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Proximity-induced collective modes in an unconventional superconductor heterostructure
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Unconventional superconductors have been long sought for their potential applications in quantum technolo-
gies and devices. A key challenge impeding this effort is the difficulty associated with probing and characterizing
candidate materials and establishing their order parameter. Here we present a platform that allows one to
spectroscopically probe unconventional superconductivity in thin-layer materials via the proximity effect. We
show that inducing an s-wave gap in a sample with an intrinsic d-wave instability leads to the formation of
bound states of quasiparticle pairs, which manifest as a collective mode in the d-wave channel. This finding
provides a way to study the underlying pairing interactions vicariously through the collective mode spectrum of
the system. Upon further cooling of the system we observe that this mode softens considerably and may even
condense, signaling the onset of time-reversal symmetry-breaking superconductivity. Therefore, our proposal
also allows for the creation and study of these elusive unconventional states.

DOLI: 10.1103/PhysRevB.106.064508

I. INTRODUCTION

Materials exhibiting unconventional superconductivity are
key components of many proposed quantum devices. For
instance, triplet superconductors may allow for the incor-
poration of magnetic functionalities into superconducting
electronics [1,2], as well as offering larger critical magnetic
field strengths [1,3]. Similarly, a large amount of work has
been devoted towards realizing topological superconductors,
such as the elusive chiral p-wave state [4—6]. Many of these
useful unconventional states break additional symmetries, be-
yond global U(1) symmetry, such as time-reversal symmetry
[7-12].

The question of how to realize [6,13,14] and prepare
these systems not withstanding, it is often very difficult to
even characterize and verify the nature of these unconven-
tional superconducting phases. Often, low dimensionality,
low-temperature scales, and complex order parameters can
conspire to obscure the microscopic structure of the ground
state, making the unambiguous identification of the state
challenging. It has recently been emphasized that one po-
tential solution to this problem is to use the spectrum of
collective modes in the superconductor to look for sig-
natures of the ground-state order [2,15-17]. For example,
one may study the multiple different Higgs modes of an
anisotropic superconductor to identify the ground-state sym-
metry [15,18-20]. Similarly, in the case of time-reversal
symmetry-breaking multicomponent [17,21,22] or multiband
[10,23,24] superconductors, it has been argued that collective
modes associated to the relative phase stiffnesses may also
provide signatures of the time-reversal symmetry breaking.
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While promising, this method is greatly restricted in its
applicability. In order to support these collective modes, the
material must already have two or more closely competing
interactions, and if the system has a nodal order parameter
there is an additional threat due to quasiparticle damping.
In addition, the relevant frequency scales for these collec-
tive modes are almost always on the order of the electronic
gap, and therefore usually fall within a challenging frequency
range of low-to-mid THz.

In this paper, we present a way to overcome these chal-
lenges in a controlled and tunable manner by using the
proximity effect to build a “designer” collective mode. This
collective mode can then be used to probe the order parameter
of a candidate material by standard means such as Raman or
tunneling spectroscopy. Further, we show that this protocol
may yield a way to engineer systems which spontaneously
break time-reversal symmetry, offering a way to systemati-
cally study these elusive superconducting states.

Fundamentally, our scheme relies on using a conventional
bulk “substrate” superconductor to proximity induce s-wave
superconductivity in a thin “sample” layer of unconventional
superconductor which has an intrinsic instability towards pair-
ing in a non-s-wave channel, as depicted in Fig. 1(a). In
the presence of the proximity-induced minigap this residual
interaction manifests through the formation of stable bound
states of quasiparticle pairs (note this is different from the
case of a single-electron bound state [25-27]). These bound
states essentially realize the Bardasis-Schrieffer, or “particle-
particle exciton,” collective mode [28], but in this case the
subdominant pairing interaction is the dominant pairing in-
teraction in the sample.

We also confirm that if the intrinsic pairing interac-
tion in the sample is sufficiently strong, the particle-particle
bound state may itself condense, at which point the sys-
tem undergoes a second phase transition into a time-reversal

©2022 American Physical Society
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FIG. 1. (a) Schematic of the heterostructure under study in this
work: an unconventional superconducting sample placed in prox-
imity to a conventional bulk superconducting substrate. The two
subsystems are coupled via single-particle tunneling which occurs
at the rate y. (b) Phase diagram of the system. Below Tj, the sub-
strate is superconducting and induces a minigap in the sample via
the proximity effect. When this minigap becomes large enough, it
converts the overdamped fluctuations of the d-wave superconducting
order into a sharp collective mode. As the sample transition tem-
perature 7, is approached, this proximitized collective mode softens
and ultimately condenses out of phase with the substrate order pa-
rameter, spontaneously breaking time-reversal symmetry. Below 7,
the proximity-induced collective mode becomes the usual clapping
mode in time-reversal symmetry-breaking superconductors.

symmetry-breaking state with a mixed order in both channels.
This hierarchy of temperatures and the various regimes are
shown in Fig. 1(b).

II. MODEL

For specificity, we will first demonstrate this idea by con-
sidering a concrete model where the sample has single-band
spin-singlet d,>_,»-wave order. In Appendix F, we also con-
sider a more complex example of f-wave triplet pairing in
moiré graphene, using the model proposed in Ref. [29]; we
will discuss this in more detail later since it qualitatively
resembles the similar case of d-wave pairing for our purposes.
Indeed, we expect that our results will largely generalize to
more complex order parameters, provided they remain orthog-
onal to the s-wave order in the presence of the interface,' and
that the relevant order parameters commute with the normal-
state Bloch Hamiltonian. We leave a systematic analysis to

'In particular, we mean to exclude scenarios where the interface
itself breaks symmetries and allows the s-wave substrate order to
linearly couple to the intrinsic order, as may occur for instance with a
p. order parameter which is protected by the horizontal mirror-plane
symmetry. In this case, the relevant symmetry is broken and the
two order parameters will hybridize to form a parity-mixed state,
requiring a more complicated analysis which includes a reevaluation
of the mean-field state. While the situation is more complicated, this
may be a potentially interesting route for future study as well. We
thank J. Linder for highlighting this interesting direction.

future studies, only noting there is a potentially interesting
connection between the collective mode spectra and the notion
of “superconducting fitness” [30]. Additionally, for simplicity,
we take the sample thickness to be thin compared to the
coherence length in the out-of-plane direction, such that we
may neglect the dispersion, and hence the spatial dependence
of the problem, in the transverse direction.

In this case, we describe the intrinsic pairing interaction in
the sample by a BCS Hamiltonian
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with the dispersion relation &, = p?/2m — Ep. The second
term describes the d-wave pairing interaction with center-of-
mass momentum ¢ and relative momentum p, codified in the
d-wave form factor le =2 cos(20p ) (the momentum angle
is measured from the x axis).

Within mean-field theory the pairing interaction can be
decoupled, yielding the standard Bogoliubov—de Gennes
Hamiltonian for quasiparticles. Solving this self-consistently
for the d-wave gap
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we find that d-wave pairing sets in at a temperature Td(o) which
is given by the standard BCS formula in terms of the dimen-
sionless pairing strength Ay = gsvp (with vp the density of
states at the Fermi level), and a UV cutoff A of order of the
characteristic frequency of whatever mediates pairing in the
sample (e.g., for phonons, the Debye frequency). In this work
we do not consider any changes to the intrinsic interaction
due to the substrate, though this is an interesting direction for
future study.

We now introduce the coupling to the substrate, which
we treat as a fixed “reservoir,” that does not experience any
back-reaction due to the coupling to the sample. In particular,
we assume the substrate is much thicker than the sample and
the s-wave coherence length. Crucially, we also assume that
the substrate transition temperature 7; is much larger than the
intrinsic transition temperature in the sample T( or equiva-
lently that the substrate superconducting gap |A | has largely
saturated once the temperature reaches T ~ T »

We assume a local tunneling into the substrate with an
effective tunneling matrix element t. At second order we find
the tunneling energy scale y = 2 v||?, where vy is the den-
sity of states in the substrate. We largely focus on the regime
Ay >> v, such that the tunneling scale is less than the substrate
gap (for a less restrictive treatment, see Appendices A and E)
and we may treat processes only in the Andreev channel.

Provided the substrate superconducting phase is not
strongly fluctuating (the relevant energy and length scales
over which the phase varies are the plasma frequency and the
in-plane penetration depth of the substrate, respectively), we
can model the proximity-induced superconducting gap in the
sample by adding a term to the Hamiltonian (see Appendix A
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In particular, this opens a minigap at the Fermi level for the
electrons in the sample (in the Andreev regime |A;| > y, the
size of the minigap is y/2) and the phase is referenced with
respect to the substrate phase. We henceforth set this phase
to be zero, such that the substrate gap is taken to be real and
positive.

Since the proximity effect opens a gap on the Fermi sur-
face of the sample, we expect the intrinsic d-wave pairing
transition to be suppressed. Indeed, by solving the mean-field
equations in the d-wave channel in the presence of the prox-
imity gap (as described in Appendices B and C), we find that
there is a depression of the critical temperature to T; < Td(o),
as shown in Fig. 3(a). We broadly expect this to be the case
so long as the order parameters are not able to hybridize in
presence of the interface; if they are able to, then this analysis
should be revised to include the linear coupling between the
two order parameters, as in Ref. [14]. A rudimentary analysis
of the gap equation for 7y is for the proximity induced case is
carried out in Appendices B and C; within the BCS regime,
this can be seen to modify the low-energy density of states
and therefore is independent of the cutoff, except through
dependence on Td(o), a low-energy parameter.

III. COLLECTIVE MODE

We now proceed to our main result: the emergence of the
bound-state collective mode. Above the new d-wave transi-
tion temperature, the d-wave order is uncondensed but still
fluctuates due to the remnant pairing interaction. Within the
random phase approximation we may derive an equation of
motion which describes the dynamics of this fluctuating
d-wave order. This is derived in detail in Appendix D, but
it may be understood as the linear-response pair susceptibility
of the sample in the proximitized state [31]. The presence of a
bound-state collective mode then shows up as a resonance in
the pair susceptibility.

We separate the d-wave order parameter into the compo-
nents which are in phase and out of phase with respect to
the substrate condensate, writing Az(t) = hg(t) +idy(t). We
find that the in-phase component 4y has no sharp resonance
and essentially mirrors the two-particle continuum, and thus
we will henceforth neglect the in-phase component. This is
in line with the expectation that the s- and d-wave orders
are competing and therefore the “repulsion” between the two
orders is minimized when they are mutually out of phase [9].

At linear order we calculate the spectral function for the
dynamic pair susceptibility in the out-of-phase fluctuation dgq
channel

1 o .
Add(Q’Q)Z_;Im{_i/(; dteﬂ’([dq(t),d—q(o)])}, “

which in particular captures the binding energy and linewidth
of the d-wave excitation. The spectral function Ay, (<2, q)
is obtained in Appendix D in terms of the Nambu-Gor’kov
Green’s functions using the Keldysh technique, although it
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FIG. 2. Evolution of the collective mode spectral function with
temperature. Panels (a) and (b) are different visualizations of the
same function. (a) The collective mode spectral function for tempera-
tures between T, and 1.4 T;, from which we see that the spectral peak
of the mode sharpens and progressively softens as the temperature is
lowered. At T = T, the mode ultimately softens to zero frequency.
(b) Closeup depiction of the spectral function in (a) for 7/7T; =
1,1.1,1.2, 1.3, 1.4. We see that the mode clearly separates from the
quasiparticle continuum below 7' < Td(o), and softens completely at
T;. In both we fix the tunneling strength y = 0.2 meV and substrate
gap to be A; = 1.0meV, and hold the cutoff A = 30meV and BCS
constant A;l = 4.586 58, corresponding to an intrinsic critical tem-
perature of T(,(O) = 0.344 meV. The finite y leads to a reduced critical
temperature of 7, = 0.282 meV, giving ratio Td(O) ~ 1.27,.

may also be calculated using, e.g., the Anderson pseudospin
method provided |Ag| > y, so that retardation and damping
due to the substrate may be safely neglected.

We present the spectral function A4,(2, ¢ = 0) in Fig. 2
for different temperatures 7 > T; at fixed y, Ay, Td(o). In
Fig. 2(a) we show the evolution of the collective mode
frequency and spectral weight with temperature. At high tem-
peratures, we see no clear distinction between the collective
mode and the bottom of the quasiparticle continuum. Lower-
ing the temperature reduces the thermal broadening and pulls
the mode out of the continuum, yielding a sharp collective
mode which resides within the minigap. This is emphasized
in Fig. 2(b), where we show the same spectral function,
now focusing on the relation between the collective mode
and continuum. This separation occurs once the temperature
T ~ Td(o), the characteristic temperature scale of the intrinsic
pairing interactions. As we decrease the temperature further
the mode continues to soften. Qualitatively, we find that the

064508-3



CURTIS, PONIATOWSKI, YACOBY, AND NARANG

PHYSICAL REVIEW B 106, 064508 (2022)

— y=0meV — y=005meV — y=0.1meV

%‘ [ — y=02meV — y=04meV — y=0.5meV
£ 010 1
S 0.057
0.01- ‘ ]
4 5
(b) = (c)
027 =04
0.0;
T 5
£ oo 3
-0.4
— ry(T)
ra(T)
0.1 0.2 0.3
T [meV] T [meV]

FIG. 3. (a) Transition temperature 7, of the sample as a function
of the dimensionless d-wave coupling constant A; = vrgy, plotted
for different values of the tunneling rate y. Notice that for any fixed
Aa, Ty is suppressed as the tunneling rate is increased. (b) Tempera-
ture dependence of the quadratic coefficients in the Ginzburg-Landau
expansion for # and d. The change of sign of each coefficient signals
condensation in that channel, and one sees that the out-of-phase
d mode condenses first. (¢) Amplitude of the sample order param-
eter AY = i(d) near Tj. Inset: illustration of the relative Higgs and
Bardasis-Schreiffer modes, and their phase relative to the s-wave
substrate order parameter.

sharp collective mode resides within the region of 7; < T <
Td(o), which makes sense given that it is a manifestation of
the intrinsic pairing fluctuations, which in turn are relevant
for T < Td(o). In Appendix C we show that to lowest order in
the minigap y, in the purely Andreev limit, the size of this

. 2
regime roughly behaves as (T; — Td(o))/Td(O) ~ —%,
= d

valid for small y. Remarkably, at T = T; < Td(o) the mode
softens completely, and we see the d-wave bound state itself
condenses. As we now demonstrate, this signals the onset of a
second phase transition into a state with finite d-wave order.

IV. TIME-REVERSAL SYMMETRY BREAKING

In fact, this split transition behavior is generic to systems
with strongly competing superconducting orders, and in this
case it signals the onset of time-reversal symmetry breaking
[7-9]. This is understood by noting that the collective mode
is in the out-of-phase channel, and therefore it is odd under
time-reversal symmetry. Condensing this mode requires spon-
taneously choosing the relative phase to be +m /2, entering
into either an s + id or s — id state [8,9].

This intuition is confirmed by explicitly solving the
Ginzburg-Landau mean-field equation for the d mode as
we pass through the temperature 7;. Expanding the gap
equation (2) for small A; we obtain an equation for the static,

homogeneous component of d,—g = d (see Appendix B for
details) of

(rg + ugd*>)d = 0. 3)

The coefficients r; ~ T — T; and uy ~ 1/T? [32], as well as
the quadratic Ginzburg-Landau coefficient for the amplitude
mode ry, are calculated microscopically in Appendix B. In
Fig. 3(b), we plot the coefficients r, and r, and see explicitly
that r; changes sign first at 7 = T, so that below T the
order parameter d acquires a nonzero value shown explic-
itly in Fig. 3(c). Note this transition does not spontaneously
break U(1) symmetry, which has already been broken by the
substrate order parameter, but it does break the remnant Z,
symmetry, under which id — —id.

The breaking of time-reversal symmetry in such an “s — d”
heterostructure has been predicted previously, for instance at
the twin-grain boundaries in cuprate systems [33-35], at the
interface of “s — d” superconductors [36-38], and between
twisted cuprate layers [39—41]. Our calculation indicates that
the breaking of time-reversal symmetry in these systems ought
to be heralded by a softening collective mode, as we have
shown. It is also worth commenting that, just as we have
shown the Bardasis-Schrieffer collective mode emerges in the
normal state of the heterostructure, we may also expect a
new collective mode to emerge once time-reversal symmetry
is broken below T; [17,21,22,24], thereby making connec-
tion to previous proposals for collective mode spectroscopy.
This may also be relevant for multiband systems which break
time-reversal symmetry due to frustrated interband couplings
[10,23,42-44].

In Appendix E we explore the collective mode dependence
on the substrate gap A, and the minigap y. To summarize,
the coherent, sharp character of the collective mode is best
when the substrate gap A and minigap y are both large, while
maintaining y < Ay. If the minigap y is too small, then the
collective mode essentially becomes indistinguishable from
the quasiparticle continuum.” Similarly, if the substrate gap
Ay is too small, then the collective mode can overlap with
the substrate continuum, in which case the substrate acts as
an incoherent reservoir, destroying the collective mode. We
then recover the known behavior for overdamped fluctuations
of the sample’s superconducting order [45], with the d-wave
pairs decaying with a characteristic lifetime t ~ 1/(T — Ty),
thereby also allowing for the study of critical superconduct-
ing fluctuations [31,46,47]. As such, in order to apply this
protocol, it is best to choose a substrate with as large a quasi-
particle gap as possible, and to make good electrical contact
with the sample, yielding the largest possible tunneling matrix
element t.

In practice, this is an experimental challenge since it re-
quires a clean interface with strong coherent tunneling matrix
element t between the two materials. While the minigap y ~
|t|?> need not be large as compared to the substrate gap Ay, it

’In particular, in the mean-field limit the two-particle spectral
function is completely fixed by the single-particle density of states,
and this exhibits a weak singularity at the gap edge which may be
confused with a collective mode if the resonance lies too close to the
continuum.
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does control the size of the temperature regime over which the
mode exists and is sharp, with the relevant window scaling as
(y/ Td(O))z. Thus, it remains an experimental challenge as to
whether it can be made large enough in such a heterostructure
as to enable this kind of coherent mode. Nevertheless, recent
advances in the assembly of two-dimensional materials offer
some encouraging signs that this may be feasible [48—51].

V. EXPERIMENTAL PROSPECTS

Finally, we briefly discuss various experimental signatures
of this mode. The first is electron tunneling spectroscopy
[25-27,52]. In inelastic tunneling spectroscopy, bosonic exci-
tations such as phonons [53] and magnons [54] are routinely
observed by studying characteristic /-V curves. In particu-
lar, these bosonic excitations may appear as a sharp feature
in d*1/dV?, which signals the opening of a new inelastic
scattering channel for electrons at that bias energy. In this
context, we may imagine it is also possible for an electron
to emit a collective mode in the process of tunneling into the
sample, and therefore we should also expect a similar kink
feature to appear in the /-V curve once the energy passes
the collective mode threshold. While this is still a relatively
difficult measurement to perform, there is some precedent for
using this technique to study collective modes of unconven-
tional superconductors [55,56]. Since, as we have seen, the
collective mode we identify here can have strong temperature
dependence, this may help to identify such a feature since
it in principle will soften considerably as the temperature is
lowered.

In a similar vein, it may also be possible to identify this
collective mode using angle-resolved photoemission spec-
troscopy (ARPES), in which case the mode will again
manifest as an inelastic contribution to the electronic self-
energy [57-59]. In this context, ARPES has the additional
benefit of potentially observing the momentum dependence of
the coupling, which could help identify the symmetry channel
of the collective mode, and thus the symmetry of the underly-
ing pairing interaction.

Lastly, we expect Raman spectroscopy to also be sensitive
to the collective mode. This is not surprising since it is known
that the Bardasis-Schrieffer mode, when it exists, is Raman
active [60-62]. Like ARPES, Raman spectroscopy also has
the potential to probe the selection rules of the collective mode
in addition its frequency.

Finally, we discuss promising materials for the realiza-
tion of this proposal. In our model, we considered a d-wave
system, but this is not crucial; much of what we assumed
only relied on the sample order parameter being orthogonal
to the s-wave substrate order. However, we do want the in-
trinsic critical temperature Td(o) to be low compared to the
bulk transition temperature of the substrate 7. There are a
number of interesting van der Waals compounds [63,64], such
as MoS, [65,66], NbSe, [67], WS, [68], and WTe, [69-71]
which exhibit possibly unconventional superconductivity and
can be exfoliated into thin layers. Additionally, moiré bilayer
and trilayer graphene likely exhibit unconventional supercon-
ductivity at a low-temperature scale [72-75].

In this vein, we study one particular model of pairing in
graphene, wherein it was proposed that magnetic fluctuations

may be responsible for pairing, and that the preferred ground
state is an intervalley f-wave triplet state [29]. In Appendix F
we consider proximity inducing a gap in this system and
carry out the calculation for the proximity-induced collective
modes in this system. Within the quasiclassical approxima-
tion A/Er < 1, we find essentially no formal difference as
compared to the case of d-wave pairing described in the text,
except that due to the triplet nature of the pairing we predict
there will be three degenerate collective modes, one for each
of the spin components. This presents a possible route towards
confirming this as the pairing in graphene, especially since
in the presence of the spin degree of freedom these modes
may also couple optically via magnetic dipole interactions,
allowing for their identification via microwave ferromagnetic
resonance spectroscopy [2].

It may also be possible to study this physics using a
severely overdoped cuprate, provided the transition tempera-
ture can be depressed below that of a realistic s-wave system.
This has the benefit of having an established gap symmetry
and therefore may offer a useful test case. In addition, recent
efforts have established that certain cuprates may also be pre-
pared in thin layers, or even single copper-oxide layers [76].
In this context, our proposal has some technical overlap with
recent proposals for time-reversal symmetry-breaking chiral
superconductivity in systems of twisted cuprate monolayers
[39-41].

In addition to challenges concerning the quality of the
interface, another limitation of our proposal is the requirement
that the s-wave substrate superconductor have a higher critical
temperature than the sample. There are relatively few choices
which maximize the substrate transition temperature, with the
most likely candidate substrates being Nb, NbN, or NbTiN,
with 7, ~ 7-15 K. It may also be possible to use a fullerene
such as Rb3Cgy, with T; ~ 30 K, at the expense of likely
introducing other complications [77].

It would be interesting to try and apply our results to sam-
ple superconductors which already feature intrinsic collective
modes but which are overdamped. By opening a proximity-
induced gap, one may attempt to, e.g. stabilize the Higgs
collective mode, which is usually located at the gap edge and
subject to quasiparticle damping [78]. In this way, much like
a charge-density wave order parameter can separate the Higgs
mode from the continuum and enable its coherent oscillation
[79-81], it might also be possible to use the small proximity-
induced gap to separate the continuum from the Higgs mode
and enable its widespread detection.

In conclusion, we have considered a simple model of an
unconventional superconducting sample that is proximitized
by an s-wave superconducting substrate and shown that this
can lead to a sharp collective mode which captures the intrin-
sic pairing interaction in the sample. This potentially greatly
expands the platforms for studying unconventional supercon-
ductivity through their collective modes and increases the
number of experimental probes amenable to these difficult-
to-characterize states.
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APPENDIX A: SUBSTRATE SELF-ENERGY

Here we derive the self-energy for the sample electrons
and in particular recover the proximity effect Hamiltonian in
the regime dominated purely by Andreev processes. For a de-
tailed treatment see, for instance, Refs. [§2—84]. We begin by
employing the Matsubara framework and model the tunneling
interaction via

St = —t / d*r / dt[¥ ()W (x, z = 0)

+W(x,z =0y ). (A1)
Here t is an effective local, spin- and momentum-independent
tunneling matrix element, and 1 (x) is used to describe the
electrons in the thin-layer sample while W(x, z) describes the
electrons in the substrate with depth z < O (the interface is
taken to be at z = 0).

We can formally integrate out the substrate electrons as-
suming a Gaussian approximation, which is well justified if
the phase fluctuations are frozen out. We then generate an
effective action for the sample electrons of

Setr = — log(e™5im) (A2)
with the expectation value evaluated using the substrate
Green’s function. We find the formal result

Sett = —t / dxd*XY(x)
X B (W, z = )W (x,z = 0)) 139 (x), (A3)
or in terms of the substrate Green’s function
Set = £ f Exd*X Y ()G (X, 7 = 03x, 2 = 0)13 9 (x).
(A4)

We use the well-known “local approximation” which evalu-
ates the substrate Green’s function locally in space via

Gapv(¥, 2= 0;x,7 = 0) ~ Gy (7', 13 7, 1)8* (X' — ). (AS)

This is then related to the local density of states in the sub-
strate in the frequency domain as

Gapligm;T,T) = / (iem — &pT3 — AT1) ™!
P
e, + ATy
e+ Az

In the effective action for the sample, this means that we find
a contribution from the substrate of

(A6)

= —TV

St = YV, Z(P)Y, (A7)
P
with self-energy
2,(p) = €136 T, )13
] m As ] m As
= _nvstzr3l‘6‘f‘—'l7lr3 = _Zu (A8)
Ver + A2 2 Jel + A2
This defines the tunneling scale as
y = 2wt (A9)

It is common to characterize the effect of the substrate in terms
of the quasiparticle and gap renormalizations via

) vy
Zien) =1+ % — (A10a)
Oie,) = L 2 (A10b)
lgﬂl = N
2 \Je2 + A2

such that the electronic Green’s function in the normal state
of the sample is
Goampie (i6m> B) = Z(is)ien — &3 — Pl (AlD)

We can also analytically continue this result to get the retarded
self-energy via

% 1
Zre) =1+ = , Al2a
2(€) P ey A
Y Ay
DOr(e) = = . (A12b)
2 VA2 — (e +1i01)?

We note that in the limit of A; — oo the quasiparticle
renormalization becomes trivial and the anomalous term be-
comes the minigap, such that

Zg(e) — 1, (Al3a)

Dp(e) — %tl. (A13b)

This justifies the use of a BAG Hamiltonian in this regime,
dominated by the Andreev reflection back into the sample,
with proximity-induced gap term.

064508-6



PROXIMITY-INDUCED COLLECTIVE MODES IN AN ...

PHYSICAL REVIEW B 106, 064508 (2022)

APPENDIX B: GAP EQUATION

In this Appendix, we discuss the mean-field properties of
our model in the Matsubara imaginary-time formalism. In par-
ticular, we solve the gap equation determining the transition
temperature of the sample 7; and show that the resulting state
of the coupled sample-substrate system spontaneously breaks
time-reversal symmetry, with the sample order parameter con-
densing 7 /2 out of phase with the substrate order parameter,
forming an s + id state.

Taking into account the self-energy contribution from the
coupling to the substrate, the Matsubara action for the sample
reads as

1 i,
§=— § AJAS —trlog G, (B1)
8d
q

where A is the d-wave order parameter in the sample and the
inverse Gor’kov Green’s function is

G'(p. q) = Zyiwy — &3 — (Pn + Alxy) " +He., (B2)

where w,, = 2w (n + %)T is a fermionic Matsubara frequency
and t; are the Pauli matrices in Nambu space, with T = %(rl —
ity). The quasiparticle renormalization and anomalous self-
energy due to the substrate are

y 1
Z, = 1—}—5?, (B3)
w; + A
Yy Ay
Q= —F—. (B4)
2 Jw?+ A2

The BCS gap equation for the homogeneous order parameter
Al = AY_, is given by the saddle point of this action,

Al = —g,T Z X;J tr G(p, 0)t

)4

d.d
:ngZXd A)(p‘f'(bn
4
y o Ziop+ O+ AP (xf)

;. (BY)

The critical temperature 7; of the sample can be determined
by solving the gap equation in the limit A; — 0. In this limit,
the gap equation reduces to

1
A=y Y ——
N T

~1/2

= 2nT, 1 L)wz V—Z} . (B6
dw§[<+ e g (B6)
where A; = vpg, is the dimensionless d-wave coupling con-
stant (with v the density of states at the Fermi level) and we
have written 3, = vr )", [d& [ % and performed the in-
tegrals over 8, and £. The frequency cutoff A can be expressed
in terms of a dimensionless cutoff N on the Matsubara index
as A =2 NTy.

We can approach the problem from a complementary per-
spective by expanding the action (B1) in powers of A,
which furnishes an effective Ginzburg-Landau theory, valid
near Ty;. As discussed in the main text, it is useful to decom-
pose A into its components in phase and out of phase with

the substrate order parameter, writing AY = h + id. In this
Appendix, we will be concerned with only the static, homo-
geneous order parameter at the level of mean-field theory, and
thus neglect the frequency and momentum dependence of the
fields 4 and d.

To organizg the expansion, we write the Gor’kov Green’s
function as G~ = G, ' + A"h + A%d, with A" = —Xgl'l
and Ad = Xz(ij 7,. Expanding (B1) to fourth order in 4 and d,
we find

S =ryh* + rgd® + uph* + ugd* + u'd*n*.  (B7)

The superconducting transition occurs when r,; or r, changes
sign, signaling an instability in the in-phase (nematic) or out-
of-phase (time-reversal symmetry-breaking) channel. Both of
these functions are related to the (inverse) fluctuation propa-
gator L;dl (¢ = 0) discussed in the main text, and are explicitly
given by

T A A
m(T) = g;l + E Z (Xg)ztr(GoAh)z
P

= g;l —2mvT Z

Z2wk + D2

w, <A
@2
+avT _— (B8)
wp <A [waﬁ + q)%]s/z
4, T 2 A A2
rd(T) - gdl + 5 (Xg) tr(GoAd)
p

—gl T Y (B9)

‘ oo VZiw; + O

Clearly, the zeros of r,;(T) coincide with the solutions to (B6)
which determine 7;. Moreover, one finds numerically that the
second term in r;, above is always positive, so that r; always
changes sign first (i.e., before ry) as the temperature is low-
ered. This implies that the sample order parameter condenses
out of phase with the substrate order parameter A? ~ id
which implies the system spontaneously breaks time-reversal
symmetry at 7.
To stabilize the expansion in d, we must calculate the
quartic coefficient u,, which is given by
u Sl 2xT !
d 8 Py [Z2wz + @3]3/2

n-—-n

(B10)

We may then solve the saddle-point equation for d, as dis-
cussed in the main text, which allows us to determine the
equilibrium value of the sample order parameter near 7;:

(Ady = ity = i [ =D
2ud

APPENDIX C: DEPENDENCE OF TRANSITION
TEMPERATURE ON PARAMETERS

(B11)

Here we analyze in more detail the dependence of the
transition temperature reduction on parameters like the cut-
off. The transition temperature 7; is determined by solving
the linearized gap equation. In Matsubara frequency this
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reads as
=2nrT,
¢ w; Z2w2 + @2
) V2 —1/2
=2nTy [( —)wn + —} . (Ch

We are interested in how this compares to the bare transition
temperature, which is found by solving this equation when
y = 0. We note that in the regime considered in this paper,
A > Ay, and that the leading divergence is still the logarith-
mic Cooper divergence stemming from the summation over
frequencies Ay < w, < A, giving log(A). We therefore sub-
tract off this leadlng divergence, which can then be evaluated
in terms of T ) to get

T Z 1 1
xTy _
wn<A |wn| \/Zgwg‘f‘@% o

=log [ —— 7Ty
g Ty Z2a)2 + q)z |a)n|

(C2)

Now, the remaining summation is finite and therefore does not
depend on the cutoff A, implying that the only dependence of
Ty/ T(O) comes indirectly through the coupling constant and

bare transition Td(o).
Specifically, we find

1 1
log< (O)) ZanZ —|wn|.
“r \/ <1+—,m>+)/2/4

(C3)

The right-hand side cleaﬂ?/ vanishes as y — 0, in which
case this implies 7; — T( We now more closely consider
the regime where y < Td &K Ay, corresponding to a small
minigap but large substrate gap. In this case, we can safely
approximate the sum by

log ( ) 27T, Z

(C4)
)/ Wy

n T

We study this by expanding in small y /T;. We find corrected

gap equation

tog [ ) ~ Ly oAl i L 753y’
T\ 4 2Ty = (n+ 3) 32227}
(C5)

This is solved by using the Lambert W function Wy (x), such
that

7¢(3)y?

LT = |-
3202 (1, o~

. C6
7¢3)y? (©6)
3272(T0)2

0.7;

0.67‘ L L L L I I I
0.0 01 02 03 04 05 06 07

_r
2 /TTdO

FIG. 4. Analytical estimate for the depressed critical temperature
as a function of minigap following the functional form of Eq. (C6),
derived under assumption A; — oo. Here we plot for rather large
values of y to illustrate the full dependence, however, we note that
once y ~ m Ty the solution presented begins to lose validity.

Note that for small x, Wy(x) ~ x so that as y — 0 we recover
T, = Td(o). This is plotted in Fig. 4. For small y we find

1

T,/ T, = (C7)

7t (3)y?
L+ Sy

In Fig. 5, we compare this analytical estimate against the
explicit numerical solution for different parameters. In the
left-side panel of Fig. 5, we consider the same parameters as
used in the main text, in which case the A; is not particu-
larly large. We see that the analytical estimate is fairly poor
quantitatively in this case, although it does serve as an upper
bound, indicating that the departures from the simple estimate
in fact make the effect larger than predicted. On the right-side
panel, we use an artificially large value of A (while still
taking it less than the cutoff in most cases) and find that this
improves agreement with the analytical estimate. Overall, we
therefore conclude that the analytical estimate obtained here is
qualitatively useful, and shows how the relevant energy scales
enter, but it tends to underestimate the actual importance of
the effects we outline in this paper.

APPENDIX D: COLLECTIVE MODE PROPAGATOR

Here we derive the collective mode propagators in the
random phase approximation using the Keldysh technique.
We follow Kamenev [85] and introduce fermion fields on the
=+ time contours. The BCS action can be written in terms of
Nambu-Gorkov space for each time contour as

S = /dt prm[ia, —&nlYp + 84 Z
p q

d,d - i 7
x /pp, prp’/dt[wp%tﬁr Vot Vp—lat TVprlar
Y T o
Vpiiq-T Vp-lq-Vp-1g-T

Here, © are the Nambu-Gor’kov matrices and o are
the Keldysh matrices. We perform the Larkin-Ovchinikov

p’+%qf]' (D1)
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« N=10meV « A =20meV AN =30 meV
A =40 meV A =50meV « A =60meV
0.0 - - 0.0 ‘ i —
s -02 won 02
=~ we" .
S -04 .- ~0.4
1'5 -0.6} . y=02meV, _p 6l : y =0.2meV |
- A;=1meVv i A =10meV
~0.8-F— ‘ = - -08 ‘ - ‘
0.1 0.2 0.5 1 3.05 0.10 0.50 1
T4 O [meV] OImeV]

FIG. 5. Comparison of the analytical estimate (C6) for 7; to numerical solutions for varying values of the cutoff A. In the left panel, we
study 67, =T, — Td(o) for the parameters used in the main text, but where the analytical estimate (C6) is not well justified. In the right panel,
we consider a case where Eq. (C6) is better justified. We find this analytical estimate agrees with the numerical results for Td(o) 2 y. Notably,
the numerical results are not explicitly dependent on the cutoff, and depend only on the cutoff through Td(o).

rotation

1 _
(Ver) =500+ 03>(g;;), o T )
= (Vps: Vpa) f(cn+o~3)as (D2)

We henceforth use i to indicate the rotated spinor. The
action is

= /dt Y Wplid, — &pTslVp + 84 )
P q

X dyd | dr|y ETTI// Yo 1,TY
- Xp Xp' P+3a5 p—3a7p-3a" ¥p+3q
— ¥ — a1
T VpiiqT wpiqu’;qfpr’ﬂq} (D3)
We perform a Hubbard-Stratonovich decoupling of

the interaction in the Cooper channel. Introducing fields
ACI @), Al q(t) and their conjugates the action can be recast as

= [ar vt - s - Y [
p a P

cl 7
x [ [Ty sl B Ut Vot 55 1

Jo S [ o]

au| ZLxe dy Il D4
T 8q Py Vprta5 T Vo-tal: (D4)
P
Here we see the field A? acts a Lagrange multiplier for the

classical field.
We simplify to get

— /dt/ZWPJr;q[Sq,o(iat—§pr3)—‘r+)(g
P g
o] cl df %14 ——cl
x (EA?J + Aq) — X (?A—q + A—tl)]l/fp—éq

1 —q ! —cl
_ Zfdtg—d@qA; + A, Ag).
q

(D5)

This can be written compactly by introducing the Keldysh
kernel

G;; = 84.0(6 — &p13) — Xf,l (rJ"Aq + rZ_(,> (D6)
with the pair scattering vertices
. o
Ay = A0+ Al (D7)

2

Here, and throughout we indicate fermionic and bosonic four-
momenta as p = (&, p), g = (v, q).

We can now include the effect of the substrate via the
retarded self-energy computed above. We have

. — A,
%) = _Z( Sy 2). (D8)
2\ /A2 — (e +i0")
From this we obtain the advanced self-energy as
- — Ay
() = —Z< e ) (DY)
2\ /A2 — (¢ —i0*)?

and Keldysh self-energy via fluctuation-dissipation relation of
$56) = F(s)(iR(e) _ )5A(s)).

The function F'(¢) is the Keldysh occupation function and in
equilibrium it is fixed to be

(D10)

Be
F(g) = tanh 5 ) (D11)
This yields the Keldysh kernel of
Gt =800 — 6rs — £) — 1 (c'B, + 74,
(D12)
such that the BCS action is
(D13)

1 m g .
S:—;Z(AZA;I+Aq’Ag)+¢-G-w,
d
q

and the effective action obtained by integrating out the elec-
trons is

1 . . ) _
s == :(AZAZ[ n AqZAZ) —iTr logGl[A, Al
d
q

(D14)
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This functional of the order parameter is then evaluated in a
saddle-point expansion.

1. Saddle point
For the saddle point we take

§ Seff

_q -
sA,

(D15)

and assume Af/ only has a condensate at zero momentum. We
find the gap equation

—gidAd /ptr(G(p)( )rxp =0.

This reads as

1 j X
A = %/tr Xl‘frolG(p). (D16)
p

8d

The trace over the Keldysh space matrices gives the Keldysh
component, such that

1 ' R
— A = i/tr 1 GX (). (D17)
8d 2 P
We have
A e -1
GR(p)= (ZR(E)E — &1 — Pp(e)T — AMxITT = A Zx,ff)
(D18)

with the wave-function renormalization and anomalous self-
energy

1 1
Ze=1+4 - :
: 2V,/A2 — (e +i07)
A,
Dp(e) = (D19)

2V A erio R

The trace over t selects the anomalous component, while the
integral over the d-wave form factor projects out the substrate
contribution. Crucially, this only holds if the unconventional
order is in an orthogonal channel to the s-wave substrate order.
In the limit of small A, using the fluctuation-dissipation
representation for GX we find the linearized gap equation

1 i 1
—Adz—/F dZAcl|:
PR N A R 7P ey

1
 [Za(e)e? — & — [<I>A(s)]2]‘

We make the quasiclassical approximation and average over
the Fermi surface, enabled by the fact that the gap is s wave
and respects the symmetry of the Fermi surface. Introducing
density of states at the Fermi level vp, and pairing constant
A = gqvr we find

[Pr(e)]?

(D20)

% /dslt nh—/déP(s &) (D21)
with pairing spectral function
1
P(e, &) = —— . (D22
©5 m[[zk(ew Y2 [<1>R<e)12} (D22

It is easily seen that this is an even function of &, which is
cutoff at £ = A, and we can see that ¢ — —e corresponds to
taking the complex conjugate (or alternatively, switches the R
and A components), such that this is an odd function of €. We
therefore fold the integrations twice, noting tanh is also odd in
€. Thus, we get

1

00 Be A
_=2/ dstanh—/ d& P(e, £).
0 2 Jo

. (D23)

Note that in the absence of the self-energy we have

P(g, ) = sgn(e)d(e* — &%),

which gives the equation for A of

1 ("  tanh(B£/2) o _ e
2_2/0 45—2%_ =T, =—

which is the standard BCS gap equation. Here we have intro-
duced the value of Td(o) which is the intrinsic d-wave transition
temperature in the absence of the substrate. In the presence of
the substrate, this will be evaluated numerically.

This is complicated by the need to regularize the spec-
tral functions with a factor of 0T, and also to cutoff the
integrals over w at a finite high-frequency cutoff, which we
take to be w* = 100 meVmeV (the integrands decay rapidly
in frequencies above the cutoff A). Throughout this we take
0" = 0.005meVmeV. All in all, we find the results including
the proximity effect summarized in Fig. 6.

Ae_l/)L,

2. Collective mode

We now consider the fluctuation propagator by expanding
around the saddle point. In the normal state with A = 0 we
can expand to quadratic order in A to obtain the collective
mode. In addition to the Hubbard-Stratonovich term, which is
already quadratic in A, we also have to evaluate the functional
determinant. Expanding this gives

1
Seff:_g_qu:(

We can simplify the calculation by first invoking the fluctua-
tion dissipation relation, such that we only need to calculate
the retarded propagator, which is the ¢/ — g component.

Furthermore, we decompose the d-wave mode into the real
and imaginary parts with respect to the substrate gap (which
we take to be real). If we write

~cl 49 Acl 1 NN
Ay A+ 8gA7) +i5TrGoAGoA. (D24)

Ay = hy +idy (D25)
for « = g, cl we then can write the pairing vertex as
A, + ‘L’X,q = cra[tlhg - tzdj]"], (D26)

where we have introduced the shorthand notation that for o« =
g, cl we have o, = %01 and o, = 0y.
We expand the effective action in terms of the parametrized

collective modes. The Hubbard-Stratonovich term has

(D27)

—q97q

2
Sus = —— ) [h h0 +a di
w=— 2 ]
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FIG. 6. Relationship between A;l and transition temperature 7; evaluated including the proximity-induced self-energy. Results are plotted
for cutoff A =30 meV and substrate gap A; = 1.057 meV, corresponding to a substrate transition temperature of 7; = 7 K. We plot using
causal regulator 0 = 0.005 meVmeV and plot for a series of different tunneling size y’s, as indicated.

and is therefore diagonal in this representation. The quasipar-
ticle contribution is

i a2, ) 1 o
Sop = 5 ;‘/}: |XP| tr{Go<P+ EQ>Ga[t1hg - Tqu]

. 1
x Go (P - 5‘1)‘7;3 [flhﬁq - Ideq] }

Consider the cross coupling between the i and d modes. This
involves a trace over the Green’s functions with one vertex

(D28)

J

2 I N 1 o 1
Siq = Z [—g—ddzqd;l + d,‘;dfqi /p IxfflztrGo (P+ ECI)Uaszo <P - 5‘]>Uﬂ72:|,

q

2 i 3 1 . 1
S=_ [—;hiqhq[ + hqh"_‘qi /p |X§|2trGo<P+ 561>UaflGo<P - 561)0;971:|~

q

in the 7; channel and the other in the 1, channel. The only
nontrivial contraction of the Nambu matrices must involve a
73 in one Green’s function and a 7 in the other, and thus must
be odd in £. As such, in the quasiclassical limit this goes as
[ d& & and will nearly vanish due to approximate particle-hole
symmetry (more accurately, it is small in A/Ef). Therefore,
we neglect the cross coupling and see that the 4 and d modes
decouple.
The action for each is then found to be

(D29a)

(D29b)

Of these, the ¢ — g components are determined by fluctuation-dissipation relation, so we focus on the ¢ — ¢/ components.

We have

e 2 . o . 1 v 1
Sa (- Z |:——d3d_lq + dgd_lqz /p |Xl‘f|2trG0 (p—l— Eq)aqrzGo(p - Eq)aclrz],

4 8d

e 2 . ol . . 1 . 1
SZh I — Z |:——h2hlq + h;’hlql/p |Xl‘)1|2trG0 (p+ §q>crqtl((}o (p — 561)%171]

P 8d

(D30a)

(D30b)

This reduces down to the calculation of the correlation functions

2 . v 1 v 1
L) (@) = ——8m + lf |Xg|2trGo (P - —Q)UqTaGo (P + —‘I)Uclfb,
8d P 2 2

(D31)

and in particular we have the d-mode propagator in the a = b = 2 channel and the 2 mode in the a = b = 1 channel. We evaluate

the trace over the Keldysh matrices to find

2 i R 1\ - 1 R 1\ - 1
R\—1 _ d2 K R K A
(L) (@) = —g—dSab +3 /,, Xp | tr[rbG (p - §q>taG (p+ 561) + G <p+ EQ)TIJG (p - 561)]

(D32)
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FIG. 7. Collective mode spectral function for different values of Ay at fixed y = 0.2 meV, T = Td(o) = 0.344 meV, and A = 30 meV. We
plot the spectral function for Ay = 0, 0.1, 0.2, 0.5, 1.0 meV in (a)—(e), respectively. We see the evolution from an overdamped superconducting
fluctuation in (a) into a sharp collective mode in (e). Dashed line indicates the value of y in each plot, which is fixed at y = 0.2 meV.

We evaluate this at center-of-mass momentum q = 0, to simplify our analysis. In this case, the quasiclassical approximation
may be invoked and we can average over the Fermi surface. This removes the d-wave form factors and gives

1 _ _ i [ de . Q . Q
;(LR)abl(Q,q:O)z —de'&,b—l—E/E/détr[rbGKG— 3,§)ra<(}’*(s+5,s>

We can simplify slightly by shifting ¢ to get for the diagonal
components
Liry @ q=0 = -t 4 L [ &
VF aa (36 4 =1) = d 2) 2@
x /dé .G (e &)1,

x [GR(e + Q,8)+ GA(e — Q, €)].
(D34)

In equilibrium we have

GX(e, &) = tanh <%)[GR(5, £)— GA(e,6). (D35)

In order to accelerate integrals and improve convergence we
fold the integration over —¢ and integrate only over positive
&. The integrals over positive £ only are permissible because
all terms odd in & will not enter and therefore do not need to
be canceled. All terms in the given expression are either in the
Ty, T3, T1 channels. The Green’s function trace will therefore
involve traces of the terms ¢, 7, T3, 71, T3, iT2. Of these, the
last three will vanish and only the first three survive, which
are the squares of each individual term and therefore the trace
will kill all terms odd in &.
Thus, we evaluate this numerically as

! LH R, q=0) =-227" 1 ood 2
E— — — _——— 8
VF aa 4 d 2l 27'[ 0

A

« / 5 (T, GK (e, )T IGR(e + 2.8

0

+ G e — Q,8)] + 1.GX(—¢, £)1,

[GR(—e + 2, &)+ G4 (—e — 2, £))).
(D36)

A Q A Q
+ra(GK<s+E,§>rbGA(e— E&')} (D33)
[
In particular, we plot the spectral functions
1
Aga(RQ) = —;ImL§2(Q, q=0) (D37)

which are used to locate the collective mode resonances.

APPENDIX E: DEPENDENCE ON SUBSTRATE
GAP AND MINIGAP

Here we briefly detail the dependence of the spectral func-
tions on the substrate gap A, and the minigap y, shown in
Figs. 7 and 8, respectively. We see in particular that for finite
y with Ay = 0 the substrate acts as a reservoir and broadens
the electronic spectral function. We then see no sharp mode
in the d-wave channel, but instead it is replaced by an over-
damped superconducting fluctuation. In the absence of strong
substrate effects this mode will have a lifetime which scales as
=1 ~ T — Ty, as it condenses at T = T, [45]. By inducing a
substrate gap we cross over from the fluctuation regime, with
Azlamazov-Larkin-type features, to the sharp collective mode
outlined in the main text.

In Fig. 8 we explore the dependence of the spectral func-
tion on the minigap y. We see that for small y, the mode is
not sharp since the minigap is small and there is consider-
able overlap between the continuum and bound state. As the
minigap increases, we see the separation of the bound state
improve as the spectral weight between the collective mode
and continuum is suppressed.

APPENDIX F: f-WAVE PAIRING IN GRAPHENE

As a more involved and relevant application we con-
sider the recent proposal by Chou er al [29] that many
graphene-based superconductors realize a generically spin-
triplet f-wave paired state. In particular, we argue that in
this case, the system is also well suited for study via the
collective-mode method we outline here.

In Ref. [29], it was argued that a nearby ferromagnetic
critical point was the origin of pairing in many moiré graphene
systems, and a simple spin-fermion model was employed to
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FIG. 8. Spectral function of proximity-induced Bardasis-Schrieffer collective mode for different strengths of the tunneling-induced
minigap. We fix the substrate gap to be A; = 1.0meV, and hold the cutoff A = 30 meV and BCS constant 1;' = 4.586 58, corresponding to
an intrinsic critical temperature of Td(o) = 0.344 meV. We also fix the temperature 7 = Td(o). We then study the spectral function while we vary
the size of the tunneling rate y from 0.1 meV in (a) through 0.4 meV in (d) in increments of 0.1 meV. The plots are shown over a frequency
range from 0 to 2y, and at 2 = y we place a line as a guide to the eye, which indicates where the two-particle continuum formally begins.

model these magnetization fluctuations. The interaction was
decomposed into multiple pairing channels involving the spin
(o), valley (p), and sublattice (¢) degrees of freedom, along
with the usual particle-hole (t) subspace (with their corre-
sponding Pauli matrices indicated), and it was shown that
generically the f-wave spin-triplet pairing dominated, within
a BCS-type approximation.

We adopt this argument and focus on the dominant pair-
ing. We use an effective description of graphene near charge
neutrality with Bloch Hamiltonian

Ho(K) = vr(p:8ek + §yky) — EF, (F1)

where vy is the Fermi velocity and Er is a Fermi level in-
troduced to model the departure from perfect neutrality and
perfect single-layer graphene dispersion.

The relevant pairing considered is in the spin-triplet chan-
nel, with order parameter (written here as d vector)

d=g; /k W (io,0ipy ). (F2)

In contrast, a simple even-parity s-wave singlet pairing state
has order parameter

A=g /k W (=i 000)- (F3)

Following the simpler example described in the text, we will
consider proximity inducing an s-wave singlet gap in this
channel, and look for the collective modes in the correspond-
ing f-wave triplet channels.

We describe the paired system in terms of the Nambu
spinor

_ Yk
Y= <(ioy>px(wik>T>' )

Here we consider pairing between Kramer’s doublets. Note
that in the presence of the valley pseudospin, time-reversal
symmetry acts on an electron in real space as T = ioy 0K
where K is the usual complex conjugation. We maintain
T? =-1.

In the absence of the substrate self-energy, the quasipar-
ticle dynamics are governed by the Bogoliubov—de Gennes
Hamiltonian

Ho(k)

Hpaa (k) = ( pood(x)

;0 - a(x)
Y (—k)px)' )

We have allowed for a slowly varying triplet field d, relevant
for the fluctuation effects discussed later. We assume pairing
interaction in the f-wave channel, but a proximity-induced
gap in the s-wave channel.

We note the following relation:

—pHS (=K)px = —Ho (k). (F6)

We also have [0, Ho(K)] = [p,, Ho(k)] = 0. In this way, the
f-wave pairing commutes with single-particle Hamiltonian,
making an interesting connection with the recently introduced
concept of superconducting fitness [30].

The substrate self-energy is written in the Nambu basis as

~AR Y E—Astl
$ie)=-= F7
© 2<~/A§—(e+i0+)2> 7
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with substrate gap A, chosen to be real, and y = 27 v|t|? the
minigap induced by the tunneling into the substrate and back.
Note that the valley matrix p, is absorbed into the Nambu
spinor. We now determine the pair spectral function in the
f-wave channel, which the system would otherwise condense
into. We take inverse BCS pairing constant in the relevant
channel of gl

One of th/e main differences with the previously considered
d-wave pairing model is that, due to the miniscule spin-orbit
coupling in graphene, the three triplet spin polarizations are
degenerate. As a result, we expect that we should find not
one, but three Bardasis-Schrieffer collective modes, each with
a different spin polarization. While at the level of Gaussian
fluctuations, this is true, the story does become more inter-
esting and complicated if the second transition temperature is
crossed. In this case, it remains to be seen whether the conden-
sate spontaneously breaks both time-reversal and spin-rotation
symmetry, or if a more complicated scenario involving strong
spin fluctuations is favored. This is a very interesting possibil-
ity, which we will leave to future works.

We again employ the Keldysh framework to describe
the collective mode fluctuations. The retarded and advanced
propagators are found using the Bogoliubov—de Gennes
Hamiltonian described above, and we find

GR(e,p) = (€ — Hpaa (@) — £ (). (F8)

We clarify, to avoid confusion, that here the o matrices now
characterize the spin degree of freedom, whereas previously
they were the Keldysh space. We here leave the Keldysh
indices explicit to avoid confusion. To obtain the collective
mode propagator, we expand to second order in the fluctuating
d-wave order. We find retarded generalized RPA contribution
in the Bardasis-Scrhrieffer (out-of-phase pairing) channel,
now spin resolved,

b= [ anntt(o + §onnti(o-3)

+ 0,,0.7,GE (p + g>al,ozty©6‘ (p - %):| (F9)

We have an additional factor of 2 since we are now dealing
with the full particle-hole doubled Nambu space to incorpo-
rate the triplet order as well. In this case, the propagator is
the normal-state Hamiltonian, plus the substrate self-energy,
so that

GE(p) = (e — Ho(p) — £(e)) ', (F10)

where we have explicitly used the fact that the normal-state
part of the BAG Hamiltonian is 73 times the reduced Bloch
Hamiltonian #y(k). The s-wave pairing is captured by the off-
diagonal part of X.

In this case the total pair propagator for the f-wave fluctu-
ations is, at q = 0,
2
Lj, (2.4 =0) = —g ot M, ().  (F1)
In the absence of magnetic orderlng this is isotropic in spin
space, and indeed in the s-wave proximitized state we find
that [0, G] =0, so that the trace over spin index yields a
Kronecker delta. Evidently, we can diagonalize the Bloch
Hamiltonian, and write in terms of the energy eigenvalues
alone, which are degenerate for the two valleys, as &, , with

&p+ = —Ep £ vplpl. (F12)

We can perform the trace over spin and valley indices to get
nk (Q) = 6,117 (Q) with

Q

PR Eps |7y

HR(Q) /Ztr[ry(@g(w +
p
_Evsp,i)"‘T}GO (a)—i— $p§>

==+
Q
. 5’%4)}'

G (w
« 7,6 <w

Furthermore, one can diagonalize the remaining degrees of
freedom (sublattice ) by passing to the energy eigenbasis
of the normal-state Hamiltonian. We find as q — 0 a further
simplification since the pairing vertices also commute with the
resulting band indices, so that we can perform the trace over
¢ as well. We then find

HR(Q)—z Z /tr(G (€, Spg)[ryG (e + Q2,8 )1,

r=+1

(F13)

+ 1,6y (e — Q2 &.01).

The trace now is only over the Nambu index, which is the only
remaining degree of freedom. Furthermore, this will ensure
that the integrand only depends on the kinetic energy through
a dependence on ég, ¢~ We can evaluate functions of the form

(F14)

Z / Qr )2‘7:(51){) = [dé;? V(E)F(EY), (F15)
=1
with the aggregated density of states being
(52+E21:)’ %' > _EF
v(E) =\ Ced) (F16)
{( ZEH-‘;?F)’ g < —Ef.

Importantly, we find a nonzero density of states at the Fermi
level, with vp = Ep/ (2nv%). We will here make the quasi-
classical approximation, though in the likely event that EF is
small, this should be revisited since it is likely that particle-
hole symmetry will be strongly violated.

In the limit of quasiclassical approximation, we find indeed
that this integral now exactly recovers to the form previously
investigated, and we therefore conclude that the up to numer-
ical factors of 2 and such, the phenomenology is the same
besides the emergence of three modes in this case. Studying
these collective modes in even greater detail is an interesting
topic which we reserve for later study.
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