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Abstract

High-dimensional thermodynamic phase stability databases are becoming increasingly common due
to the convergence of three recent trends: (i) the widespread interest in so-called “high-entropy” alloys,
(ii) the availability of high-throughput computational assessments of phase stability in broad composition
spaces and (iii) the ongoing development of ever-increasingly broad, multicomponent, multiphase CAL-
PHAD databases. Although automated computational tools can readily process such high-dimensional
data, scientists are often unable to visualize the relevant phase relations, an ability that is crucial to gain-
ing an intuitive understanding of the stability constraints governing materials design. The present work
addresses this need by providing algorithms that enable the interactive exploration of phase equilibria
in high-dimensional spaces. These algorithms concentrate the complex nonlinear nonsmooth optimiza-
tion needed into a preprocessing step that generates a large number of high-dimensional yet elementary
graphical primitives. These primitives can then be cross-sectioned to yield 3-dimensional views in a
computationally efficient manner that enables an interactive exploration of high-dimensional spaces. All
of these operations are highly parallelizable, thus facilitating scaling of this method to large data sets.

1 Introduction

Materials scientists and engineers are well-acquainted with phase diagram handbooks that have guided
materials design for decades, but such resources fall short when the number of components is too large for
the phase diagram to be effectively represented on a 2-dimensional medium. This paper presents software
tools that enable the interactive visualization and exploration of phase equilibria in high-dimensional spaces,
to provide a unique window into high-dimensional thermodynamic phase stability databases.

Such databases are becoming increasingly common due to the convergence of three recent trends. First,
the concepts of high-entropy alloys or multiple principal component alloys (e.g. [1, 2]) have stimulated the
exploration of a wide range of complex alloy chemistries and these efforts are generating high-dimensional
phase stability data as a by-product.

Second, the development of high-throughput computational methods that enable the large-scale discovery
of stable and metastable phases produces, by design, large amounts of high-dimensional phase stability data.
While initial efforts concentrated on the exploration of ordered phase energetics at absolute zero [3, 4, 5, 6, 7],
these efforts are being extended beyond stoichiometric compounds to yield more complete free energy models
that feature composition- and temperature-dependence [8, 9, 10, 11, 12].

Finally, the CALPHAD (CALculation of PHAse Diagram) community has been steadily expanding the
coverage of complex chemistries by developing increasingly broad multicomponent multiphase CALPHAD
databases. These efforts have been ongoing for decades and the amount of available data is vast and fuels
a materials research and development ecosystem. These developments have taken place both in industry,
via proprietary database development [13, 14, 15], and in the open scientific literature [16, 17, 18, 19, 20].
Efforts are under way to consolidate these data into centralized meta-databases [21, 22].

In all of the above cases, the data takes the form of composition- and temperature- dependent free energies
and obtaining a phase diagram involves finding the mixture of phases and their respective compositions such
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that the free energy is minimized under given imposed conditions (e.g. overall composition, temperature
and pressure).

The determination of equilibrium phase boundaries from free energy models is a problem that has received
considerable attention and suitable algorithms have been implemented in numerous commercial ([13, 14, 15])
and open-source ([23, 24, 25]) software. Still, this task involves a constrained nonlinear optimization problem
(with possible multiple local optima) with inequality constraints that are potentially binding and where
solutions could depend non-smoothly on the input conditions. As CALPHAD practitioners are well-aware,
these features make it difficult to devise algorithms that are both rapid and reliable. Efficient boundary
tracing techniques do exist ([26, 27, 28]) but require a starting point equilibrium that often needs to be found
by more extensive calculations. The possibility of multiple local optima prompts the need for brute-force
linear or grid searches that, while effective, are considerably slower and are less suitable for an interactive
software tool.

To address this, we propose to carry out the expensive computations of the thermodynamic equilibria as
a preprocessing step taking place before the interactive visualization. We rely on sampling schemes to ensure
better scaling to high dimensions and facilitate parallelization. Once the high-dimensional phase boundaries
have been determined and expressed as simple geometric primitives, the interactive visualization step only
involves simple linear operations that can efficiently be implemented to ensure a real-time feedback to user
input.

In the following sections, we first describe our algorithms, along with their rationale, before providing a
few examples inspired by high entropy alloy design.

2 Methods

Let us first define some useful concepts. In a phase diagram at constant temperature and pressure, if there
are e elements, there are e − 1 compositional degrees of freedom and the phase diagram has dimension
n = e − 1. To treat all compositions symmetrically, they are traditionally represented in a Gibbs triangle
when e = 3. We generalize this to a Gibbs simplex (a simplex in n = e − 1 dimensions is a polytope with
n + 1 = e vertices). When temperature is considered, another dimension orthogonal to the Gibbs simplex
is added, so n = e, and the phase diagram is then contained within a hyper-prism with a “base” that is
a simplex with e vertices. One can proceed similarly to include pressure, although we do not consider this
here.

The phase boundaries are, in general, (n− 1)-dimensional curved hyper-surfaces, which will be hereafter
called manifolds. We represent these manifolds by points interconnected to form a mesh. The basic building
block of that mesh is a (n− 1)-dimensional simplex (For instance in 3 dimensions, surfaces can meshed by
triangles, i.e. 2-dimensional simplexes). When n > 3, we wish to perform a 3-dimensional cross-section of
the phase diagram for plotting purposes. The remaining dimensions (orthogonal to the 3-dimensional cross-
section hyper-plane) can be accessed as the user interactively changes the hyper-plane of the cross-section.
(We use the term hyper-plane rather than hyper-volume to emphasize that it is lower dimensional than the
full phase diagram.)

Let us now outline our computational approach, which is also illustrated in Figure 1 in a low-dimensional
setting for clarity. Each step will be detailed further below.

1. Random sampling. First, the temperature-composition space is randomly sampled from a uniform
distribution.

2. Equilibria calculations. At every imposed condition (overall composition and temperature), the
thermodynamic equilibrium is calculated. All the calculations yielding a single-phase equilibrium are
discarded while those yielding a multi-phase equilibrium are kept (miscibility gaps are considered
multi-phase equilibria as well).

3. Phase boundary classification. The remaining data points provide, for each phase, a set of points
that samples its phase boundary in temperature-composition space. Points from different equilibria but
associated with the same phase are grouped. Within a group, the data points are placed in sub-groups
based on which other phase(s) they are in equilibrium with.
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Figure 1: Computational approach for the determination of low-dimensional cross-sections of high-
dimensional phase diagrams. For plotting purposes, the “high” dimension is 2, while the “low” dimension
is 1 and an isothermal section is considered. Step numbers correspond to those described in the main text.
In Step 1, composition points are drawn uniformly at random within the Gibbs triangle. In Step 2, phase
equilibria associated with each imposed overall composition are calculated and those yielding a single phase
(encircled by a dotted line) equilibrium are discarded. In Step 3, end points of the tie-lines are grouped (as
shown by dotted lines) by phase (distinguished by colors) and sub-grouped based on the phase they are in
equilibrium with. In Step 4, each subgroup is meshed and the resulting meshes are re-grouped by phase
(indicated by different colors). In Step 5, the cross section (along the red line) of each simplex (here shown
as line segments) constituting the meshes is calculated.
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4. Meshing. Within each subgroup, the sets of points can be meshed to form polygonal hyper-surfaces.
The meshes for each subgroup are then re-grouped with those associated with the same phase. Of
course, in an n-dimensional space, these are actually (n− 1)-dimensional manifolds decomposed into
n-point simplexes.

5. Cross-sectioning. 3-dimensional cross-sections of these manifolds are then computed. The problem
of calculating a cross section of a manifold decomposed into simplexes is a linear convex programming
problem that can be implemented in a computationally efficient and reliable fashion.

Random sampling (Step 1) uniformly on the Gibbs simplex can be accomplished in a number of ways.
For an e-component system, the simplest way is to draw compositions xi for i = 1, . . . , e − 1 each from
a uniform distribution on [0, 1] and to reject trial draws summing to greater than 1 (the last composition

xe is then determined by xe = 1 −
∑e−1

i=1 xi).
1 An efficient algorithm that does not involve rejections is

to draw e random numbers from independent exponential distributions and normalize them to sum to 1.
(The use of an exponential distribution is critical in this scheme, as other distributions would not yield
a uniform distribution on the Gibbs simplex.) It is also possible to replace purely random sampling by
deterministic quasi-random or minimum discrepancy sequences with improved sampling properties (in terms
of avoiding unnecessarily close points while maintaining probabilistic validity). A detailed discussion of
the implementations and of the relative merits of the above schemes can be found in [29]. Other popular
uniform sampling schemes, such as Latin hypercube sampling [30], may be difficult to adapt to a Gibbs
simplex geometry.

Random sampling (or its deterministic alternatives) provides a desirable way to sample high-dimensional
spaces due to favorable scaling as the dimension of the space increases as well as due to the ability to better
control the computational cost. In contrast, in grid-type sampling, one has very little choice in the number
of sample points: the jump in the number of points between two consecutive grid sizes can be very large,
leaving the user the unenviable choice between a too coarse grid and a very computationally demanding
calculation. With random sampling, the densest computationally feasible sampling can always be selected.
One can simply stop point generation when an adequate sampling has been achieved without having to plan
in advance how many samples will have to be drawn. As an added benefit, random sampling also ensures
that the probability of accidentally missing a phase is proportional to the volume it, and its associated
multi-phase equilibria, occupy in temperature-composition space [31]. The probability of missing a phase
also decays exponentially to zero as the number of sample points is increased. Grid-based methods do not
possess these advantages.

During the equilibria calculations (Step 2), the random sampling approach offers the advantage that
the expensive thermodynamic equilibria calculations can be very easily parallelized without requiring the
different computing threads to coordinate their actions, in contrast to boundary-following approaches. The
latter are also difficult to generalize to arbitrary dimensions and, in fact, to our knowledge, these methods
have so far not been used to generate phase boundary manifolds in high dimensions.

Once a large number of equilibria have been calculated, the single-phase equilibria are discarded (as they
provide no information regarding the phase boundaries) while the multi-phase equilibria are classified (in
Step 3) in terms of which phases take part in each equilibrium. For instance, if there are three phases (α, β, γ)
in the phase diagram, the equilibria are classified in 4 groups: (α, β) , (β, γ) , (α, γ) , (α, β, γ), which we shall
denote by the subscripts 1 to 4. Next, for each group, we extract the 9 manifolds corresponding to each phase
boundary, namely: α1, β1, β2, γ2, α3, γ3, α4, β4, γ4. The tie-triangle data-points (and higher-order equilibria,
if any) are then combined with the appropriate group: α1 ∪ α4, β1 ∪ β4, β2 ∪ β4, γ2 ∪ γ4, α3 ∪ α4, γ3 ∪ γ4 to
ensure each manifold has edges that just touch the adjacent manifold. Each of these group will be meshed
separately. The rationale for this classification is that all points within one group sample a smooth (i.e.
continuously differentiable) and connected manifold. In contrast, equilibria that involve different phases are
either disconnected in composition-temperature phase, or, when they are connected, there will typically be
a kink (i.e. discontinuous derivative) at the junction. The classification thus ensures that the phase diagram
is decomposed into smooth objects.2

1This scheme produces genuine uniform sampling because (i) a subregion of a uniformly sampled region is also uniformly
sampled and (ii) a nondegenerate linear transformation preserves uniform sampling.

2This statement assumes that the underlying thermodynamic engine uses different labels for the phases on either side of a
higher-order phase transition.
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Figure 2: Meshing a curved surface. The mesh intended to be generated is shown in Panel (a), with triangle
normals shown to convey curvature information. Panel (b) shows that a straightforward application of the
Delaunay triangulation criterion for a flat surface incorrectly flags an invalid mesh due to the point circled
in red falling within the circumscribed cylinder. This problem is avoided if one instead uses a circumscribed
sphere whose center lies on the current facet, as shown in Panel (c).

The meshing step (Step 4) is not as straightforward as it may appear to be at first. For a set of points on a
flat two-dimensional plane, Delaunay triangulation [32] is a standard method to construct suitable connecting
triangles. The geometric condition that such a construction must satisfy is simply that the circumscribed
circle around each triangle must not contain any other points other than the triangle’s vertices. This condition
can be straightforwardly used to devise a constructive algorithm: given a segment between two points, search
for a third point such that the resulting circumscribed circle satisfies the condition and forms a triangle. The
algorithm is then applied to the newly created segments, etc. This algorithm straightforwardly generalizes to
n dimensions: one simply finds simplexes connecting n+ 1 points such that the circumscribed hyper-sphere
does not contain any other points. Implementations of this algorithm are readily available [33].

Our task is more complex, however: the meshing we seek is not generated from points in a flat space.
We need to mesh a (n− 1)-dimensional curved manifold embedded in an n-dimensional space.3 Software
packages able to handle both hyper-surface curvature and spaces of general dimension appear to not yet be
available, to the best of the authors’ knowledge. A direct application of one step of Delaunay “simplexiza-
tion” might find multiple points to add to the mesh or no points at all, due to the curvature of this manifold.
The case of multiple points can be easily addressed by a tie-breaking rule (e.g. proximity to the previously
meshed point). However, the case of no suitable points, illustrated in Figure 2(b), demands a modification
to the algorithm. Instead of checking if no other points belong to a (n− 1)-dimensional sphere (extended to
a n-dimensional cylinder, as shown in Figure 2(b)), one checks if no other points belong to an n-dimensional
hyper-sphere circumscribing the n points of the new candidate (n− 1)-dimensional simplex with the con-
straint that the hyper-sphere center lies along the plane of that (n− 1)-dimensional simplex, as shown in
Figure 2(c). This modified algorithm is then applicable to curved manifolds, as long as the manifold’s radius
of curvature does not approach the radius of the circumscribed hyper-spheres. For a continuously differen-
tiable hyper-surface, the latter condition is always eventually satisfied if the sampling points are sufficiently
close. Fortunately, phase boundaries are typically continuously differentiable, except at points where phases
appear or disappear.

This latter observation is what motivates grouping together phase boundary points that share the same
combination of phases in equilibrium. This ensures that the resulting manifold to be meshed is smooth.
Once each group of points has been meshed separately, they can be combined into a single mesh to create a
continuous hyper-surface with possible kinks where there are changes in the combination of phases that are
in equilibrium.

The meshing step can be implemented in a parallel architecture as follows. Each of the N instances of the
code keeps track of the mesh constructed so far and looks for simplex faces that are at the boundary of the
manifold meshed so far. Each of these faces is assigned a numerical index i. Instance number t of the code
works on the face with smallest i such that imodN = t. Each instance spends most of its time trying to find
a neighboring point that satisfies the circumscribed hyper-sphere criterion. When an instance finds such a

3Note that this task cannot be accomplished by performing the n-dimensional Delaunay triangulation and keeping all the
(n− 1)-dimensional faces that belong to only one n-dimensional simplex. This would give a mesh for the convex hull of the
boundary points while, in general, phase boundaries need not be convex.

5



Figure 3: Calculating the cross-section of a simplex. Example of a 2-dimensional cross-section (c = 2) of a
2-dimensional simplex (n − 1 = 2) embedded in a 3-dimensional space (n = 3). One picks every subset of
n− c+1 = 2 vertices from the simplex and checks whether the (n− c)-dimensional simplex (here, segments,
since n−c = 1) generated by convex combinations of these vertices intersects the cross-section plane (in grey).
Here, two of the segments meet this criterion while one (dotted) does not. The two successful intersections
yield two points in the plane that can be meshed by (c− 1)-dimensional simplex(es) (here shown as a thick
blue segment, since c− 1 = 1).

point, it shares the information with all other instances and all of them update their internal mesh. Only
the point index and face index need to be shared, so the communication overhead is kept to a minimum. In
addition, the number of faces on the boundary of the mesh is large during most of the calculations (except
towards the beginning and the end of the meshing process), so the potential for parallelization is large as
well.

Thanks to the fact that the meshing step represents the phase boundary manifolds as a union of simplexes,
the process of computing a cross-section of the phase diagram (Step 5) reduces to computing, many times,
the cross-section of a simplex. The c-dimensional cross section of an (n− 1)-dimensional simplex could, in
principle, be calculated by solving a generic linear programing problem. However, this task has a considerably
more specific structure which can be exploited to devise a more efficient algorithm.

The vertices of a c-dimensional cross section of an (n− 1)-dimensional simplex can be obtained by
considering, in turn, any subset of n−c+1 of these vertices. For each subset of vertices, one computes which
weighted average of these vertices yields a point that lies along the cross-section hyper-plane. If the weights
are all positive, then this point is a vertex of the cross-section but, otherwise, this point should be discarded.
This algorithm is illustrated in Figure 3 for n = 3 and c = 2 and is more formally described in Appendix
A. Note that there is no guarantee that the cross section of a simplex is itself a (c− 1)-dimensional simplex,
although it is at least guaranteed to be convex. For each simplex cross-section, the resulting points can be
trivially meshed because they lie on a flat surface and there are typically very few of them. It is important to
emphasize that the cross-section operation essentially involves repeatedly solving linear systems of equations,
a task that is very easy to vectorize, parallelize or perform via Graphical Processing Units (GPU). Another
efficiency consideration is that only a small fraction of the high-dimensional simplexes is being cut through for
a given visualized cross-section. These simplexes relevant for visualization can be very quickly identified by
simply looking at the pattern of signs of the vertices’ coordinates (once all coordinates have been transformed
so that the cross-section hyperplane crosses the origin and contains the first c Cartesian axes). This implies
that the method scales well with the dimension of the high-dimensional space.

Phase diagrams for more than 2 components traditionally include tie-lines to clarify which phases are in
equilibrium. For a generic 3-dimensional cross-section in an n-dimensional (n > 3) space, the probability
that a tie-line lies exactly in the subspace of the chosen cross-section is negligible. Although this would
suggest that tie-lines should not even be plotted in this context, this is not entirely satisfying. It would
be useful to visualize how close the cross-section is to lining up with a given tie-line, as this could help
guide the user towards cross-sections that are more informative or easier to interpret. To this effect, we
propose to represent tie-lines by hyper-ellipsoids elongated along the direction of the tie-line and narrowed
along directions perpendicular to it (see Figure 4). This has the effect of smoothly interpolating between a
small sphere (when the tie-line is perpendicular to the cross-section) and an elongated ellipsoid resembling
a conventional tie-line (when the tie-line is parallel to the cross-section). This lets the user gauge how close
the tie-line is to being co-planar with the selected cross-section. A similar idea could be used to represent
tie-triangles (and, more generally, tie-simplexes), using hyper-ellipsoids whose long principal axes lie in the
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Figure 4: Tie-line representation by a hyper-ellipsoid and its cross-section. Each hyper-ellipsoid (here shown
as 3-dimensional ellipsoid) is elongated along the direction of the tie-line (shown as a dashed line) and nar-
rowed perpendicular to it. When the tie-line is almost perpendicular to the cross-section (here 2-dimensional),
it appears close to a circle and, when the tie-line is almost parallel to the cross-section, it appears as an
ellipse.

hyper-plane of the tie-simplex and whose short principal axes are perpendicular to it. For rendering efficiency
purposes, these hyper-ellipsoids are triangulated into simplexes.

3 Implementation

The above algorithms have been implemented within the Alloy Theoretic Automated Toolkit (ATAT) [34, 35].
The main command for preprocessing is ocplotpd and takes the form of a Perl script that calls OpenCalphad
[36] to perform the thermodynamic equilibrium calculations and various ATAT commands (implemented in
C++) that perform the meshing (simplexize command) or generate coordinate axes and labels (mkaxes
command). The script ocplotpd can spawn multiple instances of OpenCalphad to take advantage of multiple
cores while the simplexize command can exploit parallelization via MPI.

The command ocplotpd takes as an input a thermodynamic database in the standard TDB format and
produces, as an output, one of the following:

1. 2- or 3-dimensional output suitable for viewing with gnuplot

2. 3-dimensional output in standard vtk format [37] suitable for viewing with ParaView [38].

3. n-dimensional output in the form of simplex-meshed manifolds in ATAT’s “nd” format (which stands
for “n-dimensional”).

The outputs in the forms of item 1 and 2 above are already being used to generate the graphical output for
Thermodynamic Database Database (TDBDB) [22], while the output in the form of item 3 is the main novel
contribution of this article. Files in the “nd” format can be viewed with the ATAT command ndviewer,
which generates 3-dimensional cross-sections interactively while allowing the user to move and rotate in
n dimensions. This code is implemented in C++, with graphical aspects handled using OpenGL via the
GLUT library. The parts of the code implementing linear algebra operations can be linked with BLAS and
LAPACK, for which GPU-aware implementations are readily available.

4 Applications

As a first example, we consider the well-known Co-Cr-Fe-Ni-V high-entropy alloy, for which a thermodynamic
database from experimental data has been recently developed [39]. We compute this system’s 4-dimensional
phase diagram at 1500K and view various 3-dimensional cross-sections.

Let us first provide some statistics that convey an order of magnitude of the computations involved. Ther-
modynamic equilibrium calculations were performed at 100,000 sample points, yielding about 50,000 points
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Figure 5: Example of interactive exploration of the Co-Cr-Fe-Ni-V phase diagram (1500K isothermal section).
Surfaces indicate phase boundaries, color coded by phase, while tie-lines are shown in white. The image
sequence starts at the top left with the Gibbs tetrahedron associated with the Co-Cr-Fe-Ni system and the
remaining image sequence shows (from top to bottom and then left to right) cross-sections of constant V
concentration with V content gradually going from 0 to 100 at. % in successive images.

on the phase boundaries. We kept about 10% of the calculated tie-lines for plotting purposes, yielding about
2400 tie-lines. The meshed boundary points resulted in about 320,000 simplexes while the representation of
the tie-lines added about 20,000 simplexes.

The calculations were performed on a single 24-core node (Intel e5-2670, Skylake architecture). The
parallelized thermodynamic calculations took about 10 min of wall clock time while the meshing took about
30 min of wall clock time. Once this pre-processing step was completed, the phase diagram could be viewed
interactively at about 5 frames per second on a mid-range laptop (1.90GHz Intel i7-8650U CPU without
discrete graphic card). These software tools are still undergoing significant efficiency improvements, however,
and the timings we report here are likely to continuously improve (for instance, our current implementation
of the viewer does not exploit multi-threading or the availability of multiple cores).

A typical output is shown in Figure 5, where the cross-section hyper-plane is slowly moved from the 0
at. % V to 100 at. % V. This type of exploration is useful to identify regions of composition space where
the detrimental σ phase does not form.

As a second example, we consider the promising Cr-Mo-Nb-V-W high-entropy alloy system [40]. In
this example, the thermodynamic Calphad model is generated from high-throughput ab initio calculations,
following the method described in [8] and the parameters listed in Appendix B. We focus on the thermody-
namics of the bcc phase and obtain its metastable phase diagram. This exercise enables us to find which
regions of composition space are free of miscibility gaps, so that synthesizing a bcc alloy that is at least
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metastable would be a possibility. Of course, other phases based on other crystal structures could further
reduce the set of feasible alloys if one wishes to require a strict thermodynamic equilibrium, but we leave
the investigation of this possibility to future communications.

The calculation process involved the computation of 70 Special Quasirandom Structures [41, 42] (with
unit cell sizes ranging from 32 to 48 atoms) spanning the full composition range of the 5-component alloy.
The resulting random alloy formation energies were then combined with short-range-order contributions
based on the Cluster Variation Method [43], as described in [8], and used to build a Calphad model.

Thermodynamic equilibrium calculations were performed at 100,000 sample points, yielding about 60,000
points on the phase boundaries. We kept about 10% of the calculated tie-lines for plotting purposes, yielding
about 5000 tie-lines (many of which are actually the boundaries of tie-triangles). The meshed boundary points
resulted in about 360,000 simplexes, while the representation of the tie-lines added about 45,000 simplexes.

In this example, we can explore how the shape of the miscibility gaps changes along different cross-
sections. In panel (a) of Figure 6, we clearly see, from the tie-lines and phase boundaries, that 50 at. % W
alloy with similar V and Nb content phase separates into a V-rich and a Nb-rich alloy while the addition of
Cr to this alloy does not lead to the precipitation of a Cr-rich phase. In contrast, Panel (g) of Figure 6 also
shows a miscibility gap in another Cr-poor portion of the phase diagram, but the tie-lines there actually point
to a phase separation that involves Cr-rich phases. The figure also shows the gradual transition between
these two situations, and this type of behavior would be very difficult to investigate without an interactive
tool such as the one proposed herein.

5 Conclusion

This paper has introduced software tools that enable the interactive visualization and exploration of phase
equilibria in high-dimensional spaces, in an effort to bring the traditional handbooks of phase diagrams into
the next century and meet the needs of the increasing community of researchers relying on high-dimensional
phase stability data. In analogy with the echographies used in medicine, where interactive 2-dimensional
cross-sections enable viewing of a 3-dimensional body, our software tools enable interactive 3-dimensional
cross-sections that facilitate the exploration of higher-dimensional spaces. We have presented here a snapshot
of the current status of these tools — they are being continuously improved in terms of performance and
usability.

In addition to various algorithmic innovations, our contribution is to observe that the complex pro-
cess of rendering high-dimensional phase diagrams can be broken down into (i) a computationally intensive
pre-processing step handling all the complex, nonlinear and nonsmooth operations that can be performed in
advance and (ii) an interactive visualization step in which only simple linear operations on elementary graph-
ical primitives have to be carried out. Such operations can be easily vectorized, parallelized or performed by
Graphical Processing Units (GPU).

The interactive high-dimensional viewer presented herein is actually agnostic regarding the type of data
to be viewed. Hence, a by-product of our efforts is to provide general tools to view general high-dimensional
scientific data through cross-sections.
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Figure 6: Example of interactive exploration of the Cr-Mo-Nb-V-W metastable bcc phase diagram. Blue
surfaces indicate the bcc phase boundary while tie-lines are shown in white. Compositional coordinates of
the vertices are indicated in red. The image sequence starts at the top left with a cross-section at 50 at. %
W. The remaining image sequence shows (from top to bottom and then left to right) a rotation along the
V-W hyper-plane.
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A Appendix: Cross-section calculation algorithm

This section describes in more detail how to compute a c-dimensional cross section of an (n− 1)-dimensional
simplex.

An (n− 1)-dimensional simplex can be defined as the set of all convex combinations of its n vertices (a
convex combination is a linear combination with positive weights that sum to one). Similarly, its (n− s)-
dimensional facets (for some s > 1) are defined by convex combination of n − s + 1 of its vertices. (To fix
the ideas, 2-dimensional facets correspond to the usual facets, while the 1-dimensional facets correspond to
edges.)

These (n− s)-dimensional facets are mapped onto lower dimensional objects by the cross-section opera-
tion. Our task is to find the s such that the (n− s)-dimensional facets will be mapped to single points by
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a c-dimensional cross-section operation. These points then correspond to the vertices of the cross-section.
These vertices, once connected by a (c− 1)-dimensional mesh, yield the cross-section of interest.

A c-dimensional cross-section is defined by n − c linear constraints and we thus need n − c degrees of
freedom to be able to uniquely satisfy these constraints (i.e. obtain a single point). A convex combination
of n− s+1 vertices of the simplex has n− s degrees of freedom (because the weights must sum to one), and
we conclude that s = c.

The algorithm is then simply:

1. Consider every group of n− c+ 1 vertices out of the n vertices of the original simplex.

2. For each group, solve for which linear combination (with weights summing to one) of these vertices
yields a point p within the given c-dimensional cross-section hyper-plane.

3. If the weights are all positive, place the point p in the list of vertices.

4. Mesh the resulting vertices to form a (c− 1)-dimensional manifold (which is a flat manifold bounded
by a convex boundary).

B Ab Initio Calculation Parameters

The ab initio calculations were performed with the VASP code [44, 45], which implements the Projector
Augmented Wave (PAW) [46]. The pseudopotentials used had the following number of electrons included
as valence: Cr: 6, Mo: 6, Nb: 11, V: 5, W: 6. The PBE [47] exchange-correlation functional was used.
A kinetic energy cutoff of 300 eV and k-point mesh of density of at least 8000 points per reciprocal atom
was automatically generated [48] for each structure and Fermi level smearing of 0.1 eV was performed using
the Methfessel-Paxton scheme of order 1. All relaxation calculations allowed all cell parameters and atomic
coordinates to vary. They were followed by a static run, where Brillouin zone integration were performed
using the tetrahedron method with Blöchl corrections [49].

The Calphad model was built using Special Quasirandom Structure (SQS) structural energies on compo-
sition grid corresponding to “level 4” in sqs2tdb [8], this including compositions of the form A, A1/2B1/2,
A3/4B1/4, A1/3B1/3C1/3, A1/2B1/4C1/4 with A,B,C standing for any 3-element subset of the system’s 5
elements. The interaction coefficients of the Calphad model include polynomials of binary and ternary com-
positions up to order 3. The cross-validation score of the fit was 11 meV. Short-range-order corrections were
included.
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