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Abstract

We prove that the moduli space of rational curves with cyclic action, constructed in our previous work, is realizable
as a wonderful compactification of the complement of a hyperplane arrangement in a product of projective spaces.
By proving a general result on such wonderful compactifications, we conclude that this moduli space is Chow-
equivalent to an explicit toric variety (whose fan can be understood as a tropical version of the moduli space), from
which a computation of its Chow ring follows.
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2 E. Clader et al.

1. Introduction

The moduli space Z; of rational curves with cyclic action was constructed in our previous work
[CDH+22] as a generalization of Losev and Manin’s moduli space of rational curves with weighted
marked points. In particular, the Losev—Manin space L, introduced in [LMO00], is a toric_variety
whose associated polytope is the permutohedron IT,,, and the torus-invariant subvarieties of £, have
a modular interpretation as ‘boundary strata’, so one obtains an inclusion- and dimension-preserving
bijection between the boundary strata of £,, and the faces of IT,,. This work was generalized by Batyrev

and Blume, who in [BB11] constructed a toric moduli space Zi of rational curves with involution
whose boundary strata are encoded by the faces of the signed permutohedron. Generalizing the story
further, the moduli space Z; parameterizes certain rational curves with an automorphism of order r and
weighted orbits. Although Z; is not toric when r > 2, its boundary strata are nevertheless encoded by
a polyhedral object: not a polytope, in this case, but a polytopal complex. In this way, Z; appears to
occupy an intriguing middle ground between toric varieties and more general moduli spaces of rational
curves.

The goal of the current work is to realize Z,: as a wonderful compactification of the comple-
ment of a particular arrangement of hyperplanes in (P')" and, in doing so, to give a combinatorial
description of its Chow ring. Wonderful compactifications were introduced by De Concini and Pro-
cesi in [DCP95] as a way to compactify the complement of an arrangement of hyperplanes in P" so
that much of the geometry of the compactification is encoded in the combinatorics of the original
hyperplane arrangement. The geometry of these spaces has been used to resolve long-standing conjec-
tures in combinatorics like the log-concavity of characteristic polynomials of matroids [AHK 18] and
the Dowling—Wilson top-heavy conjecture [BHM+20]. On the other hand, they have also provided a
valuable new perspective in geometry; perhaps the most relevant example for the present work is the
Deligne-Mumford—Knudsen compactification /\_/lo,n, which can be realized as a wonderful compacti-
fication of the braid arrangement complement in P"~3, from which one obtains an elegant presentation
of its Chow ring.

One way in which to understand the Chow ring in this setting, as shown by Feichtner and Yuzvinsky
in [FY04], is as the Chow ring of the toric variety of a fan X that can be combinatorially associated to
a hyperplane arrangement in projective space together with a ‘building set’ G. In particular, the data of
G specifies a wonderful compactification Yg of the arrangement complement and Feichtner—Yuzvinsky
prove that the Chow ring of Y ¢ is isomorphic to that of the toric variety X5, .

The construction of wonderful compactifications was generalized by Li Li in [Li09b] to complements
of arrangements of subvarieties in a smooth variety, but some of their combinatorial nature is lost in
this generality. In particular, the geometry of a wonderful compactification ?g is not determined merely
by the intersection combinatorics of the subvarieties in the arrangement — which is what determines
Y — but by the particular geometry of the subvarieties themselves. Thus, one should not expect the
Chow ring of Y ¢ to be isomorphic to that of a toric variety in general.

The case Z; of interest for our work is a wonderful compactification of a hyperplane arrangement not
in a projective space (as in De Concini—Procesi’s original work) but in a product of projective spaces.
Specifically, it is a ‘product arrangement’ in the sense that the hyperplanes are pulled back via projection
to the individual projective space factors. We begin by proving that, for arrangements of this form, the
Chow ring of the wonderful compactification is still combinatorial: One can associate a fan X¢ (defined
in Definition 2.5 below) generalizing the fan of Feichtner—Yuzvinsky, and the resulting toric variety has
an isomorphic Chow ring to ?g.

Theorem 2.7 (See Section 2.3 for precise statement). Let A be a product arrangement in PX1 x - - - x Pkn,
let G be a building set for its intersection lattice and let g be the associated nested set fan. Then there
is a Chow-equivalence

A*(Yg) = A*(Xs,).
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Equipped with this result, we specifically consider the arrangement of hyperplanes

ﬁlf ={(p1,-...pn) € PY" | p; = ¢/}

foreachi € {1,2,...,n}andeach j € {0,1,...,r—1}, where ¢ is a fixed rth root of unity. We prove in
Theorem 3.4 that Z:l is the wonderful compactification of this arrangement with its maximal building
set. Denoting the associated fan by X/, we obtain by Theorem 2.7 an explicit computation of the Chow
ring A* (Zr ).

To describe this computat10n we first recall from [CDH+22] that there is a special codimension-
1 subvariety Dy C L’ — specifically, a boundary divisor — associated to any ‘Z,-decorated subset
of [n]’, which is a pair I = (I,a) in which I € {1,2,...,n}is a nonempty set and a is a function
I — {0,1,...,r — 1}. There is a partial ordering on decorated subsets given by

(I,a) £ (J,b) ifand only if I C J and a(i) = b(i) foralli € I.

With this notation, the presentation of A*(Z:l) is as follows.

Theorem 4.10. The Chow ring of Z:l is generated by the boundary divisors Dy for each (nonempty)
Z,-decorated subset I of {1, ..., n}, with relations given by

o D;-Df:OunlesseitherTS JorJ < 7
o foralli € {1,2,...,n}andalla,b € {0,1,...,r -1},

Z D;= Z D;.

Is.t.
iel, a(i)=a zeI a(z) b

We conclude the paper by giving two other interpretations of the fan X, which are interesting in
their own right. First, analogously to the case of /Vg,n, we show in Proposition 5.2 that this fan can be
identified with a moduli space L;,"" of ‘tropical (r, n)-curves’. And second, analogously to the way
in which the permutohedron IT,, is the normal polytope of the fan of Losev—Manin space £,,, we show in
Proposition 5.4 that the polytopal complex A}, constructed in [CDH+22] is a normal complex of X, in
the sense developed by Nathanson—Ross in [NR21]. This gives a more geometric interpretation of the
correspondence between the boundary strata of Z; and the faces of A}, that was proven combinatorially
in our previous work.

Leveraging the above connection to tropical geometry, we hope in future work to use tropical inter-
section theory on L™ to study intersection numbers on Z,, (along the lines of [Kat12, KM09, HL22]).
We may also study the reduced rational cohomology of the locus of tropical curves with total edge length
1in L}" to understand the mixed Hodge structure of £, in the sense of [Del71, Del74] and along
the lines of [CGP21, KLSY20]. This is made possible by the observation that the boundary Z; \ L] is
a divisor with simple normal crossings [CDH+22, Observation 3.6].

Remark 1.1. Soon after this manuscript’s appearance, Eur Fink, Larson and Spink studied the type-

B permutohedral toric variety Xp, , which is precisely £ 1> in relation to delta-matroids [EFLS22].
The central combinatorial construction there is the B,, permutohedral fan Xp , which coincides with
the permutohedral fan X2 constructed in the present paper. Among many things, the authors give an
exceptional isomorphism ¢8: K(Xp,) — A(Xp,) which yields a Hirzebruch-Riemann—-Roch-type
theorem. Their results and techniques, together with the constructions in the present paper, will be
valuable hints for the potential developments for general Z:l discussed in Remark 4.12.
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4 E. Clader et al.

Plan of the paper

We begin, in Section 2, by reviewing the necessary background on wonderful compactifications and
proving Theorem 2.7; this section is entirely self-contained, so it can be read independently by a reader
interested primarily in wonderful compactifications. In Section 3, we recall the definition of E and
we prove that it is indeed a wonderful compactification of the arrangement in (P')" described above.
Section 4 combines these results to prove the presentation of the Chow ring in Theorem 4.10. Finally,
Section 5 describes the connections both to tropical (r, n)-curves and normal complexes.

2. Wonderful compactifications

Wonderful compactifications were introduced by De Concini and Procesi [DCP95] in the context of
linear subvarieties of a projective space. Roughly speaking, given a collection of linear subvarieties
in P", a wonderful compactification is a way of replacing P" by a different ambient variety in such
a way that the complement of the linear subvarieties is preserved but the subvarieties themselves are
replaced by a divisor with normal crossings. The construction of wonderful compactifications was later
generalized by Li Li [Li09b] to more general collections of subvarieties in a smooth variety. In this
section, we briefly review the necessary definitions for the current work, but we refer the reader to many
more in-depth references — including [DCP95, Denl4, Fei05, FY04, Li09b] — for details. Throughout,
we consider all varieties over C.

2.1. Wonderful compactifications of arrangements of subvarieties

Let Y be a smooth variety. An arrangement of subvarieties of Y is a finite collection of smooth
subvarieties and that pairwise intersect ‘cleanly’ (see [Li09b, Definition 2.1]). If

A={X1,....X,}

is an arrangement, we denote by £ 4 the intersection lattice of A; this is the poset of all intersections of
subsets of A, ordered by reverse inclusion. In particular, the unique minimal element of £ 4 is 0 = Y,
which we view as the empty intersection, and the unique maximal element is 1 = (. By the complement
of A, we mean

° ZZY\OX,'.
i=1

Some of the subvarieties in .4 may intersect nontransversally, and the goal of a wonderful compact-
ification of Y° is to modify the ambient variety Y in such a way that the arrangement is replaced by
a simple normal crossings divisor. It is not surprising that the way to do so is to perform an iterated
blowup. While one can obtain a wonderful compactification by blowing up at every element of £ 4 (in
a carefully prescribed order explained below), some subsets of .4 may already intersect transversally,
so one can often obtain a compactification with similar properties by blowing up only at a subset of
L 4. The particular subsets that give rise to wonderful compactifications are known as building sets;
for the precise definition, see [Li09b, Definition 2.2]. The most important example of a building set for
the current work is the maximal building set G := £ 4 \ {0}, which corresponds to blowing up every
intersection of elements of .A. _

In general, a choice of a building set G € £ 4 \ {0} gives rise to a wonderful compactification
Y of Y° in the following way. First, choose an ordering of the elements of G that is compatible with
inclusion; that is, let

g:{Gl’~--7GN}
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in whichi < j if G; € G ;. Then, perform the following sequence of blowups:

o Blow up Y along Gy,
o Blow up the result along the proper transform of G,
o Blow up the result along the proper transform of G3,

and so on. Then, as shown in [Li09b, Proposition 2.13], the wonderful compactificaiton ?g is the end
result after blowing up along the proper transform of G .
Since the blowups that form Y ¢ are only at intersections of the subvarieties X;, there is an inclusion

YOH?g,

and we refer to the complement Yg \ Y° as the boundary of the wonderful compactification. Among
the ‘wonderful’ properties of ?g is the extent to which the structure of this boundary is encoded in the
combinatorics of G. In particular, the boundary is a union of divisors D¢ for each nonempty G € G,
and the intersection D7, N --- N D, is nonempty if and only if {7}, ..., T, } forms a G-nested set. The
definition of G-nested set is purely combinatorial and can be stated in a number of equivalent ways (see,
for example, [Li09b, Definition 2.3] or [Fei05, Definition 3.2]). In the case where G is the maximal
building set, a G-nested set is precisely a chain in £ 4 \ {6} as a poset.

2.2. Wonderful compactifications of hyperplane arrangements

In their original work introducing wonderful compactifications [DCP95], De Concini and Procesi
proved that if A is an arrangement of hyperplanes in projective space, then the cohomology (which is
isomorphic to the Chow ring, for example, by [Kee92]) of a wonderful compactification can be read
off combinatorially from the lattice £ 4 and its building set. Feichtner and Yuzvinsky reinterpreted this
calculation in [FY04], constructing a fan Xg associated to any lattice £ with building set G and proving
that, in the case where L is the intersection lattice of a hyperplane arrangement in projective space, the
Chow ring of the toric variety X5, coincides with De Concini—Procesi’s calculation of the Chow ring
of the wonderful compactification Y¢ of the complement of A. In this section, we review the parts of
this story that are necessary for what follows.

Let A= {H",...,H"'} be a collection of hyperplanes in P*. We assume in what follows that A is
essential, meaning that

r—1
ﬂ H =0.
i=0
In this case, there is an inclusion
i Pk s prl

under which HY, . .., H"~! map to the coordinate hyperplanes; namely, if H = V( f;) for linear polyno-
mials f; € C[xo,...,xx], then

i(p)="[fHp) : - frica(p]

It follows that i maps the complement

Y°=Pk\UH"

i=0
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6 E. Clader et al.

of A into the complement of the coordinate hyperplanes in P"~! or, in other words into the algebraic torus
Tr—l — (C*)r—l

By identifying Y° with its image under 7, then, we can view Y° as a very affine variety — that is, a closed
subvariety of a torus.
For any building set G € £ 4 \ {0}, one defines the nested set fan g of (L 4, G) as follows. First, let

Vi :=R"/R,
where the quotient is by the diagonal, and denote the images of the standard basis vectors by e?, . .., e" .
For each G € G, define
VG = Z el eV A.

HJI2G

Then X is defined as the fan in V4 whose cones are
os :=Cone{vg |G €S} CVy

for each G-nested set S C G.
Note that the toric variety X, has T7~1 as its torus, so in particular, we have

Y°CT ' C Xy,

By reinterpreting X¢ in terms of a stellar subdivision procedure as in [FY04, Section 6] (which
corresponds to regarding X, as aniterated blowup of P"~1), one sees that the wonderful compactification
7g is equal to the closure of Y*° inside of Xy,. Moreover, by [FY04, Corollary 2], the inclusion

)_/g — ng

is a Chow equivalence. This allows one to give a presentation of A*(Y) that can be read off directly
from the combinatorics of the lattice £ 4 with its building set G.

Remark 2.1. The moduli space Mo,n can be obtained as the wonderful compactification of the braid
arrangement .A,,_» (the arrangement of hyperplanes {x; = x;} C P"3 for all i # j), with an appropriate
choice of building set [DCP95, Section 4.3]. In this case, the above results lead to an elegant presentation
of the Chow ring of ./\_/l(),n, as described in [Fei05, Section 4.2]. Moreover, the nested set fan can be
interpreted in this context as the Bergman fan of a particular matroid or as the moduli space of tropical
curves. These results were generalized in [CHMR16] to all genus-zero Hassett spaces with weight
system of ‘heavy/light’ type, leading to a presentation of the Chow ring of such spaces in [KKL21].

2.3. Wonderful compactifications of product arrangements

The case of interest in the current work is the moduli space Z:L, which, as we prove below, is a wonderful
compactification of the complement of an arrangement of hyperplanes not in a single projective space
but in a product of projective spaces. Although such wonderful compactifications have been constructed
via iterated blowup (through the much more general work of Li Li described above), there is not, to our
knowledge, a construction in this setting as the closure inside of a toric variety analogous to Xy . We
prove such a presentation in this subsection, and as a result, we obtain an identification of the Chow
ring of such wonderful compactifications with the Chow ring of a toric variety that can be read off
combinatorially from the intersection lattice and its building set.
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Here, and in what follows, for positive integers n and r we use the notation
[7] :={1,2,...,n}
and
z,:={0,1,2,...,r - 1}.

We choose these sets to index the hyperplanes in a product arrangement for consistency with the
=T
application to £,, that follows.
For each i € [n], fix positive integers r; and k; and an essential hyperplane arrangement

Ai={H, ... H™}. (1)

1

inside PXi. Let Ye c P¥ denote the complement of the arrangement .4;. Then the product
Yo=Yy X x Yy C PR X x PRe
is also the complement of a hypersurface arrangement: Namely, it is the complement of
A={H]|ien], jeZ,},
in which

= i
H{ =p; (H!)

L

is the pullback of H/ C PX under the projection p; : P¥1 x - x Pk« — P to the ith factor. We refer
to A as the product arrangement induced by Ay, ..., 4,.

Remark 2.2. The variety Y° is very affine since the embeddings ¥; — T"i~! described in Section 2.2
combine to give

Yoo T I x.ooxT» =17, )

where r :=ry +- - - +r, —n. Moreover, Y° is linear in the sense of [Gro15] (that is, it is cut out by linear
equations in coordinates on T") because each factor ¥ — T"i~! is linear. This observation plays a key
role in the proof of Theorem 2.7 below.

In fact, for Theorem 2.7, it is enough to know that Y° is quasilinear in the sense of [Sch21]. Schock
introduced quasilinear varieties in [Sch21] as a generalization of linear varieties that retains the key
property that, if Y° < T is quasilinear and Y < Xy is a ‘tropical compactification’ of Y°, then ¥ is
Chow-equivalent to Xs. Given that [Sch21, Theorem 6.4] shows that products of quasilinear varieties
are quasilinear, it is immediate from equation (2) that Y° is quasilinear in our case.

Example 2.3. A simple but illustrative example, which is relevant for the application to Z; below, is to
take n = 2 and set

A=Ay :={[1:1], [1:-1]} cP.
Then the product arrangement A consists of four hyperplanes in P! x P!:
A={H), H|, H), H}} 3)
= {{[1 D1 x P {[1: =10 x PY P {[1: 1]}, P x{[1: —1]}} c P! xP.
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8 E. Clader et al.

In this case, the embeddings iy : ¥} — T! and i, : Yy — T! are equal and are in fact isomorphisms;
indeed, they both come from the embedding (in fact, change of coordinates) i; =i : P! - p! given by

[x:y] > [x—y:x+Y],
which sends the hyperplanes in .A; = A; to the coordinate hyperplanes in P!. Thus, the product
i=ipxiy: P'xP' > T x T
sends Y° isomorphically to T! x T! = T2.

The lattice £.4 \ {1} is the product of the lattices £ A\ {1;} with the product order, where 1; denotes
the maximal element 0 in the intersection lattice of the arrangement A;. From this, one finds two
combinatorial consequences that are important in what follows.

Lemma 2.4. Fix building sets Gy, ..., G, for the arrangements Ay, ..., A, respectively, and assume
that 1; € G; for at least one i. For each i, view G; as a subset of L 4 by identifying X € G; with
pi‘1 (X) € L 4. Then we have the following:

(a) The union U;‘:l G; is a building set for L 4.
(b) If S; C G; for each i, then

n n
S; is Gi-nested for eachi < U S;is U G; |-nested.
j=1 j=1

Proof. (a) By the definition of building sets (see, for example, [FY04, Definition 1]), we must prove
that, for any X € L 4, there is an isomorphism of posets

[0, x] = [ [0, Z]. )

Zemax((glu---ugn)ﬁ[ﬁ’x])

If X = 1, then the condition that 1; € G; ensures that both sides of equation (4) are the full lattice £ 4.
Suppose, then, that X # 1. In this case under the isomorphism of £ 4 \ {1} with the product of the
lattices £ 4, \ {1}, we have X =[], X; for X; € L 4,. Thus,

ﬁ[@, Xi] ﬂ [] 102zl
i=1

i=1 7; emax(G;n[0,X;])
where the last isomorphism follows from the fact that each G; is a building set. It is straightforward to
check that this is equivalent to equation (4).
(b) We denote

n

0, ﬂx,-

i=1

[0, X] =

1R

13

S =
J

S;,

n
=1

and we use the characterization of nested sets given in [DCP95, Section 2.4, Lemma (1)]: A subset T of

a building set ‘H is H-nested if, given pairwise incomparable elements X, ..., X; € T in which t > 2,
the join X; V - -+ V X; is not in H.
Suppose that each S; is G;-nested. To see that S is ( ;‘1:1 Qj)-nested, let X1,...,X; € S be pairwise

incomparable elements with ¢ > 2. (If no such elements exist, then S is automatically nested.) If at least
two of these elements belong to different factors S;, then their join is not in U;le G, so we are done.
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Thus, all that remains is the possibility that X1, ..., X; € S; for some 7, in which case the fact that S; is
G;-nested implies that

Xiv--vX ¢G,
and hence, this join is not in U;le g;.
Conversely, suppose that S is ( ?:1 g j)—nested. To see that S; is G;-nested foreach i, let X1, ..., X; €

S; be pairwise incomparable elements with r > 2. Since S is (U;f:l g j)-nested, we have

n
Xivevxag| g,
j=1

so in particular, this join is not in G;. [}

We are now prepared to define ‘nested set fans’ in the product setting by direct analogy to the situation
described in Section 2.2.

Definition 2.5. Let A1, ..., A, be hyperplane arrangements as in equation (1), let .4 be the induced
product arrangement and let V4 be the vector space

Vi=R"/Rx---xR"/R,

where each quotient is by the diagonal and we denote the images of the standard basis vectors in the ith
factor by e?, e, e;"_l. For any G € L 4 \ {0}, define

VG = Z el eVy.

H2G

Then, given any building set G C £ 4 \ {0}, the nested set fan for (£ 4, G) is the fan X¢ in V4 whose
cones are

os :=Cone{vg |G €S} CVy 5)

for each G-nested set S C G.

Example 2.6. In the case of Example 2.3, one hasn =2 and r; = rp = 2, so
Vi=R*RxR?*/R = R%

Let G be the maximal building set so that G-nested sets are precisely chains in £4 \ {0} as a poset — in
other words, nested collections of intersections of the sets H ; listed in equation (3). The nested set fan
Y¢ in this example is depicted in Figure 4. In particular, the shaded cone is

0 1,0
Cone(e;, e +e,),

which is the cone o for the G-nested set S = {ﬁo, Itl} N ﬁg}

The only difference between Definition 2.5 and Feichtner—Yuzvinksy’s nested set fan described in
Section 2.2 is the quotients by R in V 4 corresponding to each projective space factor. The point, however,
is that these quotients do not affect the key step in Feichtner—Yuzvinsky’s argument that Xy, is Chow-
equivalent to the wonderful compactification Yg, which is a reexpression of Zg in terms of a stellar
subdivision procedure; see [F'Y04, Theorem 4] and Lemma 2.8 below.
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10 E. Clader et al.

In particular, we have the following analogue for product arrangements of the known results for
hyperplane arrangements in projective space.

Theorem 2.7. Let Ay, ..., A, be essential hyperplane arrangements in respective projective spaces
Pk, ... Pkn Jer A be the induced product arrangement in PRt x oo x PR and let YO C PR x - - . Pkn
be the complement of A. Let G be any building set for L 4, and let Xg be the nested set fan for (L 4, G).
Then there is an embedding

YO‘—>X29

such that the wonderful compactification Y g is the closure of Y° in Xs. Moreover, the inclusion of Yg
into Xy, is a Chow equivalence:

A*(Yg) = A*(Xs,).

In order to prove this theorem, we first observe that a building set G for £ 4 induces building sets
Gi,...,Gnfor L 4,,...,L4,,respectively:

Gii={XeLa|p;'(X)eG}.

Thus, one can define a nested set fan X, for each i, which is a fan in R" /R. While X is not equal to the
product g, X- - -XXg, , itis equal to a stellar subdivision of that product, as the following lemma verifies.

Lemma 2.8. Let A be a product arrangement induced by arrangements Ay, . .., Ay, let G be a building
set for L 4 and let Gy, ..., G, be the induced building sets for L 4,,...,L,. Viewing each G; as a
subset of G by identifying X € G; with pi_1 (X) € G, write

g\ g =1cr....cn,

i=1
where the elements are ordered in such a way thati < j whenever C; C Cj. Then Xg is obtained from

Xg, X -+ X Xg, by stellar subdivision at the vector vc,, then the vector vc,, and so on.

Proof. Tt suffices to assume that leg (and therefore ii € G; for each i) because, if G = 1 then
vg =0 € V4, soincluding 1 in G does not affect the nested set fan. Thus, in view of Lemma 2.4(a), we
see that Ul'f:] G; is a building set for L 4. It therefore induces a nested set fan, and we claim that

Zgl XX Zgn = ZQ1U~~~Ugn' 6)

Indeed, the cones of Xg,u...ug, are, by definition, of the form os for each (U:’=1 G;)-nested set S. By
Lemma 2.4(b), these are precisely the cones

0S§u--uS, =08 X+ X0,

in which §; € G; is G;-nested for each i, which are the cones of Xg, X --- X Zg, .

On the other hand, by [FMO05, Theorem 4.2], the inclusion of building sets (Uf’=1 gi) C G implies
that X is obtained from Zg,y...ug, by the sequence of stellar subdivision as claimed. Thus, by equation
(6), the proof is complete. O

Example 2.9. As an illustration of Lemma 2.8, let A again be the product arrangement of Examples 2.3
and 2.6, and let G be its maximal building set. Explicitly, G consists of the four hyperplanes H{ listed

in equation (3) as well as the intersections ﬁ{ N ﬁf for all j, k € {0, 1}, whereas

Gi={H), HI}={[1:1],[1:-1]},
Go={HY, Hy} ={[1:1],[1:-1]}.
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One has
Va, =Va, =R*/R =R,

and Xg, = Xg, is the fan in this vector space consisting of two rays pointing in opposite directions
together with the origin. Explicitly, the positive-dimensional cones in Xg, are

{Cone(e(l)), Cone(e%)},
and the positive-dimensional cones in Xg, are
{Cone(eg), Cone(eé)},
from which one sees that the product g, X Xg, has four two-dimensional cones
Cone(e?, eg), Cone(e?, eé), Cone(e%, eg), Cone(e]l, eé).

The fan 2g, which we considered in Example 2.6, is obtained from this product by stellar subdivision
along the four vectors e{ + e’z‘ corresponding to the four elements H{ N Hé‘ of G\ (G1 UG,). See Figure 5
for an illustration, though note that the fan X5, = Xg, is denoted by X, in that figure, and the fan X is

denoted by X2, for consistency with the general notation for Z:l established below.

The key upshot of Lemma 2.8 is the following. By [FY04, Theorem 4], each of the fans Xg, can be
obtained from the fan for P"i~! by a two-step process: First, one performs successive stellar subdivision
along the vectors vz for Z € G;, which produces a fan in which all cones have the form o for § C G;,
and second, one removes the open cones os for which S is not G;-nested. Thus, Lemma 2.8 says that
¥ can similarly be obtained from the fan for P"1~! x - - - x P"»~! by first performing successive stellar
subdivisions along the vectors v for all G € G, and then removing the open cones os for which S is
not (LU, Gi)-nested.

Equipped with these observations, we are ready for the proof of Theorem 2.7.

Proof of Theorem 2.7. The fact that there is an embedding Y° < Xy is immediate: By Remark 2.2,
we have an embedding of Y° into the torus T"1~! XX T»~!, which is the torus for the toric variety g.
To see that the closure of Y° in Xy, is indeed Y¢g, write

G={W,....Wn},

again ordered in such a way that i < j whenever W; C W;. Then Li Li’s construction of wonderful
compactifications in [Li09b, Definition 2.12] shows that Y is an iterated blowup of PXt x - - . x Pk»
along Wy, ..., Wys. Now, let

PPR X PR s Pl ]

be the product of the embeddings described in Section 2.2, under which the elements of .A are mapped
to torus-invariant strata. In particular, let Zi, ..., Zys be torus-invariant strata such that il (Z;) =W;
for each j. Then, by the blowup closure lemma (see [Vak17, Lemma 22.2.6]), one can view ?g as the
closure of the image of

M
PR x PR\ )Wy
i=1
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in the iterated blowup of Pri-lx...xpra-l along Zi, ..., Zy. This is the same as the closure of the
image of Y° in this iterated blowup since replacing the above complement by Y° only adds points that
avoid Z1,...,Zpy.

The iterated blowup of Pri-lx...xprnl along Z1,...,Zy is a toric variety whose fan has cones

of the form o5 for S C G, and, by the discussion immediately following the proof of Lemma 2.8 above,
one can obtain Xy, from this toric variety by removing all of the open strata corresponding to cones os
in which S is not ( :’:] g,-)-nested. Since U:‘:l G; C G, such sets are also not G-nested. It follows that
removing these cones does not affect the closure of Y° because the fact that the boundary strata of Yg
are indexed by G-nested sets (see [DCP95, Section 3.2]) means that it avoids the blowups corresponding
to nonnested sets. Thus, ?g is indeed the closure of Y° in Xy,,.

Finally, to see that the inclusion ?g — Xs, is a Chow equivalence, we recall from Remark 2.2 that
Y° C T is a linear variety, which implies by [Gro15, Theorem 1.1] that such a Chow equivalence holds
solongasYg C Xs,, is a tropical compactification, meaning that |Xg| = Trop(Y°) and the multiplication
map T" xYg — Xy, is faithfully flat. This is indeed the case: Each Ygi is a tropical compactification
and, by Lemma 2.8, there is a proper toric morphism

YXg = 2g, X+ XZg,,

so the fact that ?g is a tropical compactification follows from [Tev07, Proposition 2.5]. O

3. The moduli space of curves with cyclic action

In this section, we review the definition and necessary properties of the moduli space Z; introduced
in [CDH+22], and we prove that it is a wonderful compactification of a product arrangement in (P!)”.
Throughout, we assume that r > 2.

3.1. Background on Z:l

The objects parameterized by Z; are stable (r, n)-curves. The underlying curve C in such an object
is an ‘r-pinwheel curve’, which is a rational curve consisting of a central projective line from which
r equal-length chains of projective lines (‘spokes’) emanate. This curve is equipped with an order-r
automorphism o, as well as marked points as follows:

o two distinct fixed points x* and x~ of ; _
o nlabeled r-tuples (z9,...,2]7"), ..., (20, ..., 2,~") of points z/ € C satisfying

O'(Z{) — Z{+1 mod r
for each i and j, where we allow z{ = z{ and z{ = x*;
o an additional labeled r-tuple (y°,...,y" ") satisfying

O'(yf) — y£’+1 mod r

for each ¢, whose elements are distinct from one another as well as from x* and z{ .

These marked points are subject to a stability condition, the details of which can be found in [CDH+22,
Section 2.1]. We refer to each tuple (2%, ...,z ") as a ‘light orbit’ of o~ and the tuple (y°,...,y""") as
the ‘heavy orbit’. See Figure 1 for an example of a stable (r, n)-curve.

In [CDH+22, Theorem 3.5], a fine moduli space Z; for stable (r,n)-curves is constructed, whose
B-points correspond to families of stable (7, n)-curves over the base scheme B as defined in [CDH+22,
Definition 2.5]. More precisely, there is a connected component Z;({ ) for any choice of primitive rth
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Figure 1. A stable (3,4)-curve, where each circle represents a P' component and o is the rotational
automorphism. Not pictured are the marked points x* and x~, which are the two fixed points of o and
must both lie on the central component.

root of unity ¢, all of which are isomorphic to one another, and the moduli space Z; is the disjoint union

of these connected components. In what follows, we will assume that ¢ is fixed and we will therefore
—r —r

abuse notation by referring to the space £,, when we in fact mean a single component £,,({).

3.2. An alternative description of the moduli space

The construction of Z; in [CDH+22] is as a subvariety of a ‘Hassett space’ — that is, a moduli
space of stable rational curves with weighted marked points. Roughly speaking, for any weight vector
W= (wi,...,w,) € (QN (0, 1])" such that }, w; > 2, the associated genus-zero Hassett space M y;
is a moduli space of rational curves equipped with n marked points, in which a subset of these marked
points is allowed to coincide as long as the sum of their weights is at most one. The stability condition
on such curves is that, for each irreducible component with n half-nodes and marked points in Iy C [n],

one has
ng + Z wi > 2.

i€l

Hassett constructed these moduli spaces in [Has03], and moreover, he proved that if w l’ < w; for each
i, then there is a birational weight-reduction morphism

M(),w - Mo‘w/

whose exceptional locus can be expressed explicitly as a union of boundary divisors.
In addition to the inclusion into a Hassett space that arises from the construction of the moduli

space, L’:l carries another key morphism to a Hassett space, which is the quotient map C +— C/o. The

— 1 —1 J—
codomain of this map is the space M,, introduced in [CDH+22, Section 3.1]. Namely, M, = Mj.w,
where the weight vector is

1
W= §+s,§+s,l,s,...,s
———
n copies

forany 0 < & < 1/(2n +2). A sample element of /V:, — which should be viewed as a single spoke of a
curve in E; — is shown in Figure 2.
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—1
Figure 2. A point of M.

—1
Remark 3.1. As observed in [CDH+22, Remark 8.1], the space M,, can alternatively be viewed as the
result of setting » = 1 in the definition of Z;

For the purpose of realizing Z; as a wonderful compactification, we also require an analogue of the

—1 J—
space M, in which the points z; are allowed to coincide with y. Specifically, let Xo = My w, be the
Hassett space with weight vector

1
wo . =|=-+e,=-+&,1—-ne,¢e,...,e|,
2 2 —_—
n copies

where € € Qis such that 0 < & < 1/(2n + 2). Then
XO — (Pl)”

since the weights ensure that the curves parameterized by Xy consist of a single component. Because

—1
X differs from M,, only in that the weight on the marked point y is reduced, there is a weight-reduction
morphism

—1 n
c: M, — (PH".
There is also an analogous morphism
b: Z; — (PhH",
which can be viewed as the composition of the forgetful map
—=r —1
L, =M,
(C;x* {2 D) = (G {20),)0)

with the map c.

Remark 3.2. It is helpful — though not logically necessary — to view the codomain of b as itself a moduli
space, parameterizing analogous objects to those parameterized by Z:l but in which all » of the light
orbits are allowed to coincide with the heavy orbit. From this perspective, b is also a weight-reduction
morphism.

Now, let
—=r —1
p:L, > M,
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20 _
5=1

c () = (@) =1

—

2
°

Figure 3. A representation of the maps in diagram (7) in the case where r = n = 3, with the points x*
omitted for clarity. In the upper-right corner, the three coordinates in (P')3 are ¢, 1 and a point 22 that
is not a third root of unity. In the lower-right, the three coordinates are 1, 1 and (2(3) r.

be the morphism that sends an (r, n)-curve C to the quotient of C/o. Then these morphisms fit together
into a diagram

L, —2> (@Y 7

[

—1
Mn Y (Pl)n’
where g : (P')" — (P")" is the ramified cover

q(p1s---pn) = (D5 Pp)- )

See Figure 3 for a depiction of the maps in this diagram.

—1
In fact, equation (7) is Cartesian. Heuristically, this makes sense: A curve in M,, specifies a single

spoke of a curve in Z;, which determines the entire element of Z:l modulo the ordering of the points
within each orbit, while a point in (P')” determines the choice of which point within each orbit shall be
labeled z?. We make this argument precise in the following lemma.

Lemma 3.3. The diagram (7) is Cartesian.
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—1
Proof. Let B be any scheme, and suppose we are given morphisms p : B — M, and 8 : B — (P')"
such that the diagram

B J> (Pl)"

M, — (P1)"

—r
commutes. Our goal is to construct a map B — L,, or, in other words, a family of (r, n)-curves over B.

—1
First, note that from the definition of M, as a moduli space, the map p induces a family ) : C} — B
of weighted-pointed curves over B, with sections x*, z1,...,z, and y. The map ¢ o p also induces a
family of weighted-pointed curves over B, namely the family

B x P! 9)

where the sections X", Z1, . . ., Zx, y are defined by

X'(b) = (b, )

x (b) = (b,0)

y(b) = (b, 1)

zi(b) = (b, (c o p)i(b)),

—1
where (co p);(b) € P! denotes the ith coordinate of (c o p)(b) € (P')". Since the map ¢ : M,, — (P')"
is a weight-reduction morphism between Hassett spaces, it can be upgraded to the level of families,
yielding a morphism

c:cl 5 BxPp!

that takes the sections of C;. to the corresponding sections of B x P!.
Next, note that the map S also induces a family of weighted-pointed curves. Taking the perspective
of Remark 3.2, we view the family induced by £ as

B x P! , (10)
ﬂsi >xi,{z;f},{9f}

where £* = (¥*)” = X", and the remaining sections are defined by

3(b) = (b,¢")
&l (b) = (b, I Bi(b))
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for ¢, j € Z, and i € [n]; note that this is a family of curves with marked points of weights

1
—+g,—+¢&,1—-ne,...,1—ne,e,...,e|.
2 2 NN

r copies rn copies

Since both equation (9) and equation (10) are trivial families, the morphism ¢ can be upgraded to a
morphism between them: Namely, we have

g:BxP' — BxP!

given by g(b, p) = (b, p"), which fixes the sections X* and takes ¢ to y as well as 2{ to z; for each i, j,
and €.
Now, to produce the requisite family of (r, n)-curves, define C}, as the fiber product of the diagram

¢ —2 > pxp! (11)

7| |s

C} ——= BxP!
c

We claim, first, that C}, is a flat family of curves over B. It is certainly equipped with amap n : C, — B,
namely

ni=ponl=bonp.

To see that 7 is flat, note that g is étale away from B X {0, oo}, so, since étaleness is preserved by base
change, it follows that p is étale on C}, \ b~'(B x {0, c0}). In particular, then, the restriction of 7 to
this locus is the composition of an étale morphism with the flat morphism 7}, so it is flat. On the other
hand, the map ¢ is an isomorphism away from ¢! (B x {1}), so it follows that b is an isomorphism on
Cr\p~1(c7!(Bx{1})). As aresult, the restriction of 7 to this locus is the composition of an isomorphism
with the flat morphism 7z, so it is flat. Having covered C;, by open sets on which 7 is flat, we conclude
that C;, is indeed a flat family of curves over B.

In order to make C, into a family of (r, n)-curves, we must equip it with an order-» automorphism
and sections. For the first of these, let

T:BxP'— BxP!
be the automorphism o (b, p) = (b, {p). Then we have a diagram

cr b px p!

.

C} ——= BxP!,
c

and the universal property of C;, as a fiber product yields a morphism o : C;, — CJ, that is easily
confirmed to be an order-r automorphism over B.

The construction of the sections is similar; in particular, by the universal property of fiber products,
a section of C/, is determined by sections of C! and B x P!. We define x* as the section determined by
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the section x* of C} and X* of B x P!, define y’ as the section determined by y and $¢ and define z{ as
the section determined by z; and Z{. . From here, it is straightforward to check that each fiber

(' (b);x* (b)), {z] (D)}, 1y (B)})

of m is indeed a stable (r,n)-curve. Thus, we have given C}, the structure of an (r,n)-curve over B,
meaning that we have a map B — L:l. By construction, this map makes the diagram

commute, so the proof is complete. O

3.3. The moduli space as a wonderful compactification

We are now prepared to describe how Z; arises as a wonderful compactification. The ambient variety
is (P")", and in this variety, we consider the arrangement consisting of the hyperplanes

H! ={(p1,....pn) € B)" | pi =T} (12)

for each i € [n] and j € Z,. Note that this is the product arrangement induced by n copies of the
hyperplane arrangement

A= A, Y (13)

in P!, where £ is our fixed primitive rth root of unity.

Theorem 3.4. For any r > 2 and n > 0, the moduli space Z; is the wonderful compactification of the
arrangement

{ﬁlj }ie[n], JE€Zy
in (P, with maximal building set.

Proof. Our goal is to realize Z; as an iterated blowup of (P')” as described in Section 2.1, and the first

—1
key observation is that for M,,, the analogous result holds. Specifically, for any k € {0, 1,...,n}, let
Xx = Mo,w, be the Hassett space with weight vector

1 1
Wi =|-+e,-+e,1-(n-k)e,e,..., e,
2 2 —_—
n copies

where, once again, € € Q is such that 0 < & < 1/(2n + 2); this space parameterizes the same objects as

—1
M,,, but in which n — k of the light points z; are allowed to coincide with y. When £ = 0, we obtain
the space X, described in the previous section, which can be identified with (P!)”, and when k = n, we

—1
obtain X, = M,,.
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Each of the spaces X is obtained from X by blow-up along a smooth subvariety. Indeed, if we let
Zi € Xi be the locus where n — k of the points zf. coincide with y, then

o X is the blowup of Xy along Z,
o X, is the blowup of X; along the proper transform of Zi,
o Xj is the blowup of X, along the proper transform of Z,,

and so on. The proofs of these statements follow from [AGOS, Theorem 4.8], which shows that the
weight-reduction morphism cg : Xz4+1 — Xi is a blowup when the change of weights is a ‘simple’
wall-crossing (see [AGOS8, Definition 4.1]), which is true in this case.

Now, we inductively define spaces Yy with maps gy : Yy — Xi, foreachk € {0, 1,...,n}, as follows.
When k = 0, set Yy, = (P)", and set qo : Yo — Xo to be the map (P')" — (P')" given by equation (8).
Then, having defined Y and g, define Yi41 and gx+; by the following Cartesian diagram:

b
) 4k>Yk (14)

qk+1 l i‘Ik

X1 T> Xp.

Note that each gy is flat (since g = g is flat and equation (14) is Cartesian), so since blowups commute
with flat base change (see [Vak17, Exercise 24.2.P]), the fact that X, is the blowup of X along Zj
implies that Yy is the blowup of Y} along q;l (Zy).

Since Yy = (P1)* and ¥, = Z; by Lemma 3.3, we have now shown that Z; is obtained from (P')”
by the following sequence of blowups:

o blowup (P')" along 9 1(Zy), which is the union of the points where all n coordinates are equal to rth
roots of unity;

o blowup along ‘11_] (Z1), which is the proper transform of the union of the lines in (P')", where n — 1
coordinates are equal to rth roots of unity;

o blow up along g5 1(Z,), which is the proper transform of the union of the planes in (P')” where n — 2
coordinates are equal to rth roots of unity;

and so on. In other words, we are iteratively blowing up (P')” along all intersections of the hyperplanes
(12), in increasing order with respect to inclusions. This is precisely the construction of the wonderful
compactification of this arrangement (with its maximal building set), so the proof is complete. O

—1 —
Observe that by Remark 3.1, M,, can be viewed as the r = 1 case of the space E;. Thus, the first part

=1
of the above proof can be interpreted as showing that, also in this limit case, £, is an iterated blowup
of (P')"* and can be seen as a wonderful compactification for a nonessential hyperplane arrangement.

4. The Chow ring of Z:l

The presentation of Z; as a wonderful compactification via Theorem 3.4, together with the result of

Theorem 2.7, allows us to calculate A* (Z;), and the goal of this section is to carry out this computation
explicitly.

4.1. The nested set fan for Z;

By Theorem 2.7, the Chow ring of a wonderful compactification is determined by its nested set fan. Our
first goal, then, is to describe the nested set fan of the arrangement

A={HYietn),jez,

in (P')" given by equation (12), with its maximal building set G = £ 4 \ {0}.
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We require two pieces of combinatorial terminology, both of which appeared in [CDH+22].

Definition 4.1. A Z,-decorated subset of [n] is a pair I = (I,a), in which I C [n] is a nonempty
subset and a : I — Z, is any function. More generally, a Z,-decorated chain of subsets of [n] (or
simply chain, for short) is a tuple

I=(I1,....1,0),

where

and

a:ly > 7Z,.

We refer to the number ¢ as the length of the chain.

From the definition of the hyperplanes ﬁlj in equation (12), one sees that the intersection ﬁlj N ﬁlj

is empty unless j = j’, whereas all of the intersections ﬁlj N ﬁlj, with i # i’ are nonempty. It follows
that the elements of the intersection lattice £ 4 are precisely the intersections

Hy = m H;a(i)

i€l

for each decorated set = (I, a).

Remark 4.2. The negative exponents in the definition of H; may look strange at a glance, but this
convention is chosen for consistency with the indexing of boundary strata by chains in [CDH+22]; see
Remark 4.7 below.

Given that G is the maximal building set, the G-nested sets are simply chains in £4 \ {0} as a poset.
The ordering on L 4 is by reverse inclusion, and from this one sees that

Hj < Hj if and only if <7,
where the ordering on decorated sets is given by

(I,a) < (J,b) ifand only if 7 C Jand a(i) =b(i) foralli € I.

As a result, the G-nested sets are indexed by chains in the sense of Definition 4.1: Namely, if 1=
(I1,...,1¢,a) is a chain, then the corresponding G-nested set is

HESHI;S"‘SHI?.

Comparing this to Definition 2.5, we see that the nested set fan for (£ 4, G), which we denote by X/,
can be described as follows.

Definition 4.3. Let

Va=(R"/R)®",
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Figure 4. The fan Z%. The cone oy labeled in green corresponds to the chain 1 = ({2} € {1,2}, a) in
which a(1) = 1 and a(2) = 0.

and denote the images of the standard basis vectors in the ith copy of R” /R by e?, coel -1 Then X7 is
the fan in V4 with a cone

oy = Cone{z el._“(i), o, Z ei—a(i)}

i€l iely

for each chain I. See Figure 4 for an illustration.

Remark 4.4. The intersection og N ot is the cone iy where T N j is the following chain. Let
1= (I1,.... 1y, 0) and J = (J1,...,J¢,,b), and define

(Iﬁ.])i,j = {k el ﬁlj | C[(k) = b(k)}

The collection of subsets (/ N J); ; withi € [{;] and j € [£;] can be reordered to define a chain of
subsets of [n] such that the biggest one, given by (I N J);, ¢,, admits a unique map to Z, restricting a
(or, equivalently, b).

Remark 4.5. An alternative way to construct X, by Lemma 2.8, is via a stellar subdivision procedure.
Specifically, let X, be the nested set fan for the arrangement (13) in P! with its maximal building set;
this is a one-dimensional fan in R” /R with r rays spanned by the images of the standard basis vectors in
R”. Then the Cartesian product (X,)*" is a fan in V4. Recalling that V 4 has a vector

H2G

for each G € £ 4\ {0}, the content of Lemma 2.8 is that X, can be obtained from (Z,)*" by successive
stellar subdivision along the vectors vy, for each nested set  with || > 1 in inclusion-increasing order
with respect to the varieties Hy. We illustrate this construction in an example in Figure 5.

In light of the description of X}, in Definition 4.3, the torus-invariant strata in X5 can be indexed by

chains T. On the other hand, we proved in [CDH+22] that the boundary strata of Z; are also indexed by
chains, and in fact, the next section shows that the inclusion

,
,Cn — err'
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VHT
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y) \ y \ y) \
\ (4 N [ 4 N (4
~ ~
X2 2
pY) (%) x5

Figure 5. The fan X2, obtained via stellar subdivision from the Cartesian product of two copies of the fan
X. The labeled vector vy, corresponds to the nested set I =({1,2},q) inwhicha(1) = 1 and a(2) = 0.

provided by Theorem 3.4 matches these two types of strata with one another. Before stating this result,
we must recall the association of boundary strata with chains from [CDH+22].

4.2. Boundary strata and chains

In order to describe the boundary strata of Z;, we first explain how components of an (r, n)-curve are
labeled. Let (C;o;x*, {y¥}, {z{.}) be a stable (r,n)-curve, and suppose that C has ‘length’ £ in the
sense that each of its r spokes (chains of P!'’s emanating from the central component) consists of ¢
components. Then, for each k € Z,, we denote the components of the spoke containing y* by

k ~k k
ck.ck,....ck

where y* € C f‘ and the other components are labeled in order from outermost to innermost. We denote
the central component by Cpy1.

Given this labeling, the idea of the association of a boundary stratum to a chain is that the outermost
components {C{‘}kez" contain the marked points indexed by /; (in an order dictated by a), the next-
outermost components {C§ }xez, contain the marked points indexed by /> \ 11, and so on, until [n] \ I,
which indexes the marked points on the central component. More precisely, the association is as follows.

Definition 4.6. Let I = (i, ..., I;,a) be a chain. We say that (C; o x*, {y*}, {zlj}) € Z; is of typefif
C is an r-pinwheel curve of length ¢, and, using the above notation, we have

1. Foreach j € {1,...,{}, the light marked points on C? are precisely

@V e\ 1o

where I := 0;
2. The light marked points on the central component Cy.| are

(ZFlie[n)\ I, k€eZ} U {x*).

We define the boundary stratum S5 € Z; to be the closure of the locus of curves of type 1.

The (3, 4)-curve of Figure 1, for example, is a generic element of the boundary stratum S5 in which
TZ (]1, I, Cl) for

I ={3}, ILb={2,3,4}
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and a : I, — Z3 given by

a2)=1, a(3)=0, a(4) =

Remark 4.7. The first condition in Definition 4.6 implies that, for an (r, n)-curve of type T, the light
marked point z? is on the same spoke of C as y~*(!), Given that the positions of all other light marked
points are determined by the location of the points z?, this helps to explain why —a(i) appears in the
definitions of Hy and oy above.

We proved in [CDH+22, Proposition 5.4] that the association I St is a bijection from chains to
boundary strata in Z; and that, under this bijection, the codimension of S corresponds to the length

of T whereas an inclusion of boundary strata S; € Sy corresponds to the statement that T ‘refines’ J in
the sense of [CDH+22, Definition 4.2]. In particular, the boundary divisors are associated to chains of
length 1, which are Z,-decorated subsets of [n]. We denote by

—r
-cZL,

the boundary divisor corresponding to the decorated set I= (1, a).

Now, returning to the fan X}, of Definition 4.3, for any chain I, denote by X7 C Xs; the torus-invariant
stratum associated to the cone oy of 2. Then we have the following correspondence between the strata
Xi and the strata Sy.

Proposition 4.8. Under the inclusion Z:l — Xsr given by Theorems 2.7 and 3.4, the pullback of the
torus-invariant stratum Xj is the boundary stratum Sg. In particular, the pullback of the torus-invariant
divisor Xy is the boundary divisor Dy.

Proof. Ttsuffices to prove the claim for divisors since any torus-invariant stratum (respectively, boundary
stratum) is the intersection of the torus-invariant divisors (respectively, boundary divisors) that contain
it, and in both cases, the intersection of the stratum indexed by I and the stratum indexed by J is the
stratum indexed by the chain TN J described in Remark 4.4. Thus, we fix a decorated set [ = (I,a) and
consider the corresponding boundary divisor Dy C Z:l

From the last paragraph of the proof of Theorem 3.4, one can view Z; as an iterated blowup

Z;zYn—>Yn_] — Y] — Yy = (PH",

where Yy is obtained from Y by blow-up along the proper transform of the locus

Wy = U Hjy C (Pl)n.

T | 171=n-k

IfE;C Yyt 41 denotes the exceptional divisor over Hy, then from this perspective, D7 is the proper

transform in ﬁ of Ef.

On the other hand one can also view X5 as an iterated blowup by the stellar subdivision perspective
of Lemma 2.8. Namely, let X, be the nested set fan for the arrangement (13), as described in Remark
4.5. Then X, is obtained from the fan for P"~! by removing all but the one-dimensional cones, so

Xs, =P\ ;0 Hy),
j£C
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where H C P! denotes the jth coordinate hyperplane; in other words, a point of P"~! belongs to Xsr
if and only if at most one of its coordinates is zero. Thus,

n

X(Zr)xn = ]Pr_l \ U(ﬁj N ﬁ[) 5
j#

and Lemma 2.8 says that X5 can be obtained from this variety by an iterated blowup along the torus-
invariant subvarieties H j associated to the cones Cone(v ;) for each nested set J= (J,b). Specifically,

we have
7 . 77-b(i)
Hy=(\H"",
ieJ

where ﬁf denotes the pullback of H ; along the projection of X (s )x» to the ith factor. Thus, we have a
sequence of blowups

XZ;: =?n —_— ?n—l e e 4 ?1 e ?0 :X(Zr)xn,

where Yy, is obtained from Yx by blow-up along the proper transform of the locus

Wi = U ﬁf C Xz, )xn.
T | 171=n-k

This is exactly analogous to the situation for E described above, and also as in that situation, if
E - Yn I11+1 ¢ denotes the exceptional divisor over W then the torus-invariant stratum X7 is the proper

transform of EI in Xyr.
Now, let

iZY()%?()

be the linear inclusion of (PH)" into (P"~!)" sending the rth root of unity ¢/ in each factor to the
coordinate hyperplane H ;. Then

— i Yw-
wr =i (Wy),
so the blowup closure lemma shows that Y,_|; .1 < 17,14 11+1 in such a way that E7 is the restriction of
E7. Taking proper transforms, then, we see that Dy is the restriction of X7, as claimed. O

Remark 4.9. One upshot of Proposition 4.8 is that there is an inclusion-reversing bijection between
—r
the cones of the fan X/, and the boundary strata of £,,. This is analogous to the inclusion-preserving

bijection between the faces of the polytopal complex A} and the boundary strata of Z; that we proved
in [CDH+22]. In Section 5 below, we make the connection between %] and Al precise.

4.3. Calculation of the Chow ring of Zr

Equipped with the results of the previous subsections, the calculation of A* (L' ) is essentially immediate.

Theorem 4.10. Let r > 2 and n > 0. The Chow ring of Z; is generated by the boundary divisors Dy
for each (nonempty) decorated subset TOf [n], with relations given by
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o Dy-Dj= 0 unless either T < J or J < Z
o foralli € [n] and all a,b € Z,,
> Dr= D;.

s.1. s.1.
iel, a(i)=a i€l, a(i)=b

~1
~1

Proof. Theorem 2.7 shows that Z; < Xsr is a Chow equivalence and standard toric geometry ma-
chinery (see, for example, [CLS11]) calculates the Chow ring of Xs:. Namely, it is generated by the
torus-invariant divisors, which correspond to the rays of X} and are thus of the form X7 for each deco-

rated set /. The relations between these generators are given by
XITXI;:OIf COHC{O'I“],,O'II}ﬁzz (15)
and

Z(v, up)X; =0 forallv e (Va), (16)
T

where
__ —a(i)
=Y
iel

is the primitive integral generator of o; and (-, -) is the natural pairing between V4 and (V.4)".
By the definition of X7 and the result of Proposition 4.8, the relation (15) pulls back to

D1~1---D1~k =0 if {E,...,E{}isnotachain,

which is equivalent to the first relation in the statement of the theorem. In the relation (16), we can let
v range over the dual basis to the basis {e{} for V4, where i € [n] and j € {1,...,r — 1}; note that in
this basis, we have

by the definition of V 4 as a quotient. When v is dual to e{ , the pullback of equation (16) becomes

> Dy- Z D;=0.

Tst. I s.t.
iel, a(i)=—j iel, a(i)=0

Varying over all v in the dual basis yields the second relation in the statement of the theorem, so the
theorem is proved. O
Remark 4.11. Recalling from Remark 3.1 that setting » = 1 in the definition of Z:L produces the space
—1

M,, considered in Section 3.2, one might hope to generalize Theorem 4.10 to » = 1 by calculating the

—1
Chow ring of M,,. This can indeed be done: By the iterated blowup perspective described in the proof

—1
of Theorem 3.4, one can view M, as the toric variety associated to a fan obtained by stellar subdivision
from the fan for (IP’I)". This fan is not the r = 1 case of the nested set fan X} , however, so the Chow ring

—1
of M, does not arise as a special case of Theorem 4.10.

Remark 4.12. A further application of the presentation of Z; as a wonderful compactification, which

we hope to take up in future work, is a computation of the K-ring of Z; In particular, [LLPP22]
gives an isomorphism between the integral K-ring and the Chow ring of wonderful compactifications
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of hyperplane arrangement complements in projective space. If a similar result holds for wonderful
compactifications of complements of product arrangements, then the computation of A* (£;) in Theorem
4.10 will yield a computation of K (Z;).

4.4. The Betti numbers of Z;

While the computation of A*(Z;) in the previous subsection relies critically on the Chow equivalence
with Xsr provided by Theorem 2.7, one can compute A*(Z;) as an additive group without passing
through that theorem. Indeed, in [Li09a], Li Li gives a presentation of the Chow groups A*(Yg) for any
wonderful compactification Y. In the case of Z;, that presentation is the following.

First, for any chain I = (I, ..., I, a), set

J® =G, ..., je@) = (0] 1L] = 1 e = e,
which we refer to as the jump type of 1. Then, define
Ms:={ueZ |1 <p < ji(I) foralli}.

Note that My depends only on the jump type of T, and it is nonempty if and only if each entry in j (f) is
at least two. In light of this, for any vector j = (ji,. .., j¢) € (Zs2)!, let

M :={uce ZE |1 < pi < j; forall i},

and let Nj be the number of chains of jump type j; explicitly,

Nj Z=( " )rljl»
Jls-oosje

where |j| := j1 + - - - + j¢. Then the presentation of the Chow groups A*(Z;) is the following.

Theorem 4.13. For any k € Z=°, there is an isomorphism of additive groups

eN;
Ak(Z;) = Ak((Pl)n) [25) @ @ Ak—\l“((Pl)n—m)
>1 HEM;
J€(Zsn)t

Proof. This is a direct application gf [Li09a, Theorem 3.1]. The sum over G-nested sets 7 in that
theorem becomes a sum over chains I, and (after correcting the typo that {ug }Geg should be {uG}ger
in [Li09a, page 9]) the set M7 becomes the set My. The space Y7 in that theorem is the minimal
subvariety (under inclusion) in the chain 7, which in our case is

Hoo= Y HYO = (plyn-lel,
1 i
Since || = [j| for any chain T of jump type j, the above isomorphism follows. m]

Example 4.14. Using the theorem above, we compute the following table of Betti numbers of Z; for
small r and n using Sage.! Note that the Betti numbers for » = 2 are precisely the type-B Eulerian

numbers,?> which were studied as the Betti numbers of the type-B permutohedral variety Xp, = Zn in
[EFLS22].

1Sage code available at https://github.com/shiyue-li/multimatroids/blob/main/r-Eulerian.sage.
2QEIS A060187: https://oeis.org/A060187.
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(r,n) dimAI(£.),i=0,....n
(2,3) 1,23,23,1

(2,4) 1,76,230,76, 1

(2,5) 1,237, 1362, 1362, 237, 1
(2,6) 1,722,7663, 18748, 7663, 722, 1
(3,3) 1,57,57,1

(3,4) 1,247,897,247, 1

(3,5) 1, 1013, 7003, 7003, 1013, 1
(3,6)  1,4083,57390, 162020, 57390, 4083, 1
(4,3) 1,115,115, 1

(4,4) 1,612,2502,612, 1

(4,5) 1,3109, 23914, 23914, 3109, 1

(4,6) 1,15606,261839, 803764, 261839, 15606, 1

This table supports the following conjecture, the r = 2 case of which follows from [EFLS22].

Conjecture 4.15. For each r and n, the Betti numbers dim A’ (Z;) form a log-concave sequence.

5. Connection to tropical curves with cyclic action

We have now seen that the nested set fan ¥}, given by Definition 4.3 yields a toric variety whose Chow
ring is isomorphic to A* (Z;). This fan has another interpretation, however: its support can be identified
with the moduli space of ‘tropical (r, n)-curves’, and under this identification, the subdivision of |27 |
into cones coincides with the stratification of the tropical moduli space by analogues of boundary strata.
The goal of this section is to prove these assertions. As a consequence, we also find a new interpretation
of the polytopal complex A}, introduced in [CDH+22].

5.1. The fan %), as the tropical moduli space

Recall that the dual graph of an element of Z,: is a combinatorial graph with a vertex for each irreducible
component of the underlying curve, an edge for each node, and a half-edge for each marked point (see
[CDH+22, Definition 2.9]). If T is the dual graph of an element (C; o x*, {y‘},{z]}) of Z;, then o
induces a unique automorphism ot of I'. Given this, tropical (r, n)-curves are defined as follows.

Definition 5.1. Let n > 0 and r > 2. A tropical (r,n)-curve is a triple (I', o, L), where I' is the

dual graph of an element (C; o;x*, {y’}, {z{ 1) in Z;, ot is the unique automorphism on the graph I
determined by o, and

L:ET) —»R*

is a ‘length’ function on the edges of I'" such that
L(e) = L(or(e))

forall e € E(T).

We denote by L, the set of all tropical (r, n)-curves. Our goal, now, is to identify Lj,"°" with

|27 |. In particular, the cones of X will be identified with subsets of L,;“?, and in order to do so, we

recall from Remark 4.9 that the cones of X, are in inclusion-reversing bijection with the boundary strata

Sg of L. Thus, for any chain I, we define T; € L,""P as the subset consisting of tropical curves (I, L)
where the boundary stratum with dual graph I" contains S3. More explicitly, if [ denotes the dual graph

of a curve of typef(as in Definition 4.6), we have

G:={T,L) € L™ | T is obtained from I by contracting edges}.
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Given this definition, we can state the correspondence between LZ’tmp and |X] | as follows.

Proposition 5.2. There is a natural bijection between L™ and |27 |, under which the subset Ty
corresponds to the cone oy.

Proof. Recall from Remark 4.5 that X7 is obtained by stellar subdivision from the fan X", where %,
is the one-dimensional fan in R” /R with r rays, one spanned by the image of each of the standard basis
vectors in R”. Thus, one has

I50] = [, = {x1e® 4+ x0el | a; € Zy, x; € R forall i} € (R”/R)®". (17)

In order to identify L.’"° with this set, we associate to each (I', L) € L™ a point in (R” /R)®".

Specifically, let L; denote the total length of the edges of I" in a path from the central vertex to the vertex
containing Z?, and assuming L; # 0, define ¢; € Z, by the condition that z? is on the same spoke as y‘i.
Then we identify (I, L) € L™ with the point

Z Liel € (R”/R)®".

i|L;#0

Given that L; varies over all nonnegative real numbers and {; varies over all elements of Z,, the image
of L, under this identification is precisely the set (17).
To understand the image of 7j under this identification, recall that in the dual graph I of a generic

element of S, the marked points z{ with i € I are on the outermost vertices, so in the image of a tropical
curve (I, L), the L; with i € I are equal and largest among all L;. Similarly, the marked points with

z{ with i € I, \ I; are on the next-to-outermost vertices, so the L; with i € I \ I} are equal and next
largest. This continues until the marked points zj with i € [n] \ I, which are on the central vertex, so

L; =0fori € [n]\ I. It follows that the set T C L, corresponds under the above identification to
the set of points

Lie;" W+ -+ Lye, "™ € (R"/R)®"

for which Ly, ..., L, € R0 satisfy the following conditions:

o Ifi,i’ € I; \ I;_; for some j, then L; = Ly;
o Ifiy € 1,ir € lh,...,i¢g € Ip, then

L;, -2 Li,;

o Ifi € [n] \ Iy, then L; = 0.

To see that this set coincides with o2 recall from Definition 4.3 that

of = Cone{z e;a(i), e, Z eia(i)}

i€l iely
:{clz a(l) +ng ~a(® C1,...,C[€RZO}.
i€l iely

Collecting the terms in a different way and using that /; € I> C --- C I, an arbitrary point in o can be
expressed as

Z(Cl +oet Ct’)ei_a(i) + Z (co+---+co)e; al) 44 Z ce ei_a(i)

iel iehb\I i€le\lp-y
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for ¢y, ...,cs € R0, Thus, the coefficient on el._“m for any i € I; is the same, and these are the largest
coefficients; the coefficients on el._a(l) for any i € I, \ I} are the same, and these are the next-largest
coefficients and so on. This is precisely the set of points satisfying the conditions mentioned above, so
the identification of oy with 73 is complete. O

Remark 5.3. Aside from the definition of L:,’tmp given above, there is another sense in which one
might ‘tropicalize’ the moduli space Z;. Namely, one can embed £, < T as a closed subvariety (as
in Remark 2.2), and as such there is an associated geometric tropicalization Trop(L£},) in the sense of
[HKTO9]. To see that these two notions of the tropical moduli space coincide, recall from the proof of
Theorem 2.7 that Z:L C Xy is a tropical compactification, meaning in particular that

25| = Trop(L},).
Combining this with Proposition 5.2 gives an identification

Ly = Trop(L").

5.2. The polytopal complex A, as a normal complex of =,

The results of the previous subsection generalize the situation for Losev—Manin space Ly, which — as
explained in [CDH+22] —is ‘morally’ the r = 1 case of the spaces Z;. In particular, Losev and Manin
showed in [LMOO] that £, is a toric variety whose associated fan can be identified with the tropical
moduli space Lif()p. Because this is a complete fan, though, one can also view the connection in terms
of polytopes: Namely, the normal polytope to Ly is the polytope of £, as a toric variety, meaning
that its faces are identified with the torus-invariant strata. In fact, this normal polytope is the (n — 1)-
dimensional permutohedron II,,, and the torus-invariant strata are precisely the boundary strata, so one
obtains an identification between the faces of IT,, and the boundary strata in £,,.

In the case of Z;, the moduli space itself is not toric but sits inside of (and is Chow-equivalent to)
the toric variety Xyr whose fan we have now identified with L,;""". However, X, is not a complete fan
in (R”/R)®" for r > 2, so the usual construction of the normal polytope does not apply; it produces
a polytope, but one of larger dimension than |2/ |. There is a substitute for the normal polytope for
noncomplete fans, though, which is the ‘normal complex’ introduced by Nathanson—Ross [NR21]. This
is a polytopal complex that one can view as the result of truncating X; by normal hyperplanes. To
complete the analogy to Losev—Manin space, then, one would hope to identify the faces of this normal
complex — for an appropriate interpretation of ‘faces’ of a polytopal complex — with the boundary strata
in Z:l

In our previous work [CDH+22], we have already identified the boundary strata in Z:l with the
‘A-faces’ of another polytopal complex A! . This polytopal complex was constructed as a subset of

(RZO . /Jr)n ccn,
where y, denotes the set of rth roots of unity. However, we can identify
(R )" & %]

by identifying

dn

(12, xnl%) o xpeft + -+ xpeln,

1
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1
0xe,

2
0xe;

e(l) X 23 portion of Z; portion of Ag

Figure 6. The fan Z; is obtained as stellar subdivision of X3 X X3, so we can obtain a portion of it by
stellar subdivision of e(l) X X3, as shown in the middle figure. Taking the dual complex to this fan, we
recover a portion of the complex Ag illustrated in [CDH+22, Figure 2].

and using this, we can view AZ as a subset of (R"/R)®". Explicitly,

ro_ a a
Ay = U {xlel‘ + ot xpen

x; € RZ0 foralli, in < 6TI| for all I C [n] } (18)

i€l

Sp=n+(n-1D+n=-2)+--+(n—-k+1).

We claim that this complex A} is the normal complex of /. (In the case r = n = 2, the fan Z% is
the complete fan shown in Figure 5, whose normal complex is in fact a normal polytope: the octagon,
which is the signed permutohedron when n = 2 and equals A%. In the case r = 3 and n = 2, we illustrate
the claim in Figure 6.)

More precisely, normal complexes of fans depend on three choices: an inner product on the ambient
vector space, a vector 7 € R¥ () and a distinguished generator u, of each ray p € X7 (1). The inner
product in our case is the dot product on (R” /R)®" in the basis {e{ }ieln].je[r—1]> Which we denote by x.
As for the vector Z, since the rays of X, are the cones o for each decorated set I, we can define 7 by
setting

27 =0T, (19)

for each decorated set 1. Finally, for the generator of the ray associated to I, we choose
uy = Z ei_a(i). (20)
iel
Equipped with this notation, the final perspective we present on the fan X, is the following.

Proposition 5.4. The polytopal complex A}, is the normal complex of the fan X} with respect to the
inner product *, the vector Z defined by equation (19) and the ray generators defined by equation (20).

Proof. To define the normal complex of X, one first truncates all faces by normal hyperplanes.
Explicitly, for each face oy of Z], let

Py=oyn{ve R /R)®" | vxuj < zz forall p € oj(1)}.
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Then the normal complex, by definition, is the union of all faces of the polytopes Py, over all cones oy
of X7 . Because we includg faces in this union, it suffices to consider only maximal cones, which are
those associated to chains I = (71, . .., I,;; a) of length n. For such chains, we have

oy = {xleza(l) +o 42,0, | x; € RZO forall i},

and the rays p € oy(1) are the cones generated by u(y, q| ) for j € [n]. Thus, the inequalities in the
definition of Py amount to the condition that

n
D% 0,

iEIj

forall j € [n]. As T ranges over all maximal chains, the exponents a(i) range over all elements of Z,
and the sets /; range over all subsets of [n], so the normal complex precisely coincides with the set A},
of equation (18). O
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