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Diffusiophoresis refers to the movement of colloidal particles in the presence of a concen-
tration gradient of a solute and enables directed motion of colloidal particles in geometries
that are inaccessible, such as dead-end pores, without imposing an external field. Previous
experimental reports on dead-end pore geometries show that even in the absence of mean
flow, colloidal particles moving through diffusiophoresis exhibit significant dispersion.
Existing models of diffusiophoresis are not able to predict the dispersion and thus the
comparison between the experiments and the models is largely qualitative. To address
these quantitative differences between the experiments and models, we derive an effective
one-dimensional equation, similar to a Taylor dispersion analysis, that accounts for
the dispersion created by diffusioosmotic flow from the channel sidewalls. We derive
the effective dispersion coefficient and validate our results by comparing them with
direct numerical simulations. We also compare our model with experiments and obtain
quantitative agreement for a wide range of colloidal particle sizes. Our analysis reveals
two important conclusions. First, in the absence of mean flow, dispersion is driven by the
flow created by diffusioosmotic wall slip such that spreading can be reduced by decreasing
the channel wall diffusioosmotic mobility. Second, the model can explain the spreading
of colloids in a dead-end pore for a wide range of particle sizes. We note that while
the analysis presented here focuses on a dead-end pore geometry with no mean flow,
our theoretical framework is general and can be adapted to other geometries and other
background flows.
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1. Introduction

Diffusiophoresis has been studied as a mechanism for the motion of colloidal particles
due to chemical gradients since its discovery by Derjaguin et al. (1947). In recent
microfluidic studies (Shin et al. 2016; Ault et al. 2017; Battat et al. 2019; Gupta et al.
2020b; Wilson et al. 2020; Singh et al. 2020; Alessio et al. 2021), a dead-end pore
configuration is used to set up a transient one-dimensional (1D) diffusion of solutes;
significant colloidal dispersion is observed, which the typical models are unable to capture.
In addition to the dead-end pore geometry, experimental data in other microfluidic
configurations has been reported in which colloidal dispersion can be observed but
remains unexplained quantitatively (Ahmed & Stocker 2008; Abécassis et al. 2008, 2009;
Palacci et al. 2010, 2012; McDermott et al. 2012; Paustian et al. 2015; Nery-Azevedo
et al. 2017; Shimokusu et al. 2019).

The reports in the literature do acknowledge that diffusioosmosis along the channel
walls induces flow of the bulk liquid, which causes colloidal dispersion (Keh & Ma 2005;
Kar et al. 2015; Shin et al. 2016, 2017; Ault et al. 2019; Rasmussen et al. 2020). However,
only a few studies have combined the influences of diffusiophoresis and diffusioosmosis
in order to investigate particle motion in more realistic settings (Shin et al. 2017; Singh
et al. 2020; Williams et al. 2020; Alessio et al. 2021). In our previous article, for a
configuration showing compaction of particles, we demonstrated that particle motion due
to diffusiophoresis and a diffusioosmotic-slip driven flow field that neglects the smallest
dimension of the pore does predict a non-zero dispersion of colloids (Alessio et al. 2021).
Physically, diffusioosmosis along the sidewalls creates a flow structure that stretches the
particle distribution along the pore, and generates an apparent motion of particles that
is analogous to Taylor dispersion (Taylor 1953; Aris 1956; Doshi et al. 1978; Stone &
Brenner 1999; Aminian et al. 2016; Chu et al. 2021; Migacz & Ault 2022). Still, our two-
dimensional (2D) model yielded a lower quantitative dispersion value than experiments
and thus the agreement between the model and experiments remained qualitative.

To enable widespread use of diffusiophoresis in lab-on-a-chip applications such as
energy storage and desalination devices (Gupta et al. 2020a,c; Bone et al. 2020), par-
ticle separation (Lee et al. 2018; Seo et al. 2020; Shin 2020), colloidal focusing and
delivery (Banerjee et al. 2016; Shi et al. 2016; Gandhi et al. 2020), ion-exchange mem-
branes (Florea et al. 2014), zeta potential measurement (Shin et al. 2017), and macro-
molecule transport in biological systems (Bruno et al. 2018; Hartman et al. 2018; Yang
et al. 2018), understanding and quantifying dispersion is crucial. Recently, studies have
modeled the dispersion of a patch of particles that spread due to diffusiophoresis (Raynal
& Volk 2019; Gupta et al. 2020b; Chu et al. 2020, 2021; Migacz & Ault 2022). However,
these studies assume a model configuration where the flow due to sidewalls is not con-
sidered. In practice, since the concentration gradients are often created in a microfluidic
configuration, there is diffusioosmotic flow present due to the sidewalls. To this end,
the objective of this article is to quantify the effect of dispersion that arises from the
diffusioosmotic flow.

To achieve the aforementioned objective, in our modeling approach, we now consider
the three-dimensional flow that arises from the sidewalls, and present a Taylor dispersion
analysis for fast and convenient calculation of dispersion. Additionally, in our experi-
ments, we modified the dead-end pore configuration to observe the dispersion of a patch
of particles, which enables an easier and more direct comparison with the model. In
particular, in §2 we present dead-end pore experiments demonstrating typical scenarios
that require understanding of the 3D flow structure. By using a particle patch in pores
with the same width but different heights, we show that simpler 1D and 2D models
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FiGURE 1. Diffusiophoresis and diffusioosmosis-induced dispersion of a patch of particles in
a dead-end pore. (a) Schematic of a microfluidic channel with dead-end pores of length .
Pores with different heights (h = 25, 50 , and 100 pum) were tested in our experiments.
(b) Schematic of an experiment using a particle patch that invades the pore. Details of the
experimental setup are explained in §5. (¢) Fluorescent images obtained from dead-end pore
experiments. Particle distributions in pores of three different heights are shown. Scale bar is 100
pm. (d) Pore-width-averaged intensity plotted versus distance along the pore (z). The profiles
are obtained at non-dimensional time 7 = tDs/¢*> = 1, where Dy is the solute diffusivity. (e)
Peak locations measured in the experiments are plotted versus non-dimensional time.

cannot provide sufficient information about the particle distribution since they lack the
details of the velocity that drive the dispersion. In §3, we derive the generic form of the
1D cross-sectional average of the advective-diffusion equation for particles undergoing
diffusiophoresis in the flow field set up by diffusioosmosis along the walls, with specific
forms of the 1D representation of model 2D pore and 3D pores presented in Appendix A.
In §4, analyses of the dispersion equations are presented for various system parameters
including the pore geometry and the properties of particles and walls. Finally, in §5, a
detailed comparison is made of the experiments and the 1D model representation of the
3D pores, where the particle size is varied to investigate the effect of changing the particle
rate of diffusion on the overall dispersion. We find good agreement with the predictions
of the cross-sectional average model for long-pore systems.

2. Diffusiophoresis of a patch of particles in a dead-end pore
geometry

We use dead-end pore geometries with different heights to demonstrate diffusiophoresis
of a particle patch and the influence of diffusioosmosis. A finite number of particles are
introduced at the inlet of dead-end pores of the same width and length (w = 100 pm
and ¢ = 1 mm), and different heights (h = 25, 50, and 100 pm; figure 1(a,d)). Initially, a
concentration gradient of NaCl is established by filling the pore with a 10 mM solution
and the main channel, in which there is flow, with a 1 mM solution; the injected particles
are then advected into the pore by diffusiophoresis. Experimental details for establishing
the initial condition are explained in §5.

Transport of the particle patch in the three pores looks similar at the beginning, but we
observe quantitative differences as the particle distribution evolves in pores with different
cross-sectional aspect ratios (figure 1(c)). Because the effect of different h is not captured
in the two-dimensional (2D) analyses that neglect the effect of the smallest dimension of
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the pore, i.e., considering a model pore with ¢ and w as its dimensions, the experimental
results in figure 1(c) suggest that differences in the particle distribution cannot be simply
explained by such 2D models.

Since the particle distribution varies in the experiments in the three different pores,
the peak location can be obtained by analyzing the pore-width-averaged intensity profiles
(figure 1(d)). We observe that the peak locations measured in the three pores are similar
up to dimensionless time 7 = tD,/¢? ~ 0.1, where D; is the diffusivity of Na™ ions,
but deviate from each other at later times (figure 1(e)). The width-averaged intensity
plotted versus distance along the pore motivates the question of determining an effective
1D representation of the particle transport.

As we demonstrate below, diffusiophoresis and diffusioosmosis acting in tandem result
in the transport and spreading of the particle patch that is analogous to the flow-driven
dispersion that occurs in pressure-driven flow in a rectangular channel. For example, for
the flow-driven dispersion in a pipe flow (Taylor 1953; Aminian et al. 2016), particles
move on average with the mean flow speed and dispersion about the mean occurs due to
Brownian motion as well as the non-uniform velocity profile throughout the cross section
of the channel. In our experiments, particles translate into the pore with the (transient)
diffusiophoretic speed, and the wall-driven diffusioosmotic flow velocity stretches the
particle distribution along the pore. Note that mass conservation inside the dead-end
pore enforces zero net volumetric flux for the fluid, and the velocity distribution in the
channel cross section drives the axial dispersion of the particle patch. Therefore, for a
particle patch that moves along the narrow pore with the diffusiophoretic velocity, we
next apply Taylor dispersion analysis, within the lubrication approximation, to account
for the flow structure in the rectangular cross section to obtain a simplified 1D description
of the particle distribution.

3. Derivation of a 1D cross-sectionally averaged concentration
equation for colloids undergoing diffusiophoresis in a
diffusioosmotic slip-driven flow

For the channel flow configurations of interest here, the concentration IV of colloidal
particles undergoing diffusiophoresis can be described by an advective-diffusion equation.
The particles diffuse at characteristic rate D}, relative to the mean fluid velocity and
advect due to both a diffusiophoretic velocity field vpp and a fluid flow field vs produced
by a diffusioosmotic slip velocity vs on the channel walls. Both the diffusiophoretic vpp
and diffusioosmotic slip vs velocities are driven by the diffusion of a background solute
with concentration C such that vpp x VlogC and vy « VlogC. We introduce the
particle velocity v, = vf + vpp and write the advective-diffusion equation

%—Jj +V - (v,N)= D,V?N. (3.1)
Previous studies compare dead-end pore experiments to numerical solutions of the 1D
advective-diffusion equation (Gupta et al. 2020b; Wilson et al. 2020; Ault et al. 2017; Chu
et al. 2020), which exclude v¢. While this approach simplifies calculations and provides
for a qualitative comparison of the mean colloidal motion, it leaves out the effect of
spreading of the particles due to the flow field. By introducing a Taylor dispersion model,
we account for flow-driven spreading effects in a 1D equation for the cross-sectionally
averaged colloid distribution. In this section, we derive a general form of this 1D effective
transport equation.

We consider a pore with axial dimension x = x - e,. The typical scale of the fluid
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FIGURE 2. Schematic of 2D and 3D descriptions of the velocity profile in dead-end pores,
depicted in panels (a) and (c), respectively. Coordinate axes are defined with the origin at
the upstream corner. Pore length, height, and width are defined, respectively, as ¢, h, and w.
Velocity profiles are depicted in the x—direction. Dispersion of the colloid concentration over
timescale 7 = 71 — 72 is depicted in the 2D description (panel (a)) and the cross-sectional
average of the colloid concentration is shown in panel (b), where the full width half maximum
A is visually defined as the distance between the two points in the distribution with values of
half the maximum. Panel (d) is a qualitative plot demonstrating the effect of dispersion on a
colloid distribution. Introducing a third dimension, as depicted in panel (c), causes an increase
in dispersion, as is well known in the Taylor dispersion literature (Chatwin & Sullivan 1982).

velocity (v) is on the order of magnitude of the wall slip velocity (vs & I, /¢, where I,
and ¢ are, respectively, the diffusioosmotic mobility and pore length), and an estimate
of the Péclet number for the solute, Pes = vsl/Ds where Dy is the solute diffusivity,
yields Pes = I, /Ds < 1 (Gupta et al. 2020b). Therefore, inside a narrow dead-end
pore, the solute concentration field C'(x,t) can be assumed one-dimensional so that 1D
diffusiophoresis of particles is achieved, i.e., vpp = vppe,.

Defining the perpendicular components of the position vector as x| = x — ze,, away
from the pore entrance the velocity fields have the form of a wall slip velocity vy =
vs(z, t)e,, fluid velocity ve(x,t) = vs(x, t) fr(x 1, t)e, +ve) (2, 1), where e, - ve) = 0, and
vpp = vpp(z,t)e,, where we assume an incompressible flow such that V - v = 0. The
advective-diffusion equation (3.1) becomes

%—]j +v;- VN + %(’UDPN) = D,V*N. (3.2)
This equation can be solved numerically for N, although to do so would require a 2D
or 3D computational scheme. To simplify our calculations, we revisit the analysis of
Taylor (1953) to derive a 1D equation for the cross-sectionally averaged concentration
by integrating the effects of the fluid flow, with the important differences that the fluid
velocity field in the pore here has zero cross-sectional average and varies in = and ¢
according to vg; note that v varies with the transverse coordinates and time.
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We start by defining the perturbation concentration N'(x, t):

N'(z,t) = N(x,t) — (N) (z,t), (3.3)

where the cross-sectional average is defined as:

et =5 [ 1ax (3.4)

for cross-sectional area A with normal vector in the x—direction. We expand (3.2) using
these definitions to find

a / a <N> / a / o 82 <N> RN
at(<N>JrN ) Vg Ep +v¢ VN +8x(vDP(<N>+N ) =Dy 92 +V=N'"| (3.5)
and take the cross-sectional average, which yields
9 (N) N, 9 _ 5 92(N)
T+<Uf‘VN>+£(UDP (N)) _DPFJ (3.6)

where we have used, by definition, (N’) =0, (v¢g;) =0, and 9 (N) /0x) = 0.
Now we subtract (3.6) from (3.2) to obtain (still an exact expression)

ON' & (N B}
o T 5<):c ) o - (vr+ VN') + o (0ppN') = D, VAN’ (3.7)

at which point we must make approximations to go further. As originally developed by
Taylor (1953), we consider the lubrication approximation:

32]\7/
2
IVAN| > ‘89:2 , (3.8)

where we define V2 = V2 — §?/92%. Assuming O(vpp) = O(vg,), [N'| < N, we apply
the approximation

0 (N) 0
O(vee—-"2)>0(v-VN', (vi- VN'), —(vppN') ). 3.9
(fmar f . (v )5 5, (vopN') (3.9)

Finally, assuming the perturbation concentration becomes independent of the initial
particle distribution, we take the steady-state limit ON'/dt — 0 to arrive at an equation
for the perturbation concentration,

9(N)
Vi = D, V3 N’ (3.10)

which must be solved for N'(x) by applying no-flux conditions at the pore walls and
requiring that (N') = 0. Equation (3.10) is analogous to the equation for the perturbation
field of a solute obtained in the original analysis of Taylor (1953). The steady-state
limit neglects the effect on ON’/0t of the time-dependence of v, which arises from the
time-dependence of vs. This is equivalent to assuming that the colloids reach a steady-
state distribution throughout the cross section instantaneously upon a change in wv.
We justify this assumption by comparing the time-scale of particle diffusion through the
cross section, A/ Dy, where A is the cross-sectional area, to the time-scale of axial particle
transport, £/vpp. Introducing particle diffusiophoretic mobility I7,, we have vpp ~ I, /L.
Furthermore, as the diffusiophoretic motion cannot outpace its source, the diffusion of
the solute, we can write vpp < Ds/f. Thus, for any system that obeys A/¢?> < D,,/Ds,
the steady-state limit ON'/0t — 0 is valid.
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Motivated by (3.10), it is convenient to define the quantities:

(1)

falws) = EES (3.110)
N' = vs(x,t)a§f> fN'lgfL), (3.11b)
Vifnr = —fulzy), (3.11¢)

where (3.11¢) is to be solved with no-flux boundary conditions at the pore walls and the
requirement that (fn+) = 0.
The quantity (ve+ VIN') therefore has the form

ON’ ON'
(vi- VN') = <Usf:c +vp - VN > = <Usfa: + V(v N') = N'Vy "Uu>-
(3.12)
Applying the incompressible flow condition,
Vv = fm +VL cvgp =0, (3.13)

we substitute for V| - ve; and apply the product rule of differentiation to obtain

(v¢+ VN') = <fw;x(sz’)+VJ_-(vﬁ_N’)>. (3.14)

With the definitions of the cross-sectional area average in (3.4) and the perpendicular
derivative vector V, denoting e as the normal vector to the boundary, using the
divergence theorem, and noting that there is zero fluid penetration at the pore walls, we
finally arrive at

1
<VJ_°(’UfJ_NI)>:ZfEJ_"UU_N/dS:O, (315)

where the line integral is performed over the boundaries of the pore cross section. This
simplifies (3.14) by eliminating the perpendicular velocity components. Invoking the
definition in (3.11¢), we have the result

(o VN') == (fof) 3 (2252). (3.16)

Substituting this result into (3.6), we have a one-dimensional PDE for the cross-
sectionally averaged colloid concentration,

(N) 9 (. _O(N)
o o (Kam

where the modified diffusion coefficient is defined as:

K =Dy+ 5 (ffo/>(vs(x,t))2. (3.18)

— Upp <N>> , (3.17)

In Appendix A we calculate (f, fn/) by solving (3.11¢) for the forms of v, in both the
2D and 3D narrow pores depicted in figure 2. We note that the results are equivalent
to the well-known 2D result and additionally the 3D result introduced by Chatwin &
Sullivan (1982) upon replacing the diffusioosmotic slip velocity with the mean velocity
of a pressure-driven flow. Furthermore, the elements of our Taylor dispersion model have
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been introduced in part by previous studies. For example, Chu et al. (2021) present a
Taylor dispersion model of diffusiophoretic motion of particles; however the flow field is
driven by an external pressure gradient and does not include the effect of a diffusioosmotic
slip-driven flow field. Furthermore, due to their use of cylindrical geometry, they do not
examine the effect of the channel cross section aspect ratio on the dispersion. It would
be straightforward to include features of their model such as a colloidal reaction term,
an externally-driven flow, and a cylindrical channel geometry into our model. Migacz
& Ault (2022) also present a Taylor dispersion model of diffusiophoretic colloids with
an externally-driven flow field; their focus is on a narrow two-dimensional channel for
which they neglect the diffusioosmotic wall slip. It would be straightforward to include
in our model the zeta potential dependence on the solute concentration featured in their
model, although to incorporate their characterization of early-time dynamics requires
further research. Stone & Brenner (1999) present a dispersion model for radial outflow
between two disks, which exhibits streamwise variation in the mean velocity. Our model
of diffusiophoresis and diffusioosmosis generalizes the above studies by including a multi-
directional, longitudinal direction-dependent and time-dependent flow with zero mean in
a channel geometry, allowing for accurate direct comparison of the model to dead-end
pore diffusiophoresis experiments (see section 5).

4. Analysis of dispersion equations

4.1. Comparison of the dispersion equation to the two-dimensional advective-diffusion
equation

Numerical solutions for the diffusiophoretic motion of colloids in a 2D dead-end pore
(figure 2(a)) based on (3.1) are compared to numerical simulations of the dispersion model
based on (3.17-3.18). The 2D pore is simulated in order to validate our Taylor dispersion
model with numerical tests; for comparison to our experiments, a 3D model must be
implemented. We introduce non-dimensional quantities X = x/¢, V. = vf/D; (for all
velocities), 7 = tDy/¢?, and n = N/Ny, where Ny is the initial maximum concentration
of the colloid, /¢ is the pore length as depicted in figure 2, and Dy is the characteristic
diffusivity of the diffusing solute whose gradient drives the colloid diffusiophoresis and the
diffusioosmotic slip velocity on the pore walls. For simplicity we consider a monovalent,
binary salt as the solute, whose concentration can be described by one quantity. We
define C as the concentration of the solute, which is made non-dimensional by ¢ = C/Cy
for initial maximum concentration Cj. Substituting in our non-dimensional quantities,
(3.1) becomes

n D
(27 +V - (Vyn) = FZV%’ (4.1)
where we redefine V = [0/0X,0/0Y] and note that the velocity V,, = V; + Vpp is the
sum of the fluid and diffusiophoretic velocities. We define the non-dimensional modified
diffusion coefficient as

Vvs2 <fX fn/ >
D, " D,/D, &
where (fx fur) /02 = (fo fn) = (h/£)?/210, well-known for pressure-driven parabolic flow

in a 2D channel, is computed in Appendix A, see (A 6). We see that introducing the non-
dimensional quantities reveals a set of two non-dimensional parameters to describe our

(4.2)
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FI1cure 3. Comparison of the cross-sectionally averaged diffusiophoretic colloid concentration
(n) in a dead-end pore with diffusioosmotic slip-driven flow at the walls. Solid lines show
numerical solutions to the full 2D model, (4.1), and dashed lines show numerical solutions to the
one-dimensional model with 2D dispersion, (4.3) and (A 6). The two different numerical solutions
have matching initial Gaussian distributions and no-flux conditions at the pore walls and inlet.
The diffusiophoretic velocity and the diffusioosmotic slip are driven by a solute diffusing out of
the pore into an infinite reservoir. The initial solute condition is (c) (T = 0) = 1 and the boundary
conditions are {c) (X = 0) = 0.1 and no-flux conditions at the pore walls. Three diffusivities of
the colloidal particles and three pore heights are considered. Excellent agreement is observed
between the two models for (h/£)> = D,/Ds/10 and (h/€)? = D,/Ds/100, as predicted by the
Taylor dispersion limit (4.9), and consistent with the steady-state limit ON’ /9t — 0.

system: D, /Dy and h/¢. Now making (3.17) non-dimensional, we have

‘9a<:‘> = aix <K56<;> — Vor <n>> : (4.3)

Equation (4.2) can be adapted to describe the solute concentration c:

a(c) d (K3<c> Vf<c>>’ 4

or 90X SoX
where we define the solute modified diffusion coefficient as
_ L e,
Ke=1+ 510 Ve (4.5)

As described in §3, with a solute Péclet number Peg &~ I, /D < 1 the solute concentra-
tion is approximately one-dimensional and can be accurately calculated with a 1D diffu-
sion equation. This ensures furthermore that the solute concentration can be calculated
with the dispersion equations (4.4 and 4.5) in the lubrication approximation (Taylor
1953; Aris 1956; Chu et al. 2021), with accuracy greater than or equal to the simple
diffusion model. We include the dispersion effect on the solute as a general description of
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FIGURE 4. The full width half maximum A((n)) (see figure 2b) versus time 7 of colloidal particle
distributions (n), as obtained by solving (4.3) and (A 6). The colloid distributions have Gaussian
initial distributions and no-flux conditions at the pore walls and inlet. The diffusiophoretic
velocity and the diffusioosmotic wall slip are driven by a solute diffusing out of the pore into an
infinite reservoir. The initial solute concentration is (c) (r = 0) = 1 and the boundary conditions
are {(c) (X = 0) = 0.1 and no-flux conditions at the pore walls. The full width half maximum
is compared for varying particle diffusivity (Dp/Ds = 1072, 1072, 10~*) and varying pore wall
zeta potential (¥, = —4, — 10, 4). Furthermore, each panel shows the full width half maximum
for three values of the ratio (h/£)?/(Dy/Ds): 1, 1/10, and 1/100.

our model. Comparisons between the dispersion model and a one-dimensional diffusion
model of the low Péclet number solute revealed only minor differences.

We assume constant particle and wall zeta potentials and a vanishing ratio of Debye
length to particle radius. Therefore, the diffusiophoretic and diffusioosmotic velocities
vpp and vs depend on the constant particle and wall zeta potentials 1, w, the gradient
of the logarithm of the solute concentration, and the diffusivity difference factor § =
(Dy — D_)/(24D4 — z_D_) of the electrolyte with ionic diffusivities Dy and D_ and
valences z; and z_. The zeta potentials are made non-dimensional by defining ¥ =
ey /(kgT), where e is the elementary charge, kg is the Boltzmann constant, and T is the
absolute temperature of the solution. It is convenient to introduce the velocity prefactor
a = ekiT?/(e?uDy), where € is the electrical permittivity of the solution and p is the
solution viscosity. We define diffusiophoretic mobility I}, and diffusioosmotic mobility
Iy, which are made non-dimensional by the solute diffusivity and related to the particle
and wall zeta potentials by the approximate form (Prieve et al. 1984; Velegol et al. 2016;
Keh & Ma 2005):

Fp w EPQ w
= = U, w B . 4.
Ds « <ﬁ b, + 8 ) ( 6)
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The diffusiophoretic velocity and the diffusioosmotic slip velocity are then given by:

I
Vopr = fpVIOg C, (4.7&)
Dy
Iy [Olog c]
and V, = =¥ { . (4.7)
Ds | 90X |z onse

where Z = 0 and Z = h/{ correspond to the pore walls.

We can consider the Taylor dispersion limits to simplify our expressions for the
velocities. Taylor dispersion most accurately models systems with a low Péclet number,
which is the ratio of particle transport timescales:

time scale to diffuse through channel cross section

Perp = < 1. (4.8)

time scale to transport to end of channel

In our system, the mechanism of bulk particle transport along the pore length is the
diffusiophoretic velocity. If we reintroduce dimensional quantities, we see that vpp scales
with I, /¢. The diffusiophoretic mobility I}, cannot be greater than Dg, the characteristic
diffusivity of the solute. This gives us the condition

(Z>2 < g‘: (4.9)

for which we expect our Taylor dispersion model to describe 2D pore diffusiophoresis and
diffusioosmosis with reasonable accuracy. The equivalent condition for the dispersion of
the solute would be (h/¢)? < 1, which is always true in the lubrication approximation
that we have employed for the velocity profiles. Therefore, we can approximate all ¢(X, 7)
with (¢) (X, 7), giving us the simplified velocities:

I, dlog (c)
Vop = D. X (4.10a)
Iy dlog(c)

Simulated colloid concentrations from the 2D advective diffusion model (see 4.1) and
the 2D reduced-order dispersion model (see 4.3 and A 6) are directly compared in figure 3.
Particle diffusivity and the ratio (h/¢)?/(D,/Ds) are both varied over three orders of
magnitude, demonstrating better agreement of the colloid distributions as the Taylor
dispersion limit is better satisfied. Diffusiophoretic focusing is observed in panels (d)— (7),
where the colloids increase in concentration as time increases, and is most prominent for
the smallest ratios (panels (f) and (¢)). This is consistent with the form of (4.2), where
an increase in (h/€)?/(D,/Ds) corresponds to an increase in dispersion. Panels (a) — (c)
do not demonstrate diffusiophoretic focusing, however, as the large value for particle
diffusivity dominates the dispersion effect.

We next report the full width half maximum (defined in figure 2(b)), where larger
magnitudes indicate greater dispersion. The full width half maximum as a function
of time for the colloid distributions determined from (4.3) and (A 6) are displayed in
figure 4. The full width half maximum is compared for varying particle diffusivity across
three orders of magnitude and varying pore wall zeta potential: a typical experimental
value (Alessio et al. 2021) ¥, = —4 (panels (a) — (¢)), a strongly negative value
¥, = —10 (panels (d) — (f)), and a positive value ¥, = 4 (panels (g) — (7)). The strongly
negative value corresponds to a large slip velocity and thus to increased dispersion.
Equation (4.6), considering that 3 is negative for Na™ and Cl™, indicates that the positive



12 B. M. Alessio, S. Shim, A. Gupta, and H. A. Stone

(a) Ty = —4 (0) ¥y, = —10 (c)
0.1 0.4 0.05
0.08 0.3 0.04
~
= 0.06 0.03] *
= oo 02
< 0.04 1%, 0.02 —_— hjw=1
0.02 0.1 0.01 === hjw=2
....... h/w =10
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1

101 2

BT
D, /Dy

FIGURE 5. (a)—(c) The full width half maximum A((n)) versus time 7 of the colloid distributions
(n) solved from (4.3) and (A 14). The colloid distributions have Gaussian initial distributions
and observe no-flux conditions at the pore walls and inlet. The diffusiophoretic velocity and the
diffusioosmotic slip are driven by a solute diffusing out of the pore into an infinite reservoir. The
initial solute condition is (¢) (T = 0) = 1 and the boundary conditions are {(c) (X = 0) = 0.1 and
no-flux conditions at the pore walls. The full width half maximum is evaluated for varying pore
wall zeta potential (¥ = —4, —10, 4). (d) The non-dimensional modified coefficient of diffusion
K versus non-dimensional particle diffusivity D,/Ds. The double bracket indicates an average
over the length of the pore and the timespan 7 = 0 — 0.4. A minimum is seen in each curve
for an intermediate value of particle diffusivity. (e¢) The non-dimensional modified coefficient
of diffusion versus time. The single bracket indicates an average over the length of the pore.
Particle diffusivity is chosen to be D,/Ds = 1073. A sharp decrease is seen for early times.
Each panel demonstrates the effect of increasing cross-sectional aspect ratio h/w to decrease
dispersion, indicated by decreasing full width half maximum (a — ¢) and decreasing modified
coeflicient of diffusion (d — e).

value corresponds to a small slip velocity and thus to decreased dispersion. Furthermore,
each panel shows the full width half maximum of the colloid distribution for three values
of the ratio (h/€)?/(Dy/Ds): 1, 1/10, and 1/100. This effect is weakest for the leftmost
column (panels (a), (d), and (g)), as the large value of particle diffusivity dominates the
dispersion effect similarly to the simulations of figure 3.

4.2. Parameter analysis of the 3D dispersion equation

To achieve quantitative agreement between the experiments of §5 and the reduced-
order dispersion simulations requires the consideration of the variation of the flow in
three spatial dimensions. In Appendix A we introduce the pore width w such that the
walls are located at Y = 0 and Y = w/¢ and h < w, and present the corresponding
modified diffusion coefficient.

We modify the model in §4.1 by substituting (X, 7) with the 3D coefficient, defined
n (4.2) and (A14) where (fxfu) /0> = (fofn'), into (4.3). Note that we use the
same method to make the coefficient non-dimensional, and furthermore that the non-
dimensional coefficient for solute dispersion in (4.4) is replaced with the 3D version in a
similar manner. Finally, we include no-flux conditions for each wall of the pore.

The full width half maximum versus time for colloid distributions determined from
(4.3) and (A 14) are shown in figure 5(a — ¢). The results indicate enhanced dispersion as
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FIGURE 6. Experiments in a long pore (w = 100 gm, h = 50 pum, and £ = 5 mm). (a) Schematic
of typical experimental steps. (a — i) The pore is initially filled with the 10 mM NaCl solution.
The 10 mM NaCl solution with suspended particles, separated from the original solution by
a first air bubble, is flowed in the main channel, then comes in contact with the liquid in the
pore. (a — i) Flow in the main channel introduces penetration of streamlines into the pore
at the pore inlet (penetration depth ~ w), which allows a patch of particles to form at the
inlet region of the pore. Then, separated by the second air bubble, a 1 mM NaCl solution is
flowed into the main channel to create a concentration gradient in the pore. (a — #ii) Finally,
we obtain diffusiophoresis of a finite number of particles toward the dead-end. (b) Fluorescent
images obtained from the experiments with carboxylate-modified polystyrene (c-PS; diameter
d = 0.5 pm) particles. Image intensity is enhanced for visualization. Original images are included
in Appendix C (figure 10). Scale bar is 100 pm.

the width of the distribution increases with stronger dispersion. As in §4.1, we present
the effect of pore wall potential ¥y, on the dispersion in figure 5. Figure 5(d — e) shows
the non-dimensional modified coefficient of diffusion versus the non-dimensional particle
diffusivity, averaged across the length of the pore and across the timespan 7 =0 — 0.4
(panel (d)), and versus time, averaged across the length of the pore (panel (e)). Panel
(d) demonstrates a minimum in dispersion for intermediate values of particle diffusivity
as predicted by (4.2). Panel (e) highlights how there is a multiple-order-of-magnitude
decrease in the modified coeflicient of diffusion at early times.

Each panel of figure 5 demonstrates the trend for dispersion to increase as the aspect
ratio h/w decreases. This is a natural consequence of dispersion being enhanced by the
influence of the side walls. Furthermore, the inclusion of the 3D effect of h/w strictly
increases the dispersion of the colloid distributions compared to those calculated from
the dispersion model of the 2D channel (Chatwin & Sullivan 1982).

5. Experimental methods and comparison to the one-dimensional
equation

We designed experiments using a dead-end pore with w = 100 pm, A = 50 pm, and
¢ =5 mm to compare with the model of the 1D representation of the (three-dimensional)
dispersion; ¢ >> h,w. Three different particle sizes (diameter d, = 1, 0.5, and 0.2 pm;
see Appendix D for particle information) were used to examine the influence of particle
diffusivity Dy, which is related to particle diameter by the Boltzmann constant kg, the
absolute temperature T of the solution, and the viscosity u of the solution through the
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FIGURE 7. Comparison of experimental data (solid) to simulated data (dashed) for different
colloidal particle diameters. The concentration distributions in a given experiment, in order
of peak location from left to right, correspond to times 7 = 0.1, 0.2, 0.3, and 0.4. Fitting
parameters are the dimensionless particle zeta potential ¥, and wall zeta potential Wi,.
Unique values of the fitting parameters were calculated for the simulations of each panel:
(a) ¥ = —2.84, U, = —3.91, (b) ¥, = —3.31, ¥, = —3.26, and (c) ¥, = —3.04, ¥, = —2.06.
Despite a bias due to particle size in the fitted values of the wall zeta potential, there is very
good agreement between the experiments and the simulations.

Stokes-Einstein equation:

kT
s (5.1)
In order to establish an initial condition that a finite number of particles are trapped in
the inlet region of the pore, we use three successive steps separated by two air bubbles
(figure 6(a)). The PDMS microfluidic channel is made by standard soft lithography and
the channel block is bonded to a thin sheet of PDMS to ensure the same surface properties
for all walls.

The pore is initially filled with a 10 mM NaCl solution. Then, the 10 mM NaCl
solution with suspended polystyrene (PS) particles, separated by a first air bubble from
the original solution, is introduced in the main channel (width, height, and length are,
respectively, w = 1.2 mm, h = 200 pm, and £ = 5 cm) at a mean flow speed (u) ~
2.5 mm/s (figure 6(a — 4)). Once the two solutions come in contact with each other,
particles start to accumulate at the pore inlet by the slight penetration of streamlines
(penetration depth ~ w) (Battat et al. 2019). One minute after the particle suspension
flows in the main channel, a second air bubble is introduced, followed by a 1 mM NaCl
solution (figure 6(a — 47)). Once the 1 mM NaCl solution contacts the liquid in the
pore, the main channel flow speed is reduced to (u) = 25 um/s. Fluorescent images
are then recorded every 10 seconds using an inverted microscope (Leica DMI4000B;
figure 6(a—iii)). Typical experimental images are shown in figure 6(b) as a time sequence.

For the three values of d,, we compare the experiments with the one-dimensional model
with 3D dispersion (figure 7). Details of the model are given in §4.2. The particle zeta
potential has a strong influence on the peak location of the colloid distribution, and the
wall zeta potential has a strong influence on the dispersion of the colloid distribution.
The dimensionless particle zeta potential ¥, and wall zeta potential ¥,, were calculated
as fitting parameters for each experiment. The fitted parameters used in the simulations
of each panel are: (a) ¥, = —2.84, ¥, = —=3.91, (b) ¥, = —3.31, ¥, = —3.26, and
(c) ¥, = —3.04, ¥, = —2.06. The zeta potentials are each calculated within ¥ + 0.002
using a least squares method that compares model and experiment.

Some variation in particle zeta potentials is expected due to the independent manu-
facturing of all three sizes of particles used. However, the variation in fitted wall zeta
potentials is unexpected as pore walls properties were not changed between experiments.
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It is possible that deviations from the predicted fluid velocity profile at the pore inlet, not
captured by the Taylor dispersion model, enforce a bias of the particle size on the apparent
dispersion of the colloid distribution (Battat et al. 2019). The sharp concentration
gradient near the pore inlet at 7 = 0 causes a three to four order-of-magnitude decrease in
the modified coefficient of diffusivity over the span of 7 = 0 — 0.05 (figure 5(e)), meaning
the the majority of the dispersion occurs near the inlet during this time-span. A small
effect of particle size on the dispersion in this region can strongly impact the apparent
dispersion of the colloid distribution throughout the pore. Therefore, it is not feasible
with our current setup to accurately measure the wall zeta potential. In Appendix C,
we perform an experiment holding particle size constant and calculate fitted potentials
that demonstrate good agreement, supporting our claim that a particle-size dependence
of the dispersion in the inlet region may be responsible for variations in the fitted values
of the wall zeta potential.

The complex nature of the inlet region in microfluidic dead-end pores may also
explain overestimation of the fitted particle zeta potentials. This effect is not due to
imprecise measurements. In particular, in Appendix C we demonstrate precise fitting of
zeta potentials for particles of the same batch. Full three-dimensional analysis including
complex flow structure near the pore inlet may be helpful to further develop the dispersion
system so that a direct mapping of the particle distribution versus the wall or particle
potential values is possible for a wide range of surface properties. Additionally, it is
possible that differences in manufacturing of each size of particle affected the diffusive
behavior; a wide variation in particle zeta potential within a batch of one size could
introduce an apparent spreading that contributes to the dispersion. Despite the imprecise
fitted values of wall zeta potential, the very good agreement between the experimental
data and the fitted simulation data supports our model.

6. Conclusions

We implemented a Taylor dispersion model of diffusiophoresis-driven particle motion in
a dead-end pore. By integrating the effects of a 3D diffusioosmotic slip-driven flow into a
1D advective-diffusion equation, we performed direct comparisons between reduced-order
simulations and experimental measurements. We also compared the effective dispersion
model with direct numerical simulations, and obtained quantitative agreement for param-
eters up to the limit of applicability of the approximations typical of Taylor dispersion.

Our model builds upon previous studies of diffusiophoresis by including the effect of
diffusioosmosis-driven dispersion. Furthermore, we extend previous analyses of Taylor
dispersion by calculating the general form of a coefficient for a slip-driven flow with zero
mean, accounting for spatial and temporal variations in the coefficient, and including the
diffusiophoretic velocity in the reduced-order advective-diffusion equation.

Going forward, while our analysis focuses on the dead-end pore geometry with zero
mean flow, it is straightforward to extend the analysis to other geometries and account for
pressure and shear-driven flows (Chu et al. 2021). Similarly, while the results in this paper
are for electrolytic diffusioosmosis, (3.18) can be utilized to calculate dispersion for non-
electrolytic diffusioosmosis. Our analysis can also be combined with self-diffusiophoretic
colloids that may have variance in mean velocities (Peng & Brady 2020). In summary,
our dispersion model will enable rapid calculation of diffusioosmotic spreading for a wide
variety of geometries, background flows, and physical processes.

An accurate calculation of dispersion in the presence of charged sidewalls can be ex-
ploited for various applications. For instance, lab-on-a-chip applications such as directed
delivery of particles (Banerjee et al. 2016; Shi et al. 2016; Lee et al. 2018; Gandhi et al.
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2020; Seo et al. 2020; Shin 2020) and zeta-potential measurement (Shin et al. 2017)
rely on accurate prediction of particle concentration, which in turn is closely associated
with colloidal dispersion. In physical systems such as energy storage and desalination
devices (Biesheuvel & Bazant 2010; Florea et al. 2014; Gupta et al. 2020a,c; Bone et al.
2020; Henrique et al. 2022), it is common to observe ion concentration gradients inside
charged pores, where one can expect colloidal transport and dispersion to be important.
Finally, biophysical systems such as blood cells, phospholipid vesicles (Bruno et al. 2018;
Hartman et al. 2018), plasmodesmata (Peters et al. 2021), and cell growth in microfluidic
setups (Yang et al. 2018) also consist of charged surfaces, where diffusioosmosis plays a
crucial role.
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Appendix A. Deriving the coefficient of dispersion for a
two-dimensional and a three-dimensional channel

The Taylor dispersion model introduced above, which we have generalized to account
for streamwise and temporal variations in the dispersion coefficient for a channel geom-
etry, a zero average fluid velocity, and a background 1D diffusiophoretic velocity field,
is shown in this appendix to produce identical coefficients of dispersion as calculated
many times previously for laminar flow between parallel plates in two dimensions and
a rectangular conduit in three dimensions (Chatwin & Sullivan 1982). In this appendix
we give a detailed calculation of the dispersion coefficients for slip-driven flow in narrow
pores in two and three dimensions, depicted by figure 2.

Two-dimensional pore

Here we calculate the modified diffusion coefficient in slip-driven viscous flow for
colloidal particles in a 2D dead-end pore of length ¢ and height i < ¢, where = spans
0 — ¢ and z spans 0 — h. The definition of the cross-sectional average from (3.4)
becomes:

1 h
=g | e (A1)
0
and (3.10) reduces to:
J(N) 9?N’
e~ Driga (A2)

where the x—direction fluid velocity is (Alessio et al. 2021):

) »

Equation (3.11¢) becomes:

02 fnr z(h —2)
02 e =670
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where f, = v, /vs. We integrate (A 4), apply the no-flux condition dfn//0z(z =0, h)
0, and require that {fx/) = 0 to obtain:

z4 23 22 h?

5 = —— = = - — A
V=5~ %+t " (A5)

from which we calculate:

h2
<fsz’> = m

We note that this is the standard coefficient for a channel flow with dispersion propor-
tional to the square of the mean velocity.

(A6)

Three-dimensional pore

We now consider a 3D pore, by introducing the width w < ¢, where y spans 0 — w
and h < w. In this case, the definition of the cross-sectional average from (3.4) becomes:

1 w h
=i [ ] 1 ez (A7)
and (3.10) becomes:
d(N) 0? 0? ,
Vg B(L' = Dp (ayQ + @ N 5 (A 8)

where the x—direction fluid velocity is, defining ¢y’ =y — w/2:

2(h—2) g . cosh (mr%) sin (mr%)

s=vs |16V [ 22— — , A9
Ut U, h2 7'['3 n%d n3 CObh (% %) ( a/)
-1
- 192 h o~ tanh (zn7%)
n odd
>1

We note that the form of the fluid velocity in a channel is well-known for the case of
pressure-driven flow, and for our case of slip-driven flow, the form of the velocity is
identical upon transforming from the frame of the mean flow speed to the frame of the
slip velocity (Alessio et al. 2021).

Equation (3.11¢) becomes:
9? 82
(5 + 5z ) fv == (A10)

where f, = vg, /vs. Following the example of Chatwin & Sullivan (1982), we represent the
velocity in the convenient double cosine form, noting that in our case the cross-sectional
average of the velocity is zero:

fo= Z Qupp COS <p7r ) Z 0lpq COS (qw ) Z Z Qtpgq COS (pw )cos (qw%).

p even q cvcn p even g even
>2 22 22

(A11)
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The coefficients are calculated from (A 9) using the Fourier method:

384whV i tanh (3n7)

= A12
p0 i « 0% (n2w? + p?h?)’ (A12a)
n}o1
24V 8§ & 2 tanh (inmy
Oéoqui2 B} 1+72 ) g D) 1 2’u) h) ) (A]‘Qb)
g7 noddn(n —q?) SN
>1
[e%e] 1 w
Opg = = (A12¢)

We solve (A 10) with the boundary conditions f”’ (=0, h) =25 (y =0, w) =0 and
the requirement that (fn/) = 0 to obtain:

o i <;7)T>20‘p0 cos (pw%) + i (q};->2a0q cos (CJW%)

p even q even
=2 =2

3 3 () () s (o o o)

p even g even

(A13)

= =

Finally, we calculate:

~ 2
(fulrr) = (127?‘) Z B +2 Z By + Z S| (g

p even q even p even q even

=2

16 < tanh (lmrﬂ)
Boo = ——= 2 h’l__ (A 14b)
’ pr? n%c:id n3 (712 + p? (%)2>
q> tanh (%mr%)

R , Al4

. K ? n§d ) %”W% ( g
32 h > tanh (1

Bpq = — [ anh (5n7 ) (A144d)

™ 2 (L) 4 ¢2 o oda (12 = ¢?) (n2 + p? (%)2) 7

where V is defined by (A 9b).

Appendix B. Applicability of two- and three-dimensional velocity
profiles in experimental analyses

As explained in the main text, dispersion of a particle patch cannot be fully described
with a 2D model. Schematics of z-projection imaging are shown in figure 8. Compaction
experiments typically show an exclusion boundary that indicates an influence of the z-
averaged flow velocity inside a pore. This can be approximated by a 2D parabolic velocity
(figure 9(c)). 3D dispersion of a particle patch requires understanding the 3D velocity
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FIGURE 8. Schematics showing the difference between the compaction and dispersion
experiments in terms of 2D imaging. (a) The z-projection of compaction experiments shows
an apparent boundary that can be estimated with a flow velocity obtained for the 2D pore. (b)
The z-projection of the dispersion experiments cannot be fully described by the 2D pore model.

distribution inside a dead-end pore (figure 8(b)), as the 2D projected particle distribution
reveals 3D flow profiles.

In the current experiment, while the particle patch is moving toward the dead-end by
1D diffusiophoresis, each particle experiences different flow speeds at different locations
inside the pore. If the initial particle distribution was uniform along the pore and
diffusiophoretic compaction occurs, we obtain the particle exclusion boundary that is
affected by the z-averaged flow velocity (figures 8(a) and 9(c)), due to the 2D projection
nature of imaging. In contrast, when there is diffusiophoresis of a particle patch, the
stretched particle distribution due to 3D flow in the pore is revealed in the z-projection
images, as illustrated in figures 1(c), 8(b) and 9(a,b).

In the particle-patch experiments performed with short pores (figure 1), PS particles
aligned with the flow velocity in the pores with different heights (figure 9(a,b)). Flow
velocities at two different z locations (z = 5 pm from the wall and z = h/2) indicate
that variation in the dispersion profiles in different pores is due to different flow speeds
(figure 9(b)).

Appendix C. Experiments with variation of solute concentration

In order to investigate the particle-size dependence on the dispersion (§5), we performed
an experiment holding particle size constant (d, = 0.5 pm). The solute concentration
ratio ¢y /cp was set to 0.05 to compare to the previous experiment with a ratio of 0.1,
where ¢y, is the initial solute concentration in the main channel and c;, is the initial solute
concentration in the pore.

In figure 11 we show the two experiments for (a) ¢m/cp = 0.1 and (b) cm/cp = 0.05
compared to simulations with fitted particle and wall zeta potentials, calculated to be:
(a) ¥, = —3.31, ¥, = —3.26 and (b) ¥, = —3.46, ¥, = —3.29. The zeta potentials
were fit with a least squares routine to ¥ 4 0.002. The values of ¥,, were consistent with
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FIGURE 9. Qualitative interpretation of the particle dispersion in short pores (figure 1) by the
differences in flow velocities. (a) Images obtained from the pores with w = 100 ym, £ = 1 mm
and three different heights (h = 25, 50, and 100 pm). (b) Flow velocities obtained from different
pores plotted versus pore width. Two z-positions are selected: z = 5 pym (from the wall), and
z = h/2 for all three pores, and difference in the flow velocities v¢(z,y, h/2) — ve(x,y, 2 = 5 pum)
can qualitatively describe the variation in the particle distributions. (¢) Comparison between
the z-averaged flow velocity obtained from the 3D pore and the 2D parabolic flow velocities.
The cross section of the 3D pore is w = 100 pgm and h = 50 pm, and the 2D pore has the same
width.
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FIGURE 10. Figure 6(b) without intensity enhancement. Scale bar is 100 pm.
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FIGURE 11. Comparison of experimental data (solid) to simulated data (dashed) for two
different values of initial solute concentration ratio: (a) ¢m/cp, = 0.1 and (b) ¢m/cp = 0.05. The
distributions, in order of peak location from left to right, correspond to times 7 = 0.1, 0.2, 0.3,
and 0.4. Fitting parameters are dimensionless particle zeta potential ¥, and wall zeta potential
U,,. The fitted zeta potentials were calculated to be: (a) ¥, = —3.31, ¥, = —3.26 and
(b) ¥y, = —3.46, ¥y, = —3.29. Good agreement is found between (a) and (b).

an estimate we made using a different setup, where the particle entrainment front was
tracked to measure the flow velocity (see figure 12). Independence of fitting parameters
on the solute concentration ratio is expected; the particles are of the same batch so
are expected to have the same zeta potential, and the possible particle-size effect on the
dispersion is eliminated by holding particle size constant. The close agreement in the zeta
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FIGURE 12. Independent estimation of wall zeta potential ¥, in our typical experimental setup.
(a) Particle entrainment front was tracked at two separate locations (X = 0.2, X = 0.3), and
the centerline velocity was compared with calculations. For the pores with w/h = 2, the particle
speed along the centerline is Vpp + |V;|. (b—¢) A choice of the wall potential value ¥,, = —3.3 is
seen to reasonably agree with the measurements, supporting the consistency of our zeta potential
fitting.

| Particles | dp (pm) | Measured 1, (mV) | Fitted ¢, (mV) | Concentration (%v/v) |
Polystyrene (Invitrogen) 1.0 —70.92 £2.23 —78.13 0.1
Carboxylate-modified polystyrene (Sigma Aldrich) 0.5 —75.13 £0.35 —85.07 0.2
Polystyrene (Bangs Laboratories) 0.2 —50.51 £+ 1.02 —72.99 0.2

TABLE 1. Particles used in the experiments.

potentials of each experiment supports our model and the possibility of a particle-size
effect on the dispersion near the pore inlet.

Appendix D. Particles used in the experiments

In the experiments, three different particles are used to visualize diffusiophoresis and
dispersion in the dead-end pores. Particle information is listed in Table 1.
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