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1. Introduction

The moduli space L
𝑟

𝑛 of rational curves with cyclic action was constructed in our previous work

[CDH+22] as a generalization of Losev and Manin’s moduli space of rational curves with weighted

marked points. In particular, the Losev–Manin space L𝑛, introduced in [LM00], is a toric variety

whose associated polytope is the permutohedron Π𝑛, and the torus-invariant subvarieties of L𝑛 have

a modular interpretation as ‘boundary strata’, so one obtains an inclusion- and dimension-preserving

bijection between the boundary strata of L𝑛 and the faces of Π𝑛. This work was generalized by Batyrev

and Blume, who in [BB11] constructed a toric moduli space L
2

𝑛 of rational curves with involution

whose boundary strata are encoded by the faces of the signed permutohedron. Generalizing the story

further, the moduli space L
𝑟

𝑛 parameterizes certain rational curves with an automorphism of order r and

weighted orbits. Although L
𝑟

𝑛 is not toric when 𝑟 > 2, its boundary strata are nevertheless encoded by

a polyhedral object: not a polytope, in this case, but a polytopal complex. In this way, L
𝑟

𝑛 appears to

occupy an intriguing middle ground between toric varieties and more general moduli spaces of rational

curves.

The goal of the current work is to realize L
𝑟

𝑛 as a wonderful compactification of the comple-

ment of a particular arrangement of hyperplanes in (P1)𝑛 and, in doing so, to give a combinatorial

description of its Chow ring. Wonderful compactifications were introduced by De Concini and Pro-

cesi in [DCP95] as a way to compactify the complement of an arrangement of hyperplanes in P𝑛 so

that much of the geometry of the compactification is encoded in the combinatorics of the original

hyperplane arrangement. The geometry of these spaces has been used to resolve long-standing conjec-

tures in combinatorics like the log-concavity of characteristic polynomials of matroids [AHK18] and

the Dowling–Wilson top-heavy conjecture [BHM+20]. On the other hand, they have also provided a

valuable new perspective in geometry; perhaps the most relevant example for the present work is the

Deligne–Mumford–Knudsen compactification M0,𝑛, which can be realized as a wonderful compacti-

fication of the braid arrangement complement in P𝑛−3, from which one obtains an elegant presentation

of its Chow ring.

One way in which to understand the Chow ring in this setting, as shown by Feichtner and Yuzvinsky

in [FY04], is as the Chow ring of the toric variety of a fan ΣG that can be combinatorially associated to

a hyperplane arrangement in projective space together with a ‘building set’ G. In particular, the data of

G specifies a wonderful compactification 𝑌G of the arrangement complement and Feichtner–Yuzvinsky

prove that the Chow ring of 𝑌G is isomorphic to that of the toric variety 𝑋ΣG
.

The construction of wonderful compactifications was generalized by Li Li in [Li09b] to complements

of arrangements of subvarieties in a smooth variety, but some of their combinatorial nature is lost in

this generality. In particular, the geometry of a wonderful compactification 𝑌G is not determined merely

by the intersection combinatorics of the subvarieties in the arrangement – which is what determines

ΣG – but by the particular geometry of the subvarieties themselves. Thus, one should not expect the

Chow ring of 𝑌G to be isomorphic to that of a toric variety in general.

The case L
𝑟

𝑛 of interest for our work is a wonderful compactification of a hyperplane arrangement not

in a projective space (as in De Concini–Procesi’s original work) but in a product of projective spaces.

Specifically, it is a ‘product arrangement’ in the sense that the hyperplanes are pulled back via projection

to the individual projective space factors. We begin by proving that, for arrangements of this form, the

Chow ring of the wonderful compactification is still combinatorial: One can associate a fan ΣG (defined

in Definition 2.5 below) generalizing the fan of Feichtner–Yuzvinsky, and the resulting toric variety has

an isomorphic Chow ring to 𝑌G .

Theorem 2.7 (See Section 2.3 for precise statement). Let A be a product arrangement in P𝑘1 ×· · ·×P𝑘𝑛 ,
let G be a building set for its intersection lattice and let ΣG be the associated nested set fan. Then there
is a Chow-equivalence

𝐴∗(𝑌G) = 𝐴∗(𝑋ΣG
).
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Equipped with this result, we specifically consider the arrangement of hyperplanes

𝐻
𝑗

𝑖
= {(𝑝1, . . . , 𝑝𝑛) ∈ (P1)𝑛 | 𝑝𝑖 = 𝜁 𝑗 }

for each 𝑖 ∈ {1, 2, . . . , 𝑛} and each 𝑗 ∈ {0, 1, . . . , 𝑟 − 1}, where 𝜁 is a fixed rth root of unity. We prove in

Theorem 3.4 that L
𝑟

𝑛 is the wonderful compactification of this arrangement with its maximal building

set. Denoting the associated fan by Σ𝑟
𝑛, we obtain by Theorem 2.7 an explicit computation of the Chow

ring 𝐴∗(L
𝑟

𝑛).
To describe this computation, we first recall from [CDH+22] that there is a special codimension-

1 subvariety 𝐷
𝐼̃
⊆ L

𝑟

𝑛 – specifically, a boundary divisor – associated to any ‘Z𝑟 -decorated subset

of [𝑛]’, which is a pair 𝐼̃ = (𝐼, 𝔞) in which 𝐼 ⊆ {1, 2, . . . , 𝑛} is a nonempty set and 𝔞 is a function

𝐼 → {0, 1, . . . , 𝑟 − 1}. There is a partial ordering on decorated subsets given by

(𝐼, 𝔞) ≤ (𝐽, 𝔟) if and only if 𝐼 ⊆ 𝐽 and 𝔞(𝑖) = 𝔟(𝑖) for all 𝑖 ∈ 𝐼 .

With this notation, the presentation of 𝐴∗(L
𝑟

𝑛) is as follows.

Theorem 4.10. The Chow ring of L
𝑟

𝑛 is generated by the boundary divisors 𝐷
𝐼̃

for each (nonempty)

Z𝑟 -decorated subset 𝐼̃ of {1, . . . , 𝑛}, with relations given by

◦ 𝐷
𝐼̃
· 𝐷

𝐽
= 0 unless either 𝐼̃ ≤ 𝐽 or 𝐽 ≤ 𝐼̃;

◦ for all 𝑖 ∈ {1, 2, . . . , 𝑛} and all 𝑎, 𝑏 ∈ {0, 1, . . . , 𝑟 − 1},

∑
𝐼̃ s.t.

𝑖∈𝐼 , 𝔞 (𝑖)=𝑎

𝐷
𝐼̃
=

∑
𝐼̃ s.t.

𝑖∈𝐼 , 𝔞 (𝑖)=𝑏

𝐷
𝐼̃
.

We conclude the paper by giving two other interpretations of the fan Σ𝑟
𝑛, which are interesting in

their own right. First, analogously to the case of M0,𝑛, we show in Proposition 5.2 that this fan can be

identified with a moduli space 𝐿
𝑟 ,trop
𝑛 of ‘tropical (𝑟, 𝑛)-curves’. And second, analogously to the way

in which the permutohedron Π𝑛 is the normal polytope of the fan of Losev–Manin space L𝑛, we show in

Proposition 5.4 that the polytopal complex Δ𝑟
𝑛 constructed in [CDH+22] is a normal complex of Σ𝑟

𝑛, in

the sense developed by Nathanson–Ross in [NR21]. This gives a more geometric interpretation of the

correspondence between the boundary strata of L
𝑟

𝑛 and the faces of Δ𝑟
𝑛 that was proven combinatorially

in our previous work.

Leveraging the above connection to tropical geometry, we hope in future work to use tropical inter-

section theory on 𝐿
𝑟 ,trop
𝑛 to study intersection numbers on L

𝑟

𝑛 (along the lines of [Kat12, KM09, HL22]).

We may also study the reduced rational cohomology of the locus of tropical curves with total edge length

1 in 𝐿
𝑟 ,trop
𝑛 to understand the mixed Hodge structure of L𝑟

𝑛, in the sense of [Del71, Del74] and along

the lines of [CGP21, KLSY20]. This is made possible by the observation that the boundary L
𝑟

𝑛 \ L
𝑟
𝑛 is

a divisor with simple normal crossings [CDH+22, Observation 3.6].

Remark 1.1. Soon after this manuscript’s appearance, Eur, Fink, Larson and Spink studied the type-

B permutohedral toric variety 𝑋𝐵𝑛
, which is precisely L

2

𝑛, in relation to delta-matroids [EFLS22].

The central combinatorial construction there is the 𝐵𝑛 permutohedral fan Σ𝐵𝑛
, which coincides with

the permutohedral fan Σ2
𝑛 constructed in the present paper. Among many things, the authors give an

exceptional isomorphism 𝜙𝐵 : 𝐾 (𝑋𝐵𝑛
) → 𝐴(𝑋𝐵𝑛

) which yields a Hirzebruch–Riemann–Roch-type

theorem. Their results and techniques, together with the constructions in the present paper, will be

valuable hints for the potential developments for general L
𝑟

𝑛 discussed in Remark 4.12.
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Plan of the paper

We begin, in Section 2, by reviewing the necessary background on wonderful compactifications and

proving Theorem 2.7; this section is entirely self-contained, so it can be read independently by a reader

interested primarily in wonderful compactifications. In Section 3, we recall the definition of L
𝑟

𝑛 and

we prove that it is indeed a wonderful compactification of the arrangement in (P1)𝑛 described above.

Section 4 combines these results to prove the presentation of the Chow ring in Theorem 4.10. Finally,

Section 5 describes the connections both to tropical (𝑟, 𝑛)-curves and normal complexes.

2. Wonderful compactifications

Wonderful compactifications were introduced by De Concini and Procesi [DCP95] in the context of

linear subvarieties of a projective space. Roughly speaking, given a collection of linear subvarieties

in P𝑛, a wonderful compactification is a way of replacing P𝑛 by a different ambient variety in such

a way that the complement of the linear subvarieties is preserved but the subvarieties themselves are

replaced by a divisor with normal crossings. The construction of wonderful compactifications was later

generalized by Li Li [Li09b] to more general collections of subvarieties in a smooth variety. In this

section, we briefly review the necessary definitions for the current work, but we refer the reader to many

more in-depth references – including [DCP95, Den14, Fei05, FY04, Li09b] – for details. Throughout,

we consider all varieties over C.

2.1. Wonderful compactifications of arrangements of subvarieties

Let Y be a smooth variety. An arrangement of subvarieties of Y is a finite collection of smooth

subvarieties and that pairwise intersect ‘cleanly’ (see [Li09b, Definition 2.1]). If

A = {𝑋1, . . . , 𝑋𝑟 }

is an arrangement, we denote by LA the intersection lattice of A; this is the poset of all intersections of

subsets of A, ordered by reverse inclusion. In particular, the unique minimal element of LA is 0̂ = 𝑌 ,

which we view as the empty intersection, and the unique maximal element is 1̂ = ∅. By the complement

of A, we mean

𝑌◦ := 𝑌 \

𝑟⋃
𝑖=1

𝑋𝑖 .

Some of the subvarieties in A may intersect nontransversally, and the goal of a wonderful compact-

ification of 𝑌◦ is to modify the ambient variety Y in such a way that the arrangement is replaced by

a simple normal crossings divisor. It is not surprising that the way to do so is to perform an iterated

blowup. While one can obtain a wonderful compactification by blowing up at every element of LA (in

a carefully prescribed order explained below), some subsets of A may already intersect transversally,

so one can often obtain a compactification with similar properties by blowing up only at a subset of

LA. The particular subsets that give rise to wonderful compactifications are known as building sets;

for the precise definition, see [Li09b, Definition 2.2]. The most important example of a building set for

the current work is the maximal building set G := LA \ {0̂}, which corresponds to blowing up every

intersection of elements of A.

In general, a choice of a building set G ⊆ LA \ {0̂} gives rise to a wonderful compactification

𝑌G of 𝑌◦ in the following way. First, choose an ordering of the elements of G that is compatible with

inclusion; that is, let

G = {𝐺1, . . . , 𝐺𝑁 }
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in which 𝑖 ≤ 𝑗 if 𝐺𝑖 ⊆ 𝐺 𝑗 . Then, perform the following sequence of blowups:

◦ Blow up Y along 𝐺1,

◦ Blow up the result along the proper transform of 𝐺2,

◦ Blow up the result along the proper transform of 𝐺3,

and so on. Then, as shown in [Li09b, Proposition 2.13], the wonderful compactificaiton 𝑌G is the end

result after blowing up along the proper transform of 𝐺𝑁 .

Since the blowups that form 𝑌G are only at intersections of the subvarieties 𝑋𝑖 , there is an inclusion

𝑌◦ ↩→ 𝑌G ,

and we refer to the complement 𝑌G \ 𝑌◦ as the boundary of the wonderful compactification. Among

the ‘wonderful’ properties of 𝑌G is the extent to which the structure of this boundary is encoded in the

combinatorics of G. In particular, the boundary is a union of divisors 𝐷𝐺 for each nonempty 𝐺 ∈ G,

and the intersection 𝐷𝑇1
∩ · · · ∩ 𝐷𝑇𝑟 is nonempty if and only if {𝑇1, . . . , 𝑇𝑟 } forms a G-nested set. The

definition of G-nested set is purely combinatorial and can be stated in a number of equivalent ways (see,

for example, [Li09b, Definition 2.3] or [Fei05, Definition 3.2]). In the case where G is the maximal

building set, a G-nested set is precisely a chain in LA \ {0̂} as a poset.

2.2. Wonderful compactifications of hyperplane arrangements

In their original work introducing wonderful compactifications [DCP95], De Concini and Procesi

proved that if A is an arrangement of hyperplanes in projective space, then the cohomology (which is

isomorphic to the Chow ring, for example, by [Kee92]) of a wonderful compactification can be read

off combinatorially from the lattice LA and its building set. Feichtner and Yuzvinsky reinterpreted this

calculation in [FY04], constructing a fan ΣG associated to any lattice L with building set G and proving

that, in the case where L is the intersection lattice of a hyperplane arrangement in projective space, the

Chow ring of the toric variety 𝑋ΣG
coincides with De Concini–Procesi’s calculation of the Chow ring

of the wonderful compactification 𝑌G of the complement of A. In this section, we review the parts of

this story that are necessary for what follows.

Let A = {𝐻0, . . . , 𝐻𝑟−1} be a collection of hyperplanes in P𝑘 . We assume in what follows that A is

essential, meaning that

𝑟−1⋂
𝑖=0

𝐻𝑖
= ∅.

In this case, there is an inclusion

𝑖 : P𝑘 ↩→ P𝑟−1

under which 𝐻0, . . . , 𝐻𝑟−1 map to the coordinate hyperplanes; namely, if 𝐻𝑖 = V ( 𝑓𝑖) for linear polyno-

mials 𝑓𝑖 ∈ C[𝑥0, . . . , 𝑥𝑘 ], then

𝑖(𝑝) = [ 𝑓0(𝑝) : · · · : 𝑓𝑟−1(𝑝)] .

It follows that i maps the complement

𝑌◦
= P𝑘 \

𝑟−1⋃
𝑖=0

𝐻𝑖
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ofA into the complement of the coordinate hyperplanes in P𝑟−1 or, in other words into the algebraic torus

T𝑟−1
= (C∗)𝑟−1.

By identifying𝑌◦ with its image under i, then, we can view𝑌◦ as a very affine variety – that is, a closed

subvariety of a torus.

For any building set G ⊆ LA \ {0̂}, one defines the nested set fan ΣG of (LA,G) as follows. First, let

𝑉A := R𝑟/R,

where the quotient is by the diagonal, and denote the images of the standard basis vectors by 𝑒0, . . . , 𝑒𝑟−1.

For each 𝐺 ∈ G, define

𝑣𝐺 :=
∑

𝐻 𝑗 ⊇𝐺

𝑒 𝑗 ∈ 𝑉A.

Then ΣG is defined as the fan in 𝑉A whose cones are

𝜎𝑆 := Cone{𝑣𝐺 | 𝐺 ∈ 𝑆} ⊆ 𝑉A

for each G-nested set 𝑆 ⊆ G.

Note that the toric variety 𝑋ΣG
has T𝑟−1 as its torus, so in particular, we have

𝑌◦ ⊆ T𝑟−1 ⊆ 𝑋ΣG
.

By reinterpreting ΣG in terms of a stellar subdivision procedure as in [FY04, Section 6] (which

corresponds to regarding 𝑋ΣG
as an iterated blowup ofP𝑟−1), one sees that the wonderful compactification

𝑌G is equal to the closure of 𝑌◦ inside of 𝑋ΣG
. Moreover, by [FY04, Corollary 2], the inclusion

𝑌G ↩→ 𝑋ΣG

is a Chow equivalence. This allows one to give a presentation of 𝐴∗(𝑌G) that can be read off directly

from the combinatorics of the lattice LA with its building set G.

Remark 2.1. The moduli space M0,𝑛 can be obtained as the wonderful compactification of the braid

arrangement A𝑛−2 (the arrangement of hyperplanes {𝑥𝑖 = 𝑥 𝑗 } ⊆ P
𝑛−3 for all 𝑖 ≠ 𝑗), with an appropriate

choice of building set [DCP95, Section 4.3]. In this case, the above results lead to an elegant presentation

of the Chow ring of M0,𝑛, as described in [Fei05, Section 4.2]. Moreover, the nested set fan can be

interpreted in this context as the Bergman fan of a particular matroid or as the moduli space of tropical

curves. These results were generalized in [CHMR16] to all genus-zero Hassett spaces with weight

system of ‘heavy/light’ type, leading to a presentation of the Chow ring of such spaces in [KKL21].

2.3. Wonderful compactifications of product arrangements

The case of interest in the current work is the moduli space L
𝑟

𝑛, which, as we prove below, is a wonderful

compactification of the complement of an arrangement of hyperplanes not in a single projective space

but in a product of projective spaces. Although such wonderful compactifications have been constructed

via iterated blowup (through the much more general work of Li Li described above), there is not, to our

knowledge, a construction in this setting as the closure inside of a toric variety analogous to 𝑋ΣG
. We

prove such a presentation in this subsection, and as a result, we obtain an identification of the Chow

ring of such wonderful compactifications with the Chow ring of a toric variety that can be read off

combinatorially from the intersection lattice and its building set.
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Here, and in what follows, for positive integers n and r we use the notation

[𝑛] := {1, 2, . . . , 𝑛}

and

Z𝑟 := {0, 1, 2, . . . , 𝑟 − 1}.

We choose these sets to index the hyperplanes in a product arrangement for consistency with the

application to L
𝑟

𝑛 that follows.

For each 𝑖 ∈ [𝑛], fix positive integers 𝑟𝑖 and 𝑘𝑖 and an essential hyperplane arrangement

A𝑖 = {𝐻0
𝑖 , . . . , 𝐻

𝑟𝑖−1
𝑖

}. (1)

inside P𝑘𝑖 . Let 𝑌◦
𝑖 ⊆ P𝑘𝑖 denote the complement of the arrangement A𝑖 . Then the product

𝑌◦ := 𝑌◦
1 × · · · × 𝑌◦

𝑛 ⊆ P𝑘1 × · · · × P𝑘𝑛

is also the complement of a hypersurface arrangement: Namely, it is the complement of

A := {𝐻
𝑗

𝑖
| 𝑖 ∈ [𝑛], 𝑗 ∈ Z𝑟𝑖 },

in which

𝐻
𝑗

𝑖
:= 𝑝−1

𝑖

(
𝐻

𝑗

𝑖

)

is the pullback of 𝐻
𝑗

𝑖
⊆ P𝑘𝑖 under the projection 𝑝𝑖 : P𝑘1 × · · · × P𝑘𝑛 → P𝑘𝑖 to the ith factor. We refer

to A as the product arrangement induced by A1, . . . ,A𝑛.

Remark 2.2. The variety 𝑌◦ is very affine since the embeddings 𝑌◦
𝑖 ↩→ T𝑟𝑖−1 described in Section 2.2

combine to give

𝑌◦ ↩→ T𝑟1−1 × · · · × T𝑟𝑛−1
= T𝑟 , (2)

where 𝑟 := 𝑟1 + · · · + 𝑟𝑛 − 𝑛. Moreover, 𝑌◦ is linear in the sense of [Gro15] (that is, it is cut out by linear

equations in coordinates on T𝑟 ) because each factor 𝑌◦
𝑖 ↩→ T𝑟𝑖−1 is linear. This observation plays a key

role in the proof of Theorem 2.7 below.

In fact, for Theorem 2.7, it is enough to know that 𝑌◦ is quasilinear in the sense of [Sch21]. Schock

introduced quasilinear varieties in [Sch21] as a generalization of linear varieties that retains the key

property that, if 𝑌◦ ↩→ T is quasilinear and 𝑌 ↩→ 𝑋Σ is a ‘tropical compactification’ of 𝑌◦, then 𝑌 is

Chow-equivalent to 𝑋Σ. Given that [Sch21, Theorem 6.4] shows that products of quasilinear varieties

are quasilinear, it is immediate from equation (2) that 𝑌◦ is quasilinear in our case.

Example 2.3. A simple but illustrative example, which is relevant for the application to L
𝑟

𝑛 below, is to

take 𝑛 = 2 and set

A1 = A2 := {[1 : 1], [1 : −1]} ⊆ P1.

Then the product arrangement A consists of four hyperplanes in P1 × P1:

A = {𝐻0
1 , 𝐻1

1 , 𝐻0
2 , 𝐻1

2} (3)

=

{
{[1 : 1]} × P1, {[1 : −1]} × P1, P1 × {[1 : 1]}, P1 × {[1 : −1]}

}
⊆ P1 × P1.
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In this case, the embeddings 𝑖1 : 𝑌◦
1
↩→ T1 and 𝑖2 : 𝑌◦

2
↩→ T1 are equal and are in fact isomorphisms;

indeed, they both come from the embedding (in fact, change of coordinates) 𝑖1 = 𝑖2 : P1 → P1 given by

[𝑥 : 𝑦] ↦→ [𝑥 − 𝑦 : 𝑥 + 𝑦],

which sends the hyperplanes in A1 = A2 to the coordinate hyperplanes in P1. Thus, the product

𝑖 = 𝑖1 × 𝑖2 : P1 × P1 → T1 × T1

sends 𝑌◦ isomorphically to T1 × T1 = T2.

The lattice LA \ {1̂} is the product of the lattices LA𝑖
\ {1̂𝑖} with the product order, where 1̂𝑖 denotes

the maximal element ∅ in the intersection lattice of the arrangement A𝑖 . From this, one finds two

combinatorial consequences that are important in what follows.

Lemma 2.4. Fix building sets G1, . . . ,G𝑛 for the arrangements A1, . . . ,A𝑛, respectively, and assume
that 1̂𝑖 ∈ G𝑖 for at least one i. For each i, view G𝑖 as a subset of LA by identifying 𝑋 ∈ G𝑖 with
𝑝−1
𝑖 (𝑋) ∈ LA. Then we have the following:

(a) The union
⋃𝑛

𝑗=1 G 𝑗 is a building set for LA.
(b) If 𝑆𝑖 ⊆ G𝑖 for each i, then

𝑆𝑖 is G𝑖-nested for each 𝑖 ⇔

𝑛⋃
𝑗=1

𝑆 𝑗 is
�
�

𝑛⋃
𝑗=1

G 𝑗
���
-nested.

Proof. (a) By the definition of building sets (see, for example, [FY04, Definition 1]), we must prove

that, for any 𝑋 ∈ LA, there is an isomorphism of posets

[0̂, 𝑋] �
∏

𝑍 ∈max
(
(G1∪···∪G𝑛)∩[0̂,𝑋 ]

) [0̂, 𝑍] . (4)

If 𝑋 = 1̂, then the condition that 1̂𝑖 ∈ G𝑖 ensures that both sides of equation (4) are the full lattice LA.

Suppose, then, that 𝑋 ≠ 1̂. In this case under the isomorphism of LA \ {1̂} with the product of the

lattices LA𝑖
\ {1̂}, we have 𝑋 =

∏𝑛
𝑖=1 𝑋𝑖 for 𝑋𝑖 ∈ LA𝑖

. Thus,

[0̂, 𝑋] �

[
0̂,

𝑛∏
𝑖=1

𝑋𝑖

]
�

𝑛∏
𝑖=1

[0̂, 𝑋𝑖] �

𝑛∏
𝑖=1

∏
𝑍𝑖 ∈max(G𝑖∩[0̂,𝑋𝑖 ])

[0̂, 𝑍𝑖],

where the last isomorphism follows from the fact that each G𝑖 is a building set. It is straightforward to

check that this is equivalent to equation (4).

(b) We denote

𝑆 :=

𝑛⋃
𝑗=1

𝑆 𝑗 ,

and we use the characterization of nested sets given in [DCP95, Section 2.4, Lemma (1)]: A subset T of

a building set H is H-nested if, given pairwise incomparable elements 𝑋1, . . . , 𝑋𝑡 ∈ 𝑇 in which 𝑡 ≥ 2,

the join 𝑋1 ∨ · · · ∨ 𝑋𝑡 is not in H.

Suppose that each 𝑆𝑖 is G𝑖-nested. To see that S is
(⋃𝑛

𝑗=1 G 𝑗

)
-nested, let 𝑋1, . . . , 𝑋𝑡 ∈ 𝑆 be pairwise

incomparable elements with 𝑡 ≥ 2. (If no such elements exist, then S is automatically nested.) If at least

two of these elements belong to different factors 𝑆𝑖 , then their join is not in
⋃𝑛

𝑗=1 G 𝑗 , so we are done.
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Thus, all that remains is the possibility that 𝑋1, . . . , 𝑋𝑡 ∈ 𝑆𝑖 for some i, in which case the fact that 𝑆𝑖 is

G𝑖-nested implies that

𝑋1 ∨ · · · ∨ 𝑋𝑡 ∉ G𝑖 ,

and hence, this join is not in
⋃𝑛

𝑗=1 G 𝑗 .

Conversely, suppose that S is
(⋃𝑛

𝑗=1 G 𝑗

)
-nested. To see that 𝑆𝑖 is G𝑖-nested for each i, let 𝑋1, . . . , 𝑋𝑡 ∈

𝑆𝑖 be pairwise incomparable elements with 𝑡 ≥ 2. Since S is
(⋃𝑛

𝑗=1 G 𝑗

)
-nested, we have

𝑋1 ∨ · · · ∨ 𝑋𝑛 ∉

𝑛⋃
𝑗=1

G 𝑗 ,

so in particular, this join is not in G𝑖 . �

We are now prepared to define ‘nested set fans’ in the product setting by direct analogy to the situation

described in Section 2.2.

Definition 2.5. Let A1, . . . ,A𝑛 be hyperplane arrangements as in equation (1), let A be the induced

product arrangement and let 𝑉A be the vector space

𝑉A := R𝑟1/R × · · · × R𝑟𝑛/R,

where each quotient is by the diagonal and we denote the images of the standard basis vectors in the ith
factor by 𝑒0

𝑖
, . . . , 𝑒

𝑟𝑖−1
𝑖

. For any 𝐺 ∈ LA \ {0̂}, define

𝑣𝐺 :=
∑

𝐻
𝑗

𝑖
⊇𝐺

𝑒
𝑗

𝑖
∈ 𝑉A.

Then, given any building set G ⊆ LA \ {0̂}, the nested set fan for (LA,G) is the fan ΣG in 𝑉A whose

cones are

𝜎𝑆 := Cone{𝑣𝐺 | 𝐺 ∈ 𝑆} ⊆ 𝑉A (5)

for each G-nested set 𝑆 ⊆ G.

Example 2.6. In the case of Example 2.3, one has 𝑛 = 2 and 𝑟1 = 𝑟2 = 2, so

𝑉A = R2/R × R2/R � R2.

Let G be the maximal building set so that G-nested sets are precisely chains in LA \ {0̂} as a poset – in

other words, nested collections of intersections of the sets 𝐻𝑖
𝑗

listed in equation (3). The nested set fan

ΣG in this example is depicted in Figure 4. In particular, the shaded cone is

Cone(𝑒0
2, 𝑒1

1 + 𝑒0
2),

which is the cone 𝜎𝑆 for the G-nested set 𝑆 = {𝐻0
2
, 𝐻1

1
∩ 𝐻0

2
}.

The only difference between Definition 2.5 and Feichtner–Yuzvinksy’s nested set fan described in

Section 2.2 is the quotients byR in𝑉A corresponding to each projective space factor. The point, however,

is that these quotients do not affect the key step in Feichtner–Yuzvinsky’s argument that 𝑋ΣG
is Chow-

equivalent to the wonderful compactification 𝑌G , which is a reexpression of ΣG in terms of a stellar

subdivision procedure; see [FY04, Theorem 4] and Lemma 2.8 below.
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In particular, we have the following analogue for product arrangements of the known results for

hyperplane arrangements in projective space.

Theorem 2.7. Let A1, . . . ,A𝑛 be essential hyperplane arrangements in respective projective spaces
P𝑘1 , . . . , P𝑘𝑛 , let A be the induced product arrangement in P𝑘1 × · · · × P𝑘𝑛 and let 𝑌◦ ⊆ P𝑘1 × · · · P𝑘𝑛

be the complement of A. Let G be any building set for LA, and let ΣG be the nested set fan for (LA,G).
Then there is an embedding

𝑌◦ ↩→ 𝑋ΣG

such that the wonderful compactification 𝑌G is the closure of 𝑌◦ in 𝑋ΣG
. Moreover, the inclusion of 𝑌G

into 𝑋ΣG
is a Chow equivalence:

𝐴∗(𝑌G) = 𝐴∗(𝑋ΣG
).

In order to prove this theorem, we first observe that a building set G for LA induces building sets

G1, . . . ,G𝑛 for LA1
, . . . ,LA𝑛

, respectively:

G𝑖 :=
{
𝑋 ∈ LA𝑖

�� 𝑝−1
𝑖 (𝑋) ∈ G

}
.

Thus, one can define a nested set fan ΣG𝑖
for each i, which is a fan in R𝑟𝑖/R. While ΣG is not equal to the

product ΣG1
×· · ·×ΣG𝑛

, it is equal to a stellar subdivision of that product, as the following lemma verifies.

Lemma 2.8. Let A be a product arrangement induced by arrangements A1, . . . ,A𝑛, let G be a building
set for LA and let G1, . . . ,G𝑛 be the induced building sets for LA1

, . . . ,LA𝑛
. Viewing each G𝑖 as a

subset of G by identifying 𝑋 ∈ G𝑖 with 𝑝−1
𝑖 (𝑋) ∈ G, write

G \

𝑛⋃
𝑖=1

G𝑖 = {𝐶1, . . . , 𝐶𝑁 },

where the elements are ordered in such a way that 𝑖 ≤ 𝑗 whenever 𝐶𝑖 ⊆ 𝐶 𝑗 . Then ΣG is obtained from
ΣG1

× · · · × ΣG𝑛
by stellar subdivision at the vector 𝑣𝐶1

, then the vector 𝑣𝐶2
, and so on.

Proof. It suffices to assume that 1̂ ∈ G (and therefore 1̂𝑖 ∈ G𝑖 for each i) because, if 𝐺 = 1̂ then

𝑣𝐺 = 0 ∈ 𝑉A, so including 1̂ in G does not affect the nested set fan. Thus, in view of Lemma 2.4(a), we

see that
⋃𝑛

𝑖=1 G𝑖 is a building set for LA. It therefore induces a nested set fan, and we claim that

ΣG1
× · · · × ΣG𝑛

= ΣG1∪···∪G𝑛
. (6)

Indeed, the cones of ΣG1∪···∪G𝑛
are, by definition, of the form 𝜎𝑆 for each (

⋃𝑛
𝑖=1 G𝑖)-nested set S. By

Lemma 2.4(b), these are precisely the cones

𝜎𝑆1∪···∪𝑆𝑛 = 𝜎𝑆1
× · · · × 𝜎𝑆𝑛

in which 𝑆𝑖 ⊆ G𝑖 is G𝑖-nested for each i, which are the cones of ΣG1
× · · · × ΣG𝑛

.

On the other hand, by [FM05, Theorem 4.2], the inclusion of building sets
(⋃𝑛

𝑖=1 G𝑖

)
⊆ G implies

that ΣG is obtained from ΣG1∪···∪G𝑛
by the sequence of stellar subdivision as claimed. Thus, by equation

(6), the proof is complete. �

Example 2.9. As an illustration of Lemma 2.8, let A again be the product arrangement of Examples 2.3

and 2.6, and let G be its maximal building set. Explicitly, G consists of the four hyperplanes 𝐻
𝑗

𝑖
listed

in equation (3) as well as the intersections 𝐻
𝑗

1
∩ 𝐻𝑘

2
for all 𝑗 , 𝑘 ∈ {0, 1}, whereas

G1 = {𝐻0
1 , 𝐻1

1} = {[1 : 1], [1 : −1]},

G2 = {𝐻0
2 , 𝐻1

2} = {[1 : 1], [1 : −1]}.
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One has

𝑉A1
= 𝑉A2

= R2/R � R,

and ΣG1
= ΣG2

is the fan in this vector space consisting of two rays pointing in opposite directions

together with the origin. Explicitly, the positive-dimensional cones in ΣG1
are

{
Cone(𝑒0

1), Cone(𝑒1
1)
}
,

and the positive-dimensional cones in ΣG2
are

{
Cone(𝑒0

2), Cone(𝑒1
2)
}
,

from which one sees that the product ΣG1
× ΣG2

has four two-dimensional cones

Cone(𝑒0
1, 𝑒

0
2), Cone(𝑒0

1, 𝑒
1
2), Cone(𝑒1

1, 𝑒
0
2), Cone(𝑒1

1, 𝑒
1
2).

The fan ΣG , which we considered in Example 2.6, is obtained from this product by stellar subdivision

along the four vectors 𝑒
𝑗

1
+ 𝑒𝑘

2
corresponding to the four elements 𝐻

𝑗

1
∩𝐻𝑘

2
of G \ (G1 ∪G2). See Figure 5

for an illustration, though note that the fan ΣG1
= ΣG2

is denoted by Σ2 in that figure, and the fan ΣG is

denoted by Σ2
2
, for consistency with the general notation for L

𝑟

𝑛 established below.

The key upshot of Lemma 2.8 is the following. By [FY04, Theorem 4], each of the fans ΣG𝑖
can be

obtained from the fan for P𝑟𝑖−1 by a two-step process: First, one performs successive stellar subdivision

along the vectors 𝑣𝑍 for 𝑍 ∈ G𝑖 , which produces a fan in which all cones have the form 𝜎𝑆 for 𝑆 ⊆ G𝑖 ,

and second, one removes the open cones 𝜎𝑆 for which S is not G𝑖-nested. Thus, Lemma 2.8 says that

ΣG can similarly be obtained from the fan for P𝑟1−1 × · · · × P𝑟𝑛−1 by first performing successive stellar

subdivisions along the vectors 𝑣𝐺 for all 𝐺 ∈ G, and then removing the open cones 𝜎𝑆 for which S is

not
(⋃𝑛

𝑖=1 G𝑖

)
-nested.

Equipped with these observations, we are ready for the proof of Theorem 2.7.

Proof of Theorem 2.7. The fact that there is an embedding 𝑌◦ ↩→ 𝑋ΣG
is immediate: By Remark 2.2,

we have an embedding of𝑌◦ into the torus T𝑟1−1× · · ·×T𝑟𝑛−1, which is the torus for the toric variety ΣG .

To see that the closure of 𝑌◦ in 𝑋ΣG
is indeed 𝑌G , write

G = {𝑊1, . . . ,𝑊𝑀 },

again ordered in such a way that 𝑖 ≤ 𝑗 whenever 𝑊𝑖 ⊆ 𝑊 𝑗 . Then Li Li’s construction of wonderful

compactifications in [Li09b, Definition 2.12] shows that 𝑌G is an iterated blowup of P𝑘1 × · · · × P𝑘𝑛

along 𝑊1, . . . ,𝑊𝑀 . Now, let

𝑖 : P𝑘1 × · · · × P𝑘𝑛 ↩→ P𝑟1−1 × · · · × P𝑟𝑛−1

be the product of the embeddings described in Section 2.2, under which the elements of A are mapped

to torus-invariant strata. In particular, let 𝑍1, . . . , 𝑍𝑀 be torus-invariant strata such that 𝑖−1(𝑍 𝑗 ) = 𝑊 𝑗

for each j. Then, by the blowup closure lemma (see [Vak17, Lemma 22.2.6]), one can view 𝑌G as the

closure of the image of

P𝑘1 × · · · × P𝑘𝑛 \

𝑀⋃
𝑖=1

𝑊 𝑗
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in the iterated blowup of P𝑟1−1 × · · · × P𝑟𝑛−1 along 𝑍1, . . . , 𝑍𝑀 . This is the same as the closure of the

image of 𝑌◦ in this iterated blowup since replacing the above complement by 𝑌◦ only adds points that

avoid 𝑍1, . . . , 𝑍𝑀 .

The iterated blowup of P𝑟1−1 × · · · × P𝑟𝑛−1 along 𝑍1, . . . , 𝑍𝑀 is a toric variety whose fan has cones

of the form 𝜎𝑆 for 𝑆 ⊆ G, and, by the discussion immediately following the proof of Lemma 2.8 above,

one can obtain 𝑋ΣG
from this toric variety by removing all of the open strata corresponding to cones 𝜎𝑆

in which S is not
(⋃𝑛

𝑖=1 G𝑖

)
-nested. Since

⋃𝑛
𝑖=1 G𝑖 ⊆ G, such sets are also not G-nested. It follows that

removing these cones does not affect the closure of 𝑌◦ because the fact that the boundary strata of 𝑌G

are indexed by G-nested sets (see [DCP95, Section 3.2]) means that it avoids the blowups corresponding

to nonnested sets. Thus, 𝑌G is indeed the closure of 𝑌◦ in 𝑋ΣG
.

Finally, to see that the inclusion 𝑌G ↩→ 𝑋ΣG
is a Chow equivalence, we recall from Remark 2.2 that

𝑌◦ ⊆ T𝑟 is a linear variety, which implies by [Gro15, Theorem 1.1] that such a Chow equivalence holds

so long as𝑌G ⊆ 𝑋ΣG
is a tropical compactification, meaning that |ΣG | = Trop(𝑌◦) and the multiplication

map T𝑟 × 𝑌G → 𝑋ΣG
is faithfully flat. This is indeed the case: Each 𝑌G𝑖

is a tropical compactification

and, by Lemma 2.8, there is a proper toric morphism

ΣG → ΣG1
× · · · × ΣG𝑛

,

so the fact that 𝑌G is a tropical compactification follows from [Tev07, Proposition 2.5]. �

3. The moduli space of curves with cyclic action

In this section, we review the definition and necessary properties of the moduli space L
𝑟

𝑛 introduced

in [CDH+22], and we prove that it is a wonderful compactification of a product arrangement in (P1)𝑛.

Throughout, we assume that 𝑟 ≥ 2.

3.1. Background on L
𝑟

𝑛

The objects parameterized by L
𝑟

𝑛 are stable (𝑟, 𝑛)-curves. The underlying curve C in such an object

is an ‘r-pinwheel curve’, which is a rational curve consisting of a central projective line from which

r equal-length chains of projective lines (‘spokes’) emanate. This curve is equipped with an order-r
automorphism 𝜎, as well as marked points as follows:

◦ two distinct fixed points 𝑥+ and 𝑥− of 𝜎;

◦ n labeled r-tuples (𝑧0
1
, . . . , 𝑧𝑟−1

1
), . . . , (𝑧0

𝑛, . . . , 𝑧
𝑟−1
𝑛 ) of points 𝑧

𝑗

𝑖
∈ 𝐶 satisfying

𝜎(𝑧
𝑗

𝑖
) = 𝑧

𝑗+1 mod 𝑟

𝑖

for each i and j, where we allow 𝑧
𝑗

𝑖
= 𝑧

𝑗′

𝑖′
and 𝑧

𝑗

𝑖
= 𝑥±;

◦ an additional labeled r-tuple (𝑦0, . . . , 𝑦𝑟−1) satisfying

𝜎(𝑦ℓ ) = 𝑦ℓ+1 mod 𝑟

for each ℓ, whose elements are distinct from one another as well as from 𝑥± and 𝑧
𝑗

𝑖
.

These marked points are subject to a stability condition, the details of which can be found in [CDH+22,

Section 2.1]. We refer to each tuple (𝑧0
𝑖
, . . . , 𝑧𝑟−1

𝑖 ) as a ‘light orbit’ of 𝜎 and the tuple (𝑦0, . . . , 𝑦𝑟−1) as

the ‘heavy orbit’. See Figure 1 for an example of a stable (𝑟, 𝑛)-curve.

In [CDH+22, Theorem 3.5], a fine moduli space L
𝑟

𝑛 for stable (𝑟, 𝑛)-curves is constructed, whose

B-points correspond to families of stable (𝑟, 𝑛)-curves over the base scheme B as defined in [CDH+22,

Definition 2.5]. More precisely, there is a connected component L
𝑟

𝑛 (𝜁) for any choice of primitive rth
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𝑧1
1

𝑧2
1

𝑧0
1

𝑧1
2

𝑧2
2

𝑧0
2

𝑧2
4

𝑧0
4

𝑧1
4

𝑧0
3

𝑧1
3

𝑧2
3

𝑦0

𝑦1

𝑦2

Figure 1. A stable (3, 4)-curve, where each circle represents a P1 component and 𝜎 is the rotational
automorphism. Not pictured are the marked points 𝑥+ and 𝑥−, which are the two fixed points of 𝜎 and
must both lie on the central component.

root of unity 𝜁 , all of which are isomorphic to one another, and the moduli space L
𝑟

𝑛 is the disjoint union

of these connected components. In what follows, we will assume that 𝜁 is fixed and we will therefore

abuse notation by referring to the space L
𝑟

𝑛 when we in fact mean a single component L
𝑟

𝑛 (𝜁).

3.2. An alternative description of the moduli space

The construction of L
𝑟

𝑛 in [CDH+22] is as a subvariety of a ‘Hassett space’ – that is, a moduli

space of stable rational curves with weighted marked points. Roughly speaking, for any weight vector

�𝑤 = (𝑤1, . . . , 𝑤𝑛) ∈ (Q ∩ (0, 1])𝑛 such that
∑

𝑤𝑖 > 2, the associated genus-zero Hassett space M0, �𝑤

is a moduli space of rational curves equipped with n marked points, in which a subset of these marked

points is allowed to coincide as long as the sum of their weights is at most one. The stability condition

on such curves is that, for each irreducible component with 𝑛0 half-nodes and marked points in 𝐼0 ⊆ [𝑛],
one has

𝑛0 +
∑
𝑖∈𝐼0

𝑤𝑖 > 2.

Hassett constructed these moduli spaces in [Has03], and moreover, he proved that if 𝑤′
𝑖 ≤ 𝑤𝑖 for each

i, then there is a birational weight-reduction morphism

M0,w → M0,w′

whose exceptional locus can be expressed explicitly as a union of boundary divisors.

In addition to the inclusion into a Hassett space that arises from the construction of the moduli

space, L
𝑟

𝑛 carries another key morphism to a Hassett space, which is the quotient map 𝐶 ↦→ 𝐶/𝜎. The

codomain of this map is the space M
1

𝑛 introduced in [CDH+22, Section 3.1]. Namely, M
1

𝑛 = M0,w,

where the weight vector is

w =

�


�
1

2
+ 𝜀,

1

2
+ 𝜀, 1, 𝜀, . . . , 𝜀︸���︷︷���︸

𝑛 copies

�����
for any 0 < 𝜀 < 1/(2𝑛 + 2). A sample element of M

1

𝑛 – which should be viewed as a single spoke of a

curve in L
𝑟

𝑛 – is shown in Figure 2.
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𝑥−

𝑥+

𝑧5

𝑧1
𝑧2 𝑧4

𝑧3

𝑦

Figure 2. A point of M
1

6.

Remark 3.1. As observed in [CDH+22, Remark 8.1], the space M
1

𝑛 can alternatively be viewed as the

result of setting 𝑟 = 1 in the definition of L
𝑟

𝑛.

For the purpose of realizing L
𝑟

𝑛 as a wonderful compactification, we also require an analogue of the

space M
1

𝑛 in which the points 𝑧𝑖 are allowed to coincide with y. Specifically, let 𝑋0 = M0,w0
be the

Hassett space with weight vector

w0 :=

�


�
1

2
+ 𝜀,

1

2
+ 𝜀, 1 − 𝑛𝜀, 𝜀, . . . , 𝜀︸���︷︷���︸

𝑛 copies

�����
,

where 𝜀 ∈ Q is such that 0 < 𝜀 ≤ 1/(2𝑛 + 2). Then

𝑋0 = (P1)𝑛

since the weights ensure that the curves parameterized by 𝑋0 consist of a single component. Because

𝑋0 differs from M
1

𝑛 only in that the weight on the marked point y is reduced, there is a weight-reduction

morphism

𝑐 : M
1

𝑛 → (P1)𝑛.

There is also an analogous morphism

𝑏 : L
𝑟

𝑛 → (P1)𝑛,

which can be viewed as the composition of the forgetful map

L
𝑟

𝑛 → M
1

𝑛

(𝐶; 𝑥±, {𝑧
𝑗

𝑖
}, {𝑦ℓ }) ↦→ (𝐶; 𝑥±, {𝑧0

𝑖 }, 𝑦
0)

with the map c.

Remark 3.2. It is helpful – though not logically necessary – to view the codomain of b as itself a moduli

space, parameterizing analogous objects to those parameterized by L
𝑟

𝑛 but in which all n of the light

orbits are allowed to coincide with the heavy orbit. From this perspective, b is also a weight-reduction

morphism.

Now, let

𝑝 : L
𝑟

𝑛 → M
1

𝑛
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Figure 3. A representation of the maps in diagram (7) in the case where 𝑟 = 𝑛 = 3, with the points 𝑥±

omitted for clarity. In the upper-right corner, the three coordinates in (P1)3 are 𝜁 , 1 and a point 𝑧0
3

that
is not a third root of unity. In the lower-right, the three coordinates are 1, 1 and (𝑧0

3
)𝑟 .

be the morphism that sends an (𝑟, 𝑛)-curve C to the quotient of 𝐶/𝜎. Then these morphisms fit together

into a diagram

L
𝑟

𝑛
𝑏 ��

𝑝

��

(P1)𝑛

𝑞

��
M

1

𝑛 𝑐
�� (P1)𝑛,

(7)

where 𝑞 : (P1)𝑛 → (P1)𝑛 is the ramified cover

𝑞(𝑝1, . . . , 𝑝𝑛) = (𝑝𝑟1 , . . . , 𝑝
𝑟
𝑛). (8)

See Figure 3 for a depiction of the maps in this diagram.

In fact, equation (7) is Cartesian. Heuristically, this makes sense: A curve in M
1

𝑛 specifies a single

spoke of a curve in L
𝑟

𝑛, which determines the entire element of L
𝑟

𝑛 modulo the ordering of the points

within each orbit, while a point in (P1)𝑛 determines the choice of which point within each orbit shall be

labeled 𝑧0
𝑖
. We make this argument precise in the following lemma.

Lemma 3.3. The diagram (7) is Cartesian.
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Proof. Let B be any scheme, and suppose we are given morphisms 𝜌 : 𝐵 → M
1

𝑛 and 𝛽 : 𝐵 → (P1)𝑛

such that the diagram

𝐵
𝛽 ��

𝜌

��

(P1)𝑛

𝑞

��
M

1

𝑛 𝑐
�� (P1)𝑛

commutes. Our goal is to construct a map 𝐵 → L
𝑟

𝑛 or, in other words, a family of (𝑟, 𝑛)-curves over B.

First, note that from the definition of M
1

𝑛 as a moduli space, the map 𝜌 induces a family 𝜋1
𝑛 : C1

𝑛 → 𝐵

of weighted-pointed curves over B, with sections 𝑥±, 𝑧1, . . . , 𝑧𝑛 and y. The map 𝑐 ◦ 𝜌 also induces a

family of weighted-pointed curves over B, namely the family

𝐵 × P1

𝜋𝐵

��
𝐵

𝑥± ,𝑧1 ,...,𝑧𝑛 ,𝑦

�� (9)

where the sections 𝑥±, 𝑧1, . . . , 𝑧𝑛, 𝑦 are defined by

𝑥+(𝑏) = (𝑏,∞)

𝑥−(𝑏) = (𝑏, 0)

𝑦(𝑏) = (𝑏, 1)

𝑧𝑖 (𝑏) = (𝑏, (𝑐 ◦ 𝜌)𝑖 (𝑏)),

where (𝑐◦ 𝜌)𝑖 (𝑏) ∈ P
1 denotes the ith coordinate of (𝑐◦ 𝜌) (𝑏) ∈ (P1)𝑛. Since the map 𝑐 : M

1

𝑛 → (P1)𝑛

is a weight-reduction morphism between Hassett spaces, it can be upgraded to the level of families,

yielding a morphism

𝑐̃ : C1
𝑛 → 𝐵 × P1

that takes the sections of C1
𝑛 to the corresponding sections of 𝐵 × P1.

Next, note that the map 𝛽 also induces a family of weighted-pointed curves. Taking the perspective

of Remark 3.2, we view the family induced by 𝛽 as

𝐵 × P1

𝜋𝐵

��
𝐵

𝑥̂± , {𝑧̂
𝑗

𝑖
}, { 𝑦̂ℓ }

�� , (10)

where 𝑥± = (𝑥±)𝑟 = 𝑥±, and the remaining sections are defined by

𝑦̂ℓ (𝑏) = (𝑏, 𝜁ℓ)

𝑧
𝑗

𝑖
(𝑏) = (𝑏, 𝜁 𝑗 𝛽𝑖 (𝑏))

https://doi.org/10.1017/fms.2023.26 Published online by Cambridge University Press



Forum of Mathematics, Sigma 17

for ℓ, 𝑗 ∈ Z𝑟 and 𝑖 ∈ [𝑛]; note that this is a family of curves with marked points of weights

�


�
1

2
+ 𝜀,

1

2
+ 𝜀, 1 − 𝑛𝜀, . . . , 1 − 𝑛𝜀︸�����������������︷︷�����������������︸

𝑟 copies

, 𝜀, . . . , 𝜀︸���︷︷���︸
𝑟𝑛 copies

�����
.

Since both equation (9) and equation (10) are trivial families, the morphism q can be upgraded to a

morphism between them: Namely, we have

𝑞 : 𝐵 × P1 → 𝐵 × P1

given by 𝑞(𝑏, 𝑝) = (𝑏, 𝑝𝑟 ), which fixes the sections 𝑥± and takes 𝑦̂ℓ to 𝑦 as well as 𝑧
𝑗

𝑖
to 𝑧𝑖 for each 𝑖, 𝑗 ,

and ℓ.

Now, to produce the requisite family of (𝑟, 𝑛)-curves, define C𝑟𝑛 as the fiber product of the diagram

C𝑟𝑛
𝑏 ��

𝑝

��

𝐵 × P1

𝑞

��
C1
𝑛

𝑐̃

�� 𝐵 × P1.

(11)

We claim, first, that C𝑟𝑛 is a flat family of curves over B. It is certainly equipped with a map 𝜋 : C𝑟𝑛 → 𝐵,

namely

𝜋 := 𝑝 ◦ 𝜋1
𝑛 = 𝑏̃ ◦ 𝜋𝐵 .

To see that 𝜋 is flat, note that 𝑞 is étale away from 𝐵 × {0,∞}, so, since étaleness is preserved by base

change, it follows that 𝑝 is étale on C𝑟𝑛 \ 𝑏̃−1(𝐵 × {0,∞}). In particular, then, the restriction of 𝜋 to

this locus is the composition of an étale morphism with the flat morphism 𝜋1
𝑛, so it is flat. On the other

hand, the map 𝑐̃ is an isomorphism away from 𝑐̃−1(𝐵 × {1}), so it follows that 𝑏̃ is an isomorphism on

C𝑟𝑛\𝑝
−1 (𝑐̃−1 (𝐵×{1})). As a result, the restriction of 𝜋 to this locus is the composition of an isomorphism

with the flat morphism 𝜋𝐵, so it is flat. Having covered C𝑟𝑛 by open sets on which 𝜋 is flat, we conclude

that C𝑟𝑛 is indeed a flat family of curves over B.

In order to make C𝑟𝑛 into a family of (𝑟, 𝑛)-curves, we must equip it with an order-r automorphism

and sections. For the first of these, let

𝜎 : 𝐵 × P1 → 𝐵 × P1

be the automorphism 𝜎(𝑏, 𝑝) = (𝑏, 𝜁 𝑝). Then we have a diagram

C𝑟𝑛
𝜎◦𝑏 ��

��

𝐵 × P1

𝑞

��
C1
𝑛

𝑐̃

�� 𝐵 × P1,

and the universal property of C𝑟𝑛 as a fiber product yields a morphism 𝜎 : C𝑟𝑛 → C𝑟𝑛 that is easily

confirmed to be an order-r automorphism over B.

The construction of the sections is similar; in particular, by the universal property of fiber products,

a section of C𝑟𝑛 is determined by sections of C1
𝑛 and 𝐵 × P1. We define 𝑥± as the section determined by
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the section 𝑥± of C1
𝑛 and 𝑥± of 𝐵 × P1, define 𝑦ℓ as the section determined by y and 𝑦̂ℓ and define 𝑧

𝑗

𝑖
as

the section determined by 𝑧𝑖 and 𝑧
𝑗

𝑖
. From here, it is straightforward to check that each fiber

(𝜋−1 (𝑏); 𝑥± (𝑏)), {𝑧
𝑗

𝑖
(𝑏)}, {𝑦ℓ (𝑏)})

of 𝜋 is indeed a stable (𝑟, 𝑛)-curve. Thus, we have given C𝑟𝑛 the structure of an (𝑟, 𝑛)-curve over B,

meaning that we have a map 𝐵 → L
𝑟

𝑛. By construction, this map makes the diagram

𝐵

���
�

�

�

�

�

�

�

𝛽

��

𝜌

��

L
𝑟

𝑛
𝑏 ��

𝑝

��

(P1)𝑛

𝑞

��
M

1

𝑛 𝑐
�� (P1)𝑛

commute, so the proof is complete. �

3.3. The moduli space as a wonderful compactification

We are now prepared to describe how L
𝑟

𝑛 arises as a wonderful compactification. The ambient variety

is (P1)𝑛, and in this variety, we consider the arrangement consisting of the hyperplanes

𝐻
𝑗

𝑖
= {(𝑝1, . . . , 𝑝𝑛) ∈ (P1)𝑛 | 𝑝𝑖 = 𝜁 𝑗 } (12)

for each 𝑖 ∈ [𝑛] and 𝑗 ∈ Z𝑟 . Note that this is the product arrangement induced by n copies of the

hyperplane arrangement

A𝑟 :=
{
{1}, {𝜁 }, {𝜁2}, . . . , {𝜁𝑟−1}

}
(13)

in P1, where 𝜁 is our fixed primitive rth root of unity.

Theorem 3.4. For any 𝑟 ≥ 2 and 𝑛 ≥ 0, the moduli space L
𝑟

𝑛 is the wonderful compactification of the
arrangement

{𝐻
𝑗

𝑖
}𝑖∈[𝑛], 𝑗∈Z𝑟

in (P1)𝑛, with maximal building set.

Proof. Our goal is to realize L
𝑟

𝑛 as an iterated blowup of (P1)𝑛 as described in Section 2.1, and the first

key observation is that for M
1

𝑛, the analogous result holds. Specifically, for any 𝑘 ∈ {0, 1, . . . , 𝑛}, let

𝑋𝑘 = M0,w𝑘
be the Hassett space with weight vector

w𝑘 :=

�


�
1

2
+ 𝜀,

1

2
+ 𝜀, 1 − (𝑛 − 𝑘)𝜀, 𝜀, . . . , 𝜀︸���︷︷���︸

𝑛 copies

�����
,

where, once again, 𝜀 ∈ Q is such that 0 < 𝜀 ≤ 1/(2𝑛 + 2); this space parameterizes the same objects as

M
1

𝑛, but in which 𝑛 − 𝑘 of the light points 𝑧𝑖 are allowed to coincide with y. When 𝑘 = 0, we obtain

the space 𝑋0 described in the previous section, which can be identified with (P1)𝑛, and when 𝑘 = 𝑛, we

obtain 𝑋𝑛 = M
1

𝑛.
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Each of the spaces 𝑋𝑘+1 is obtained from 𝑋𝑘 by blow-up along a smooth subvariety. Indeed, if we let

𝑍𝑘 ⊆ 𝑋𝑘 be the locus where 𝑛 − 𝑘 of the points 𝑧
𝑗

𝑖
coincide with y, then

◦ 𝑋1 is the blowup of 𝑋0 along 𝑍0,

◦ 𝑋2 is the blowup of 𝑋1 along the proper transform of 𝑍1,

◦ 𝑋3 is the blowup of 𝑋2 along the proper transform of 𝑍2,

and so on. The proofs of these statements follow from [AG08, Theorem 4.8], which shows that the

weight-reduction morphism 𝑐𝑘 : 𝑋𝑘+1 → 𝑋𝑘 is a blowup when the change of weights is a ‘simple’

wall-crossing (see [AG08, Definition 4.1]), which is true in this case.

Now, we inductively define spaces𝑌𝑘 with maps 𝑞𝑘 : 𝑌𝑘 → 𝑋𝑘 , for each 𝑘 ∈ {0, 1, . . . , 𝑛}, as follows.

When 𝑘 = 0, set 𝑌𝑘 = (P1)𝑛, and set 𝑞0 : 𝑌0 → 𝑋0 to be the map (P1)𝑛 → (P1)𝑛 given by equation (8).

Then, having defined 𝑌𝑘 and 𝑞𝑘 , define 𝑌𝑘+1 and 𝑞𝑘+1 by the following Cartesian diagram:

𝑌𝑘+1
𝑏𝑘 ��

𝑞𝑘+1

��

𝑌𝑘

𝑞𝑘

��
𝑋𝑘+1 𝑐𝑘

�� 𝑋𝑘 .

(14)

Note that each 𝑞𝑘 is flat (since 𝑞 = 𝑞0 is flat and equation (14) is Cartesian), so since blowups commute

with flat base change (see [Vak17, Exercise 24.2.P]), the fact that 𝑋𝑘+1 is the blowup of 𝑋𝑘 along 𝑍𝑘

implies that 𝑌𝑘+1 is the blowup of 𝑌𝑘 along 𝑞−1
𝑘
(𝑍𝑘 ).

Since 𝑌0 = (P1)𝑛 and 𝑌𝑛 = L
𝑟

𝑛 by Lemma 3.3, we have now shown that L
𝑟

𝑛 is obtained from (P1)𝑛

by the following sequence of blowups:

◦ blowup (P1)𝑛 along 𝑞−1
0
(𝑍0), which is the union of the points where all n coordinates are equal to rth

roots of unity;

◦ blowup along 𝑞−1
1
(𝑍1), which is the proper transform of the union of the lines in (P1)𝑛, where 𝑛 − 1

coordinates are equal to rth roots of unity;

◦ blow up along 𝑞−1
2
(𝑍2), which is the proper transform of the union of the planes in (P1)𝑛 where 𝑛− 2

coordinates are equal to rth roots of unity;

and so on. In other words, we are iteratively blowing up (P1)𝑛 along all intersections of the hyperplanes

(12), in increasing order with respect to inclusions. This is precisely the construction of the wonderful

compactification of this arrangement (with its maximal building set), so the proof is complete. �

Observe that by Remark 3.1, M
1

𝑛 can be viewed as the 𝑟 = 1 case of the space L
𝑟

𝑛. Thus, the first part

of the above proof can be interpreted as showing that, also in this limit case, L
1

𝑛 is an iterated blowup

of (P1)𝑛 and can be seen as a wonderful compactification for a nonessential hyperplane arrangement.

4. The Chow ring of L
𝑟

𝑛

The presentation of L
𝑟

𝑛 as a wonderful compactification via Theorem 3.4, together with the result of

Theorem 2.7, allows us to calculate 𝐴∗(L
𝑟

𝑛), and the goal of this section is to carry out this computation

explicitly.

4.1. The nested set fan for L
𝑟

𝑛

By Theorem 2.7, the Chow ring of a wonderful compactification is determined by its nested set fan. Our

first goal, then, is to describe the nested set fan of the arrangement

A = {𝐻
𝑗

𝑖
}𝑖∈[𝑛], 𝑗∈Z𝑟

in (P1)𝑛 given by equation (12), with its maximal building set G = LA \ {0̂}.
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We require two pieces of combinatorial terminology, both of which appeared in [CDH+22].

Definition 4.1. A Z𝑟 -decorated subset of [𝑛] is a pair 𝐼̃ = (𝐼, 𝔞), in which 𝐼 ⊆ [𝑛] is a nonempty

subset and 𝔞 : 𝐼 → Z𝑟 is any function. More generally, a Z𝑟 -decorated chain of subsets of [𝑛] (or

simply chain, for short) is a tuple

Ĩ = (𝐼1, . . . , 𝐼ℓ , 𝔞),

where

∅ = 𝐼0 � 𝐼1 � · · · � 𝐼ℓ ⊆ [𝑛]

and

𝔞 : 𝐼ℓ → Z𝑟 .

We refer to the number ℓ as the length of the chain.

From the definition of the hyperplanes 𝐻
𝑗

𝑖
in equation (12), one sees that the intersection 𝐻

𝑗

𝑖
∩ 𝐻

𝑗′

𝑖

is empty unless 𝑗 = 𝑗 ′, whereas all of the intersections 𝐻
𝑗

𝑖
∩ 𝐻

𝑗′

𝑖′
with 𝑖 ≠ 𝑖′ are nonempty. It follows

that the elements of the intersection lattice LA are precisely the intersections

𝐻
𝐼̃

:=
⋂
𝑖∈𝐼

𝐻
−𝔞 (𝑖)
𝑖

for each decorated set 𝐼̃ = (𝐼, 𝔞).

Remark 4.2. The negative exponents in the definition of 𝐻
𝐼̃

may look strange at a glance, but this

convention is chosen for consistency with the indexing of boundary strata by chains in [CDH+22]; see

Remark 4.7 below.

Given that G is the maximal building set, the G-nested sets are simply chains in LA \ {0̂} as a poset.

The ordering on LA is by reverse inclusion, and from this one sees that

𝐻𝐼 ≤ 𝐻𝐽 if and only if 𝐼̃ ≤ 𝐽,

where the ordering on decorated sets is given by

(𝐼, 𝔞) ≤ (𝐽, 𝔟) if and only if 𝐼 ⊆ 𝐽 and 𝔞(𝑖) = 𝔟(𝑖) for all 𝑖 ∈ 𝐼 .

As a result, the G-nested sets are indexed by chains in the sense of Definition 4.1: Namely, if Ĩ =

(𝐼1, . . . , 𝐼ℓ , 𝔞) is a chain, then the corresponding G-nested set is

𝐻
𝐼1
≤ 𝐻

𝐼2
≤ · · · ≤ 𝐻

𝐼ℓ
.

Comparing this to Definition 2.5, we see that the nested set fan for (LA,G), which we denote by Σ𝑟
𝑛,

can be described as follows.

Definition 4.3. Let

𝑉A = (R𝑟/R)⊕𝑛,
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Figure 4. The fan Σ2
2
. The cone 𝜎

I
labeled in green corresponds to the chain Ĩ = ({2} ⊆ {1, 2}, 𝔞) in

which 𝔞(1) = 1 and 𝔞(2) = 0.

and denote the images of the standard basis vectors in the ith copy of R𝑟/R by 𝑒0
𝑖
, . . . , 𝑒𝑟−1

𝑖 . Then Σ𝑟
𝑛 is

the fan in 𝑉A with a cone

𝜎
I

:= Cone

{∑
𝑖∈𝐼1

𝑒
−𝔞 (𝑖)
𝑖

, . . . ,
∑
𝑖∈𝐼ℓ

𝑒
−𝔞 (𝑖)
𝑖

}

for each chain Ĩ. See Figure 4 for an illustration.

Remark 4.4. The intersection 𝜎
I
∩ 𝜎

J
is the cone 𝜎

I∩J̃
, where Ĩ ∩ J̃ is the following chain. Let

Ĩ = (𝐼1, . . . , 𝐼ℓ𝐼 , 𝔞) and J̃ = (𝐽1, . . . , 𝐽ℓ𝐽 , 𝔟), and define

(𝐼 ∩ 𝐽)𝑖, 𝑗 = {𝑘 ∈ 𝐼𝑖 ∩ 𝐼 𝑗 | 𝔞(𝑘) = 𝔟(𝑘)}.

The collection of subsets (𝐼 ∩ 𝐽)𝑖, 𝑗 with 𝑖 ∈ [ℓ𝐼 ] and 𝑗 ∈ [ℓ𝐽 ] can be reordered to define a chain of

subsets of [𝑛] such that the biggest one, given by (𝐼 ∩ 𝐽)ℓ𝐼 ,ℓ𝐽 , admits a unique map to Z𝑟 restricting 𝔞

(or, equivalently, 𝔟).

Remark 4.5. An alternative way to construct Σ𝑟
𝑛, by Lemma 2.8, is via a stellar subdivision procedure.

Specifically, let Σ𝑟 be the nested set fan for the arrangement (13) in P1 with its maximal building set;

this is a one-dimensional fan in R𝑟/R with r rays spanned by the images of the standard basis vectors in

R𝑟 . Then the Cartesian product (Σ𝑟 )
×𝑛 is a fan in 𝑉A. Recalling that 𝑉A has a vector

𝑣𝐺 :=
∑

𝐻
𝑗

𝑖
⊇𝐺

𝑒
𝑗

𝑖

for each 𝐺 ∈ LA \ {0̂}, the content of Lemma 2.8 is that Σ𝑟
𝑛 can be obtained from (Σ𝑟 )

×𝑛 by successive

stellar subdivision along the vectors 𝑣𝐻
𝐼

for each nested set 𝐼̃ with |𝐼 | > 1 in inclusion-increasing order

with respect to the varieties 𝐻
𝐼̃
. We illustrate this construction in an example in Figure 5.

In light of the description of Σ𝑟
𝑛 in Definition 4.3, the torus-invariant strata in 𝑋Σ𝑟

𝑛
can be indexed by

chains Ĩ. On the other hand, we proved in [CDH+22] that the boundary strata of L
𝑟

𝑛 are also indexed by

chains, and in fact, the next section shows that the inclusion

L
𝑟

𝑛 ↩→ 𝑋Σ𝑟
𝑛
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Figure 5. The fanΣ2
2
, obtained via stellar subdivision from the Cartesian product of two copies of the fan

Σ2. The labeled vector 𝑣𝐻
𝐼

corresponds to the nested set 𝐼̃ = ({1, 2}, 𝔞) in which 𝔞(1) = 1 and 𝔞(2) = 0.

provided by Theorem 3.4 matches these two types of strata with one another. Before stating this result,

we must recall the association of boundary strata with chains from [CDH+22].

4.2. Boundary strata and chains

In order to describe the boundary strata of L
𝑟

𝑛, we first explain how components of an (𝑟, 𝑛)-curve are

labeled. Let (𝐶;𝜎; 𝑥±, {𝑦𝑘 }, {𝑧
𝑗

𝑖
}) be a stable (𝑟, 𝑛)-curve, and suppose that C has ‘length’ ℓ in the

sense that each of its r spokes (chains of P1’s emanating from the central component) consists of ℓ

components. Then, for each 𝑘 ∈ Z𝑟 , we denote the components of the spoke containing 𝑦𝑘 by

𝐶𝑘
1 , 𝐶

𝑘
2 , . . . , 𝐶

𝑘
ℓ ,

where 𝑦𝑘 ∈ 𝐶𝑘
1

and the other components are labeled in order from outermost to innermost. We denote

the central component by 𝐶ℓ+1.

Given this labeling, the idea of the association of a boundary stratum to a chain is that the outermost

components {𝐶𝑘
1
}𝑘∈Z𝑟 contain the marked points indexed by 𝐼1 (in an order dictated by 𝔞), the next-

outermost components {𝐶𝑘
2
}𝑘∈Z𝑟 contain the marked points indexed by 𝐼2 \ 𝐼1, and so on, until [𝑛] \ 𝐼ℓ ,

which indexes the marked points on the central component. More precisely, the association is as follows.

Definition 4.6. Let Ĩ = (𝐼1, . . . , 𝐼ℓ , 𝔞) be a chain. We say that (𝐶;𝜎 𝑥±, {𝑦𝑘 }, {𝑧
𝑗

𝑖
}) ∈ L

𝑟

𝑛 is of type Ĩ if

C is an r-pinwheel curve of length ℓ, and, using the above notation, we have

1. For each 𝑗 ∈ {1, . . . , ℓ}, the light marked points on 𝐶0
𝑗

are precisely

{𝑧
𝔞 (𝑖)
𝑖

| 𝑖 ∈ 𝐼 𝑗 \ 𝐼 𝑗−1},

where 𝐼0 := ∅;

2. The light marked points on the central component 𝐶ℓ+1 are

{𝑧𝑘𝑖 | 𝑖 ∈ [𝑛] \ 𝐼ℓ , 𝑘 ∈ Z𝑟 } ∪ {𝑥±}.

We define the boundary stratum 𝑆
I
⊆ L

𝑟

𝑛 to be the closure of the locus of curves of type Ĩ.

The (3, 4)-curve of Figure 1, for example, is a generic element of the boundary stratum 𝑆
I

in which

Ĩ = (𝐼1, 𝐼2, 𝔞) for

𝐼1 = {3}, 𝐼2 = {2, 3, 4}
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and 𝔞 : 𝐼2 → Z3 given by

𝔞(2) = 1, 𝔞(3) = 0, 𝔞(4) = 2.

Remark 4.7. The first condition in Definition 4.6 implies that, for an (𝑟, 𝑛)-curve of type Ĩ, the light

marked point 𝑧0
𝑖

is on the same spoke of C as 𝑦−𝔞 (𝑖) . Given that the positions of all other light marked

points are determined by the location of the points 𝑧0
𝑖
, this helps to explain why −𝔞(𝑖) appears in the

definitions of 𝐻
𝐼̃

and 𝜎
I

above.

We proved in [CDH+22, Proposition 5.4] that the association Ĩ ↦→ 𝑆
I

is a bijection from chains to

boundary strata in L
𝑟

𝑛 and that, under this bijection, the codimension of 𝑆
I

corresponds to the length

of Ĩ whereas an inclusion of boundary strata 𝑆
I
⊆ 𝑆

J̃
corresponds to the statement that Ĩ ‘refines’ J̃ in

the sense of [CDH+22, Definition 4.2]. In particular, the boundary divisors are associated to chains of

length 1, which are Z𝑟 -decorated subsets of [𝑛]. We denote by

𝐷
𝐼̃
⊆ L

𝑟

𝑛

the boundary divisor corresponding to the decorated set 𝐼̃ = (𝐼, 𝔞).
Now, returning to the fan Σ𝑟

𝑛 of Definition 4.3, for any chain Ĩ, denote by 𝑋
I
⊆ 𝑋Σ𝑟

𝑛
the torus-invariant

stratum associated to the cone 𝜎
I

of Σ𝑟
𝑛. Then we have the following correspondence between the strata

𝑋
I

and the strata 𝑆
I
.

Proposition 4.8. Under the inclusion L
𝑟

𝑛 ↩→ 𝑋Σ𝑟
𝑛

given by Theorems 2.7 and 3.4, the pullback of the
torus-invariant stratum 𝑋

I
is the boundary stratum 𝑆

I
. In particular, the pullback of the torus-invariant

divisor 𝑋
𝐼̃

is the boundary divisor 𝐷
𝐼̃
.

Proof. It suffices to prove the claim for divisors since any torus-invariant stratum (respectively, boundary

stratum) is the intersection of the torus-invariant divisors (respectively, boundary divisors) that contain

it, and in both cases, the intersection of the stratum indexed by Ĩ and the stratum indexed by J̃ is the

stratum indexed by the chain Ĩ ∩ J̃ described in Remark 4.4. Thus, we fix a decorated set 𝐼̃ = (𝐼, 𝔞) and

consider the corresponding boundary divisor 𝐷
𝐼̃
⊆ L

𝑟

𝑛.

From the last paragraph of the proof of Theorem 3.4, one can view L
𝑟

𝑛 as an iterated blowup

L
𝑟

𝑛 = 𝑌𝑛 −→ 𝑌𝑛−1 −→ · · · −→ 𝑌1 −→ 𝑌0 = (P1)𝑛,

where 𝑌𝑘+1 is obtained from 𝑌𝑘 by blow-up along the proper transform of the locus

𝑊𝑘 :=
⋃

𝐽

�� |𝐽 |=𝑛−𝑘
𝐻

𝐽
⊆ (P1)𝑛.

If 𝐸
𝐼̃
⊆ 𝑌𝑛−|𝐼 |+1 denotes the exceptional divisor over 𝐻

𝐼̃
, then from this perspective, 𝐷

𝐼̃
is the proper

transform in L
𝑟

𝑛 of 𝐸
𝐼̃
.

On the other hand, one can also view 𝑋Σ𝑟
𝑛

as an iterated blowup by the stellar subdivision perspective

of Lemma 2.8. Namely, let Σ𝑟 be the nested set fan for the arrangement (13), as described in Remark

4.5. Then Σ𝑟 is obtained from the fan for P𝑟−1 by removing all but the one-dimensional cones, so

𝑋Σ𝑟
= P𝑟−1 \

⋃
𝑗≠ℓ

(𝐻 𝑗 ∩ 𝐻ℓ),
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where 𝐻 𝑗 ⊆ P
𝑟−1 denotes the jth coordinate hyperplane; in other words, a point of P𝑟−1 belongs to 𝑋Σ𝑟

𝑛

if and only if at most one of its coordinates is zero. Thus,

𝑋(Σ𝑟 )×𝑛 =
�
�
P𝑟−1 \

⋃
𝑗≠ℓ

(𝐻 𝑗 ∩ 𝐻ℓ)
���
𝑛

,

and Lemma 2.8 says that 𝑋Σ𝑟
𝑛

can be obtained from this variety by an iterated blowup along the torus-

invariant subvarieties 𝐻
𝐽

associated to the cones Cone(𝑣𝐻
𝐽
) for each nested set 𝐽 = (𝐽, 𝔟). Specifically,

we have

𝐻
𝐽

:=
⋂
𝑖∈𝐽

𝐻
−𝔟 (𝑖)
𝑖

,

where 𝐻
𝑗

𝑖
denotes the pullback of 𝐻 𝑗 along the projection of 𝑋(Σ𝑟 )×𝑛 to the ith factor. Thus, we have a

sequence of blowups

𝑋Σ𝑟
𝑛
= 𝑌𝑛 −→ 𝑌𝑛−1 −→ · · · −→ 𝑌1 −→ 𝑌0 = 𝑋(Σ𝑟 )×𝑛 ,

where 𝑌𝑘+1 is obtained from 𝑌𝑘 by blow-up along the proper transform of the locus

𝑊𝑘 :=
⋃

𝐽

�� |𝐽 |=𝑛−𝑘
𝐻

𝐽
⊆ 𝑋(Σ𝑟 )×𝑛 .

This is exactly analogous to the situation for L
𝑟

𝑛 described above, and also as in that situation, if

𝐸
𝐼̃
⊆ 𝑌𝑛−|𝐼 |+1 denotes the exceptional divisor over 𝑊

𝐼̃
, then the torus-invariant stratum 𝑋

𝐼̃
is the proper

transform of 𝐸
𝐼̃

in 𝑋Σ𝑟
𝑛
.

Now, let

𝑖 : 𝑌0 ↩→ 𝑌0

be the linear inclusion of (P1)𝑛 into (P𝑟−1)𝑛 sending the rth root of unity 𝜁 𝑗 in each factor to the

coordinate hyperplane 𝐻 𝑗 . Then

𝑊
𝐼̃
= 𝑖−1

(
𝑊

𝐼̃

)
,

so the blowup closure lemma shows that 𝑌𝑛−|𝐼 |+1 ↩→ 𝑌𝑛−|𝐼 |+1 in such a way that 𝐸
𝐼̃

is the restriction of

𝐸
𝐼̃
. Taking proper transforms, then, we see that 𝐷

𝐼̃
is the restriction of 𝑋

𝐼̃
, as claimed. �

Remark 4.9. One upshot of Proposition 4.8 is that there is an inclusion-reversing bijection between

the cones of the fan Σ𝑟
𝑛 and the boundary strata of L

𝑟

𝑛. This is analogous to the inclusion-preserving

bijection between the faces of the polytopal complex Δ𝑟
𝑛 and the boundary strata of L

𝑟

𝑛 that we proved

in [CDH+22]. In Section 5 below, we make the connection between Σ𝑟
𝑛 and Δ𝑟

𝑛 precise.

4.3. Calculation of the Chow ring of L
𝑟

𝑛

Equipped with the results of the previous subsections, the calculation of 𝐴∗(L
𝑟

𝑛) is essentially immediate.

Theorem 4.10. Let 𝑟 ≥ 2 and 𝑛 ≥ 0. The Chow ring of L
𝑟

𝑛 is generated by the boundary divisors 𝐷
𝐼̃

for each (nonempty) decorated subset 𝐼̃ of [𝑛], with relations given by
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◦ 𝐷
𝐼̃
· 𝐷

𝐽
= 0 unless either 𝐼̃ ≤ 𝐽 or 𝐽 ≤ 𝐼̃;

◦ for all 𝑖 ∈ [𝑛] and all 𝑎, 𝑏 ∈ Z𝑟 , ∑
𝐼̃ s.t.

𝑖∈𝐼 , 𝑎 (𝑖)=𝑎

𝐷
𝐼̃
=

∑
𝐼̃ s.t.

𝑖∈𝐼 , 𝑎 (𝑖)=𝑏

𝐷
𝐼̃
.

Proof. Theorem 2.7 shows that L
𝑟

𝑛 ↩→ 𝑋Σ𝑟
𝑛

is a Chow equivalence and standard toric geometry ma-

chinery (see, for example, [CLS11]) calculates the Chow ring of 𝑋Σ𝑟
𝑛
. Namely, it is generated by the

torus-invariant divisors, which correspond to the rays of Σ𝑟
𝑛 and are thus of the form 𝑋

𝐼̃
for each deco-

rated set 𝐼̃. The relations between these generators are given by

𝑋
𝐼1
· · · 𝑋

𝐼𝑘
= 0 if Cone{𝜎

𝐼1
, . . . , 𝜎

𝐼𝑘
} ∉ Σ

𝑟
𝑛 (15)

and ∑
𝐼̃

〈𝑣, 𝑢
𝐼̃
〉𝑋

𝐼̃
= 0 for all 𝑣 ∈ (𝑉A)

∨, (16)

where

𝑢
𝐼̃
=

∑
𝑖∈𝐼

𝑒
−𝑎 (𝑖)
𝑖

is the primitive integral generator of 𝜎
𝐼̃

and 〈·, ·〉 is the natural pairing between 𝑉A and (𝑉A)
∨.

By the definition of Σ𝑟
𝑛 and the result of Proposition 4.8, the relation (15) pulls back to

𝐷
𝐼1
· · ·𝐷

𝐼𝑘
= 0 if { 𝐼̃1, . . . , 𝐼̃𝑘 } is not a chain,

which is equivalent to the first relation in the statement of the theorem. In the relation (16), we can let

v range over the dual basis to the basis {𝑒
𝑗

𝑖
} for 𝑉A, where 𝑖 ∈ [𝑛] and 𝑗 ∈ {1, . . . , 𝑟 − 1}; note that in

this basis, we have

𝑒0
𝑖 = −𝑒1

𝑖 − · · · − 𝑒𝑟−1
𝑖

by the definition of 𝑉A as a quotient. When v is dual to 𝑒
𝑗

𝑖
, the pullback of equation (16) becomes∑

𝐼̃ s.t.
𝑖∈𝐼 , 𝑎 (𝑖)=− 𝑗

𝐷
𝐼̃
−

∑
𝐼̃ s.t.

𝑖∈𝐼 , 𝑎 (𝑖)=0

𝐷
𝐼̃
= 0.

Varying over all v in the dual basis yields the second relation in the statement of the theorem, so the

theorem is proved. �

Remark 4.11. Recalling from Remark 3.1 that setting 𝑟 = 1 in the definition of L
𝑟

𝑛 produces the space

M
1

𝑛 considered in Section 3.2, one might hope to generalize Theorem 4.10 to 𝑟 = 1 by calculating the

Chow ring of M
1

𝑛. This can indeed be done: By the iterated blowup perspective described in the proof

of Theorem 3.4, one can view M
1

𝑛 as the toric variety associated to a fan obtained by stellar subdivision

from the fan for (P1)𝑛. This fan is not the 𝑟 = 1 case of the nested set fan Σ𝑟
𝑛, however, so the Chow ring

of M
1

𝑛 does not arise as a special case of Theorem 4.10.

Remark 4.12. A further application of the presentation of L
𝑟

𝑛 as a wonderful compactification, which

we hope to take up in future work, is a computation of the K-ring of L
𝑟

𝑛. In particular, [LLPP22]

gives an isomorphism between the integral K-ring and the Chow ring of wonderful compactifications
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of hyperplane arrangement complements in projective space. If a similar result holds for wonderful

compactifications of complements of product arrangements, then the computation of 𝐴∗ (L
𝑟

𝑛) in Theorem

4.10 will yield a computation of 𝐾 (L
𝑟

𝑛).

4.4. The Betti numbers of L
𝑟

𝑛

While the computation of 𝐴∗(L
𝑟

𝑛) in the previous subsection relies critically on the Chow equivalence

with 𝑋Σ𝑟
𝑛

provided by Theorem 2.7, one can compute 𝐴∗(L
𝑟

𝑛) as an additive group without passing

through that theorem. Indeed, in [Li09a], Li Li gives a presentation of the Chow groups 𝐴∗(𝑌G) for any

wonderful compactification 𝑌G . In the case of L
𝑟

𝑛, that presentation is the following.

First, for any chain Ĩ = (𝐼1, . . . , 𝐼ℓ , 𝔞), set

𝑗 (̃I) = ( 𝑗1 (̃I), . . . , 𝑗ℓ (̃I)) := (|𝐼1 |, |𝐼2 | − |𝐼1 |, . . . , |𝐼ℓ | − |𝐼ℓ−1 |),

which we refer to as the jump type of Ĩ. Then, define

𝑀
Ĩ

:= {𝜇 ∈ Zℓ | 1 ≤ 𝜇𝑖 < 𝑗𝑖 (̃I) for all 𝑖}.

Note that 𝑀
Ĩ

depends only on the jump type of Ĩ, and it is nonempty if and only if each entry in 𝑗 (̃I) is

at least two. In light of this, for any vector j = ( 𝑗1, . . . , 𝑗ℓ) ∈ (Z≥2)
ℓ , let

𝑀j := {𝜇 ∈ Zℓ | 1 ≤ 𝜇𝑖 < 𝑗𝑖 for all 𝑖},

and let 𝑁j be the number of chains of jump type j; explicitly,

𝑁j :=

(
𝑛

𝑗1, . . . , 𝑗ℓ

)
𝑟 |j | ,

where |j| := 𝑗1 + · · · + 𝑗ℓ . Then the presentation of the Chow groups 𝐴∗(L
𝑟

𝑛) is the following.

Theorem 4.13. For any 𝑘 ∈ Z≥0, there is an isomorphism of additive groups

𝐴𝑘 (L
𝑟

𝑛) � 𝐴𝑘 ((P1)𝑛) ⊕
⊕
ℓ≥1

j∈(Z≥2)
ℓ

�
�
⊕
𝜇∈𝑀j

𝐴𝑘−|𝜇 |
(
(P1)𝑛−|j |

)���
⊕𝑁j

.

Proof. This is a direct application of [Li09a, Theorem 3.1]. The sum over G-nested sets T in that

theorem becomes a sum over chains Ĩ, and (after correcting the typo that {𝜇𝐺}𝐺∈G should be {𝜇𝐺}𝐺∈T

in [Li09a, page 9]) the set 𝑀T becomes the set 𝑀
Ĩ
. The space 𝑌0T in that theorem is the minimal

subvariety (under inclusion) in the chain T , which in our case is

𝐻
Ĩ

:=
∑
𝑖∈𝐼ℓ

𝐻
𝔞 (𝑖)
𝑖
� (P1)𝑛−|𝐼ℓ | .

Since |𝐼ℓ | = |j| for any chain Ĩ of jump type j, the above isomorphism follows. �

Example 4.14. Using the theorem above, we compute the following table of Betti numbers of L
𝑟

𝑛 for

small r and n using Sage.1 Note that the Betti numbers for 𝑟 = 2 are precisely the type-B Eulerian

numbers,2 which were studied as the Betti numbers of the type-B permutohedral variety 𝑋𝐵𝑛
= L

2

𝑛 in

[EFLS22].

1Sage code available at https://github.com/shiyue-li/multimatroids/blob/main/r-Eulerian.sage.
2OEIS A060187: https://oeis.org/A060187.
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(𝑟 , 𝑛) dim 𝐴𝑖 (L
𝑟

𝑛) , 𝑖 = 0, . . . , 𝑛

(2, 3) 1, 23, 23, 1

(2, 4) 1, 76, 230, 76, 1

(2, 5) 1, 237, 1362, 1362, 237, 1

(2, 6) 1, 722, 7663, 18748, 7663, 722, 1

(3, 3) 1, 57, 57, 1

(3, 4) 1, 247, 897, 247, 1

(3, 5) 1, 1013, 7003, 7003, 1013, 1

(3, 6) 1, 4083, 57390, 162020, 57390, 4083, 1

(4, 3) 1, 115, 115, 1

(4, 4) 1, 612, 2502, 612, 1

(4, 5) 1, 3109, 23914, 23914, 3109, 1

(4, 6) 1, 15606, 261839, 803764, 261839, 15606, 1

This table supports the following conjecture, the 𝑟 = 2 case of which follows from [EFLS22].

Conjecture 4.15. For each r and n, the Betti numbers dim 𝐴𝑖 (L
𝑟

𝑛) form a log-concave sequence.

5. Connection to tropical curves with cyclic action

We have now seen that the nested set fan Σ𝑟
𝑛 given by Definition 4.3 yields a toric variety whose Chow

ring is isomorphic to 𝐴∗(L
𝑟

𝑛). This fan has another interpretation, however: its support can be identified

with the moduli space of ‘tropical (𝑟, 𝑛)-curves’, and under this identification, the subdivision of |Σ𝑟
𝑛 |

into cones coincides with the stratification of the tropical moduli space by analogues of boundary strata.

The goal of this section is to prove these assertions. As a consequence, we also find a new interpretation

of the polytopal complex Δ𝑟
𝑛 introduced in [CDH+22].

5.1. The fan Σ𝑟
𝑛 as the tropical moduli space

Recall that the dual graph of an element of L
𝑟

𝑛 is a combinatorial graph with a vertex for each irreducible

component of the underlying curve, an edge for each node, and a half-edge for each marked point (see

[CDH+22, Definition 2.9]). If Γ is the dual graph of an element (𝐶;𝜎; 𝑥±, {𝑦ℓ }, {𝑧
𝑗

𝑖
}) of L

𝑟

𝑛, then 𝜎

induces a unique automorphism 𝜎Γ of Γ. Given this, tropical (𝑟, 𝑛)-curves are defined as follows.

Definition 5.1. Let 𝑛 ≥ 0 and 𝑟 ≥ 2. A tropical (𝑟, 𝑛)-curve is a triple (Γ, 𝜎Γ, 𝐿), where Γ is the

dual graph of an element (𝐶;𝜎; 𝑥±, {𝑦ℓ }, {𝑧
𝑗

𝑖
}) in L

𝑟

𝑛, 𝜎Γ is the unique automorphism on the graph Γ

determined by 𝜎, and

𝐿 : 𝐸 (Γ) → R+

is a ‘length’ function on the edges of Γ such that

𝐿(𝑒) = 𝐿(𝜎Γ (𝑒))

for all 𝑒 ∈ 𝐸 (Γ).

We denote by 𝐿
𝑟 ,trop
𝑛 the set of all tropical (𝑟, 𝑛)-curves. Our goal, now, is to identify 𝐿

𝑟 ,trop
𝑛 with

|Σ𝑟
𝑛 |. In particular, the cones of Σ𝑟

𝑛 will be identified with subsets of 𝐿
𝑟 ,trop
𝑛 , and in order to do so, we

recall from Remark 4.9 that the cones of Σ𝑟
𝑛 are in inclusion-reversing bijection with the boundary strata

𝑆
I

of L
𝑟

𝑛. Thus, for any chain Ĩ, we define 𝑇
I
⊆ 𝐿

𝑟 ,trop
𝑛 as the subset consisting of tropical curves (Γ, 𝐿)

where the boundary stratum with dual graph Γ contains 𝑆
I
. More explicitly, if Γ̃

I
denotes the dual graph

of a curve of type Ĩ (as in Definition 4.6), we have

𝑇
I

:= {(Γ, 𝐿) ∈ 𝐿
𝑟 ,trop
𝑛 | Γ is obtained from Γ̃

I
by contracting edges}.

https://doi.org/10.1017/fms.2023.26 Published online by Cambridge University Press



28 E. Clader et al.

Given this definition, we can state the correspondence between 𝐿
𝑟 ,trop
𝑛 and |Σ𝑟

𝑛 | as follows.

Proposition 5.2. There is a natural bijection between 𝐿
𝑟 ,trop
𝑛 and |Σ𝑟

𝑛 |, under which the subset 𝑇
I

corresponds to the cone 𝜎
I
.

Proof. Recall from Remark 4.5 that Σ𝑛
𝑟 is obtained by stellar subdivision from the fan Σ×𝑛

𝑟 , where Σ𝑟

is the one-dimensional fan in R𝑟/R with r rays, one spanned by the image of each of the standard basis

vectors in R𝑟 . Thus, one has

|Σ𝑟
𝑛 | = |Σ𝑟 |

×𝑛
= {𝑥1𝑒

𝑎1

1
+ · · · + 𝑥𝑛𝑒

𝑎𝑛
𝑛 | 𝑎𝑖 ∈ Z𝑟 , 𝑥𝑖 ∈ R

≥0 for all 𝑖} ⊆ (R𝑟/R)⊕𝑛. (17)

In order to identify 𝐿
𝑟 ,trop
𝑛 with this set, we associate to each (Γ, 𝐿) ∈ 𝐿

𝑟 ,trop
𝑛 a point in (R𝑟/R)⊕𝑛.

Specifically, let 𝐿𝑖 denote the total length of the edges of Γ in a path from the central vertex to the vertex

containing 𝑧0
𝑖
, and assuming 𝐿𝑖 ≠ 0, define ℓ𝑖 ∈ Z𝑟 by the condition that 𝑧0

𝑖
is on the same spoke as 𝑦ℓ𝑖 .

Then we identify (Γ, 𝐿) ∈ 𝐿
𝑟 ,trop
𝑛 with the point∑

𝑖 | 𝐿𝑖≠0

𝐿𝑖𝑒
ℓ𝑖
𝑖
∈ (R𝑟/R)⊕𝑛.

Given that 𝐿𝑖 varies over all nonnegative real numbers and ℓ𝑖 varies over all elements of Z𝑟 , the image

of 𝐿
𝑟 ,trop
𝑛 under this identification is precisely the set (17).

To understand the image of 𝑇
I

under this identification, recall that in the dual graph Γ̃
I

of a generic

element of 𝑆
I
, the marked points 𝑧

𝑗

𝑖
with 𝑖 ∈ 𝐼1 are on the outermost vertices, so in the image of a tropical

curve (Γ̃
I
, 𝐿), the 𝐿𝑖 with 𝑖 ∈ 𝐼1 are equal and largest among all 𝐿𝑖 . Similarly, the marked points with

𝑧
𝑗

𝑖
with 𝑖 ∈ 𝐼2 \ 𝐼1 are on the next-to-outermost vertices, so the 𝐿𝑖 with 𝑖 ∈ 𝐼2 \ 𝐼1 are equal and next

largest. This continues until the marked points 𝑧
𝑗

𝑖
with 𝑖 ∈ [𝑛] \ 𝐼ℓ , which are on the central vertex, so

𝐿𝑖 = 0 for 𝑖 ∈ [𝑛] \ 𝐼ℓ . It follows that the set 𝑇
I
⊆ 𝐿

𝑟 ,trop
𝑛 corresponds under the above identification to

the set of points

𝐿1𝑒
−𝑎 (1)
1

+ · · · + 𝐿𝑛𝑒
−𝑎 (𝑛)
𝑛 ∈ (R𝑟/R)⊕𝑛

for which 𝐿1, . . . , 𝐿𝑛 ∈ R≥0 satisfy the following conditions:

◦ If 𝑖, 𝑖′ ∈ 𝐼 𝑗 \ 𝐼 𝑗−1 for some j, then 𝐿𝑖 = 𝐿𝑖′;

◦ If 𝑖1 ∈ 𝐼1, 𝑖2 ∈ 𝐼2, . . . , 𝑖ℓ ∈ 𝐼ℓ , then

𝐿𝑖1 ≥ 𝐿𝑖2 ≥ · · · ≥ 𝐿𝑖ℓ ;

◦ If 𝑖 ∈ [𝑛] \ 𝐼ℓ , then 𝐿𝑖 = 0.

To see that this set coincides with 𝜎
I
, recall from Definition 4.3 that

𝜎
I

:= Cone

{∑
𝑖∈𝐼1

𝑒
−𝑎 (𝑖)
𝑖

, . . . ,
∑
𝑖∈𝐼ℓ

𝑒
−𝑎 (𝑖)
𝑖

}

=

{
𝑐1

∑
𝑖∈𝐼1

𝑒
−𝑎 (𝑖)
𝑖

+ · · · + 𝑐ℓ

∑
𝑖∈𝐼ℓ

𝑒
−𝑎 (𝑖)
𝑖

����� 𝑐1, . . . , 𝑐ℓ ∈ R≥0

}
.

Collecting the terms in a different way and using that 𝐼1 ⊆ 𝐼2 ⊆ · · · ⊆ 𝐼ℓ , an arbitrary point in 𝜎
I

can be

expressed as∑
𝑖∈𝐼1

(𝑐1 + · · · + 𝑐ℓ)𝑒
−𝑎 (𝑖)
𝑖

+
∑

𝑖∈𝐼2\𝐼1

(𝑐2 + · · · + 𝑐ℓ)𝑒
−𝑎 (𝑖)
𝑖

+ · · · +
∑

𝑖∈𝐼ℓ\𝐼ℓ−1

𝑐ℓ 𝑒
−𝑎 (𝑖)
𝑖
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for 𝑐1, . . . , 𝑐ℓ ∈ R≥0. Thus, the coefficient on 𝑒
−𝑎 (𝑖)
𝑖

for any 𝑖 ∈ 𝐼1 is the same, and these are the largest

coefficients; the coefficients on 𝑒
−𝑎 (𝑖)
𝑖

for any 𝑖 ∈ 𝐼2 \ 𝐼1 are the same, and these are the next-largest

coefficients and so on. This is precisely the set of points satisfying the conditions mentioned above, so

the identification of 𝜎
I

with 𝑇
I

is complete. �

Remark 5.3. Aside from the definition of 𝐿
𝑟 ,trop
𝑛 given above, there is another sense in which one

might ‘tropicalize’ the moduli space L
𝑟

𝑛. Namely, one can embed L𝑟
𝑛 ↩→ T𝑟 as a closed subvariety (as

in Remark 2.2), and as such there is an associated geometric tropicalization Trop(L𝑟
𝑛) in the sense of

[HKT09]. To see that these two notions of the tropical moduli space coincide, recall from the proof of

Theorem 2.7 that L
𝑟

𝑛 ⊆ 𝑋Σ𝑟
𝑛

is a tropical compactification, meaning in particular that

|Σ𝑟
𝑛 | = Trop(L𝑟

𝑛).

Combining this with Proposition 5.2 gives an identification

𝐿
𝑟 ,trop
𝑛 = Trop(L𝑟

𝑛).

5.2. The polytopal complex Δ𝑟
𝑛 as a normal complex of Σ𝑟

𝑛

The results of the previous subsection generalize the situation for Losev–Manin space L𝑛, which – as

explained in [CDH+22] – is ‘morally’ the 𝑟 = 1 case of the spaces L
𝑟

𝑛. In particular, Losev and Manin

showed in [LM00] that L𝑛 is a toric variety whose associated fan can be identified with the tropical

moduli space 𝐿
trop
𝑛 . Because this is a complete fan, though, one can also view the connection in terms

of polytopes: Namely, the normal polytope to 𝐿
trop
𝑛 is the polytope of L𝑛 as a toric variety, meaning

that its faces are identified with the torus-invariant strata. In fact, this normal polytope is the (𝑛 − 1)-
dimensional permutohedron Π𝑛, and the torus-invariant strata are precisely the boundary strata, so one

obtains an identification between the faces of Π𝑛 and the boundary strata in L𝑛.

In the case of L
𝑟

𝑛, the moduli space itself is not toric but sits inside of (and is Chow-equivalent to)

the toric variety 𝑋Σ𝑟
𝑛

whose fan we have now identified with 𝐿
𝑟 ,trop
𝑛 . However, Σ𝑟

𝑛 is not a complete fan

in (R𝑟/R)⊕𝑛 for 𝑟 > 2, so the usual construction of the normal polytope does not apply; it produces

a polytope, but one of larger dimension than |Σ𝑟
𝑛 |. There is a substitute for the normal polytope for

noncomplete fans, though, which is the ‘normal complex’ introduced by Nathanson–Ross [NR21]. This

is a polytopal complex that one can view as the result of truncating Σ𝑟
𝑛 by normal hyperplanes. To

complete the analogy to Losev–Manin space, then, one would hope to identify the faces of this normal

complex – for an appropriate interpretation of ‘faces’ of a polytopal complex – with the boundary strata

in L
𝑟

𝑛.

In our previous work [CDH+22], we have already identified the boundary strata in L
𝑟

𝑛 with the

‘Δ-faces’ of another polytopal complex Δ𝑟
𝑛. This polytopal complex was constructed as a subset of

(R≥0 · 𝜇𝑟 )
𝑛 ⊆ C𝑛,

where 𝜇𝑟 denotes the set of rth roots of unity. However, we can identify

(R≥0 · 𝜇𝑟 )
𝑛 ↔ |Σ𝑟

𝑛 |

by identifying

(𝑥1𝜁
𝑎1 , . . . , 𝑥𝑛𝜁

𝑎𝑛 ) ↔ 𝑥1𝑒
𝑎1

1
+ · · · + 𝑥𝑛𝑒

𝑎𝑛
𝑛 ,
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Figure 6. The fan Σ3
2

is obtained as stellar subdivision of Σ3 × Σ3, so we can obtain a portion of it by
stellar subdivision of 𝑒0

1
× Σ3, as shown in the middle figure. Taking the dual complex to this fan, we

recover a portion of the complex Δ3
2

illustrated in [CDH+22, Figure 2].

and using this, we can view Δ𝑟
𝑛 as a subset of (R𝑟/R)⊕𝑛. Explicitly,

Δ
𝑟
𝑛 :=

⋃
𝑎1 ,...,𝑎𝑛∈Z𝑟

{
𝑥1𝑒

𝑎1

1
+ · · · + 𝑥𝑛𝑒

𝑎𝑛
𝑛

����� 𝑥𝑖 ∈ R≥0 for all 𝑖,
∑
𝑖∈𝐼

𝑥𝑖 ≤ 𝛿𝑛|𝐼 | for all 𝐼 ⊆ [𝑛]

}
, (18)

where

𝛿𝑛𝑘 := 𝑛 + (𝑛 − 1) + (𝑛 − 2) + · · · + (𝑛 − 𝑘 + 1).

We claim that this complex Δ𝑟
𝑛 is the normal complex of Σ𝑟

𝑛. (In the case 𝑟 = 𝑛 = 2, the fan Σ2
2

is

the complete fan shown in Figure 5, whose normal complex is in fact a normal polytope: the octagon,

which is the signed permutohedron when 𝑛 = 2 and equals Δ2
2
. In the case 𝑟 = 3 and 𝑛 = 2, we illustrate

the claim in Figure 6.)

More precisely, normal complexes of fans depend on three choices: an inner product on the ambient

vector space, a vector �𝑧 ∈ RΣ
𝑟
𝑛 (1) and a distinguished generator 𝑢𝜌 of each ray 𝜌 ∈ Σ𝑟

𝑛 (1). The inner

product in our case is the dot product on (R𝑟/R)⊕𝑛 in the basis {𝑒
𝑗

𝑖
}𝑖∈[𝑛], 𝑗∈[𝑟−1] , which we denote by ∗.

As for the vector �𝑧, since the rays of Σ𝑟
𝑛 are the cones 𝜎

𝐼̃
for each decorated set 𝐼, we can define �𝑧 by

setting

𝑧𝐼 := 𝛿𝑛|𝐼 | (19)

for each decorated set 𝐼̃. Finally, for the generator of the ray associated to 𝐼̃, we choose

𝑢
𝐼̃

:=
∑
𝑖∈𝐼

𝑒
−𝑎 (𝑖)
𝑖

. (20)

Equipped with this notation, the final perspective we present on the fan Σ𝑟
𝑛 is the following.

Proposition 5.4. The polytopal complex Δ𝑟
𝑛 is the normal complex of the fan Σ𝑟

𝑛 with respect to the
inner product ∗, the vector �𝑧 defined by equation (19) and the ray generators defined by equation (20).

Proof. To define the normal complex of Σ𝑟
𝑛, one first truncates all faces by normal hyperplanes.

Explicitly, for each face 𝜎
I

of Σ𝑟
𝑛, let

𝑃
Ĩ

:= 𝜎
I
∩ {𝑣 ∈ (R𝑟/R)⊕𝑛 | 𝑣 ∗ 𝑢

Ĩ
≤ 𝑧

I
for all 𝜌 ∈ 𝜎

I
(1)}.
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Then the normal complex, by definition, is the union of all faces of the polytopes 𝑃
I
, over all cones 𝜎

I

of Σ𝑟
𝑛. Because we include faces in this union, it suffices to consider only maximal cones, which are

those associated to chains Ĩ = (𝐼1, . . . , 𝐼𝑛;𝔞) of length n. For such chains, we have

𝜎
I
= {𝑥1𝑒

−𝔞 (1)
1

+ · · · + 𝑥𝑛𝑒
−𝔞 (𝑛)
𝑛 | 𝑥𝑖 ∈ R

≥0 for all 𝑖},

and the rays 𝜌 ∈ 𝜎
I
(1) are the cones generated by 𝑢 (𝐼 𝑗 ,𝔞 |𝐼 𝑗 )

for 𝑗 ∈ [𝑛]. Thus, the inequalities in the

definition of 𝑃
I

amount to the condition that∑
𝑖∈𝐼 𝑗

𝑥𝑖 ≤ 𝛿𝑛|𝐼 𝑗 |

for all 𝑗 ∈ [𝑛]. As Ĩ ranges over all maximal chains, the exponents 𝔞(𝑖) range over all elements of Z𝑟
and the sets 𝐼 𝑗 range over all subsets of [𝑛], so the normal complex precisely coincides with the set Δ𝑟

𝑛

of equation (18). �
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