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Abstract—Streaming feature selection (SFS) is emerging as
a key research direction which addresses the non-stationary
property of feature streams when the sample size is fixed. Most
existing SFS techniques are supervised methods, and ignore the
label scarcity. Real-world datasets are typically unlabeled and the
labeling costs are expensive. Although some unsupervised SFS ap-
proaches are proposed, these approaches are either limited to the
homogeneous feature types or require substantial computational
complexity. To address these problems, we propose an online
unsupervised feature selection framework using dynamic feature
clustering in this paper. We derived a recursive density lower
bound to estimate the density distribution of feature streams
and developed a density-based dynamic clustering method to
perform the online feature stream clustering for exploring feature
redundancy. An unsupervised online feature relevance maxi-
mization and redundancy minimization strategy is introduced
to extract a subset of important features with low redundancy
from the feature stream. Experimental results on thirteen well-
known benchmark datasets and comparison studies with seven
state-of-the-art supervised SFS methods demonstrate that the
proposed unsupervised method provides statistically comparable
performance with the supervised SFS techniques while the label
information is unknown.

Impact Statement—The exponential growth in the volume
of data generated from real-world applications initiates the
explosion of research progress on streaming feature selection
(SFS) problems. However, lack of label information, high com-
putational complexity, and heterogeneous feature types, strongly
challenged the existing streaming feature selection methods. The
framework proposed in this paper addressed these issues through
an unsupervised streaming feature clustering procedure as well
as a simple yet effective online feature selection strategy. With
comparable performance to the existing supervised approaches,
the proposed framework overcomes the dependency of supervised
approaches on label information while handling the hetero-
geneousness among feature types for unsupervised streaming
feature selection methods with a relatively low time and memory
complexity. As a generalized framework, the proposed technique
provides an alternative perspective on the streaming feature
selection problem using any available unsupervised density-based
streaming clustering approaches.

Index Terms—Feature stream clustering; Relevance maxi-
mization and redundancy minimization; Unsupervised online
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I. INTRODUCTION

TRADITIONAL feature selection (FS) approaches assume
the entire feature space is known in advance and the

characteristics of feature space are stationary [1], [2]. However,
this assumption does not always hold in some real-world
applications such as medical-related data analysis and image
annotations. As one of the most representative examples, in
medical applications, the feature information of patients grows
as more inspection results become available and the diagnostic
decisions vary accordingly. In this situation, features arrive
sequentially over time and the concept of feature stream is
initiated. Feature stream refers to the scenario where features
arrive individually or as a sequence of chunks while the sample
size is fixed [3]–[6].

Over the past decades, numerous supervised streaming
feature selection (SFS) techniques have been proposed [1],
[2], [7]–[13]. Among these techniques, a two-step supervised
SFS procedure through feature redundancy minimization and
relevance maximization is employed to obtain an appropriate
feature subset. The feature redundancy minimization step
eliminates features that provide similar information related
to the class labels. The feature relevance maximization step
ensures the quality of the selected feature subset by removing
noisy and non-significant features using the label information.
Several recent studies considered the interaction among fea-
tures to enhance the performance of SFS methods [13], [14].

Despite substantial progress on supervised SFS techniques,
one obvious limitation in prior studies is the dependency
on label information. The label scarcity affects not only
the relevance maximization but also the minimization of
redundancy among features, which greatly limits the existing
supervised SFS methods. In [1], an unsupervised SFS method,
namely unsupervised streaming feature selection (USFS), was
recently introduced for social media data analysis using the
link information, which is only applicable to social media
data and requires high computational complexity. In [15]–[18],
several causal discovery-based unsupervised SFS methods
were proposed to handle feature streams with extensive time
and memory complexity.

In recent years, several unsupervised FS techniques using
feature clustering analysis have shown competitive perfor-
mance with supervised FS methods in traditional FS problems
with the fixed feature space [19]–[22]. These approaches
utilize the dependency among feature distributions to group
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features that are highly redundant with each other and obtain
a feature subset with low redundancy by selecting a single
feature from each cluster. It has been shown that feature
clustering-based unsupervised FS methods achieved a com-
petitive performance with supervised FS methods in static
FS problems. In [23], the unsupervised feature selection for
dynamic features (UFSSF) extended the k-means clustering to
cluster the continuous feature stream only from the individual
level. Nevertheless, the performance of k-means clustering is
sensitive to noise and is not applicable to discrete features.

Motivated by the merits of feature clustering-based
FS methods, an Online Unsupervised streaming Feature
Selection framework through Dynamic density-based Feature
Clustering, namely OUFSDFC, is proposed in this paper.
Unlike existing SFS methods, OUFSDFC takes advantage of
feature stream clustering analysis to continuously group highly
redundant features from the feature streams and maintain
a summary of feature clusters to perform SFS. Based on
the maintained cluster summary, OUFSDFC introduces an
unsupervised FS strategy to maximize the feature relevance
while minimizing feature redundancy.

In summary, the contributions of this work are three-fold:
• Propose an unsupervised SFS framework using dynamic

density-based feature stream clustering analysis. To the
authors’ best knowledge, this is the first work that utilizes
the density-based stream feature clustering analysis to
handle unsupervised SFS problems. The proposed frame-
work explores the redundancy among the streaming fea-
tures through a dynamic density-based clustering proce-
dure and selects a subset of highly representative features
with low redundancy using the clustering information.

• Develop a density-based feature stream clustering method
to group both continuous and discrete feature streams.
We derive a new recursive lower bound to estimate
the density distribution of the feature stream using the
Laplacian density kernel function, and a complete version
of mathematical derivations is provided in the Appendix.
Additionally, an unsupervised strategy is developed to
maximize the feature relevance and minimize feature
redundancy in SFS.

• Conduct extensive experiments and comparison studies
with well-known state-of-the-art SFS methods. Experi-
mental results and statistical analysis justified that OUFS-
DFC provides better or comparable performance without
label information.

The remainder of this paper is organized as follows: Sec-
tion II provides a review of the related works on the SFS
methods. The details of the OUFSDFC framework and its
computational complexity are discussed in Section III. Section
IV presents the experimental results and comparison study
between OUFSDFC and the state-of-the-art methods. Finally,
concluding remarks and future works are outlined in Section
V.

II. RELATED WORKS

In this section, we reviewed the existing studies on the
supervised and unsupervised SFS approaches. Besides, tra-
ditional redundancy-based FS methods and a summary of

the existing density-based data stream clustering methods are
discussed briefly.

A. Supervised Streaming Feature Selection
Most existing SFS methods are supervised and these ap-

proaches usually fall into two major groups [13]: (i) individual-
level SFS; and (ii) group-level SFS. For individual-level SFS
methods, features are assumed to arrive as a sequence of single
independent variables. Grafting [8] was the first individual-
level SFS method that utilized a regularized framework to
integrate the SFS problem as a sub-task of the predictive
modeling from the data. Information-investing and alpha-
investing were employed as two penalized likelihood ratios in
the stream-wise regression for SFS [24]. A scoring measure
was introduced to evaluate the importance of an incoming
feature with respect to a base model in supervised SFS tech-
niques [25]. Scalable and Accurate Online feature selection
Approach (SAOLA) [26] maintained a parsimonious model
over time and conducted the online pairwise comparison for
SFS. An online streaming feature selection (OSFS) framework
and its variation, namely Fast OSFS [3] were proposed based
on the redundancy minimization and relevance maximization
procedure. Several recent SFS methods, including OSFSMI
[11], OFS-A3M [27], OS-NRRSARA-SA [28], K-OFSD [29],
and OFS-density [2], were developed using fuzzy rough set
theory.

Group-level supervised SFS methods address the situation
where feature streams arrive as a sequence of groups over time.
Group-SAOLA extended SAOLA to handle feature streams
that arrive as groups. In [10], the authors utilized the infor-
mation theory to explore the group structure for SFS. An
efficient group-level SFS framework, namely Online Group
Feature Selection (OGFS), was developed using a hybrid of
intra-group and inter-group feature selection stages in [12]. In
[13], [14], the interaction among features is considered to im-
prove the efficacy of group-level supervised SFS methods. In
summary, both the individual-level and group-level supervised
SFS methods require the label information as a prior and the
label scarcity is rarely considered in the literature.

B. Unsupervised Streaming Feature Selection
To overcome the limitation of supervised SFS methods

described above, several unsupervised SFS approaches were
developed in [1], [15]–[18], [23]. In [1], the authors proposed
an unsupervised streaming feature selection method to handle
social media data by exploring the link information. It is
customized for social media data analysis and requires high
computational complexity. In [23], the k-means based feature
clustering procedure is extended to perform SFS on continuous
feature streams only. However, the performance of k-means
clustering is sensitive to noises, and it can not handle discrete
features. In [15]–[17], several causal discovery-based unsuper-
vised SFS approaches were proposed to handle feature streams
from the individual level while these approaches showed poor
performance on continuous datasets. To address this issue,
an unsupervised individual-level SFS method, namely par-
tial rank correlation-based streaming feature causal discovery
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(PRCDSF) [18], was developed to explore the causal relation-
ship in the continuous feature streams. Nevertheless, the causal
discovery procedure does require high time complexity.

C. Redundancy-based feature selection methods
Several well-known traditional supervised redundancy-

based FS methods, such as correlation-based feature selection
(CFS) [30], maximum relevance and minimum redundancy
(MRMR) [31], and Relief [32], utilized the label information
to filter highly redundant features in the static feature space.
Feature clustering-based FS methods have been recently in-
vestigated to address the redundancy among features in an
unsupervised manner [19]–[22], [33]. In [19], the authors
first utilized the k-means clustering to group features that
are highly redundant with each other and obtain a feature
subset with low redundancy by selecting the mean of each
feature cluster. Later, a feature clustering-based unsupervised
FS method was introduced by adopting a rival penalization-
controlled competitive learning framework into the feature
clustering procedure [20]. Then, similar to [19], the mean of
each feature cluster is selected to obtain the final feature sub-
set. Instead of partitioning the feature space directly, in [33], a
graph representation of the static feature space is extracted to
obtain a set of non-redundant features, and then the clustering
of non-redundant features is performed to select features.
Another supervised filter-based feature selection method was
introduced by combining the graph-based feature clustering
with ant colony optimization to reduce the redundancy among
features [34].

In [21], a density-based clustering method, namely efficient
unsupervised feature selection through feature clustering (EU-
FSFC), was extended to explore the dependency among fea-
tures to reduce the feature redundancy for homogeneous fea-
ture types in the static feature space. The authors presented two
different feature clustering schemes to handle the continuous
and discrete features separately. As an extension of EUFSFC,
a supervised feature selection method through density-based
feature clustering, namely (SFSDFC) [22], was introduced to
handle heterogeneous feature types simultaneously in the static
space. Unlike [21], a systematic feature clustering procedure
was employed for both the continuous and discrete features.
Besides, the label information is utilized to refine the quality
of the selected feature subset. Overall, these feature clustering-
based FS methods are only applicable to handle the static
feature space, and none of them address non-stationary feature
streams.

Several approaches were proposed to handle the feature
redundancy by mining the graph structure in high-dimensional
data [35]–[37]. A rank-constrained spectral clustering method
with flexible embedding is proposed in [35] to filter irrelevant
and noisy features by learning an intrinsic low-dimensional
projected feature representation for high-dimensional data.
In [36], the authors constructed a dynamic affinity graph to
perform the spectral clustering on high-dimensional data and
obtained a low-dimensional feature representation with low re-
dundancy. Although these approaches demonstrated promising
performance in addressing redundancy among features, they
are not directly suitable to handle streaming features.

TABLE I
TABLE OF NOTATIONS .

Notations Definition
m the size of the feature chunk Gt
n the number of samples
t the time index
Gt a chunk of features arrives at time t
F t the feature stream up to time t
T the total number of feature chunks in F t
F St the selected feature subset from F t
F Ct the extracted feature clusters from F t
CS t the extracted feature cluster summary from F t
D t the density values of feature clusters from F t
f i

G t
the i th feature in the current feature chunk at t

D f i
G t

the density value of ith feature in Gt

F Ck
t the kth feature cluster from F t

D k
t the density value of the kth feature cluster from F t

F C0 a set of feature clusters in F t−1
F Ck

0 the center of kth cluster in F t−1
D k

0 the density value of the kth historical feature cluster
f l

k,0 the lth sample in the cluster k at t − 1
f p

t the pth feature in F t
|F Ck

0 | the number of features in F Ck
0

|F C0| the number of feature clusters at t − 1
|F Ct | the number of feature clusters at t
dil the distance from f i

G t
to f l

k,0
dlk the distance from f l

k,0 to F Ck
0

dik the distance from f i
G t

to F Ck
0

dij the distance from f i
G t

to another feature f j
G t

in Gt
βt the variance of F t
βC t the variance of Gt
D̂ f i

G t
the estimated lower bound density value of f i

G t

D. Density-based data stream clustering

Density-based data stream clustering approaches are widely
used to mine information from streaming data in the presence
of clusters with an arbitrary shape, overlap clusters, and
noises. In [38], a comprehensive review of different density-
based data stream clustering approaches such as D-Stream
[39], DenStream [40], DBStreams [41], and HDDStreams
[42], etc. was provided. The density peak clustering (DPC)
[43] was proposed as a novel fast density-based clustering
approach by identifying cluster centers as local maximum
density peaks. Several recent extensions of DPC approaches,
including DPC-KNN [44], DPC-DBFN [45], and DPC-DLP
[46], were proposed to handle the limitations of the original
DPC method such as clusters with uneven densities, high
time complexities, and parameter tuning. Motivated by the
success of the DPC methods, the EDMStream [47] method was
developed to handle the data stream through the exploration
of density mountains in the data stream.

III. PROPOSED METHODOLOGY

In this section, we describe the basic notations, assumptions,
and definitions first. The details of the proposed framework
are then discussed. Besides, the time and space complexities
of OUFSDFC are analyzed.
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A. Notations, assumptions, and definitions

Let Ft and Gt be a feature stream and a chunk of features
arrive at time t such that Ft = S T

t=1 Gt where T refers to the
total number of feature chunks. Gt consists of m features and
each feature is denoted as: f i

G t
, i = 1, ..., m. The notation F St

refers to the selected feature subset from the feature stream at
time t. Also, let F Ct and CSt be the extracted feature cluster
centers and the cluster summary from the feature stream Ft
until t such that CSt = {F Ct, Dt}where F Ct = S |F C t |

k=1 F Ck
t

and Dt = S |F C t |
k=1 Dk

t . The notations F Ck
t and Dk

t refer
to the kth feature cluster and its density value, respectively.
In addition to these basic notations, a list of mathematical
notations related to the derivations of the recursive lower
bound of the Laplacian density function is provided in Table I.
According to these notations, the objective of this paper is to
obtain a good feature subset F St from Ft with the following
assumptions:

• The numbers of samples and classes are fixed.
• Feature stream arrives as chunks and drifts of class

distribution happen over time.
• The label information of the dataset is unknown.
Similar to the traditional feature clustering-based FS prob-

lems [19], [21], [48], the following definitions are considered
in this paper.

Definition 1. Relevant/Representative features: a set of fea-
tures with the local maximum density values in each feature
cluster.

According to Definition 1, the centers of those feature
clusters are usually considered as the most descriptive features
and thus are obtained as a set of Relevant/Representative
features.

Definition 2. Redundant features: features are consid-
ered redundant with each other if they have high depen-
dency/correlation.

Using Definition 2, features with similar characteristics
can be grouped together and the redundancy of features can
be reduced by avoiding selecting features from the same
cluster. With these two definitions, we propose a stream
feature clustering-based SFS framework with an efficient
online unsupervised relevance maximization and redundancy
minimization strategy.

B. Online unsupervised streaming feature selection through
dynamic feature clustering (OUFSDFC)

The proposed OUFSDFC method consists of two primary
steps: (i) dynamic feature stream clustering; and (ii) online
feature selection based on cluster summary. For dynamic
feature stream clustering, we integrated the backbone of a
state-of-the-art density-based data stream clustering method
with an effective cluster merge or initialization procedure
to perform the feature redundancy minimization. During the
selection stage, the representativeness of features is used to
achieve feature relevance maximization. An overview of the
OUFSDFC procedure is provided in Figure 1.

1) Feature similarity evaluation: The Symmetric Uncer-
tainty (SU) [49] and Maximal Information Compression Index
(MICI) [19] are two widely used similarity measures for
feature clustering analysis. SU reflects the relative information
gain between two discrete feature distributions with respect to
the sum of their entropy. MICI measures the linear dependency
between two continuous feature distributions based on the
covariance matrix. In OUFSDFC, MICI is used to measure
the similarity for the continuous feature streams and SU is
employed for the discrete feature streams.

2) Dynamic feature stream clustering: We extended a recent
density-based data stream clustering method, namely dynamic
fitness proportionate sharing clustering (DFPS-clustering)
[50], to develop a feature stream clustering approach for
grouping highly redundant features into clusters over time.
Unlike [50], we derived a new recursive lower bound function
using the Laplacian density formula and substituted it for
the calculations of density distributions in the incoming fea-
ture chunks. The developed feature stream clustering method
is named DFPSL-clustering. Considering the fact that the
Laplacian mixture model is more robust to outliers than
the Gaussian mixture model discussed in [51], the derived
recursive Laplacian density lower bound effectively addresses
the existence of noisy features in the stream. Let f i

G t
and dij

be the ith feature in Gt and its feature distance to the j th

feature in Gt , the density value of f i
G t

is denoted as Df i
G t

and it is calculated using the derived recursive lower bound
as follows.

Df i
G t

=
mX

j=1
e(− dij

β t
)γt

+
|F C0 |X

k=1
(e− dik

β t )
γt

× Dk
0. (1)

Where βt and γt refer to the normalization and stabilization
parameters at time t, respectively. We use the same parameter
estimation procedure from [50] to obtain the optimal values.
dik is the distance between f i

G t
and the kth historical fea-

ture cluster. The notations Dk
0 and |F C0| are the density

value of the kth historical clusters and the cardinality of
the historical feature cluster set. The detailed mathematical
derivations of equation 1 are provided in the Appendix. Based
on the derived Laplacian recursive density lower bound, the
DFPSL-clustering method effectively estimates the density
values of an incoming feature chunk from both the historical
and current feature chunks using only the cluster summary
information. Consequently, instead of keeping all historical
features from the feature stream, the derived recursive lower
bound significantly reduces the memory space by maintaining
the cluster summary only.

Algorithm 1 summarizes the details of the density-based dy-
namic feature clustering procedure. It consists of two phases:
(i) offline clustering and (ii) online cluster merge. During the
offline clustering procedure, as shown in Algorithm 1, the
DFPSL-clustering approach starts with the density evaluation
of features from the most recent feature chunk using equation
1. Then, it searches for all possible feature cluster centers with
the local maximum density values from Gt . A cluster merge
operation is performed on the obtained candidate feature clus-
ters to extract a set of feature clusters F CG t from the offline
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Fig. 1. An overview of the OUFSDFC framework. (When a chunk of features arrive, OUFSDFC groups highly redundant features together using the dynamic
feature stream clustering procedure. Then, an unsupervised online feature selection strategy is employed to reduce the feature redundancy and increase the
feature relevance.)

clustering procedure. The online cluster merge step checks
the possible merge between F CG t with the historical clusters
F C0 to extract the set of feature clusters in Ft . To handle
discrete features, we employed the cluster merge procedure
from [21] to reduce the redundancy between historical feature
clusters and new feature clusters. Also, this merge procedure
helps to capture the drift of class distributions through the
merge of historical feature clusters and the initialization of
novel feature clusters. During the cluster merge stage, the
DFPSL-clustering method obtains a set of features from the
boundary of historical and new feature clusters to decide
whether a merge should happen or not. For example, a merge
should happen when there is a significant drop in the density
values among features that locate at the boundary between a
new feature cluster and its nearest historical feature cluster.
Otherwise, a new feature cluster is initialized as a new feature
pattern that describes the drift of existing class distributions.

3) Online feature selection based on feature cluster sum-
mary: After the dynamic feature stream clustering procedure,
a set of feature clusters are obtained from the feature stream
and we employ an unsupervised online selection strategy to
consider both relevance maximization and redundancy min-
imization. Due to the lack of data labels, the relevance of
each feature is quantified based on its representativeness in
each feature cluster. In density-based clustering methods, a
cluster center usually has the local maximum density value
and the highest descriptiveness of the cluster. Therefore,
feature cluster centers are the most relevant features, and a
set of Relevant/Representative features can be obtained using
Definition 1. Meanwhile, according to Definition 2, features
that belong to the same cluster are considered to be redundant
to each other, and the redundancy minimization is guaranteed
by only choosing the feature cluster center from each feature
cluster. Following this strategy, a subset of important features
with low redundancy can be obtained from the feature stream
over time.

Algorithm 1 Dynamic feature stream clustering procedure
Input: Gt ,Ft
Parameters: F CG t : the set of feature cluster centers extracted
from Gt; F Ct: a set of feature cluster centers discovered from
Ft until time t; Dt: the density values of all feature clusters
in Ft; DG t ; the density values of all features in Gt .
Output: CS t

1: for t = 1to T do
2: Perform the feature similarity evaluation for Gt using

MICI or SU
3: DG t = ∅
4: for i = 1 to m do
5: Calculate Df i

G t
using equation 1

6: DG t = DG t

S
Df i

G t
7: end for
8: Rank all features of Gt according to their density

values and perform the search of possible feature clusters
9: Merge highly overlapped feature clusters to obtain

F CG t

10: if t == 1then
11: CS t = {F CG t , DFC G t

}.
12: else
13: Merge F CG t with historical feature clusters in

CSt to obtain F Ct and Dt based on the existence of
density valley in cluster boundaries

14: CS t = {F Ct, Dt}.
15: end if
16: end for
17: Return CS t

C. Complexity analysis

The time and space complexity of OUFSDFC are discussed
using the following notations:

• n: total number of samples
• m: number of the features in the chunk
• |F C0|: number of historical feature clusters in CSt
• |F CG t |: number of feature clusters discovered in Gt
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a) Time complexity.: During the dynamic feature stream
clustering procedure, it takes O(m2) and O(m2n) distance
calculations to obtain the feature distance matrix for continu-
ous and discrete feature streams, respectively. For the search
of possible feature clusters, the ranking of features imposes
O(nlogn) computations. The cluster merge stage between
historical and new feature clusters requires O(|F CG t ||F C0|)
distance calculations. Therefore, the worst-case time com-
plexity between continuous and discrete feature streams is
O(nm2 + nlogn + |F CG t ||F C0|).

b) Space complexity.: The feature cluster summary re-
quires O(2|F C0|) space to hold the extracted feature cluster
centers and their density values. The processing of an in-
coming feature chunk Gt also takes O(m) space complexity.
Overall, the space complexity of the OUFSDFC method
for both continuous and discrete feature streams becomes
O(m + 2|F C0|).

IV. EXPERIMENTAL STUDIES AND DISCUSSIONS

In this section, experiments are conducted on well-known
benchmark datasets, and comparison studies with the state-
of-the-art supervised SFS methods are presented to prove the
efficacy of the OUFSDFC framework. The time complexity
comparison, parameter analysis, and execution time analysis
are discussed as well.

A. Benchmark Dataset.

Similar to the state-of-the-art SFS techniques in [13], we
selected thirteen benchmark datasets, including three discrete
and ten continuous datasets, from the ASU feature selection
repository 1 to validate the efficacy of the OUFSDFC frame-
work. Table III summarizes the properties of those datasets
in terms of sample size, feature size, class size, application
domains, and types. As shown in Table III, all thirteen datasets
have relatively large feature sizes that are suitable for the
simulation of feature streams.

B. Baseline SFS methods

Due to the lack of unsupervised SFS methods that han-
dle both the continuous and discrete feature streams, seven
popular state-of-the-art supervised SFS methods, including
Alpha investing, SAOLA, Fast OSFS, OFS-Density, OFS-
A3M, Group SAOLA, and OGFSS-FI, are used to conduct the
comparison study. The first five are individual-level supervised
SFS methods and the last two are group-level supervised SFS
methods. The MATLAB codes of Alpha investing, SAOLA,
Fast OSFS, and Group SAOLA are available at link 2. For
the remaining methods, we obtained the MATLAB codes
from link 3. The python code of the OUFSDFC framework
is provided in 4. All experiments are conducted on an Intel
Xeon (R) machine with 64GB RAM operating on Microsoft
Windows 10.

1https://jundongl.github.io/scikit-feature/datasets.html
2https://github.com/kuiy/LOFS
3https://github.com/doodzhou/OSFS
4https://github.com/XuyangAbert/OUFSDFC

C. Benchmark classifiers and evaluation metrics

The classification performance is used to show the efficacy
of the OUFSDFC method versus seven supervised SFS meth-
ods. We used the decision tree and k-nearest-neighbors (KNN)
classifiers to evaluate the quality of the final selected feature
subset for different SFS methods. Two well-known evaluation
metrics, including accuracy (Acc) and f-score (Fmac) [53], are
employed as performance evaluation metrics. To account for
the imbalance of class distributions, we use the macro-average
of f-score and it is expressed as follows.

Fmac = 1
nc

ncX

i=1
F i , (2)

where F i and nc denote the F-measure for the ith class and
the number of classes, respectively.

D. Parameter settings

To simulate the feature stream, the feature chunk size is
set to 250 for all datasets except for Lung. For the Lung
dataset, the chunk size is set to 50. According to [13], the
value of α is set to 0.01for Fast OSFS, SAOLA, and Group-
SAOLA. For Alpha-Investing, OFS-density, OFS-A3M, and
OGFSS-FI methods, the default parameter settings from [2],
[8], [27] are used to obtain the final selected feature subset.
The number of the selected features from each SFS method
is summarized in Table I. For the KNN classifier, the value
of K is set to 5. We repeated each experiment ten times
and performed ten-fold cross-validation on each dataset. The
average values of the Acc and f 1mac are reported in Tables
II and IV, respectively. For each dataset, the best results
among all compared methods are highlighted in bold-face.
Two statistical analysis, including the Friedman rank test and
Nemenyi post-hoc test [54], are conducted on the experimental
results with a significance level of 0.05. The Nemenyi post-
hoc test evaluates the pairwise statistical difference between
two compared methods and it constructs a critical distance
(CD) diagram [55], [56]. From the CD diagram, two compared
methods are statistically comparable if they are connected by
a dark solid line.

E. Results and discussions

a) OUFSDFC vs. Compared SFS methods on KNN:
Table II summarizes the experimental results of OUFSDFC
and the other seven supervised SFS methods using the KNN
classifier in terms of Acc and Fmac. From Table II, we can
observe that OUFSDFC achieves the highest average ranks
of 2.69and 2.31on Acc and Fmac, respectively. Among
all thirteen datasets, OUFSDFC shows better performance
than all compared supervised SFS methods on Orlraws10P,
Pixraws10P, WarpPIE10P, and SMK datasets on both metrics.
For the remaining datasets, OUFSDFC presents a comparable
performance with both group-level and individual-level super-
vised SFS methods. In Figures 2 and 3, the CD-diagrams are
obtained to show the statistical comparison between OUFS-
DFC and the supervised SFS methods using the Nemenyi post-
hoc test. From Figures 2 and 3, the Nemenyi post-hoc test
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Datasets Metrics Alpha-Investing [24] SAOLA [26] Fast-OSFS [3] OFS-Density [2] OFS-A3M [27] Group SAOLA [26] OGFSS-FI [13] OUFSDFC

ALLAML Acc 0.7534 (8) 0.9233 (5) 0.9252 (4) 0.9393 (2) 0.8612 (7) 0.9292 (3) 0.8708 (6) 0.9446 (1)
Fmac 0.7481 (8) 0.9070 (5) 0.9116 (3) 0.9319 (1) 0.8301 (7) 0.9119 (4) 0.8397 (6) 0.9293 (2)

Lung Acc 0.4174 (8) 0.5646 (4) 0.4699 (7) 0.5525 (5) 0.5255 (6) 0.5720 (3) 0.5902 (2) 0.6388 (1)
Fmac 0.3678 (8) 0.4296 (5) 0.3783 (7) 0.4252 (6) 0.4480 (4) 0.4696 (2) 0.4628 (3) 0.5322 (1)

Arcene Acc 0.7452 (5) 0.6426 (7) 0.7023 (6) 0.8391 (1) 0.8283 (2) 0.5929 (8) 0.7647 (4) 0.7892 (3)
Fmac 0.7416 (4) 0.6308 (7) 0.6976 (5) 0.8308 (1) 0.8248 (2) 0.5807 (8) 0.6891 (6) 0.7915 (3)

Lymphoma Acc 0.4992 (8) 0.7571 (3) 0.6523 (7) 0.6726 (6) 0.7695 (1) 0.6832 (5) 0.7150 (4) 0.7425 (2)
Fmac 0.4545 (8) 0.6851 (2) 0.5881 (5) 0.5756 (6) 0.6038 (4) 0.6505 (3) 0.5078 (7) 0.8063 (1)

Orlraws10P Acc 0.7801 (6) 0.8201 (3) 0.7404 (7) 0.8621 (2) 0.8090 (4) 0.8012 (5) 0.6801 (8) 0.8900 (1)
Fmac 0.5789 (8) 0.6917 (5) 0.6620 (6) 0.7900 (2) 0.7584 (4) 0.7610 (3) 0.6278 (7) 0.8583 (1)

Pixraw10P Acc 0.7912 (5) 0.7453 (7) 0.7685 (6) 0.9112 (2) 0.8630 (4) 0.7142 (8) 0.8650 (3) 0.9273 (1)
Fmac 0.7905 (5) 0.7501 (7) 0.7011 (8) 0.8742 (2) 0.8252(3) 0.7609 (6) 0.8230 (4) 0.9100 (1)

WarpPIE10P Acc 0.8152 (4) 0.6437 (7) 0.8050 (5) 0.9053 (2) 0.8972 (3) 0.6210 (6) 0.6052 (8) 0.9233 (1)
Fmac 0.8175 (4) 0.6114 (7) 0.7913 (5) 0.8963 (2) 0.8896 (3) 0.6222 (6) 0.5772 (8) 0.9125 (1)

COIL20 Acc 0.9813 (1) 0.6635 (7) 0.7986 (6) 0.9687 (2) 0.9657(3) 0.6233 (8) 0.9493 (4) 0.9059 (5)
Fmac 0.9809 (1) 0.6537 (7) 0.7835 (6) 0.9559 (3) 0.9649 (2) 0.5932 (8) 0.9280 (4) 0.8965 (5)

Colon Acc 0.7186 (8) 0.7219 (7) 0.7600 (3) 0.7590 (4) 0.7571(5) 0.7898 (1) 0.7605 (2) 0.7548 (6)
Fmac 0.6550 (8) 0.6997 (6) 0.7215 (2) 0.7200 (3) 0.7039 (4) 0.7541 (1) 0.6945 (7) 0.7006 (5)

GIL-85 Acc 0.7087 (8) 0.8261 (3) 0.8269 (2) 0.8352 (1) 0.7920 (7) 0.8004 (5) 0.7958 (6) 0.8032 (4)
Fmac 0.6284 (8) 0.8232 (2) 0.8154 (3) 0.8287 (1) 0.7282 (7) 0.8096 (4) 0.7845 (5) 0.7676 (6)

GILMO Acc 0.4121 (8) 0.6818 (4) 0.6296 (7) 0.6678 (5) 0.6639 (6) 0.6995 (2) 0.6939 (3) 0.7012 (1)
Fmac 0.4018 (8) 0.5806 (6) 0.5482 (7) 0.6374 (1) 0.5957 (5) 0.5967 (4) 0.6131 (3) 0.6172 (2)

SMK Acc 0.6061 (7) 0.6654 (2) 0.6511 (5) 0.5964 (8) 0.6363 (6) 0.6648 (3) 0.6643 (4) 0.6793 (1)
Fmac 0.5975 (7) 0.6575 (2) 0.6451 (5) 0.5889 (8) 0.6270 (6) 0.6568 (3) 0.6557 (4) 0.6691 (1)

Carcinom Acc 0.7858 (5) 0.7963 (3) 0.7226 (8) 0.8163 (2) 0.8235 (1) 0.7505 (6) 0.7881 (4) 0.7484 (7)
Fmac 0.6232 (6) 0.6761 (4) 0.4761 (8) 0.6428 (5) 0.7467 (2) 0.6053 (7) 0.6804 (3) 0.8323 (1)

Avg. ranks Acc 6.23 4.69 5.62 3.23 4.23 4.85 4.46 2.69
Fmac 6.38 5.00 5.46 3.15 4.07 4.46 5.15 2.31

TABLE II
PERFORMANCE COMPARISON WITH SEVEN SUPERVISED BASELINE SFS METHODS USING KNN CLASSIFIER (K=5). (T HE RELATIVE RANK OF EACH

ALGORITHM IS SHOWN WITHIN THE PARENTHESES .)

Datasets No. of S. No. of F. No. of C. Domain Type
ALLAML 72 7129 2 Medical Continuous
Lung 73 325 7 Medical Discrete
Arcene 200 10000 2 Medical Continuous
Lymphoma 96 4026 9 Medical Discrete
Orlraws10P 100 10304 10 Image Continuous
Pixraws10P 100 10000 10 Image Continuous
WarpPIE10P 210 2420 10 Image Continuous
COIL20 1440 1024 20 Image Continuous
Colon 62 2000 2 Biological Discrete
GLI-85 85 22283 2 Biological Continuous
GLIMO 50 4434 4 Biological Continuous
SMK 187 19993 2 Biological Continuous
Carcinom 174 9182 11 Biological Continuous

TABLE III
DATASET PROPERTIES [52].(N O. OF S.: NUMBER OF SAMPLES ; NO. OF F.:

NUMBER OF FEATURES ; NO. OF C.: NUMBER OF CLASSES .)

reveals that OUFSDFC achieves statistically better or com-
parable performance with the individual-level and group-level
supervised SFS methods on the KNN classifier while it does
not require any label information. Besides, the performance of
the OUFSDFC method is statistically comparable to OGFSS-
FI method without explicitly exploring the interactions among
features when the KNN classifier is used.

Fig. 2. Comparison of OUFSDFC against baseline methods with the Nemenyi
test using KNN in terms of Acc.

b) OUFSDFC vs. Compared SFS methods on decision
tree classifier: For the decision tree classifier, in Table IV, the
comparison between OUFSDFC and the baseline SFS methods
demonstrates that OUFSDFC has the highest average rank on

Fig. 3. Comparison of OUFSDFC against baseline methods with the Nemenyi
test using KNN in terms of Fmac .

the Fmac and the third-highest average rank on Acc. Based on
Acc, Figure 4 indicates that OUFSDFC achieves statistically
comparable performance with all seven supervised methods.
Similarly, in Figure 5, OUFSDFC provides statistically com-
parable performance with all seven supervised SFS methods in
terms of Fmac using the decision tree classifier. In particular,
OUFSDFC shows very similar performance with the OGFSS-
FI method on the decision tree classifier. This observation can
be attributed to the fact that the decision tree classifier can
explore the interaction among features to improve the classi-
fication performance such that the advantage of the OGFSS-
FI method becomes less significant. Overall, the OUFSDFC
method yields statistically comparable performance with seven
supervised baseline techniques on the decision tree classifier
without using any label information, which proves the efficacy
of the proposed framework.

Fig. 4. Comparison of OUFSDFC against baseline methods with the Nemenyi
test using decision tree in terms of Acc.
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Datasets Metrics Alpha-Investing SAOLA Fast-OSFS OFS-Density OFS-A3M Group SAOLA OGFSS-FI OUFSDFC

ALLAML Acc 0.7169 (8) 0.8761 (4) 0.8861 (2) 0.8649 (5) 0.8116 (7) 0.8935 (1) 0.8552 (6) 0.8789 (3)
Fmac 0.7024 (8) 0.8584 (3) 0.8600 (2) 0.8360 (5) 0.7787 (7) 0.8772 (1) 0.8302 (6) 0.8425 (4)

Lung Acc 0.3384 (8) 0.4813 (5) 0.4751 (7) 0.4865 (4) 0.5455 (1) 0.4813 (6) 0.5364 (2) 0.5351 (3)
Fmac 0.2911 (8) 0.3503 (5) 0.3326 (7) 0.3589 (4) 0.4385 (1) 0.3503 (6) 0.4106 (3) 0.4252 (2)

Arcene Acc 0.6704 (6) 0.6211 (7) 0.6739 (5) 0.7441 (1) 0.7318 (2) 0.6074 (8) 0.7125 (3) 0.7009 (4)
Fmac 0.6671 (5) 0.6082 (7) 0.6627 (6) 0.7365 (1) 0.7238 (2) 0.5944 (8) 0.6970 (3) 0.6941 (4)

Lymphoma Acc 0.4813 (8) 0.5710 (6) 0.5678 (7) 0.6586 (2) 0.6137 (4) 0.5939 (5) 0.6512 (3) 0.7069 (1)
Fmac 0.4195 (8) 0.5260 (6) 0.5264 (5) 0.5625 (3) 0.5011 (7) 0.5581 (4) 0.5652 (2) 0.5984 (1)

Orlraws10P Acc 0.7250 (3) 0.5080 (7) 0.5620 (6) 0.5890 (5) 0.7240(4) 0.4620 (8) 0.7333 (1) 0.7950 (2)
Fmac 0.5690 (4) 0.5139 (7) 0.5268 (6) 0.5339 (5) 0.6604 (3) 0.5060 (8) 0.7001 (1) 0.7423 (2)

Pixraw10P Acc 0.9380 (2) 0.8420 (6) 0.7790 (8) 0.9500 (1) 0.9070 (3) 0.8370 (7) 0.8820 (5) 0.8970 (4)
Fmac 0.9180 (2) 0.7968 (6) 0.7232 (8) 0.9337 (1) 0.8787 (4) 0.7867 (7) 0.8457 (5) 0.8650 (3)

WarpPIE100 Acc 0.7508 (2) 0.5431(8) 0.6910 (5) 0.7776 (1) 0.7374(3) 0.5663 (7) 0.6081 (6) 0.7102 (4)
Fmac 0.7343 (2) 0.5154 (8) 0.6673 (5) 0.7632 (1) 0.7182(3) 0.5394 (7) 0.5763 (6) 0.6884 (4)

COIL20 Acc 0.8144 (3) 0.7582 (7) 0.7611 (6) 0.8133 (4) 0.8457 (1) 0.7554 (8) 0.7889 (5) 0.8225 (2)
Fmac 0.5951 (6) 0.5232 (8) 0.5902 (7) 0.6944 (4) 0.8443 (1) 0.6104 (5) 0.8016 (3) 0.8113 (2)

Colon Acc 0.7264 (6) 0.7821 (1) 0.7760 (2) 0.7276 (5) 0.7210 (7) 0.7600 (3) 0.7313 (4) 0.7095 (8)
Fmac 0.6725 (6) 0.7426 (1) 0.7317 (2) 0.6744 (5) 0.6619 (7) 0.7109 (3) 0.6837 (4) 0.6538 (8)

GIL-85 Acc 0.7905 (6) 0.8210 (1) 0.7877 (4) 0.8144 (2) 0.7397 (8) 0.7983 (3) 0.7825 (5) 0.7736 (7)
Fmac 0.5839 (8) 0.6189 (4) 0.5872 (7) 0.6148 (5) 0.6768 (2) 0.6013 (6) 0.6705 (3) 0.6968 (1)

GILMO Acc 0.4178 (8) 0.6337 (4) 0.6172 (5) 0.5954 (6) 0.5920 (7) 0.6327 (3) 0.6289 (1) 0.6035 (2)
Fmac 0.3941 (8) 0.6183 (2) 0.5543 (3) 0.5484 (5) 0.5075 (7) 0.6185 (1) 0.5275 (6) 0.5393 (4)

SMK Acc 0.5942 (7) 0.6521 (2) 0.6252 (6) 0.5770 (8) 0.6257 (5) 0.6563 (1) 0.6355 (3) 0.6348 (4)
Fmac 0.5885 (7) 0.6465 (2) 0.6203 (4) 0.5670 (8) 0.6089 (6) 0.6502 (1) 0.6285 (3) 0.6163 (5)

Carcinom Acc 0.6032 (3) 0.5855 (6) 0.5380 (8) 0.5933 (5) 0.6348 (1) 0.5451 (7) 0.5971 (4) 0.6295 (2)
Fmac 0.4940 (3) 0.4726 (4) 0.4145 (8) 0.4429 (6) 0.5130 (2) 0.4395 (7) 0.4656 (5) 0.5308 (1)

Avg. ranks Acc 5.23 4.92 5.62 3.54 3.77 5.46 3.69 3.76
Fmac 5.77 4.85 5.38 4.00 3.92 4.92 3.85 3.31

TABLE IV
PERFORMANCE COMPARISON WITH SEVEN SUPERVISED BASELINE SFS METHODS USING DECISION TREE . (T HE RELATIVE RANK OF EACH ALGORITHM

IS SHOWN WITHIN THE PARENTHESES .)

Fig. 5. Comparison of OUFSDFC against baseline methods with the Nemenyi
test using decision tree in terms of Fmac .

SFS Methods Time Complexity
Alpha-Investing O(t ∗ m ∗ |F St |2)
SAOLA O(t ∗ m ∗ |F St |)
Fast OSFS O(|F St | ∗ q|F S t |)
OFS-Density O(m2n2log(n))
OFS-A3M O(m2n2log(n))
Group SAOLA O(t ∗ m ∗ |F St |)
OGFSS-MI O(|F St |3 + m)
OUFSDFC O(nm2 + nlog(n) + |F CG t ||F C0|)

TABLE V
TIME COMPLEXITY COMPARISON . (H ERE , q IS A CONSTANT VALUE .)

F. Number of final selected features

Following the parameter settings in Section IV-D, the num-
ber of final selected features for all compared SFS methods and
the OUFSDFC framework is summarized in Table VI. Since
the ten-fold cross-validation is used, we reported the average
number of selected features from each method in Table VI.

As shown in Tables II and VI, OUFSDFC shows better
or comparable performance with more selected features in
most benchmark datasets. This can be explained by the fact
that supervised SFS methods utilized the label information to
filter out highly redundant and less relevant features. However,

OUFSDFC is an unsupervised method and it only explores
the group structure among features to select relevant features
with high descriptive power and remove redundant features
primarily based on the correlation or dependency among
features. Consequently, the OUFSDFC method selects more
features to achieve better or comparable performance than
supervised SFS methods. In general, the performance of the
classification model improves with the increase in the number
of selected features if those features are not highly correlated.
In case some selected features are highly correlated with each
other, the multicollinearity issue can significantly degrade the
model performance, especially for classifiers such as KNN,
linear regression, and logistic regression [57]. Since OUFS-
DFC is designed to reduce the redundancy among features by
obtaining a subset of less correlated features, it demonstrates
better or comparable performance on the KNN with more
selected features than other supervised SFS methods. Due to
the low correlations among features in the COIL20 dataset,
the redundancy minimization does not show obvious per-
formance improvement, and thus OUFSDFC presents worse
performance than the Alpha-Investing method.

G. Parameter analysis and execution time analysis
a) Parameter analysis.: To study the effects of different

chunk sizes on the proposed framework (OUFSDFC), three
representative datasets, including COIL20, ALLAML, and
Carcinom, were selected to perform the parameter sensitivity
analysis. These three datasets come from the medical, image,
and biology domains. We set the chunk size from 50 to
400with an increment of 50 and recorded the performance
of OUFSDFC on both the KNN and decision tree classifier.
Figure 6 displays the curves ofaccuracyand Fmac on both the
KNN and decision tree classifiers, respectively. As shown in
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Datasets Alpha-Investing SAOLA Fast-OSFS OFS-Density OFS-A3M Group SAOLA OGFS-FI OUFSDFC
ALLMALL 14.62 20.83 5.17 4.89 15.82 14.45 13.63 57.12
Lung 3.58 9.75 2.86 5.40 21.55 8.71 12.91 64.00
Arcene 16.00 33.82 10.29 73.10 43.26 30.63 105.12 156.50
Orlraws10P 12.00 5.39 4.7 5.48 11.99 3.71 15.24 122.00
Pixraw10P 12.00 8.09 5.11 132.25 7.34 7.39 21.38 79.79
WarpPIE100 47.00 3.09 5.94 29.10 14.48 3.71 34.74 105.00
Lymphoma 4.09 15.12 7.42 8.60 27.90 18.57 46.05 266.30
COIL20 250.20 5.18 7.97 161.50 19.05 4.87 54.32 98.00
Colon 2.84 4.6 3.48 6.05 26.48 2.95 14.55 92.00
GIL-85 20.00 32.61 7.7 14.60 21.06 16.42 44.58 81.12
GILMO 4.12 15.99 5.43 8.80 23.92 12.71 57.47 112.20
SMK 4.22 4.37 5.11 12.29 18.89 5.09 23.12 264.30
Carcinom 27.00 41.46 13.65 39.46 38.54 29.78 109.41 106.60

TABLE VI
AVERAGE NUMBER OF SELECTED FEATURES FROM SEVEN SUPERVISED SFS METHODS AND THE OUFSDFC FRAMEWORK .

Figure 6, the change in chunk size does not cause a significant
performance variation on the OUFSDFC method in terms of
the Acc and Fmac when the KNN classifier is used as the
benchmark classifier. For the decision tree classifier, similar
observations can be obtained from Figure 6. According to
these observations, it demonstrates that the performance of the
OUFSDFC approach is not sensitive to the change in chunk
size.

b) Execution time analysis.: As described in Section
IV-B, our experiments are conducted on an Intel Xeon (R) ma-
chine with 64GB RAM operating on Microsoft Windows 10.
We obtained the execution time of the OUFSDFC method for
each feature chunk in all benchmark datasets, and the results
are presented in Figure 7. From Figure 7, OUFSDFC takes a
longer time to handle features in the discrete feature streams
such as Lymphoma and Colon datasets. According to Section
III-C, the sample size imposes additional time complexity in
the feature similarity evaluation procedure for the discrete
feature streams. Consequently, OUFSDFC requires more time
to perform the feature similarity evaluation operation in the
discrete feature streams. For the continuous feature streams,
the maximum execution time of the proposed OUFSDFC
technique is less than one second for a single feature chunk.

H. Time complexity comparison

In Table V, the time complexity comparison between the
OUFSDFC method and seven supervised SFS methods is
provided. As shown in Table V, it is obvious that OUFSDFC
has less time complexity than OFS-Density and OFS-A3M
methods. For the remaining five baseline methods, OUFSDFC
requires more time complexity. Overall, OUFSDFC achieves
comparable performance with OFS-Density and OFS-A3M
methods with less time complexity. At the same time, although
OUFSDFC takes more time complexity than the remaining
five supervised SFS methods, it presents better performance
and does not require any label information.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we developed an unsupervised online group-
level SFS framework using a dynamic density-based feature
stream clustering procedure (OUFSDFC) to handle the label
scarcity for both continuous and discrete feature streams. To

decrease the redundancy among features, OUFSDFC performs
feature stream clustering analysis on both continuous and
discrete feature streams using the developed DFPSL-clustering
method. An unsupervised online feature selection strategy
is developed to ensure the feature relevance maximization
and redundancy minimization using the feature cluster sum-
mary. OUFSDFC is a generalized SFS framework that is
independent of any density-based feature stream clustering
methods. Experimental results and comparison studies proved
that the OUFSDFC method achieves statistically better or
comparable performance with the state-of-the-art supervised
SFS approaches without using label information.

Current SFS approaches, as well as the proposed framework,
assume the number of classes is fixed over time, and the occur-
rence of novel classes known as concept evolution is ignored.
In the future, we will extend the OUFSDFC framework to
address the concept evolution in feature stream analysis.
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(c) Accuracy curves using decision tree.
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APPENDIX

In this section, we provide detailed mathematical derivations
for Equation 1 to approximate the density distribution of the
feature stream. The derivations are outlined as follows:

Proof: Assume that the distance from the current
feature f i

G t
in Gt to the rest of the features in the feature

stream follows a Laplacian distribution, then the density value
of the feature distribution f i

G t
can be expressed as:

Df i
G t

=
|F t |X

p=1
e− ∥f i

t −f p
t ∥

β t

γt

, (3)

where Table I provides the definitions of all the necessary
parameters. The norm here refers to the feature dissimilarity
between an incoming feature f i

G t
and another feature f p

t in
Ft .

The parameter |Ft| is the total number of the previous and
current features that can be decomposed by the sum of the
number of the previous features |Ft−1| and the number of
new arriving features m, hence: |Ft−1| + m = |F t|. Also,
the number of the old features can be further decomposed by
the sum of features in the previous feature clusters: |Ft−1| =P |F C0 |

k=1 |F Ck
0 |. The density value of the new sample f i

G t
can

be rewritten as the sum of the densities from the previous
features and new features:

Df i
G t

=


 |F C0 |X

k=1

|F C k
0 |X

l=1
e− dil

β t
γt

+
mX

j=1
e−

df ij
β t

γt

 , (4)

Fig. 8. The historical feature instance f l
k,0 in the previous cluster k and a

new feature instance f i
G t

.

According to triangular inequality from △(f i
G t

, f l
k,0, F Ck

0 ),
the following relationship holds

dil ≤ dik + dlk , (5)

such that
|F C k

0 |X

l=1
e− dil

β t
γt

≥
|F C k

0 |X

l=1
e− dlk

β t
γt

× e− dik
β t

γt
. (6)

Since dik is constant for all features in the cluster F Ck
0 ,

Equation (6) can be rewritten as

|F C k
0 |X

l=1
e− dil

β t ≥ e− dik
β t ×

|F C k
0 |X

l=1
e− dlk

βt . (7)

When a new cluster appears, the variance of the data stream
will change while the following relationship holds:

βt
γt

= βt−1
γt−1

, (8)

such that
|F C k

0 |X

l=1
e− dlk

β t
γt

=
|F C k

0 |X

l=1
e− dlk

β t−1
γt−1

. (9)

Let Dk
0 = P |F C k

0 |
l=1 e− dlk

β t−1
γt−1

, Equation (4) can be
rewritten as

Df i
G t

≥
|F C0 |X

k=1
e− dik

βt
γt

× Dk
0 +

mX

j=1
e−

df ij
β t

γt

. (10)

Based on above Equation (10), an estimated lower boundary
of the density value of feature f i

G t
is defined as

D̂f i
G t

=
|F C0 |X

k=1
e− dik

βt
γt

× Dk
0 +

mX

j=1
e−

df ij
β t

γt

, (11)

where Df i
G t

≥ D̂f i
G t

.
Therefore, Equation (1) is derived as a recursive lower

bound of the Laplacian density function. Based on this re-
cursive lower bound, the developed DFPSL-clustering can
continuously estimate the density values of an incoming
feature chunk using the historical cluster information. Instead
of storing all historical features from the feature stream,
it reduces the memory space by keeping only the cluster
summary from the feature stream.
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