van Allen Probes A (panels a and b) and
B (panels ¢ and d). The electron density is a fundamental

Frontiers in Astronomy and Space Sciences

09

electron density value.

parameter of plasma obtained from plasma wave
measurements made onboard Van Allen Probes (Kurth
2015). the

plasmasphere is considered the innermost region of the

et al, In accordance with the literature,
magnetosphere. It is formed by a thermal plasma cloud
encircling the Earth, in which their electron density varies
between ~10-10* electrons/cm?. In contrast, the outside of the
plasmasphere is formed by hot plasma, where the electron
density changes abruptly to tenuous density (~1 electron/
cm?). Thereby, the boundary that separates the low-density
plasma region from the high-density plasma region is called

frontiersin.org


https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.970308

Da Silva et al.

10.3389/fspas.2022.970308

A First Conjunction
500 01:30:00- e 01:50:00 3 02:0000 P
— 4004 W T oL30UT | W F01:50 UT - Woz:oo uT
£ 400 ; |
< 300 . :
57200- Est 1 E
2100 s ] :
0 —_— —_— —_—
Second Conjunction
B
500 T—
T 400 e o7:30UT | 07:50 UT o 08:30 UT
< 300+ ] e
Eo00q - e ]
£ 100 —inbi <— - ] | €—
0 T — —
Third Conjunction
Cc
500
= 400] ik 1L10UT,| [ 11:30 U SN 1150
: } |
<300{ i : g - . |
200 1 ofeE ] et & : e
D00 | eesde— ] i | E——
0 —— — ——
61 23 45 6 0123 4 56 0 12 3 4 56
Frequency (MHz) Frequency (MHz) Frequency (MHz)

FIGURE 7

lonograms from Digisonde located at Cachoeira Paulista station during the first (A), second (B) and third (C) conjunctions. The red arrows show

the Es layers presence. The color code in these ionograms represents the echo direction of the signal received. Red shades denote O-polarization,
and green shades indicate X-polarization. The blue points are used for the echoes in the North/East directions, and yellow shades are used for the
South/West. More details can be found at https://giro.uml.edu/ionogram-data.html.

plasmapause, which is represented by the variation of the ratio
between the maximum and minimum electron density, as
widely used in previous studies (e.g., Guo et al., 2021; Thomas
et al.,, 2021; Zhelavskaya et al., 2016; Liu et al., 2015; Lemaire
et al., 1998). The determination of the plasmapause allows the
identification of the plasmaspheric waves. On the other hand,
the fLHR identifies the MS wave activities. The time duration
of Figure 2 (15:00 UT on May 27 to 15:00 UT on May 28)
includes the storm’s sudden commencement, main, and
recovery phase.

The Van Allen probe A (RBSP-A) presented three periods at
the perigee, while the Van Allen probe B (RBSP-B) presented two
periods:

The RBSP-A periods:

1) The first period (15:00UT - 19:00UT on May 27) refers to the
storm’s sudden commencement phase (SC-P).

2) The second period (00:00UT - 04:00UT on May 28) is referent
to the storm’s main phase (M-P).
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3) The third period (09:00UT - 13:00UT on May 28) is referent
to the storm’s recovery phase (R-P).

The RBSP-B periods:

1) The first period (21:00UT on May 27 and 01:00UT on May
28) occurred during the storm’s sudden commencement
phase and storm’s main phase (SC-M-P);

2) The second period (06:00UT - 10:00UT on May 28) occurred
during the storm’s recovery phase (R-P).

The spectrogram of the magnetic field observed in Figure 2
(panel b - RBSP-A) during the SC-P suggests the presence of the
plasmaspheric hiss waves at ~ 16:00 UT and from 18:00 UT
below the plasmapause (panel a). The spectrogram also shows the
discrete MS waves around 19:00 UT, observed below fLHR.
During the M-P (panel b - RBSP-A), the power spectral
density suggests the presence of the plasmaspheric wave
activities during all-time analyzed (00:00UT - 04:00UT on
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FIGURE 8

Global magnetic field (color’s scale) and magnetic equator

(red line) in 150 km altitude, VAP-B orbit (white dotted line) and
their footprint (white dashed line) on 28 May 2017 (07:30-09:
30 UT), Santa Maria and Cachoeira Paulista stations (red stars)

and the central region of the SAMA (white iso-intensity lines with
22,000 nT).

May 28), in which the power spectral is considerably strong
compared with the SC-P period, and below fLHR. During the R-P
(panel b- RBSP-A), the plasma wave activities are observed again,
below the plasmasphere (panel a) and the fLHR during all-time
analyzed (09:00UT - 13:00UT on May 28). The plasmapause is
apparently compressed during the R-P (panel a - RBSP-A)
compared with the SC-P and M-P periods. This result was
already expected due to the plasmapause being located closer
to the Earth when it is under the influence of high geomagnetic
activity (see Chappell et al., 1970; Goldstein, 2006; Pierrard et al.,
2008).

The spectrogram of the magnetic field observed in Figure 2
(panel d - RBSP-B) during the SC-M-P suggests the signatures of
the plasmaspheric wave activities within the inner radiation belt.
These plasmaspheric wave activities are observed during SC-P
confined below 200 Hz, while during the M-P, these waves are
observed below 700 Hz. During the R-P, the behavior of the
plasmasphere is similar to the period measured by the RBSP-A
(09:00UT - 13:00UT on May 28), in which the plasmapause is
apparently compressed (panel ¢) compared with the SC-M-P
period.

The low-energy electron flux (32-70keV) within the
radiation belts (Figure 3) is presented here, with more detail
during the R-P (bottom panel), in which the plasmapause is
apparently compressed compared with the SC-M-P period (top
panel). The seed population increased considerably during the
R-P, compared with the SC-M-P. Before 06:50 UT, an electron
flux increase is observed above 38 keV. In contrast, two electron
flux decreases are observed, the first is close to 7:00 UT reaching
the electrons below 45 keV, and the second is observed close to 7:
15 UT reaching the electrons above 45 keV. After the perigee
time (after 8:00 UT), the electron flux increase is persistent for
more than 1 h and 30 min in all the range of energy presented.
The plasmapause approached the Earth (L=1.8) during the R-P,
as observed in Figure 2D after 06:00 UT on May 28 (black line)
and in Figure 4A at the beginning of the chorus wave activities.
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This strong geomagnetic activity may produce a favorable plasma
regime, as observed through the measurements of the seed
population (tens keV, Figure 3) after the initial geomagnetic
storm phase, which may contribute to the rapid scattering of
electrons (Meredith et al., 2004; Ma et al., 2016b; Agapitov et al.,
2019). Therefore, it is crucial to investigate the plasma waves and
seed particles’ lifetime during this period.

Figure 4 shows the chorus wave activities at extremely low L*
in usual chorus frequency bands 0.1-0.45 f.. and 0.55-0.9 f. that
reach up to 80 kHz. The dynamic spectrum of chorus wave
magnetic field is calculated combining from EFI and HFR Van
Allen Probe B measurements during geomagnetic storm R-P on
28 May 2017. Figure 4 shows that the lower band chorus waves
had maximum time-averaged amplitudes of ~100-140 pT (while
the statistical model from Agapitov et al.,, 2018, gives ~90 pT) at
L* = 3, where the f,./f. ratio was ~2 at ~8:30 UT (Figure not
shown).

The dynamics of electron lifetime can be estimated based on
the chorus model (Agapitov et al, 2015, 2018), which was
extended, taking into account the cold plasma dynamics and
the latitudinal distribution of wave amplitude. The results are
shown in Figure 4, in which the parameters correspond to a
typical quasi-linear scattering time scale 1/D,, (30 keV) ~0.4 +
0.1 hat L* = 3 (versus ~6 + 0.2 h using the statistical model from
(Agapitov et al., 2019)) and ~2 h at L* = 2.3 presumably causing
intensive precipitations of 10-30 keV electrons to the ionosphere.

The dynamics of electron lifetime can be based on the hiss
model (Agapitov et al., 2020), in which this new model version
considers the low-energy electron levels (10-250 keV) and the
latitudinal distribution from L* = 2.5. Thereby, the f,./fe. is
considerably low (~2), as expected (e.g., Albert et al, 20165
Watt et al., 2019). The main results are presented in Figure 4,
in which the 10-250 keV electron lifetime (1) dynamics at L* =
2.5 driven by plasmaspheric hiss waves are shown during the
time interval from Figure 2. The electron energies are color
coded. The quasi-linear scattering time scale 1/D,, (10 keV) is
below 1h from 23:00 UT on May 27 to 10:00 UT on May 28,
coinciding with the M-P and R-P geomagnetic storm. It means
confined at L* =

2.5 presumably cause intensive precipitations of 10keV

that the plasmaspheric hiss waves

electrons to the ionosphere.

Plasma wave activities during the
conjunctions between the Van Allen
Probes and the ionosonde stations over
SAMA

The plasmaspheric hiss waves have been measured at low
latitude within the inner radiation belt (L = ~ 1-2) since the 70s
decade (Tsurutani et al, 1975). These waves can trigger the
dynamic mechanisms for the EP over the SAMA region, as
suggested by Gonzalez et al. (1987). Therefore, planarity and
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FIGURE 9

(A) the frequency-time spectrogram of magnetic field; (B) WNA; (C) frequency ratio f,./fce (blue line) and the total electron density (black line).
The lower hybrid resonance frequency (fLHR) (yellow line) is presented in the panel a. The fyo/fce, fLHR and frequency-time spectrogram of magnetic
field are obtained from EMFISIS instrument and the electron density is obtained from EFW instrument. WNA is calculated through the singular value
decomposition method (Santolik et al.,, 2003), in which the waveform receiver (WFR) data obtained from EMFISIS instrument is used. The EFW

and EMFISIS instruments are onboard the VAP-B.

ellipticity are used to identify the plasmaspheric waves in the
inner radiation belt. Once, the planarity and ellipticity allow for
classifying the degree of magnetic field polarization in the
polarization plane and the ellipticity of the magnetic field
polarization (Hartley et al., 2018).

The ionosonde measurements can indirectly infer the
occurrences of the low-energy EP through the signature of the
auroral type sporadic E layer (Es,) in this peculiar region. The
ellipticity and planarity are calculated only during the
between the Van Allen Probes and the
ionosonde stations over Brazil. Table 1 shows the occurrences
of the three conjunctions during the entire period analyzed. The
first and third conjunctions are observed between VAP-A and
the ionosonde stations during the M-P and R-P, respectively. In

conjunctions
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contrast, the conjunction between VAP-B and the ionosonde
stations is observed only during the R-P.

Figure 5 presents the frequency-time spectrogram of the
magnetic fleld (a), ellipticity (b), planarity (c) and total
electron density (d) during the first (left panels), second (right
panels), and third (bottom panels) conjunctions. The fLHR
(white line) are presented in panels (a). The plasma density
and wave polarization properties are used to distinguish the
different types of the plasmaspheric waves (e.g., Li et al., 2015; Li
W. et al., 2019).

Figure 5 (left panels) shows the plasma waves during the first
conjunction period (VAP-A, 01:20-02:10 UT), which occurs
during the storm M-P. The MS wave activities are observed
almost the entire time. They are detected inside the plasmasphere
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Energy [KeV]

Total incident energy of electrons (100 eV—hundreds of keV) for Santa Maria (top) and Cachoeira Paulista (bottom) stations, considering the
second and third conjunctions. The height scale H (km) is calculated to Santa Maria and Cachoeira Paulista during the three conjunctions (See

Figure 15).

and below fLHR (e.g., Laakso et al., 1990; Santolik et al., 2002).
Their ellipticity is ~ - 0.2 and planarity > 0.8. It means that their
propagation is highly oblique related to ambient magnetic field
direction and linearly polarized (e.g., Horne et al., 2007; Ma et al.,
2016). Figure 5 (right panels) shows the plasma waves during the
second conjunction period (VAP-B, 07:30-08:20 UT), which
occurs during the storm R-P. The hiss waves are observed
approximately before 07:38 UT and from 07:46 UT, with
ellipticity > 0.5 and planarity > 0.2 (e.g,, Li et al, 2015). The
MS waves are detected from 07:53 UT, and their polarization
0.2 and planarity > 0.8.
Figure 5 (bottom panels) shows plasma waves during the third
conjunction period (VAP-A, 11:10-12:00 UT), which occurs
during the storm R-P again. The plasma wave activities are

ellipticity is concentrated between +

very similar to the waves detected during the second
conjunction. The hiss waves are observed from 11:23 UT,
with ellipticity > 0.5 and planarity > 0.2 (e.g., Li et al., 2015),
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and the MS waves presented the ellipticity ~ - 0.2 and
planarity > 0.8.

Figure 6 (top and bottom panels) show the spatial
distribution of the electron density in two dimensions for L
values 1.5, 2, 3, 4, and 5 using a dipolar model of Earth’s magnetic
field lines in the Solar Magnetic coordinate (SM) for plane YZ
and XY, respectively. The total electron density measurements
are obtained from the EMFISIS instrument onboard the Van
Allen Probes A (conjunction 1 and 3) and B (conjunction 2), and
the periods are limited by the availability of the EMFISIS data
(See Supplementary Figure S1 -in Supporting Information).

Observe in Figure 6 (top and bottom panels) that SAMA
L-shells correspond to approximately 1 < L < 2 (inner radiation
belt) and the auroral oval is located about 3 < L < 6 (outer
radiation belt). Additionally, the dynamic location of the
plasmapause shows its preferential position within the inner
radiation belt and slot region (L < 3) during these three
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FIGURE 11

lonization rate altitude profiles panels (A,D,G), ionization rate altitude integrated panels (B,E,H) and frequency range altitude panels (C,F,I)
considering the second conjunction for Santa Maria station. The totalincident energy of electrons is presented in Figure 10 (top panel). The ionization
rate is obtained from empirical model (Fang et al., 2010) considering the total incident energy of electrons presented in Figure 10 (top panel) and the

height scale presented in Figure 15 (top panel).

conjunctions periods. It means that the plasma waves detected
within the plasmasphere are confined at L < 3, which may have
resonantly interacted with the low-energy electrons to cause the
EP to the SAMA region (lower latitude region).

The ionosonde stations used in this study are located over the
SAMA region, specifically in the low-middle latitude (20" <
latitude < 50°). the
mechanisms responsible for the Es layers generally are
associated with both the vertical shear in the horizontal tidal
wind (Haldoupis, 2012) and the low-energy EP (Batista and
Abdu, 1977). The Es layers associated with the vertical shear in
the horizontal tidal wind are normally classified into the flat (Esy),

geomagnetic Therefore, dynamic
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high (Esy,), cusp (Es.), and low (Es)) types, while the Es layers
associated with the low-energy EP is observed in the ionograms
as traces of range spreading echoes, named Es, layer (e.g., Moro
et al., 2022; Kirkwood and Nilsson, 2000; Piggott and Rawer,
1978). They are commonly detected in the auroral regions
produced by the auroral particle ionization (Nikolaeva et al.,
2021) from the outer radiation belt (Blum et al., 2013) and
peculiarly over the SAMA region due the low-energy EP from the
inner radiation belt (Batista and Abdu 1977; Gonzalez et al.,
1987; Moro et al., 2022).

Figure 7 shows the ionograms over Cachoeira Paulista
during the first (top panels), second (middle panels), and
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FIGURE 12
lonization rate altitude profiles panels (A,D,G), ionization rate altitude integrated panels (B,E,H) and frequency range altitude panels (C,F,I)
considering the second conjunction for Cachoeira Paulista station. The total incident energy of electrons is presented in Figure 10 (bottom panel).
The ionization rate is obtained from empirical model (Fang et al., 2010) considering the total incident energy of electrons presented in Figure 10
(bottom panel) and the height scale presented in Figure 15 (bottom panel).

third (bottom panels) conjunctions. The Figure 7 (top panels)
shows the ionograms considering the first conjunction period
(01:36 UT and 01:44 UT), which occurs during the M-P. A flat
trace is observed in the ionogram at 01:30 UT (short period) at
around 120 km. This Es layer’s type is classified as Es¢
(Haldoupis, 2012). The ionograms show the absence of the
Es, layers in all the analyzed time, which means the absence
of the low-energy EP effect over Cachoeira Paulista during the
M-P. Supplementary Figure S2 (top panels) presents the absence
of the Es layers in Santa Maria during the analyzed time. It is
important to highlight that only the magnetosonic wave activities
are detected during this conjunction within the inner radiation
belt (Figure 5 - left panels).
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The middle panels of Figure 7 show the ionograms
considering the second conjunction period (07:40 UT and
07:42 UT), which occurs during the R-P (night time). A
spread and diffuse trace is observed in the ionograms that
performed a downward movement reacheing 100-150 km.
This Es layer’s characteristic type is classified as Es, layer
(Moro et al.,, 2022; Resende et al.,, 2013; Kirkwood and
Nilsson, 2000) and could be associated with the low-
energy EP from the inner radiation belt (Batista and Abdu,
1977). Supplementary Figure S2 (middle panels) presents
similar signatures in the ionograms registered in Santa
Maria, which exhibit the Es, layers characteristics during
the analyzed time. The hiss and MS wave activities were
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FIGURE 13

lonograms from Digisonde located at Santa Maria during the second (A), and third (B) conjunctions. The red arrows show the Es, layer presence
and the blue line is referent the plasma modeled frequency (MHz) altitude. Unfortunately, the Santa Maria ionograms present high 60 Hz

interferences from the street lights used nearby the Digisonde site.

detected in the inner radiation belt (Figure 5 - right panels)
during this second conjunction. The hiss waves are
considered in the literature as important to cause the low-
energy EP over the SAMA region during the R-P (Gonzalez
et al,, 1987). Thereby, it is crucial to investigate the dynamic
mechanisms responsible for the low-energy EP driven by
these waves, as described in.

Finally, Figure 7 (bottom panels) shows the ionograms
from the Cachoeira Paulista station considering the third
conjunction period (11:21 UT and 11:24 UT), which also
occurs during the R-P (daytime). A trace discontinued in
height with the E-region trace is observed in the ionograms,
which descends with time, becoming a trace with a relatively
symmetrical cusp at the peak of the E-region electron
density (above 150 km). This signature in the ionograms is
evidence of the Es;, layer over SAMA during the R-P that could
be associated with the strong wind shear. On the other hand, the
weak spread and diffuse trace observed between 100 and 150 km
exhibit very clear Es, layers characteristics. Furthermore, the E
region appears strong, suggesting that the E region conductivity
increased due to the particle precipitation (Santos et al., 2016).
Supplementary Figure S2 (bottom panels) presents similar
signatures in the ionograms registered in Santa Maria station,
which shows the presence of the Es;, layer and a weak spread and
diffuse traces during the entire analyzed time that can be
classified as Es, layer. Although the Es, layer is usually
observed during the night hours (Hunsucker and Owren,
1962), and this third conjunction occurs in the morning
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(around 08:30 LT), the evidences shown in the ionograms of
the two stations give us the confidence to classify the layers as
Es,. Moreover, the plasma wave activities within the inner
radiation belt during the third conjunction are very similar to
the second conjunction. Considering all these points, it is crucial
to investigate the dynamic mechanisms responsible for the low-
energy EP driven by these waves which will be done in the next
sections.

Dynamic mechanisms responsible for the
low-energy EP over SAMA during the
second conjunction

According to the conjunctions observed during the M-P and
R-P (Table 1) and the Es, layer detected in the ionosonde stations
over the SAMA region (Figure 7), the coincidences between the
Es, layer’s signature and the conjunctions were observed during
R-P, in the second and third conjunctions. Figure 8 highlights the
second conjunction with the VAP-B orbit (white dotted line) and
the Southern Hemisphere footprint (white dashed line) of May
28, and the ionosonde stations (red stars). The VAP-B orbit and
their footprint are obtained at https://sscweb.gsfc.nasa.gov/cgi-
bin/Locator.cgi. The magnetic equator (red line) and the global
magnetic field (color’s scale) obtained with International
Geomagnetic Reference Field (IGRF-13th generation) (Alken
et al, 2021) are also presented in Figure 8, in which the
ionosonde stations are localized in the center of the SAMA
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FIGURE 14

lonograms from Digisonde located at Cachoeira Paulista during the second (A) and third (B) conjunctions. The red arrows show the Es, layer
presence and the blue line is referent the plasma modeled frequency (MHz) altitude.

region (22,000 nT isoline). The third conjunction with the VAP-
A orbit and the Southern Hemisphere footprint of May 28, and
the ionosonde stations are presented in Supplementary Figure S3.
The plasma waves, such as hiss and MS waves are detected
during this second conjunctions (Figure 5 - right panels), and the
Wave Normal Angle (WNA) is calculated through the singular value
decomposition method (Santolik et al., 2003) to discuss the dynamic
mechanisms responsible for the low-energy electron precipitation
over the SAMA region. Hiss waves are widely distributed in the radial
distance and magnetic local time (MLT) and can cause precipitation
of electrons from tens of keV to a few MeV to the atmosphere
through pitch angle scattering mechanism (Meredith et al., 2006,
2007). Pitch angle scattering is a resonant mechanism between the
electrons and magnetospheric waves, in which the first adiabatic
invariant (p), that depends on the particle’s pitch angle and its energy,
is violated (e.g., Baumjohann and Treumann, 2012; Hartley and
Denton, 2014). Conversely, the MS wave activities are mainly
confined to the geomagnetic equator and propagate perpendicular
to the background magnetic field. The MS waves can scatter the
electrons from high pitch angles (close to 90°) to intermediate pitch
angles (Xiao et al,, 2015) due to the resonance conditions. Shklyar and
Matsumoto (2009) showed two resonance conditions for electrons,
named cyclotron resonance and Landau resonance, respectively:

w— fce
w=—"— 1)
ki
w
=7 (2)
ki
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where kj and vy are parallel components of the wave normal
vector and charged particle velocity, respectively. w is wave
frequency, and f is the magnitude of the electron cyclotron
frequency in the relations which are specific for electrons. These
conditions require large parallel velocity once the k is very small,
and thus, a small pitch angle.

Figure 9 presents the frequency-time spectrogram of
magnetic field (panel a), WNA (panel b), frequency ratio f,./
fee (panel c - blue line), and total electron density inferred from
the upper hybrid resonance line (panel c - black line). The fLHR
(yellow line) are presented in panel a. During the plasmaspheric
hiss wave activities (from 08:08 UT) is observed WNA < 40°, as
also observed by Li et al. (2015). Unlike hiss waves, the
propagation of MS waves is highly oblique related to ambient
magnetic field direction and linearly polarized (Horne et al,
2007; Ma et al., 2016), i.e., WNA > 70° from 07:56 UT.

The frequency ratio f,./f. (panel c—blue line) presents low
values ~ 2 - 3 from ~ 08:08 UT, as expected when the plasmapause is
located at L~1.8 (see Albert et al., 2016; Watt et al., 2019). The
resonant energy for whistler mode waves propagating parallel to the
ambient magnetic field interacting with keV electrons is a function
of the electron gyrofrequency (f.) and the plasma frequency (f pe),
besides the wave frequency (f), the speed of light (c) and the
electron rest mass (11,) (e.g., Helliwell, 1965; Malykhin et al., 2021).

_m (e f)

Wr
f b

, 3
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FIGURE 15

Height scale (km) for Santa Maria (top) and Cachoeira Paulista (bottom) stations, considering the three conjunctions.

Accordingly, the resonant energy is a function of the
ambient plasma density and magnetic field strength, and by
further calculation it can be shown that it increases following
the decrease of f,./f.. ratio. Thus, the low values of the
frequency ratio (f,c/fc) can be efficient for scattering loss
of electrons (hundreds of keV) driven by MS waves (see Lei
et al., 2017). However, we are interested in low-energy EP
(tens of keV) because this energy range can generate the Es,
layers over SAMA (Batista and Abdu, 1977). Thereby, the
results presented here suggest that the hiss waves may cause
the scattering loss of electrons (tens of keV) over this region.
Additionally, it is essential to highlight the results observed
in Figure 4 (panel d), especially during the second
conjunction, in which the quasi-linear scattering time
scale 1/D,, (10keV) is below 1h, presumably causing
of 10keV the
ionosphere over the SAMA region.

intensive precipitations electrons to
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Atmospheric ionization over SAMA
(100-150 km) induced by low-
energy EP

An empirical model with a new parameterization of
ionization in the atmosphere by the isotropically precipitating
electrons (100 eV-1MeV) (Fang et al, 2010) is used here to
estimate the atmospheric ionization over SAMA during the
second and third conjunctions induced by low-energy EP. To
compute the atmospheric ionization, we assume that the incident
particles (differential number flux, cm™?s™" keV™') have a
Maxwellian distribution defined by the function:

E
Q—03 Eexp|l —— |,
2E; E,

where the free parameters are total energy flux (Qp, keV ecm™ s™")
and the characteristic energy (Ey, keV). The differential number flux

@y (E) = (4)
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(@yy) is givein in cm ™ s keV ™. Figure 10 shows the total incident
energy of electrons (100 eV—hundreds of keV) for Santa Maria
(top) and Cachoeira Paulista (bottom) stations, considering the
second and third conjunctions. The orders of magnitude of the total
incident energy of electrons in Santa Maria are tens of keV and
hundreds of keV during the second and third conjunctions,
respectively. Otherside, the orders of magnitude of the total
incident energy of electrons in Cachoeira Paulista are hundreds
of keV during the second and third conjunctions.

H(z) = kT (z)

" (g @ ©

where k is the Boltzmann constant, T is the atmospheric
temperature, m is the average molecular weight, ¢ is the
acceleration due to the gravity and z is vertical location.

The ionization model data (Fang et al., 2010) also estimates the
plasma frequency (MHz) altitude profile. First, it is considered that

the time variation of electronic density (aé\t’e) is equal to the difference

between the ionization rate (@) and the loss terms. After that, the
electron density is obtained assuming that the loss terms are
proportional to the population (%) and assuming a short-time
scale for the recombination (7), which the transport mechanisms
can be neglected. Here, we assume a recombination time (7) of 1 s
(Batista and Abdu, 1977), and then the plasma frequency (MHz)
altitude profile is obtained. This plasma frequency is the highest
cutoff frequency at which the ionosphere layers reflect
electromagnetic waves (Kumluca et al, 1999), which in turn, is
associated with the peak electron concentration of the Es layer, N,
(electrons/m®) by the simple relationF. = cv/N,, where ¢ = 8.98
(e.g., Yu et al, 2020; Nikolaeva et al., 2021).

Figures 11, 12 present the ionization rate altitude profiles
(panels a, d, g), ionization rate altitude integrated between
100 eV and 100 keV (panels b, e, h), and the plasma modeled
frequency (MHz) altitude profile (panels c, f, i) during the second
conjunction. Figures 11, 12 are referring to Santa Maria and
Cachoeira Paulista stations, respectively. Profiles of the ionization
rate for four different energy levels of the electrons (0.5 keV (blue
line), 1.0 keV (red line), 5.0 keV (green line), and 10 keV (magenta
line)) are given in Figures 11, 12, panels a,d,g. At both ionosonde
stations, the ionization rate peaks between 100-200 km altitude for
all different energy levels, while the maximum of the low-energy
electrons between 0.5-1.0 keV is generally located at higher altitudes
compared to the low-energy electrons between 5.0-10.0 keV. The
altitude integrated ionization rate (panels b, e, h) provides the energy
amount deposited in the 100 km < altitude < 200 km. The Es, layer
density due the electron precipitation can be identified in panels (c),
(), and (i), which were estimated through the calculation of the
modeled plasma frequency in (MHz). The ionization rate observed
in Figures 11, 12 suggests the occurrences of the low-energy EP
(0.5-10 keV) over the SAMA region during the Es, layer generation,
as expected the low-energy EP (>10keV) occurred due to pitch
angle scattering driven by plasmaspheric hiss waves discussed in
previous sections. Although the previous studies of hiss waves have
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been focused on the scattering of electrons of 10keV - 1 MeV
energies, the recent studies (Li J. et al., 2019; Khazanov and Ma 2021)
have shown that the hiss waves also can scatter electrons of energies
below several keV down to the energies of tens of eV. The Es, layer
which occurs in Santa Maria is considerably higher than the Es, layer
in Cachoeira Paulista. This behavior can be attributed to the low
ionization rate due to the low-energy EP = 5 and 10 keV in Santa
Maria. Therefore, we suggest that the low-energy EP < 1keV is the
main ingredient to generate Es, layer detected close to 150 km
altitude in Santa Maria, while the low-energy EP < 10keV is the
main ingredient to generate Es, layer detected close to 100-120 km
altitude in Cachoeira Paulista.

The ionization rate altitude profiles, ionization rate altitude
integrated, and the plasma modeled frequency altitude during the
third conjunction are presented in the support information,
S4  (Santa
Supplementary Figure S5 (Cachoeira Paulista station). The

Supplementary  Figure Maria station) and

ionization rate observed in Supplementary Figure S4, S5
the the
precipitation over the SAMA region during the third

suggests occurrences  of low-energy electron

conjunction due to pitch angle scattering driven by
plasmaspheric hiss waves.

We can estimate the free parameters (Qo, Ey) by comparing
these plasma frequencies (MHz) altitude profile modeled with
the Es, layers presented in the ionograms, as shown in Figures
13, 14.

Finally, although the downward movement to be typical in
low/mid-latitudes due to the wind shear mechanism (Resende
et al, 2017), the inner radiation belt dynamic and the
atmospheric ionization over SAMA are highly favorable to
the occurrences of the low-energy EP during the second
(Figures 13, 14 - middle panels) and third (Figures 13, 14 -
bottom panels) conjunctions. It means that this atmospheric
ionization over SAMA, especially in 100-150 km altitude, is
very similar to the ionized atmosphere in the auroral region
during the generation of the Es, layers (Whalen et al., 1971;
Buchau et al., 1972; Blagoveshchensky and Borisova, 2000).
Therefore, we can suggest that the low-energy EP (<10 keV)
from the inner radiation belt is the main ingredient
responsible for generating the Es, layers over Cachoeira
Paulista during the R-P at nighttimeFigure 15. Conversely,
the low-energy EP (<1 keV) is the main ingredient responsible
for generating the Es, layers over Santa Maria during the R-P
at night.

Concluding remarks

The hiss wave’s power spectral density and the ambient
plasma conditions as given by the low values of the frequency
ratio fo/fe., suggests the occurrences of the low-energy EP
(>10keV) to the atmosphere during the recovery phase of a
storm. Additionally, the results

geomagnetic modeling
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(Figure 4D) show that the quasi-linear scattering time scale 1/
Daa (10keV) is below 1h, especially during the second
conjunction. It suggests that the quasi-linear scattering driven
by hiss waves is one of the causes of the intensive precipitations of
10 keV electrons to the ionosphere over the SAMA region.

The estimation of the atmospheric ionization induced by
low-energy EP over SAMA suggests the deposition of the
electrons (<10keV) at altitudes 100-120 km. Therefore, we
can suggest that the pitch angle scattering driven by hiss
waves triggers the dynamic mechanism responsible for the
low-energy electron precipitation over the SAMA region that
generates and maintains the Es, layer in this low latitude during
the recovery phase geomagnetic storm. Otherwise, atmospheric
ionization induced by the low-energy EP over SAMA also
suggests the deposition of the electrons (<1 keV) in altitudes
from 150 km, which was decisive to the Es, layer occurrence at
150 km in Santa Maria.

The techniques used here, such as the observational and
modeled data analyses, contribute to explaining the coupling
between the inner radiation belt and the ionized atmosphere over
the SAMA region, which was not well understood before.
Additionally, the signature of this atypical Es, layer in the
Brazilian sites could be wused as an indicator of the
occurrences of the low-energy electron precipitation over
SAMA once the electron detectors onboard of the low orbit
satellites are contaminated with the proton flux trapped in the

inner belt (e.g., Rodger et al., 2013; Andersson et al., 2014).
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