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Abstract. We define a moduli space of rational curves with finite-order automorphism and
weighted orbits, and we prove that the combinatorics of its boundary strata are encoded by a
particular polytopal complex that also captures the algebraic structure of a complex reflection
group acting on the moduli space. This generalizes the situation for Losev—Manin’s moduli
space of curves (whose boundary strata are encoded by the permutohedron and related to
the symmetric group) as well as the situation for Batyrev—Blume’s moduli space of curves
with involution, and it extends that work beyond the toric context.

1. Introduction

The moduli space Mo, n of genus-zero stable curves with n distinct marked points
is a fundamental object in algebraic geometry, in part due to its applicability—
to such fields as enumerative geometry, representation theory, and mathematical
physics, to name a few—but also because it is an interesting variety in its own
right. In particular, while Mo,n is not toric when n > 5, it shares some of the
combinatorial structure that a toric variety would enjoy. The Chow ring of a toric
variety, for example, is generated by the toric boundary (the positive-codimension
torus-invariant subvarieties) with relations described combinatorially in terms of
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fan data; analogously, Keel proved in [14] that the Chow ring of Mo, n 18 generated
by the modular boundary (the positive-codimension boundary strata) with relations
described combinatorially in terms of dual graphs.

One perspective on the close connection between My , and toric varieties
is that the moduli problem can be tweaked to produce a space that is, in fact,
toric. Losev and Manin studied a particularly significant such modification in [16],
constructing a moduli space £, that parameterizes genus-zero curves with marked
points (y1, y2, 21, - - - , Zn), Where the marked points y; and y; are “heavy”—that
is, they cannot coincide with any other marked points—whereas the marked points
21, - . - » 2p are “light” in the sense that they are allowed to coincide with one another.
The space L,, (which is birational to m0,n+2) is a toric variety, and its associated
polytope is the permutohedron IT,,: the convex hull in R” of the n! points obtained
by permuting the coordinates of (1, 2, ..., n). Moreover, Losev and Manin proved
that the torus-invariant strata of £,, are precisely the boundary strata, which implies
that there is a dimension-preserving, inclusion-preserving bijection

boundary faces }
{strata in L, } { of I, | -

From a combinatorial perspective, on the other hand, the faces of IT,, have another
interpretation: they encode the generation of the symmetric group S, by adjacent
transpositions. Namely, the d-dimensional faces of I1,, are in inclusion-preserving
bijection with the right cosets in S, of subgroups of the form

(t1,...,Ta) S Sy,

where 71, ..., T4 are adjacent transpositions.
Batyrev and Blume extended the work of Losev and Manin in [2, 3], constructing

a moduli space Zi that parameterizes genus-zero curves with an involution o,
two light fixed points of o, one heavy marked orbit of o, and n light marked
orbits. Again, this moduli space is toric, and its torus-invariant strata are precisely
the boundary strata, so one obtains a dimension-preserving, inclusion-preserving
bijection

boundary faces
strata in Zi { of A%} '

Here, A,% is the polytope known as the type-B permutohedron, which is the
convex hull in R” of the 2"n! points obtained by permuting the coordinates of
(£1, £2, ..., £n). Also analogously to the Losev—Manin case, this polytope has
a group-theoretic interpretation, this time in terms of the complex reflection group
S(2, n) of n x n matrices all of whose nonzero entries are +1, and with exactly one
nonzero entry in each row and column.

The motivation for Batyrev and Blume’s work comes from the theory of root
systems. Specifically, they constructed a toric variety associated to any root system
and proved that Losev—Manin space £,, is the toric variety associated to the classical
root system A, _1, while working instead with the root system B,, yields their moduli

=2 . .
space £, . From the perspective of root systems, however, this seems to be the end
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of the line: Batyrev and Blume proved that the toric varieties in types C and D do
not have equally well-behaved modular interpretations.

In this paper, we propose a generalization of Losev—Manin and Batyrev—
Blume’s story in a different direction. Namely, rather than preserve the connection
to root systems, we preserve from Batyrev—Blume’s work the existence of an auto-
morphlsm o but allow it to have any finite order r. The result is a moduli space
/3 that parameterizes genus-zero curves with an order-r automorphism, two light
ﬁxed points, one heavy marked orbit, and n light marked orbits.

In one sense, the moduli spaces Zz break the story, because when r > 3, they
are not toric. In particular, then, their boundary strata are not encoded by the faces
of a polytope. However, something perhaps more intriguing is true: we prove that
there exists a polytopal complex AJ whose “A-faces” encode the boundary strata
of Z;. More specifically, A7, is defined as the subset of

(REO : Mr)n ccr

bounded by certain hyperplanes (where w, denotes the group of rth roots of unity),
and its A-faces are defined as the intersections of A} with collections of the bound-
ing hyperplanes. When r = 2, the complex A}, specializes to the type-B permuto-
hedron A% and A-faces are ordinary faces, so Batyrev—Blume’s result is recovered.
Furthermore, we generalize the group-theoretic interpretation of both Losev—
Manin and Batyrev—Blume’s moduli spaces. Namely, let S(r, n) be the group of
n x n matrices all of whose nonzero entries are rth roots of unity, and with exactly
one nonzero entry in each row and column. Then S(r, n) is generated by the set

c00 -0
010 -0
. [adjacent transpositions . 1 ...0
o= s oy Y%= _ :
0001

where ¢ is a primitive rth root of unity, and we define a d-dimensional 7 -coset to
be a right coset of the form

<t1,...,td>‘A§S(r,n)

with#;,...,24 € T and A € S(r, n).
Our main theorem is the following:

Theorem 1.1. For any integers r > 2 and n > 0, there are dimension-preserving,
inclusion-preserving bijections

boundary T -cosets A-faces
{strata in Z;} { in S(”,”)} { }
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Remark 1.2. More precisely, all three of the sets appearing in Theorem 1.1 depend
on the choice of a primitive rth root of unity ¢: the moduli space Zz is a union of
connected components Z:l (¢), the definition of 7 given above involves a choice
of ¢, and ¢ also appears in the definition of the bounding hyperplanes of A}, and
hence of its A-faces. While we suppress this choice from the notation to make it
less cumbersome, Theorem 1.1 should be interpreted as a statement for each choice
of primitive rth root of unity; see Convention 4.3.

Remark 1.3. In fact, the bijections of Theorem 1.1 preserve quite a bit more of
the structure of the above three types of objects. In particular, we show that there
are product decompositions of boundary strata, 7 -cosets, and A-faces, as well as
S(r, n)-actions on each, and the bijections of Theorem 1.1 respect these. See Sect. 8
for the details.

When r = 2, Theorem 1.1 specializes to the results of Batyrev and Blume. For
larger values of r, the theorem indicates that the spaces Z; are unions of toric vari-
eties with independent torus actions, and in this way they occupy a middle ground
between toric varieties and the classical moduli spaces of genus-zero curves—a set-
ting in which the applicability of polyhedral methods is an intriguing new avenue
for study.

Let us illustrate the statement of Theorem 1.1 with two special cases, to give
the reader a flavor of the combinatorics involved.

Example 1.4. Let r = 2 and n = 2, which is part of Batyrev—Blume’s work. Then
A% is the octagon in R? with vertices (£2, 1) and (&1, +2), and the combinatorial
content of Theorem 1.1 is that we can label the faces of A% in two different ways,
both of which are dimension-preserving and inclusion-preserving and are illustrated
in Fig. 1(A), (B).

First, in Fig. 1(A), we label each face of A% by a boundary stratum in Zi
Such a stratum is described by an odd-length chain of rational curves—depicted
by its dual graph in the figure—where the involution reflects across the central
component, together with two marked fixed points of the involution (on the central
component) as well as light orbits (z?, z%) and (zg, z%) and a heavy orbit (yo, yl).

Second, as illustrated in Fig. 1(B), each face of Aj can be labeled by a T -coset
in S(2, 2). In this case, we have 7 = {sq, 51}, where

(10 g = (01
S0 = 01 and s1 = 10/

The 0-dimensional 7 -cosets (which label the vertices) are the elements of S(2, 2),
while the 1-dimensional 7 -cosets are the right cosets in S(2, 2) of subgroups gen-
erated by a single element of 7. Since the two elements of 7 together generate
S(2, 2), there is only a single 2-dimensional 7 -coset, which is the entire group and
labels the unique 2-dimensional face.

Example 1.5. Now, letr = 3 and n = 2, which is a new case in the current work. In
the previous example, the intersection of A% C R? with each quadrant is a pentagon,
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(A) The polytope A2 with faces labeled by boundary strata in Z; The markings on the left side
of each stratum are omitted for clarity but are uniquely determined by the involution.
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(B) The polytope A2 with faces labeled by 7-cosets in S(2,2).
Fig. 1. The example of r =2 and n = 2

and these pentagons meet in pairs when a coordinate changes sign. When r = 3,
by contrast, the polytopal complex A% is a subset of

(B0 11.2.¢%) x (R (1,¢.¢%) < €
where ¢ is a primitive third root of unity. Its intersection with each of the subsets
(REO . Ea) x (REO . {‘b) cC?

fora, b € {0, 1, 2} is a pentagon, and these nine pentagons meet in triples when a
or b changes. This complex is depicted in Fig. 2, where we illustrate the statement
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Fig. 2. A projection of the polytope A%, with some A-faces labeled by both the boundary

strata in Zg and by the corresponding 7 -cosets in S(3, 2)

of Theorem 1.1 again by labeling some of the A-faces in two ways: first by the

boundary strata in Zg, which are described by marked trees of rational curves with
u3-symmetry, and second by 7 -cosets in S(3, 2).

The precise definition of A-faces is given in Definition 7.2, but, for now, we
simply remark that they are themselves polytopal complexes; in particular, the 0-
dimensional A-faces are the vertices labeled in black, the 1-dimensional A-faces
are the line segments labeled in green as well as the Y-shapes labeled in red and
blue, and there is only a single 2-dimensional A-face, which is the entire complex
A%. The key observation is that a 1-dimensional A-face may be adjacent to either
two or three O-dimensional A-faces. This corresponds precisely to a fact about
boundary strata and about 7 -cosets:

e in Z;, a 1-dimensional boundary stratum contains either two or three different
0-dimensional boundary strata, depending on whether there is a light orbit on
the central component;

e in S(3, 2), the 1-dimensional 7 -cosets (t) - A have either two or three elements,
depending on whether 7 is an adjacent transposition or ¢ = sg.

These are special cases of the combinatorial phenomena that arise more generally
in what follows.
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Future and related work

In the sequel [6] to this paper, we prove that Z; can be realized as a wonderful
compactification of a particular hyperplane arrangement in a product of projective
spaces, from which we deduce a presentation of its Chow ring, analogously to Keel’s
computation of A*(./Vo,n) in [14] or the results of [4,5,15] for Hassett spaces. In
future work, we hope to probe further geometric and combinatorial properties of
Z; to more fully exploit its proximity to being a toric variety. For example, one
could study the tropical manifestation of Z’: (along the lines of the work carried
outin [7,8,21] for ﬂg,n and Hassett spaces) or its symmetries (along the lines of
[18,19]). The birational geometry of Z; would also be very interesting to study.
In the case of /Vo, n, the parallelism with toric varieties motivated Fulton’s famous
F-conjecture as well as the (now disproven) conjecture that the Cox ring of M,
is finitely-generated [9,11]. Perhaps the fact that Z; is “more toric” than /Vo,n—
in that it is combinatorially encoded by a polyhedral object—would make these
birational-geometric questions more amenable to study in this setting.

Plan of the paper

In Sect. 2, we precisely define the objects parameterized by the moduli space Z;
The fact that there indeed exists a fine moduli space parameterizing these objects is
the content of Sect. 3; readers wishing to accept the existence of Zn are encouraged
to skip that section and proceed directly to the combinatorial material that follows.
Section 4 defines the combinatorial data of decorated chains of subsets of {1, . . ., n},
and Sects. 5, 6, and 7 show that this data can be used to describe the boundary strata,
T -cosets, and A-faces, respectively. Finally, in Sect. 8, we combine the results of the
previous three sections to deduce Theorem 1.1, and we observe that the boundary
strata, 7 -cosets, and A-faces also have product decompositions and S(r, n)-actions
that are respected by the bijections between them.

2. The moduli space

Fix integers r > 2 and n > 0. Denote by n, € C* the cyclic group of rth roots of
unity, and denote Z, = {0, 1, ..., — 1}.

2.1. Objects and families

We begin by specifying the underlying curves of the objects we are interested in
parameterizing. Throughout, varieties are considered over the field C.

Definition 2.1. An r-pinwheel curve is a tree of projective lines meeting at nodes,
consisting of a central projective line from which r equal-length chains of projective
lines (“spokes”) emanate. If each of these spokes has k components, we say that
the pinwheel curve has length k; in the case where k = 0, the curve is simply P'.
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Fig. 3. A stable length-two (3, 4)-curve, where each circle represents a P! component and
o is the rotational automorphism. Not pictured are the marked points x and x ~, which are
the two fixed points of o and must both lie on the central component Co

The objects of our moduli space are built from r-pinwheel curves as follows.

Definition 2.2. An (r, n)-curve consists of the following data:

e an r-pinwheel curve C;
e an order-r automorphism o : C — C;
o two distinct fixed points x* and x~ of o;

e 1 labeled r-tuples (z(l), - ,zﬁ_l), el (zg, R z;’l) of points z'! € C satisfy-
ing
U(Z{) — le«H mod r
for each i and j, where we allow that zij = z{,/ and that z{ = x*+;
e an additional labeled r-tuple (y°, ..., y"~!) satisfying
U(yE) — ye-‘rl mod r

for each £, whose elements are distinct from one another as well as from xE

and z;.

We refer to an (r, n)-curve as stable if each irreducible component of C contains
at least two “heavy” points—where the “heavy” points are the half-nodes and the
points y‘—and any irreducible component with exactly two heavy points contains
at least one of the “light” points x* or zij . (This is a special case of the stability
condition for Hassett spaces, which will play a major role in the construction of the
moduli space Z:l in Sect. 3 below.)

It is straightforward to see that the stability condition forces yo, R —Ttolie
on the r leaves of the pinwheel curve, in which case o must consist of a rotation
taking each spoke of the pinwheel to another, and x* must both lie on the central
component, which we denote C,; see Fig. 3.
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Up to an automorphism of C, one can assume that x™ and x~ are the points 0o
and 0, respectively, in the central component C, = P!, and that the node at which
the yo-spoke meets C, is the point 1 € Cq = P!, Under this identification, the
fact that o has order r ensures that the y'-spoke meets C, at ¢ € P!, where ¢ is
a primitive rth root of unity. Once ¢ is chosen, the points at which the remaining
spokes meet C, are determined, but ¢ itself can be freely chosen to be any primitive
rth root of unity. We encode this choice in the following terminology.

Definition 2.3. Let ¢ be a primitive rth root of unity. Given a stable (r, n)-curve,
let p* € C, be the point at which the y‘-spoke meets the central component, for
each ¢ € Z,. We say that the curve has type ¢ if, under the unique automorphism
of the central component C, that sends

x> o00, x>0, p’ 1,

we have
ptit
forall¢ € Z,.

Remark 2.4. A stable (r, n)-curve of type ¢ can be viewed as a curve with an action
of the cyclic group ., in which the generator ¢ € p, acts by the automorphism o.

Having defined the objects of interest, we now specify the notions of family
and morphism of families.

Definition 2.5. A family of stable (r, n)-curves over a base scheme B is a flat,
proper morphism 77 : C — B equipped with an order-r automorphism o of C such

that 7 o 0 = 7, and sections x*, {zij }, and {y*} of 7 such that for any geometric
point b € B, the fiber

(n—1<b); 0|1y X5 B, D)), (2] (b)})

is a stable (r, n)-curve. If, furthermore, each fiber has type ¢, we say that the family
has type ¢.

Remark 2.6. If the base B is connected, then every fiber has the same type, so the
type of the family can be deduced from considering any single fiber.

Definition 2.7. Given families
(r:C— Byoyx*, (3"}, {g]}) and (¢ : C' > Bo's X*,(¥'),{Z]))
over the same base B, a morphism of families is a morphism s : C — C’ satisfying

e’ os =m;
ecd'os=s00; ‘
oXi=soxi,Zi]=sozl.],andY£=soyZ.
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The goal of Sect. 3 is to identify a fine moduli space representing the moduli
problem specified above, which we denote as follows.

Definition 2.8. For any integers » > 2 and n > 0, we denote by Zr (¢) the moduli
space of 1s0m0rphlsm classes of stable (r, n)-curves of type ¢, and we denote by
E =1, £ ¢ (; ) the moduli space of all isomorphism classes of stable (r, n)-curves.

The reader willing to accept the existence of such a fine moduli space may wish
to skip Sect. 3 entirely and proceed directly to the combinatorics in Sect. 4, and
they are encouraged to do so. First, however, we must describe the boundary strata

in [,n, which are critical to the combinatorics that follow.

2.2. Boundary strata

In any moduli space of curves, a boundary stratum is defined as the closure of the
locus of curves of a fixed topological type. More precisely, we have the following
definition of boundary strata in our case.

Definition 2.9. Any (C; o; xT, {y*}, {zij }) € L, (¢) has an associated dual graph
consisting of

e a vertex v for each irreducible component C,, of C;

e an edge between vertices v and w if the corresponding irreducible components
C, and C,, meet at a node;

e a half-edge attached to the vertex v for each marked point on C,, labeled by

the name x+, yl, or z,.] of the marked point.

Given such a dual graph G, the corresponding boundary stratum Sg C Z,: (¢)1is
defined as the closure of the set of curves with dual graph G.

In particular, passing to the closure means that S includes also degenerations
of curves with dual graph G. It follows that one can detect in terms of dual graphs
when there is an inclusion of boundary strata: we have S¢ C Sy if and only if H can
be obtained from G by edge-contraction of some subset of the edges, a procedure
that corresponds geometrically to degeneration of a curve in Sy to a curve in Sg.
For example, if G is the top dual graph in Fig. 4 and G| and G, are the two dual
graphs depicted below it, then we have Sg C Sg, and Sg € Sg,, corresponding
to the fact that both G; and G can be obtained by edge-contraction from G.

3. Construction of the moduli space

We construct the moduli space of stable (r, n)-curves as a closed subscheme of
a more well-known moduli space constructed by Hassett in [12], so we begin by
recalling the necessary definitions from the theory of Hassett spaces. Throughout,
we denote

] ={1,2,...,n)

and

[n]lo=1{0,1,...,n}.
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Fig. 4. The dual graph G of the curve in Fig. 3, and below it, two graphs obtained by
edge-contraction from G

3.1. Hassett spaces and maps between them

For any g > 0, n > 0 and any weight vector w = (wq, ..., wy) € (QN (0, 1"
such that 2g + >/, w; > 2, the associated Hassett space is a smooth Deligne—
Mumford stack M  that is an alternate modular compactification of the moduli
space M, , of smooth projective curves of genus g with n distinct marked points.

Specifically, elements of Mng are tuples (C; q1, . .., qn), where C is a projec-
tive curve of arithmetic genus g and only nodes as singularities, and g1, ..., g, € C
are marked points with weights wy, ..., w,, satisfying the following two condi-
tions:

o the sum of the weights of any collection of coinciding marked points is at most
1;

e for each irreducible component D of C, if gp is the genus of D, np is the
number of half-nodes of D, and {g; };cs, <[] are the marked points of D, then

ZgD—2+nD+Zwi > 0.

ielp

We refer to elements of M v as w-stable curves. Note that the usual moduli space
of curves Mg,n is recovered by taking w; = 1 for all i € [n].
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Fig. 5. A typical curve in ﬂé

The special case of this construction that is relevant for the current work is when
g = 0 and the weight vector is

1 1
w=|-+e-+4+¢1,...,1,¢,...,¢ (D)
2 2 —— S——
r nr
for any fixed 0 < ¢ < 1/(nr + 2). Let
M, = Mo

denote the Hassett space with this weight vector, which is a smooth projective
. el .
scheme. Let C], denote the universal curve over M,,. Suggestively, we denote the

marked points of /\_/l; with weights 1/2 + ¢ by x and x~, the r marked points

with weight 1 by y°, ..., y"~!, and the nr marked points with weight & by z/ with
i €[n]and j € Z,.

Remark 3.1. Itis possible to let 7 = 1 in this construction, in which case M,, is the
Hassett space with weight vectorw = (1/2+4¢,1/2+¢,1, ¢, ..., &). We omit the
. N —1 .
Z,-superscripts on the marked points in this case, so an element of M, is denoted
(C;x*,x7,y,21,...,2,). Here, the dual graph of C is a chain with y on one leaf
and (if C is reducible) x™ and x~ on the unique other leaf; see an example of
) . . .
an element in M, in Fig. 5. While some readers may recognize such chains of
projective lines as the underlying curves of the elements in Losev—Manin space,

—1 . . . . .
we stress that M, is not Losev—Manin space, which can instead be described as
Mow withw = (1, 1,e,...,¢).

When r > 2, the choice of the weight vector w ensures that the r-pinwheel
. —r
curves C that underlie stable (r, n)-curves are elements of M, . However, not every

element of /V:l is such a curve. Thus, the goal of the next subsection is to identify
a closed subscheme

L, S M,
that is a fine moduli space for stable (r, n)-curves. The definition of this sub-
scheme involves two families of morphisms between Hassett spaces, which we

now describe.
First, for every map «: [n]g — Z,, there is a morphism
—r —1
Tyt M, > M,
given on C-points by

j 1
7o (C; xE, (¥, {Zl-]}) = (C; xT, y* O, z'f( ), ...,zf‘l(")).
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oz

oz} 1_ .2

y =22
To_, 0 0
oy y

Fig. 6. A visualization of the map 7y in the case where «(0) = 0, a(1) = 0, x¢(2) = 2,
o(3) = 1, a(4) = 2. The marked points x% are on the central component and are not
pictured. The faded marked points are forgotten under 77, and the faded solid circles indicate
contracted components as a result of forgetting some of the marked points

«(0) z‘f(l), ., 2% and con-

That is, 7, forgets the marked points not in {xi, y
tracts any resulting unstable components of C; see Fig. 6.

In fact, one can upgrade 7, from a morphism on C-points to a morphism on
families. Namely, for any base scheme B and any map f: B — /\_/l;, there are
associated maps

fa:B—>m,IL and Y £YC, — fiC)

a—n
satisfying the following conditions:

e If £*C’ is marked by the sections x*, {y*}, {Z,~j}, then f*C! is the stabilization
of

(f*CZ; xE, y* O, z?(l), e zz(”)> )

e The map /. s is the contraction map, which contracts unstable components in
each fiber.

The key special case for what follows is when B = /V; and f = id, in which
case fy = my and the map ¥y iq is a birational morphism that we denote by 1, for
simplicity. These maps then fit into the following diagram:

Vo

c miCy C, )
/—ir / Mo Ml

n n-

To define the other family of morphisms between Hassett spaces, we first note

. . . -2 . ..
that there is a natural isomorphism between M, and P! given by associating g € P!
to

—_—2
(P';00,0,1,q) € M.
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Given this, for every i € Z,, we can define a morphism
o -—2
)\.i : Mn e MO =P

by sending the point (C; x*, {y*}, {zij D e M; to the element of P! corresponding
to the point (C; x*, x~, y!, yit1h) e H(z)

As above, the morphism 2; can be described functorially: to any scheme B and
any map f: B — M,rl, we associate maps

—_—2 ~
fiiB— My=P' and ¢ p: f*C, — f*C}
satisfying the following conditions:

e If f*C’ is marked by the sections x*, {y*}, {zlj }, then fl*C,i is the stabilization
of

(f*cr o,y yi+1)
XX LY, .
e The map ¢; s is the standard contraction map.

Again, we will be particularly interested in the case where B = ﬂ; and f =1id,
in which case f; = A; and ¢; jq is a birational morphism that we denote simply by
¢;. These maps then fit into a diagram as follows:

cr—2sx? 2 3)
M, b M =P

Equipped with these morphisms between Hassett spaces, we are prepared to
describe our moduli space. In fact, we define separate moduli spaces

T el
L£,(&) =M,
for each primitive rth root of unity ¢, parameterizing stable (r, n)-curves of type ¢.

The moduli spaces for different th roots of unity are all isomorphic to one another,
and the full moduli space

L, = ]L.©
¢

parameterizing all stable (r, n)-curves is a disjoint union of these isomorphic com-
ponents.
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3.2. Construction of the moduli space

Let ¢ € C be a primitive rth root of unity, and for any « : [rn]g — Z, and any
b € Z,, denote by o + b the function [n]g — Z, defined by

(x+b)(x) = (oe(x) + b) mod r.

We define Z;(;) as the subscheme of ﬂ; obtained from the following fiber dia-
gram:

—r -

L) < > M,
i}Ia7hxXﬂa+lx II Aj

€Ly

‘—

[1 Wix{C}A>< I Mixﬂ,‘,)x 1 P

a:[nlo—>7Z, a:[nlo—>7Z, €7,

Here, the map A is the product of the diagonal embeddings of M,ll into
I, (M,l, X Mi) and of {¢} into each P!, and the upper map is the inclusion
- . ==
of £,(¢) into M,,. .
o To interpret this fiber diagram more explicitly, note that elements of £, ({) €
M; are defined by the condition that there are isomorphisms of pointed curves

(€ y= @ 20,2 = (€5, yrOF SO+ g
forall o : [n]g — Z,, and
(C:xtx, y Yy ) = (C500,0,1,0) )

for all i € Z,. The first step in proving that Z;(C) is indeed a fine moduli space
for stable (r, n)-curves of type ¢ is to verify that its points are in bijection with
isomorphism classes of such curves.

j —=r . .
Lemma 3.2. If (C; x&, {y*}, {Z‘,-/}) €L, (;), then there exists a unique automor-
phism o of C making (C; o; x*, {y*}, {Z',-’ 1) into a stable (r, n)-curve of type ¢,
T . v .
and the elements of L, () are precisely the elements of M, for which such an
automorphism exists.

Proof. Fix an element (C; xt, {yz}, {z{}) € Z:l (¢), and let C, be the component
of C containing x*. Then each y* lies on some (possibly empty) tree of projective
lines attached to C, at a point p¢, and x~ lies on some (possibly empty) tree of
projective lines attached to C, at a point p~.

A priori, some of these trees could coincide with one another. However, they
cannot all be identical—that is, x—, yo, R y”1 cannot all lie on a single tree
emanating from C,—since this would force the only special points on C, to be a
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single node, the marked point x*, and possibly some of the zij . With the weights
(1), such a curve cannot be stable.

Thus, there must be at least one yz on a different tree than x . In this case, we
can choose an automorphism s of C, such that

s(xT) =00, s(p7) =0, s(pz) =1,
and the condition (5) ensures that
st =¢.

(In particular, note that this means that the y**!-tree is distinct from both the y‘-tree
and the x ~-tree.) Applying (5) again with £ replaced by £ + 1 shows that

s(p€+2) — 4.2‘

Continuing in this way proves that x~ and the y®’s lie on r + 1 distinct trees
emanating from C,, attached (under the automorphism s) at 0 and roots of unity.

Each such tree must end in one or more leaves. However, the weights (1) ensure
that a leaf must either contain at least one y* or both of x and x . Therefore, the
x~-tree must be empty (that is, x~ € C,) and each of the y’-trees must be a chain
of projective lines ending in a single leaf with y¢. What remains to be shown, then,
is that each of these r chains has the same length—which, in particular, implies
that C admits an automorphism o taking y¢ to y**! for each £—and that this
automorphism takes zij to zij *! for each i €[n]and j € Z,.

To see this, first notice that a repeated application of (4) shows

(Co®, y @ 10, ) 2= (e, o OH O )

for all i € Z,. This implies that if z? lies on the y*©-spoke of C, then Z'i/ lies on
the y/ T _spoke. In particular, for each fixed i € [1], no two of the marked points
z?, e, zf ~1 can lie on the same spoke, and furthermore, if one of these lies on the
central component, then they all do.

In light of this, we can define a function « : [n]o — Z, as follows. First, set

a(0) = 0. Then, for each i € [r] such that the marked points z?, R zf ~1 do not
lie on the central component, set «(i) € Z, so that z?(i) lies on the yo-spoke of
C. Finally, for each i € [n] such that the marked points z?, e, zf_l do lie on the
central component, set «(i) € Z, to be any value. For example, for the curve in
Fig. 3, we have

«(0) =0, «a(l) =anythinginZ3, a¢(2)=1, «(3) =0, a(4) =2.

For this o, the morphism 77, does no contraction on the y’-spoke of C but it contracts
all of the other spokes; see Fig. 7.

By the same token, the morphism 7, contracts all spokes except for the
y!-spoke, which remains intact. The condition (4) thus implies that the y°- and
yl-spokes are isomorphic pointed curves, meaning they are chains of the samle

‘ it
A

length and the isomorphism between them takes any zl.] in the y%-spoke to z
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Ta
< ’ y“ ‘U“
S0
&1

Fig. 7. The image of the curve in Fig. 3 under 7y, where «(0) = 0, a(1) € Z3, x(2) =1,
a(3)=0anda(4) =2

Repeating this reasoning for each successive spoke shows that C has the appropriate
radial symmetry and therefore there exists an automorphism o that makes C into
an (r, n)-curve of type ¢. Since the behavior of this automorphism is specified on
at least three points of the central component, it is unique.

Conversely, it is clear that (4) and (5) hold for any (r, n)-curve of type ¢, so
such curves are precisely the elements of Z; ). O

The recipe in the proof of Lemma 3.2 for producing a function « : [n]g — Z,
from a stable (r, n)-curve will be useful in what follows, so before proceeding, we
take a moment to record it in the following definition.

Definition 3.3. Let (C; o; xT, {y*}, {zij } be a stable (r, n)-curve, which we abbre-
viate by C for conciseness. We say that a function « : [n]g — Z, is compatible
with C if for each i € [n] such that the ith light orbit z?, R z? ~1 does not lie on

the central component, the marked point z?‘(i) lies on the y*©-spoke of C.

Remark 3.4. The notion of compatibility satisfies the following properties:

() If (C; x*, {y4), {zi]}) is compatible with «, then (C; x*, {y¢}, {zi]}) is compat-
ible with o 4 b for all b € Z,.

Q) If (C; xT, {y%}, {z{}) is compatible with «, then so are all other (r, n)-curves
with the same dual graph.

(3) Let G and H be dual graphs of (r, n)-curves such that H is obtained via edge-
contraction from G. If « is compatible with (r, n)-curves with dual graph G,
then it is also compatible with (r, n)-curves with dual graph H. In particular, a
smooth (r, n)-curve is compatible with every « : [n]g — Z,.

Remark 3.4 implies that, for fixed « : [n]o — Z;, the locus of curves not compatible
with ¢« is a union of boundary strata. Conversely, the locus of curves that are
compatible with o forms an open set, which we denote by

Ua € L1 (2) (6)

in what follows.
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3.3. Proof of fine moduli space

At this point, we have shown via Lemma 3.2 that the points of Zr (¢) are in bijection
with stable (r, n)-curves of type ¢. In order to know that E ,(¢) is a fine moduli
space for these objects, though, we must also construct a umversal family. This can
nearly be bootstrapped from /\/l

L: Z; @) — M;
denotes the inclusion, then we can define a universal curve C; (¢) over Z; (¢) by
Cr(5) :=1"Cy, @)

where C; is the universal curve over ﬂ; Furthermore, we can define sections
x*, yt, and z’j of C;(¢) by pullback of the corresponding sections of C;. What
remains, however, is to construct a universal automorphism o of C/,(¢). This is the

key content of the following theorem.

Theorem 3.5. Let r > 2 and n > 0 be integers, and let ¢ be a primitive rth root of
unity. Then C ,(£) is a fine moduli space for stable (r, n)-curves of type ¢.

Proof. Let C)(¢) and its sections x*, yz, and z;- be defined as in (7) and the sub-
sequent paragraph. To prove the theorem, it suffices to construct an automorphism
o of C (¢) such that

coxt=xT, cox  =x", ongzy“'l, andooz _z]+] ()
foralli € [n] and all ¢, j € Z,. Indeed, if such an automorphism o exists, then it
makes C; (¢) into a family of stable (r, n)-curves, and this family is of type ¢ by
Lemma 3.2. It follows that, for any base scheme B, one can restrict the bijection

{morphisms B — M;} <> {families of w-stable curves over B}/ =, ©)

which exists by virtue of M; being a fine moduli space for w-stable curves, to
yield

{morphisms B—>£ ,(¢)} — {families of stable (r, n)-curves of typeZover B}/ =
e 1G©) (10)

Because it is the restriction of a bijection, the map in (10) is certainly injective.
It is also surjective, because a family of stable, type-¢ (r, n)-curves over B yields
a family of w-stable curves by forgetting o, and the latter is the pullback of the
universal family on ./\/l under some f : B — ./\/l by the surjectivity of (9). The
fact that each fiber of the family i is in fact a stable (r, n)-curve of type ¢ implies,
by Lemma 3.2, that f lands in C ,(¢). Thus, the map in (10) is a bijection, which
says precisely that En (¢) is the requisite fine moduli space.

To construct the automorphism o of C; (¢), we patch together automorphisms
defined locally on open subsets of C; (). Toward defining these open sets, let
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o : [n]o — Z, be any function, and let U, C Z;(;) be as in (6). For any b € Z,,
consider the morphism

—1
Tatb|y, Uy = M,,.

Geometrically, this morphism leaves the y*©+?_spoke unchanged but contracts all
other spokes. In particular, since each individual spoke is isomorphic to each other
spoke, we see that

To+b |Ua = Ta+b' ich

for any b, b’ € Z,.
Now, let Cy, € C;,(¢) be the restriction of C;,(¢) to U,. Each of the morphisms
Ta+b | v, can be lifted to a birational morphism

Vatb : Co — 77;+h(cylz)

as in (2), which performs the above contraction of all but the y*®+? spoke on each
fiber of C,. Note that since the particular spokes being contracted depend on b, we
have

I,”ot+b 7é ¢a+b’

ifb#0b'.
For any « : [n]op — Z, and any b € Z,, denote by

Vot,h - C(Jl

the largest open subset of C, on which the birational morphism V44 is an iso-
morphism. Geometrically, V, j is obtained from C, by removing all spokes in each
fiber except for the y*(©+?_spoke, including removing the points in the central
component of the fiber at which these spokes are attached. In particular, from this
geometric description we see that {Vy 5 }pe7, covers Cy, and therefore varying over
all o, we obtain an open cover of C; (¢).

Our goal, now, is to construct an isomorphism

Ow,b: Ve = Vab+1

relative to Uy, which will serve as the local definition of the universal automorphism
o . The key observation is that

YarbVap) = Yatrb+1Va,pt1) (11)

for every b € Z,, from which it follows that o ;, can be defined as the composition
of the two isomorphisms

Vatblvy Watbt1 1y )"
Voo —— YarbVap) = Yarbt1Vapr1) ————————— Vopy1. (12)
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To prove (11), first observe that, by the definition of the maps ¥4 4p and 7y, we
have

Varo(Vas) = Vars @M U | 72 @O\ [ im (Vass 0 @) | (13)
20

where CJ™ C C, is the open set whose fibers are smooth curves. For any £ # 0, let
us describe the morphism

WD(-‘,-[) o ya(0)+b+£ : UD{ N n;(crll)

in geometric terms, by describing its behavior on closed points. Let C be a closed
point of Uy, which corresponds to a marked curve (C; x+, {y‘f}, {z{ }). The image
of C under 7, is a point that corresponds to a marked curve C’, and the image
of C under g5 o y*©@10+¢ is a closed point of C’ that we will denote ¢%¢. By
definition, C’ is a chain of projective lines with x* together on an end component
that we denote by C,. In this notation, we have qb’e e C,, and if we denote the
node of C, by p, then (5) implies

(Co;xt,x7, p,g"% = (P! 0,0, 1,2%).

Since this result does not depend on b, we see that the morphism g 4 o y*@+0+¢
isindependent of b for any £ # 0. Given that Y44, (C3™) is also manifestly indepen-
dent of b, it follows from (13) that ¥445(Vy,p) is independent of b, which proves
(1.

Lastly, we glue the local morphisms oy 5, defined by (12) to give a global mor-
phism

o :Ch(E) — C(%)

over the base Z; (¢). To see that the morphisms o, 5 indeed agree on the overlaps
in their domain, we restrict to fibers of C},(¢) and describe the maps oy, 5 on closed
points. Given any (C; x*, {y%}, {z{}) € Z:, (¢), let us also denote by C C C;(¢)
the corresponding fiber of the universal curve. By Lemma 3.2, C is an (7, n)-curve;
we denote its central component by C, as usual, and we denote by C(b) the sub-
curve obtained by taking the union of C, and the spoke containing y”. Suppose
a : [n]o — Z, is compatible with C. Setting

C°(b) :=C(b)NVyp=C(b)\ U Cc), (14)
b'#b

we observe that oy p|cop) defines an isomorphism onto C°(b + 1) that fixes x¥,

takes y*(© to y*@+1 and takes z?(i) to z?(i)H . As in the proof of Lemma 3.2, this
forces oy,plc.nce ) to be rotation by ¢, once coordinates are chosen on C, such
that x; = 0o, x_ = 0, and the node connecting C, to y“(o) is 1. This shows that
Oa,blcob) agrees with |ce (), where 7 is the unique automorphism of C making it
into an (r, n)-curve of type ¢. In particular, because this description of o, depends
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only on the fiber of C;,(¢) and not on « or b, the local morphisms oy ; indeed glue
to give a global automorphism o of C; ().

Having equipped the universal curve with a universal automorphism o, which
(by the argument of the previous paragraph) makes it into a family of (r, n)-curves
of type ¢, the proof of the theorem is complete. O

3.4. Geometric observations

We conclude this section with some geometric observations about the moduli space
=T . . . . . .

L, (¢). Since these are not needed for the current work, we give only brief indications
of the proofs.

Observation 3.6. The moduli space Z:l (¢) is smooth, and its boundary (the union
of the positive-codimension boundary strata) is a simple normal crossings divisor.

To prove Observation 3.6, one can leverage the analogous result for the Hassett
—1 . .
space M, . In particular, one can show that the morphisms

—1
oly, : U = M,

are isomorphisms of U, onto an open set U C ﬂ}l (Specifically, expressing

elements of M,ll as (C; x*, v, {zi}) as in Remark 3.1, let C, be the component
containing x*. Then, after choosing coordinates on C, in which x* = oo, x™ =0,
and the half-node of C, is 1, the open set U < M}, consists of curves for which
none of the light points z; lies at an rth root of unity in C,.) The local isomorphisms
7, take the boundary stratification of Z;(;) to the boundary stratification of Mi,
so Observation 3.6 follows from the analogous statement for Hassett spaces, which
is shown in [12].

In addition to 74|y, , there is another natural map from Z; ) to M}l: rather
than remembering a single spoke of an (r, n)-curve as 7, |y, does, one can identify
all r spokes with each other. This leads to the following observation.

Observation 3.7. There exists a surjective morphism
- —1
p:L, @) > M,
that sends an (r, n)-curve C with automorphism o to the quotient C/o, and p
realizes /\_/l,ll as the quotient Z; &)/ @ZH".

This relates Z:l (¢) with moduli spaces parameterizing coverings of rational
curves with marked points: it provides a compactification of the moduli space of
coverings with marked orbits that is related to the Harris—-Mumford admissible
covers spaces [13] in the same way in which Hassett spaces are related to Mg,,,.
Other works in this direction can be found in [10], where a different choice of
weights is made that allows ramification points to collide.

Bothmy |y, and p canbe interpreted from a polytopal perspective, using that Mi

is a toric variety (and hence has an associated polytope) whereas Z; (¢), as we will
see below, has an associated polytopal complex. We return to this in Remark 7.14.
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4. Decorated chains

Having constructed the moduli space Zr of stable (r, n)-curves, we begin the com-
binatorial heart of the paper: proving that the same combinatorics encodes the
boundary strata in L the 7 -cosets in the complex reflection group S(r, n), and the
A-faces of the polytopal complex A} . The key idea that yields the correspondence
between these three types of objects is that all three can be indexed by the discrete
data of decorated chains, which we now define.

Definition 4.1. Let » > 2 and n > 0. A Z,-decorated chain of subsets of [n] (or
simply chain, for short) is a tuple

1= ... I a),
where

D=1C 1L S

=

- C Ir S [n]
and
a:ly —> Z,.

We refer to k as the length of the chain. The possibility that k = 0 is allowed, in
which case we make the convention that there is a unique length-0 chain given by
I= (@, a) for the unique function a : @ — Z,. If n = 0, then the length-0 chain is
the only chain.

In the following three sections, we describe a bijective procedure for produc-
ing, from a chain I, either a boundary stratum Sy (Proposition 5.4), a 7 -coset Cy
(Proposition 6.6), or a A-face Fy of A}, (Proposition 7.15). Furthermore, we inter-
pret both the dimension of a stratum (or 7 -coset, or A-face) and the inclusion
relation between strata (or 7 -cosets, or A-faces) in terms of corresponding fea-
tures of the chain I. In particular, the inclusion relation is described in terms of the
following relation on chains.

Definition 4.2. LetT = (I, ..., Lk, a) andj = (J1, ..., Jg, b) be chains of length
k and £ respectively. We say that I refines J if

{J17""Je} g {I]Q""Ik}
and
b= a|JZ.

(Note that if a chain T of length k refines a chain Jof length ¢, then J, C I} and so
the restriction of a on J; is well-defined.)

We will find in what follows that

o the boundary stratum Sy has codimension k, where Tisa chain of length ,
o for boundary strata Sy and SJ, we have S C SJ if and only if T refines J
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and the exact same statements hold with boundary strata replaced by 7 -cosets or A-
faces. Thus, passing through chains provides the dimension-preserving, inclusion-
preserving bijection of Theorem 1.1.

More precisely, we should note that everything that follows depends on the
choice of a primitive rth root of unity ¢: the boundary stratum Sy lies inside a par-
ticular component Z; (¢), the definition of the generating set 7 of S(r, n) depends
on a choice of ¢, and the A-faces of A, are described by intersecting with certain
hyperplanes whose definition depends on ¢. Thus, we make the following conven-
tion once and for all:

Convention 4.3. Throughout what follows, ¢ is a fixed choice of primitive rth root
of unity.

With this set-up in place, we are ready to flesh out the association of chains to
each of the requisite objects.

5. Combinatorics of the boundary strata

Recall from Sect. 2.2 that the boundary strata in Z;(g) are the closures of the loci
of curves of a fixed topological type. We make use of the following labeling scheme
for the components of the underlying curves in a boundary stratum, illustrated in
Fig. 8.

Notation 5.1. Let (C; o; xT, (%}, {Zl-j}) be a stable (r, n)-curve, where C is an r-
pinwheel curve of length k. (Recall from Definition 2.1 that this means that each
of the r spokes of C has k components.) For each ¢ € Z,, denote by

ct,....Cf

the components of the spoke containing y¢, where y* Cf and the other compo-
nents are labeled in order from outermost to innermost. Denote the central compo-
nent by Cy41.

From here, the construction of a boundary stratum in Z; (¢) from a chain is as
follows.

Deﬁni_tion 5.2. Letl = (I, ..., Ix, a) be achain. The associated boundary stratum
St € £;(§) is the closure of the locus of curves

;x50 oy Y e £,
where C is a length-k r-pinwheel curve and, using Notation 5.1, we have

(1) foreach j € {1, ..., k}, the light marked points on C? are precisely

22OV ie ;i\ 1),

where Iy = ;
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Fig. 8. An element of Zg with components labeled via Notation 5.1

(2) the light marked points on the central component Cy1 are
e 1€\ I €€ Z)U{xF).

Example 5.3. Letr = 3 and n = 4, and consider the chainT = (11, I, a) of length
2, where

L =3}, h=1{2,3,4}
and a : I — Zj3 is given by
a)=1, a@3)=0, a4 =2.

The associated boundary stratum Sy is the closure of the locus of elements of the
topological type illustrated in Fig. 8 above. In particular, notice that /; indexes
the orbits on the outermost components, I indexes the orbits on the two outermost
components, and elements of [n]\ 1> correspond to orbits in the central component.
The decoration a indicates the member of each orbit that lies on the y’-spoke of
the pinwheel.

The key combinatorial proposition about boundary strata is the following.
Proposition 5.4. Let r > 2 and n > 0. The association
T S7

is a bijection from the set of Z,-decorated chains of subsets of [n] to the set of
boundary strata of Z:Z (¢). Furthermore, this bijection satisfies

(i) length(I) = codim(S7),

(i) Sy € Sy if and only lfT refines 7.
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Proof. The surjectivity of T — Syisclear, sinceif § C Z; (¢) is aboundary stratum
with associated dual graph G, then G has a pinwheel shape and thus one can define
I; C [n] to index the marked points on the outermost j vertices of the y9-spoke of

the pinwheel. The requirement that za(i) lies on the y°-spoke of the pinwheel for
all i € Iy thus defines a function a: Ik — Z for which S5 = S.

Injectivity of the association 1 > S follows from item (ii) of the proposition,
since it is only possible that TandJ reﬁne one another if T = J. Item (ii), on the
other hand, follows directly from the containment of boundary strata described in
Sect. 2.2. In particular, if Sy and Sy are boundary strata with associated dual graphs
Gy and Gj, then S§ C Sy if and only if Gj can be obtained from Gy by edge-
contraction of some subset of the edges of G. Since contracting edges combines
the marked points on adjacent vertices, this is the case if and only if I refines J.

Finally, for item (i), let § = Sj be a boundary stratum with associated dual
graph G, where length(I) = k and therefore G is a pinwheel graph in which each
spoke has k vertices. Choose any

o [n]o — Z,

that is compatible with a generic element of § (that is, with any curve with dual
graph exactly G), where compatibility is defined as in Definition 3.3. In the notation
of Sect. 3.1, there is a morphism

o :Z;(;) — ﬂl

that maps S(¢) birationally onto the boundary stratum Sy € Mi whose dual graph
Gy consists of only the y’-spoke of G together with the central vertex. This dual
graph Go has k edges, so the well-known results on Hassett spaces imply that

codimﬂl (So) = k. Given that ZZ (¢) is birational to /V,ll, it follows that
codimZ:l @)(S(g“)) = codimm’ll (So) = k,

as claimed. m]

In addition to encoding the dimension and inclusion of boundary strata, we
note that the chain T also encodes one further piece of geometric information:
the decomposition of a boundary stratum into a product of smaller-dimensional
moduli spaces. More precisely, let £, denote the Losev—Manin space mentioned
in the introduction; in the language of Hassett spaces, this can be described as

Ly =Mo,1,1,6,....6)»

where there are n marked points of weight € and € < 1/n. In particular, elements of
L, are chains of projective lines with two “heavy” marked points (one on each end
component of the chain) and n “light” marked points. It is worth stressing that, while
we used the Losev—Manin space in the introduction to motivate the present work,
the spaces £, are not actually the r = 1 case of the spaces Z:, See Remark 8.1.

With this notation, the following proposition gives a product decomposition of
Lhe boundary stratum Sy, in which the factors can be read off directly from the chain
I
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Proposition 5.5. For any chainT = (I, ..., I, a), there is a natural isomorphism
between the boundary stratum Sy and a product of smaller-dimensional moduli
spaces, as follows:

k
~ - -
ST = Lg% H Ly |-
j=1

Proof. This is essentially immediate from the definition of Sy: the factor of Z‘r[n]\ Il

parameterizes the central component, and the factors £| 1;\1;_,| €ach parameterize a
component of one spoke of the pinwheel (which determines all of the other spokes).
]

6. Combinatorics of the complex reflection group

‘We next introduce the group whose structure is combinatorially related to the bound-

ary stratification of Z;(;“). This group, denoted S(r, n), consists of all n x n matri-
ces whose only nonzero entries are in the group u, of rth roots of unity, and with
exactly one nonzero entry in each row and column. (By convention, S(r, 0) is a
trivial group.) Note that for any n > 0, there is a natural group isomorphism

Sn = S(ls n)’

where the permutation o € S, is identified with the matrix whose ith column is the
o (i)th standard basis vector.

Remark 6.1. The group S(r, n) is an example of a complex reflection group (a
finite group acting on C” generated by elements whose action fixes a complex
hyperplane), and in the classification of complex reflection groups, it is denoted
G(r, 1, n). It is sometimes also referred to as the “generalized symmetric group”
and can be equivalently described as the wreath product p, @ S,. For more on
complex reflection groups, see [17].

It is well-known that the symmetric group S, is generated by the set of adjacent
transpositions. The complex reflection groups S(r, n) have an analogous generating
set: define

T = {50,581, ... 8n—1} S S(r, n), (15)
where
¢ 0 0 0
01 0 0
50 1= 00 1 0
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and for 1 <i <n — 1, the element s; € S, € S(r, n) is the adjacent transposition
swapping i and i + 1, or in other words, the matrix obtained by swapping the ith
and (i + 1)st columns of the n x n identity matrix. (Note that the definition of sg
makes use of the choice of primitive rth root of unity ¢ in Convention 4.3.)

It is straightforward to see that 7 generates S(r, n): multiplying the identity
matrix / by adjacent transpositions can bring any column to the first column, and
multiplying by powers of 5o can change the entry in the first column to any power
of ¢. More generally, the following remark describes the structure of subgroups of
S(r, n) generated by elements of 7.

Remark 6.2. Fix a subset S € 7 and let Hg be the subgroup of S(r, n) generated

by the subset S. Define {sj,, ..., s} :=7\S,where0 < jj < -+ < jr <n—1.
Then Hg is equal to the group of block-diagonal matrices
S(r, ju)
Si—ii
S‘ .
J3—)2 g S(r, n)
S =i
Sn_jk

That is, the upper-left block is an element of the complex reflection group S(r, j1),
while the remaining blocks are elements of the indicated symmetric groups.

The key objects of interest for this paper are the right cosets in S(r, n) of
the subgroups described by Remark 6.2. The following definition establishes the
terminology.

Definition 6.3. A 7 -coset in S(r, n) is a right coset of the form
<tla'--’td> A g S(rvn)

for some d > 0, where t,...,7; € 7 and A € S(r, n). We say that a 7 -coset as
above, where t1, . .., ty are distinct, has dimension d or codimension n — d.

In particular, a singleton {A} C S(r,n) is a 0-dimensional 7 -coset. The 1-
dimensional 7 -cosets are of the form

(si)- A

for s; € 7, and they thus have either two elements or r elements, depending on
whetheri > 1 ori = 0. Since 7 generates S(r, n), the only n-dimensional 7 -coset
is the entire group.

Analogously to Definition 5.2, we now describe a procedure for producing a
T -coset from a chain L.

Definition 6.4. Let T = ({1, ..., Ik, a) be a chain. Define the subgroup Hy C
S(r,n) by

Hy = ({si |n—i ¢ {0l ... [},

and let A € S(r, n) be any matrix satisfying the following two conditions:
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(i) for each j € {1,...,k}, the last |I;| rows of A have nonzero entries in the
columns indexed by I;—that is,
I =1{be[n]| Awp # 0 forsomea > n — ||}, (16)

where A, denotes the entry in the ath row and bth column of A;
(ii) for each i € I, the unique nonzero entry in column i of A is £ ~%@),

We define the T -coset associated to T as
Ci= Hyj- A.

To make the elements of Cy more explicit, note that in the notation of
Remark 6.2, we have Hy = Hg g, for the set

SM:={siln—i¢{Nhl..... Ik} ST (17)
Thus, the set {s;,,...,s;,} =7\ S(T) in Remark 6.2 is given by
J1=n— I
Jo=n—|l1]
Je=n—11l,

and therefore Hy is the group of block-diagonal matrices

S(r, |[n]\ Ir])
S|Ik\lk—1|

S\l-\I—2|
Hy = k=1 \1k—2 ' c Strm).

Sip\n|
Sin|

From here, one sees from Remark 6.2 and the definition of A in Definition 6.4 that
Cy is equal to the set of matrices illustrated in Fig. 9. The conditions defining the
matrix A are equivalent to requiring that A belong to this set, which in particular
implies that the definition of Cy does not depend on the choice of A satisfying those
conditions.

To illustrate the construction of Definition 6.4, we compute the associated 7 -
coset for the same chain that we considered in Sect. 5.

Example 6.5. As in Example 5.3, letr = 3 and n = 4, and let T be the chain
T=((3).{2.3.4}, 0,
where a : I — Z3 is given by
a)=1, a3) =0, a4 =2.
Then
Hy = (si |4 —1i ¢{1,3}) = (s0, 52),
and Cy = Hy - A for any matrix A such that
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nonzero entries in [n] \ I columns,

any values in p,

nonzero entries in Iz \ I; columns,
. s ~—a(d) laSt |]k|
entry in column i is ¢
TOWS
————————————————————————————— last |15
nonzero entries in I; columns, 1 I TOWS
entry in column i is ¢ (%) ast ‘ 1’
TOWS

Fig. 9. A typical element of the 7-coset Cy. The action of Hy permutes rows within each of
the blocks separated by dotted lines, and multiplies elements of the top-most block by rth
roots of unity

(i) the last row has its nonzero entry in column 3, and that entry is ¢°; and
(i1) the last three rows have their nonzero entries in columns 2, 3, and 4, and those
entries are £ ' = ¢2,¢0, and ¢ 72 = ¢!, respectively.

The action of Hy on matrices of this form multiplies the first row by roots of unity
and swaps the second and third rows. Thus, we have

¢ 0 0 0 0 0 0
0 0 o0 ¢! 0 ¢2 0 0

Cr= 0520‘“0 ezt ol f oo aflies
0 0 %0 0 0 ¢° 0

With the association T — Cy established, we are prepared to state an analogue
for 7 -cosets of Proposition 5.4.

Proposition 6.6. Let r > 2 and n > 0. The association
I— Cy

is a bijection from the set of Z,-decorated chains of subsets of [n] to the set of
T -cosets in S(r, n). Furthermore, this bijection satisfies

(i) length(T) = codim(Cy), ~
(i) Cy € Cj if and only if 1 refines J.

Proof. The surjectivity of I~ C i is clear, since given an arbitrary 7 -coset

C = (S¢ps..0580,4) A,
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one can define sets I1y € --- C I by (16). Condition (ii) of Definition 6.4
then uniquely defines a function a : Iy — Z,, and by construction, setting
I=(,...,Ir,a) gives C = Cy.
Injectivity of this association will follow from item (ii), while item (i) is imme-
diate from the definition of codim(C5). Thus, what remains is to prove item (ii).
Let

I=, ..., I, 0)
and
J=, ..., Je,b),
and suppose that I refines J. Then
{(hi,.... Ik} 2 {1, ..., Je}
and hence

{0l ey 2 11l - el

From here, it is straightforward to unpack that
S < s,

where S (T) is defined by (17) and S (j) is defined analogously. Furthermore, a
matrix A satisfying the conditions of Definition 6.4 for T will satisfy the same

conditions for j, so the same matrix can be chosen to represent both cosets. It
follows that Cy € Cj.

Conversely, suppose that C; € Cj. This means that one can choose the same
representative for both cosets, so we have

Hy-AC Hj- A (18)

foramatrix A € Cy. The elements of Cy differ from A by permuting the rows within
blocks as in Fig. 9, so in order for the containment (18) to hold, the corresponding
blocks for Cj must be unions of the blocks for Cy. That is, we must have

(el oo M)y 2 e el
In particular, for any i € {1,..., £}, we must have |J;| = |/;| for some j €
{1, ..., k}, so the set J; indexing the columns with nonzero entries in the last |J;|

rows of A is equal to the set /; indexing the columns with nonzero entries in the
last |7;| rows of A. That is, we have

I, ... Ik} 2 {1, .0, Je).

Since a and b are determined by the same matrix A, we also have b = ay,,
concluding the proof that I refines J. O
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We end this section by noting that, analogously to the way in which Proposi-
tion 5.5 gives a product decomposition of a boundary stratum in terms of the com-
binatorial data of a chain, the 7 -cosets in S(r, n) have decompositions as products
of groups dictated by their associated chains. To state the decomposition, for any
chain I, let

Q7 SO I\ Ikl x S(ry [T \ k1) x -+ x S(r, |12\ 1)) x S(r, [ I1]) = S(r, n)
19)

be the embedding of the left-hand side as block-diagonal matrices in S(r, n), where
the first factor is embedded as the first |[[#] \ Ix| rows and the columns indexed by
[n] \ Ik, and similarly for the remaining factors.

Proposition 6.7. For any chain = (I1, -+, Ix, @), let C;y = Hy - A be the asso-
ciated T -coset. Then there is a natural isomorphism between Hy and a product of
complex reflection groups, as follows:

k
Hy = S I\ kD) x [ ] Sijvijar- (20)
j=1

More specifically, let ©7 be as in (19) and let Aj € S(r, |1; \ 1;_1|) be any matrix
whose entry in the £th column is £ ~*© for each £ € Ij\Ij_1. Then

k
Cy= @5 | SO I\ L) x [ S - Aj ] - 1)
j=1

Proof. Recall from Remark 6.2 that, if S € 7 and Hg denotes the subgroup of
S(r, n) generated by S, then the block-diagonal decomposition gives an isomor-
phism

Hs = S(r j1) X Sjp—ji X Sjz—jp X =+ X Sjy—jiy X Su—ji»
inwhich 0 < j; < --- < jr <n — 1 are defined by

Jelj - k) & s ¢S. (22)

The group Hy is equal to Hg g, for the set S (I) € 7T defined by

s;ieSM) en—i¢{lhl ... |L. (23)

Combining (22) and (23) shows that the isomorphism (20) is given by the block-
diagonal decomposition. The elements of Cy are precisely the matrices with this
block-diagonal decomposition and entry £ ~*® in column i for all i € Iy, which
proves (21). O
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7. Combinatorics of the permutohedral complex

The third setting that is combinatorially related to the boundary stratification of
ﬁ; (¢) and to the 7 -coset structure of S(r, n) is the permutohedral complex. To
define it, we set
Y.=R=.4 cC
for any r > 2, and we set
Si=n+m—D+---+m—k+1)

foranyn > 1 and k € [n].

Definition 7.1. Let r > 2 and n > 0. The n-dimensional r-permutohedral com-
plex is defined as

Al = {(xl,...,xn)eY”

> lxil < 8y forall I < [n]}

iel
if n > 1, or as a single point if n = 0.

Because in general AJ, is not a polytope (rather, as we will prove in Corol-
lary 7.12 below, it is a polytopal complex), defining the appropriate notion of
“face” requires some care. We carry this out in the following definition.

Definition 7.2. A decorated subset of [n] is T = (I, a), where I C [n] and

a : I — Z, is any function; in other words, it is a length-1 decorated chain. Any
decorated subset has an associated hyperplane

Hy:= {(xl,...,xn) eC”

DBISEY =5|"1|} =

iel

A A-face of A} is defined as any nonempty intersection
A;ﬂH;l n---NHj,

where 71, el INk are a choice of distinct decorated subsets of [n].

When r = 2, the complex A2 is in fact a polytope in R" (in particular, A% is
the octagon illustrated in Fig. 1, and more generally, Aﬁ is known as the type-B
permutohedron) and its A-faces are precisely its faces in the usual sense. When
r > 3, on the other hand, the A-faces of A/ are themselves polytopal complexes.
We illustrate this in an example before proving it in general.
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Example 7.3. Letr = 3 and n = 2. Given 7= (I,a) withI ={1,2}anda: ] —
Zs3 defined by

a(l) =2, a) =0,
the associated A-face is
AN Hyp = {(x1,%2) € A3 | %x1 + %% = 3).

Geometrically, this is a line segment, and there are nine such A-faces of A% given
by changing the powers of ¢ in the coefficients of the defining equations; see the
nine green line segments labeled in Fig. 2. On the other hand, given I” = (I, a’)
where I’ = {1} and a’(1) = 2, the A-face associated to I’ is

A3 N Hy = {(x1,x2) € A3 | ¢2x) = 2},
One can check that this is equivalent to
2y x e Y nl <1,

which is the union of three line segments in a “Y” shape. There are three such
A-faces given by changing the value of a’(1), labeled in red in Fig. 2, and there are
three similar A-faces given by the equations ¢x» = 2 for 0 < i < 2, labeled in
blue in Fig. 2.

In addition, A% has O-dimensional A-faces given by intersecting two 1-
dimensional A-faces; it is straightforward to check that each such nonempty inter-
section is a single point. Finally, although Fig. 2 shows Ag as the union of nine
pentagons, these together constitute just a single 2-dimensional face.

This example illustrates that A} is a polytopal complex glued from n-
dimensional polytopes, and that a A-face given by intersecting A}, with k distinct
hyperplanes is a polytopal complex glued from (n — k)-dimensional polytopes.
Before proving these observations in general, it is useful to draw on another key
observation: a condition on the decorated subsets Tl, R E( must be satisfied in
order to ensure that the corresponding A-face is nonempty.

Lemma 7.4. Let 71, e, 71{ be decorated subsets of [n], where INJ = (I}, a;) for
each j. Then

A;ﬂH;l N---NHp #0

if and only if, after possibly reordering I, ..., 7;;, the tuple (I, ..., Iy, ax) is a
Zy-decorated chain of subsets of [n].

Proof. Since n is fixed throughout this proof, we write 8 as simply §; to avoid
cluttering the notation.

Without loss of generality, we assume that the decorated sets I~1, cee, E( are
distinct. To prove the forward direction, it suffices to show that

AlNHyNH;#0 = 1CJ.
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Suppose, then, that x € A} N Hy N Hy, and let 7= (I, a) and J= (J, b). The fact
that x € A/ means in particular that x € Y”, so

X = (A1C1, ..., ApCp)

for some A; € RZ and ¢; € u,. We claim that

¢ = C_a(i)
foralli e I.
To see this, note that since x € Hy we have
D i g% =5y, (24)

iel
and x € A}, we obtain
Zki < 4y
iel

From the triangle inequality we obtain

Z)»i %0 < Z ‘)hi W0¢| = Z/\i <d1-

iel iel iel

81 =

Thus, the triangle inequality is in fact an equality, which is only possible if the
complex numbers A; -¢ *®)¢; are all non-negative real scalar multiples of one another.
Since their sum is a positive real number by (24), they must each individually be
non-negative real numbers; that is,

ri - 0%W¢; e RZO (25)

for each i. Furthermore, A; # O foralli € I, since if A; = O for some j € I, then

Z Ai =81 > 8111,

iel\{j}

violating one of the inequalities in the definition of A],. Thus, we have A; > 0 for
all i, so (25) implies ¢ *®¢; € RZ%N u,. We conclude that ¢; = ¢~ as claimed.

This proves that, once that ¢ is fixed, the decorations on I are determined by
the coefficients ¢; on x € Aj N Hy N Hj, and the exact same argument shows
that the decorations on J are given by the same formula. Thus, what remains to be
proved is that either / € J or J C [. To see this, notice that we can now express
x € Hy N Hy by the equations

Z)u,'=3|1| and Z)\,’Z(S‘”.
iel ieJ
From these equations, we deduce that

Doki=Y kit Y k= Yy M=8n = Y ki

ielUJ iel ieJ ielnJ ielnJ
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By the defining inequalities of A}, we have

Z Ai < 810y
ielnJ
S0
Z)»i + Z)»i - Z Ai = 811+ 815) — 811n)
iel iel ielnJ
or in other words,
Z Ai = 8111+ 8141 — bj1ny)- (26)
ielUJ
But a straightforward calculation shows that if | N J| is strictly less than both |/ |
and |J|, then

8111+ 8171 = 8111 > Sj1141 111071
Given that 8|747/-11nJ| = &1us|, we would then obtain from (26) that
Z Ai > 811075
ielUJ

contradicting one of the defining inequalities of A}. Thus, we must have either
[INJ| = |I|or|INJ|=|J]|, meaning that either ] € J or J C I. This concludes
the proof of the forward direction of the lemma.

For the reverse direction, it suffices to show the statement when k¥ = »n and
I~1, R E are distinct, because any chain can be extended to a maximal one. In
light of this, let

I=1,....Ih, 0
be a maximal chain, which can equivalently be expressed as

I = {i1}
I ={i1, iz}

II’L ={i19i27"‘7il‘l}=[n]

for some iy, ..., i,. Setting
T R CE ) @7
for each j, it is straightforward to check that (x, ..., x,) € A, N H,~] Nn---N H,~n,

where ij = (I}, a|1j). Therefore, AZOHTI n-- ﬂH;n # ), so the reverse direction
of the lemma is proved. O
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The key upshot of Lemma 7.4 is that the A-faces of A}, like the boundary strata
and 7 -cosets, can be indexed by chains. The notation, analogously to the previous
two sections, is as follows.

Dq!inition 7.5. LetT = (11, ..., Ix, a) beachain. Then the A-face of A} associated
tolis

Fy = A;ﬂHTI n---NHj,
where INJ = (Ij, a|1_/) for each j.

In the special case where the chain T is maximal, the A-face Fy is a single point
of AJ,, which we refer to as a vertex. Note Lhat Eq. (27) makes the coordinates
of the vertex associated to a maximal chain I explicit. More generally, the proof
of Lemma 7.4 gives an explicit description of the elements of Fj for any chain I,
which we collect in the following remark for future reference.

Remark 7.6. SupposeT = (I, ..., I, a) is a chain. Then (x1, ..., x,) € Y" lies
in Fy if and only if the following conditions are satisfied:

(C1) (x1,...,x,) € A}, or in other words,
>l =
iel

forall I C [n]; ‘
(C2) x; e RZ0. =90 foralli € I;
(C3) forall j € {1,...,k},

] — n
Z'xll _8|I.,~|'

iel Jj
Let us illustrate the passage from a chain to its associated A-face for the same

chain considered in Examples 5.3 and 6.5 above.

Example 7.7. Let r = 3 and n = 4, and consider again the chain TI= (I, I, ),
where

L =3}, Lh={23,4)
and a : I — Z3 is given by
a)=1, a@3)=0, a4 =2.
The associated A-face Fy C Ai is, by definition,

Ziel lxi| < 3|4,| for all I C [4]
Fy=1(x1,...,xg) eY? Oxs = 4
Clx2+§OX3+§'2x4 =9
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Fig. 10. The A-face Fy C Ai of Example 7.7, decomposed as a product according to its
x3-coordinate, its (x2, x4)-coordinates, and its x1-coordinate

It is illuminating to divide the four coordinates according to the decomposition
(41=1U(L\ 1)U (41 E)
={31U{2,4} U {1}
For the coordinates in each of these sets, we have the following conditions:
e The coordinate x3 must satisfy
X3 € RZO . §0,
and by the second equality in the above expression for Fy, we have
lx3| = 4. (28)

Thus, the value of x3 is completely determined.
e The coordinates x, and x4 must satisfy

Xy € RZO . ;2 and x4 € RZO . {l,
and by the second and third equalities in the above expression for F§, we have
|2l + |x4] = 5. (29)

Thus, (x2, x4) lie in a line segment.
e The coordinate x| can lie in any of the three branches of Y. Combining Egs. (28)
and (29) with the first inequality of Fy, we see that |x1| < 1. Thus,

X € A?,

which is the Y-shaped region depicted in Fig. 10.

Combining these conditions, we find that Fy is the product shown in Fig. 10.

The product decomposition of Fy illustrated in Fig. 10 can be interpreted as
a product of the standard permutohedra of dimensions zero and one, and the per-
mutohedral complex A? . (We recall the definition of the standard permutohedra in
Definition 7.9 below.) To see the permutohedron arising more clearly, it is illumi-
nating to consider one additional example.
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Fig. 11. The A-face Fy € Ai of Example 7.8, decomposed as a product according to its
(x2, x3, x4)-coordinates and its x1-coordinate

Example 7.8. Let T be the chain obtained by removing I; from the chain T of
Example 7.7. Then

. 4
Fy = {(xl,...,x4) c Y4 Dier IXil < 8|,| forall I C [4]}.

¢lao+ 6%+ =9

As before, x| € A? and is independent from x3, x3, x4. The coordinates x;, x3, x4,
on the other hand, must satisfy

xeRZ.72 x3eRZ.1, x4 eRZ0.¢
as well as
lx2| + [x3] + |x4] =9,

One can check that these conditions, together with the inequalities in Fy,, shows
that x3, x3, x4 lie in a hexagon with vertices

(407,3,20), (45%,2,30), (3¢%,4,20), (3¢%,2,40), (267,4,30), (27,3, 40).
See Fig. 11.

Generalizing the above examples, we now prove that each A-face of AJ is
equal to a product of smaller permutohedral complexes and permutohedra; this
will provide the analogue of Propositions 5.5 and 6.7 (the product decomposi-
tions of boundary strata and 7 -cosets, respectively), and furthermore, the product

decomposition will be used to verify the dimension of each A-face.
First, we must recall the definition of the standard permutohedron.

Definition 7.9. The permutohedron IT, is the set of points (xy,...,x,) € R”
satisfying the inequalities
D _x =8

iel

for all I C [n] and the equality
Z Xi = 8;;
ie[n]

(Analogously to the situation for Losev—Manin space, we point out again that while
the analogy to the permutohedron motivates the definition of A7, it is not literally
the case that setting 7 = 1 in the definition of AJ, recovers IT,. See Remark 8.1.)
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It is well-known that IT,, is a polytope of dimension n — 1. More generally, one
obtains other polytopes of the same dimension by shifting I1,, as follows.

Definition 7.10. Let y € R. The y-shifted permutohedron I1, + y is the set of

points (x1, ..., x,) € R” satisfying the inequalities
in =& +Hl-y
iel

for all I/ C [n] and the equality
Z xi =8, +ny.
i€[n]
Given these definitions, we have the following alternative description of a face
Fyof Al.
Proposition 7.11. LetT = (11, ..., Iy, a) be a chain. Then Fy is equal to the set of
points (x1, ..., x,) € C" that satisfy the following conditions:
C1) (xDiemng € Af[n]\lk\’ or in other words,
[[n]\ 1|
Dbl =8
iel

forall 1 < [n]\ Ii;

(C2) x; e RZV . ¢=9O) foralli € I;

(C3) forall j € {1, ..., k}, the point (|x; |),'61j\1j71 lies in the shifted permutohe-
dron

Mg+ v
foryj = |[n]\ I;|.

Proof. By Remark 7.6, it suffices to show that conditions (C1) — (C3) are equivalent
to conditions (C1’) — (C3').

First, suppose that (xq, ..., x,) € C" satisfies (C1) — (C3). Then, given I C
[7]\ I, we have

Dolkl= D> Il =) |l

iel ielUly iely
n .
< 81 — D il
el

= O/114100 — ay

_ olln\Ikl

=%
where the first equality follows from the fact that I and I are disjoint, the inequality
from (C1), and the second equality from (C3). Thus, (x, ..., x,) satisfies (C1’).
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Condition (C2’) is identical to condition (C2), so there is nothing to check.
Finally, for condition (C3'), let j € {1, ..., k}. Then

Tkl =) Ikl = Y Ixl

l’EIj\Ij,I iGIj iGIj,1
— 811 _ 81’!
1 "1l
= gltnngj—]
TAUST

[I\Lj—1]
=8, N[V

)

which is the equality in the definition of the shifted permutohedron ITj;;\s; |+ 7.
Furthermore, for any  C [ i\ Ij—1, we have

Dlkl= D> lxl— ) Ixl

icl iel; Ul iel;
= 8|"1|+|1./—1| B 8’|11./—1|
_ alll['ll]\lj—ll
= s ]

which are the inequalities in the definition of the shifted permutohedron. Thus,
(x1, ..., x,) satisfies (C3).
For the reverse direction, suppose that (x1, . . ., x,;) € C" satisfies (C1’)—(C3/).

It is automatic that (xi, ..., x,) € Y" satisfies (C2). For (C1), note that for any
I C [n], we have

Z|xi|=2|xi|+i >l

iel iel\I j=lielnU;\Ij-1)

k
[[n1\ k| [1\Lj-1 |
SRR B CrATRANER 7 A/ BNV C/RV /T
j=1

k
_ oI\ [\ )
o 8|1\1k| + Z <8|m(1,-\1j,1)| ’
Jj=1
For notational convenience, we define

nj = |[n]\Ij_1| and aj = |Iﬂ([j\]j_1)|

for each j € {1,...,k + 1}, where Iy = @ and [;4+1 = [n]. In this notation, the
above is expressed as

k+1

Dokl =) 8]
j=1

iel
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From here, using the fact thatn; > ny > --- > ngy1anda; < nj;1 —n; foreach
J», one can check that

k+1

ZS - al+ Fak1
and hence
ni n
Z xil < 8a1+ Aapy T 8|1|’
iel

proving that (xi, ..., x,) € Y" satisfies (C1). We also have, for £ € {1,...,k},
that

> il =i Y Il

icly j=liel\Ij_

Z(ﬂ'iiﬁ’ ARSI IV}

- Z (5|nlj| B 8|nlj—1 |>

n
=

proving that (xy, . . ., x,) satisfies (C3) and completing the proof of the proposition.
O

As a corollary, we find that the A-faces of A/ have a product decomposition,
which shows that they are polytopal complexes of the expected dimension.

Corollary 7.12. For any chain T, we have

k

Py = Alpp g X #a H(H|1\1,1|+V1) . (30)
j=1

where ¢q @ RUK — CUl multiplies the ith coordinate by ¢=*®, and yj =
[[n]\ I;|. In particular, F5 is a polytopal complex of dimension n — k.

Proof. The product decomposition (30) follows immediately from Proposi-
tion 7.11. For the “in particular,” it suffices to prove that A} itself is a polytopal
complex of dimension n. If this is the case, then (30) implies that Fy is a product
of polytopal complexes and polytopes, so it is a polytopal complex. Furthermore,
using the fact that dim(I1,,) = m — 1, we find that the dimension of Fy is

k
NIl + Y2 (11 \ Ll = 1) =n =k,

j=1
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as claimed.
To prove that A! is a polytopal complex of dimension n, for every ¢ : [n] — Z,
define

0 1 0
Yi= @R W) R g5y C Y
Then Y? is naturally identified with R”, and under this identification, we have
in < (Slnll forall I C [n],

iel
x; >0 forall i € [n]

ANY! =1 (x1,...,x,) eR"

In particular, A7, N'Y? is a polytope in R”, and it contains the origin as well as the n
standard basis vectors ey, . . ., e,. Since these are n + 1 affinely independent points
in R”, it follows that A7, N'Y? has dimension n. Thus, we have an expression

A= @pnyp
c:[n]—7Z,
as aunion of n-dimensional polytopes intersecting only along the faces where some

subset of the coordinates is equal to zero. That is, A} is a polytopal complex of
dimension n. m]

Remark 7.13. The proof of Corollary 7.12 shows that the individual n-dimensional
polytopes A7 N Y7 that are glued to form AJ, are independent of r. Setting r = 2,
we find that Aﬁ is, in fact, a polytope (the type- B permutohedron) and the polytopes
that comprise any A’ are the intersection of A2 with an octant. When n = 2, for
example, A% is an octagon whose intersection with each quadrant is a pentagon,
and these pentagons are visible in Fig. 2 as the building blocks of A%.

Remark 7.14. The polytopes Al NY? for different choices of ¢ are all isomorphic

. . . —-—1
to one another, and they are precisely the polytope of the toric variety M, that
arose in Sect. 3. In particular, one can interpret the maps

ey, P Ue = M,I,

and
—r —-—1
p:L, (&) > M,

of Sect. 3.4 in polytopal terms: the map 7 |7, amounts to looking locally at a single
octant A, NY? of A7, while the map p amounts to identifying all of the octants of
A} with one another.

We are now ready to prove that—just as in the settings of boundary strata and
T -cosets—the A-face structure of AJ, is precisely captured by chains.

Proposition 7.15. Let r > 2 and n > 0. The association
T— Fy

is a bijection from the set of Z,-decorated chains of subsets of [n] to the set of
A-faces of A},. Furthermore, this bijection satisfies
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(i) length(T) = codim(Fy),
(i) Fy € Fjif and only lff refines I

Proof. The surjectivity of I F 7is the content of Lemma 7.4. The injectivity will
follow from item (ii) of the proposition, since the only way that I is a refinement
of J and vice versa is if I = J. Item (i) is immediate from Corollary 7.12. ~
Thus, all that remains is to prove item (ii). One direction is clear: if I is a
refinement of J, then the hyperplanes intersected to form Fj are a subset of the
hyperplanes intersected to form Fy, so Fy C Fj.
Conversely, suppose that Fy C Fj, where

TZ(Ilﬂ"‘7Ik’a)’
J=U1, ..., 00, 0b).

By completingi to a maximal chain (which, in particular, involves extending a to
a function a : [n] — Z,), one can find a vertex

vi=(x1,...,%,) € Fy.
Equation (27) implies that, for each i € {1, ..., n}, we have
xi ="y

for some A; € [n]. The fact that v € Fy C Fy then implies that

200 e Ok = 8y

lEfj

for each j, and from here, the same triangle inequality argument from Lemma 7.4
shows that a(i) = b(i) for all i € J;. Thus, the decorations on J agree with the
decorations on I where both are defined, and what remains is to prove that

{Ji,.... Je} S {11, ..., It}. 31

If not, then one possibility is that J, = [n] whereas Iy # [n]. In this case,
however, ifi € [n]\ I, thenforany s € Z, one can constructa vertex (x1, ..., X,) €
Fy with x; = {®X;. By contrast, any vertex of Fjhas x; = ;‘b(i)ki, S0 it cannot
be the case that Fj C Fj.

Having ruled out this possibility, the failure of (31) implies that

{(Ji,....Je, [nly € {L1, ..., Ik, [n]}, (32)

and from here, we can cite the known face structure of the permutohedron IT,, (see,
for example, [20, Proposition 2.6] or [1, Section 4.1]). In particular, faces of IT,
are indexed by subsets of [n] in which the largest is [n] itself, and if we set

ielj
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and similarly

Fr, o =1 (1, ..., x,) €10, in = 5|1j\ forall j ¢,

i€l
then it is known that (32) implies

,,,,, Jodn) € Fry. -

That is, there exists (xi,...,x,) € Fjl ,,,,, JoInl with (xq, ..., x,) ¢ F[1 _____ Ix,[n]- It
is straightforward to see that, for any extension of a to a function [n] — Z,, we
have

(@€ Dy, 07y e Fy
but
€Wy, ., 7%y, ¢ Fy.
This contradicts our assumption that Ff C Fj and thus completes the proof. O

The previous two sections concluded with a product decomposition of the rele-
vant objects, and we close this section by briefly noting that the analogous product
decomposition also holds for A-faces.

Remark 7.16. For any chainT = (I, ..., Ix, a), there is an isomorphism

k
Fy = Al % [T v
j=1
(The word “isomorphism” here can be taken to mean “combinatorial equivalence,”
or more strongly, “isometry” under the standard inner products on R” and C".) This
follows directly from Corollary 7.12.

8. Proof of Theorem 1.1 and Enhancements

We are now positioned to complete the proof of the main theorem:
Theorem 1.1 For any integers r > 2 and n > 0, there are dimension-preserving,
inclusion-preserving bijections

boundary T -cosets A-faces
{stratainZ;} {in S(r,n)} of A} }

Proof. Propositions 5.4, 6.6, and 7.15 give bijections between each of these three
sets and the set of Z,-decorated chains of subsets of [n], and in each case, the
dimension is encoded by the co-length of a chain and the inclusion relation is
encoded by refinement of chains. O

In fact, the statement of Theorem 1.1 can be enhanced to incorporate two pieces
of additional structure: product decompositions of the three types of objects and an
action of S(r, n) on each. The remainder of this last section of the paper is devoted
to carrying out these enhancements.
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8.1. Product decompositions

Theorem 1.1 is an analogue of results pertaining to the Losev—Manin moduli spaces
L, studied in [16]. There, the relevant group is the symmetric group S, (in which
there is a precisely analogous definition of 7 -cosets with 7 the set of adjacent trans-
positions), and the relevant polytopal complex is the permutohedron IT, (which, in
this case, is actually a polytope). The theorem, then, is that there are dimension-
preserving and inclusion-preserving bijections

boundary T -cosets faces

{strata in Zn} { in S, } { of Hn] ’ (33)
Remark 8.1. The analogy between (33) and Theorem 1.1, and the fact that S, is
the r = 1 case of S(r, n), suggests that £, and IT, should be viewed “morally” as
the r = 1 cases of E; and A}, respectively, despite the fact that these objects are
not literally recovered by setting » = 1 in the higher-r construction. Setting r = 1

in the definition of Z;, in particular, yields the space /\_/1,1,, which we observed in
Remark 3.1 is not equal to Losev—Manin space.

With this analogy established, we note that the bijections of Theorem 1.1 pre-
serve rich geometric structures of Z; in a way that incorporates the corresponding
structures in Losev—Manin spaces encoded by (33). More precisely, we have seen
in Proposition 5.5, Proposition 6.7, and Remark 7.16 that

e a boundary stratum in Z; is isomorphic to a product with one factor Z;, for
some n’ and all other factors Losev—Manin spaces;

e a7 -coset Cyin S(r, n) is a coset of a subgroup isomorphic to a product with
one factor S(r, n’) for some n’ and the other factors symmetric groups;

e a A-face Fyin A}, is isomorphic to a product with one factor A’, for some n’
and all other factors permutohedra.

The following theorem says that the bijections of Theorem 1.1 are compatible with
these product decompositions.

Theorem 8.1. Under the bijections of Theorem 1.1, a boundary stratum Sy natu-
rally isomorphic (via Proposition 5.5) with

Ln,

k
J
=1

T
E”k+1 x

J

corresponds to a T -coset Cy naturally identified (via Proposition 6.7) with

k
Strones) x [ ] Su; - A
j=1

and to a A-face Fy naturally isomorphic (via Remark 7.16) with

k
’
AﬂkJrl X l_[ H"j'

j=1
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In particular, iff: (Ii, ..., Ix, ), then
i1 = |[n]\ Il andnj = |1; \ 1; 1]
forall j € {1,...,k}.

Proof. This follows from Proposition 5.5, Proposition 6.7, and Remark 7.16, which
describe the product decomposition of a boundary stratum, 7 -coset, or A-face
corresponding to a given chain L. O

8.2. Actions and equivariance

Another key feature of each of the three settings of interest is the existence of a
right action by S(r, n). In particular:

e S(r,n)actson Z:, (¢), because an element of Z; (¢) is determined by the choice

of the curve C and the first element z(l), R z2 in each light orbit. Thus, for any

A € S(r, n) we can view the matrix-vector product
0 0
(Zl,...,Zn)'A

as a new tuple of elements of C by identifying ¢ - ZS‘ with O’k(Z;), so setting
€. A= E 2 A)

gives an action of S(r, n) on Z;(;).
e S(r, n) acts on itself by multiplication on the right.
e S(r,n) acts on A/ by matrix-vector multiplication

(x1,..., %) - A
for (x1,...,x,) € Al

We will see in Lemma 8.4 that the action on Z,:(;) takes 0-dimensional
boundary strata to 0-dimensional boundary strata, and the action on A/ takes 0-
dimensional A-faces to O-dimensional A-faces. Moreover, the bijections of Theo-
rem 1.1 are equivariant under these actions. Before proving this in general, let us
illustrate it in two examples.

Example 8.2. In the case of (r, n) = (2, 2), let

01
a=(00).
Then the action of A on A% rotates by 7 /4 counterclockwise. On S(2, 2), the action

is simply right-multiplication, whereas on Zﬁ, the action is described by

0 .0 1 _0y.
(21, 23) - A=(23, 21);
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. . . -2
in other words, if (C; z(l), zg) specifies an element of £,, then
(Ciz0.29) - A=(C: 7). 2))

in which Z(l) = zé and Zg = z(l). From here, consulting Fig. 1(A) shows that the bijec-

tion between 0-dimensional boundary strata in Zi and vertices of A% is S(2, 2)-
equivariant: if (C; z(l), zg) is a O-dimensional boundary stratum corresponding to a
vertex v € A%, then (C; z(l), zg) - A is the 0-dimensional boundary stratum corre-
sponding to the vertex v - A. Similarly, from Fig. 1(B), one sees thatif B € S(2, 2)
is a group element (that is, a O-dimensional 7 -coset) corresponding to a vertex
v E A%, then B - A is the group element corresponding to v - A.

Example 8.3. In the case of (r, n) = (3, 4), let

0 ¢2 0 0
0O 0 O
A=1lo o ¢2 (§) (34)
1 0 0 O
Then we have
0 ¢2 0 0
0 O 0
9,29, 23, 29 0 0 ¢ g = (23, 73,73, 23),
1 0 0 O

which means that after the action of A, the first elements of the light orbits are

located at the points where zg, z%, z%, z% were located before the action of A. For

instance, the action of A sends the element of Zi (¢) in Fig. 12(A) to the element
in Fig. 12(B).

Unpacking the bijections of Theorem 1.1, one sees that the curve in Fig. 12(A) is
the 0-dimensional boundary stratum corresponding to the 7 -coset {/} containing
only the identity matrix, and corresponding to the vertex (1,2,3,4) € A%. On
the other hand, the curve in Fig. 12(B) is the 0O-dimensional boundary stratum
corresponding to the chain

T=({1},{1,3},{1,3,4},{1,2,3,4}, a),
where
a(l) =0, a2)=1, a@3) =1, ad) =2,
from which it is straightforward to check that it corresponds to the 7 -coset {A} =

{A - I} and to the vertex (4, {2, 3;2, 2¢)=(1,2,3,4)- Aof A%. Thus, in this case,
we again see that the bijections of Theorem 1.1 are S(2, 3)-equivariant.
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(A) An element C' in Zz(() (B) The element C'- A in Zi(()

Fig. 12. The action of A € S(3, 4) defined by (34) on an element of Zi )

To confirm that the bijections between O-dimensional objects are S(r, n)-
equivariant in general, we denote by Sp € Z:l (¢) the zero-dimensional bound-
ary stratum corresponding under Theorem 1.1 to the O-dimensional 7 -coset
{I} € S(r,n). Specifically, this means that the y%-spoke of Sy contains the light
marked points z(l), ceey zg, with one on each component in order from innermost to
outermost, or in other words that

i

25 €Chyyj
For instance, Fig. 12(A) illustrates Sy € L4(¢).

Lemma 8.4. The bijections

zero-dimensional
n

bom.zda_rry ] < S(r,n) Hveo;’ctiggs}
strata in L, (¢)

of Theorem 1.1 identify A € S(r, n) with the boundary stratum Sy - A and with the
vertex (1,...,n)- A e Al

Proof. All of these objects correspond to maximal chains

TZ(Il,...,In,a)

with a : [n] — Z,, for which the sets Iy, ..., I, can be expressed as
I ={i1}
I = {iy, iz}

I, ={i1,i2, ..., i} = [n]

for some iy, ..., i, € [n]. In this notation:
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(i) the associated boundary stratum Sy is defined by the condition that

a(i;)

the unique light marked point on the component C ? is z;

for each j € [n];
(ii) the associated 7 -coset is the singleton Cy = {A}, where A is the matrix
defined by the condition that

row n 4+ 1 — j of A has nonzero entry ¢7%) in column i j

for each j € [n];
(iii) the associated A-face is the vertex Fy = {(x1,...,x;)} with coordinates
defined by

xi; =¢7 (41— )
for each j € [n]. (See Eq. (27).)
In particular, it is straightforward to see that the vertex in (iii) is equal to
X1y eeyxn)=({,...,n)-A

for the matrix A in (ii), which verifies one half of the lemma.

For the other half of the lemma, we must show that S5 = Sp - A. To see this, let
{zj.} denote the elements of the light orbits in Sy, so that, by the definition of Sy,
we have

i i
;€ Gy

If {Z;} denote the elements of the light orbits in Sy - A, then the definition of the
action and of A implies that

~0 _ _—a@)) —a(ij)
Zi; = 2y € € )

In particular, Sp - A has just one light marked point on each of the components C?

for j € [n], and that marked point is Ziaj & ). This exactly agrees with the above
description of Sg, so S5 = So - A. m]

From here, the fact that the bijections of Theorem 1.1 are inclusion-preserving
gives a concise reinterpretation of the bijections in general.

Proposition 8.5. The bijections

boundary T -cosets A-faces
{slrata inZL(;)} — {in S(r, ”)} — { of Ay, ]

of Theorem 1.1 identify a boundary stratum S with
{Ae S n)|So-AeS}CS(rn)
and identify a A-face F with
{AeSrn)|(A,...,n)-Ae F} C S, n),

both of which are T -cosets.
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Proof. Let S be aboundary stratum, and let Cs C S(r, n) be the 7 -coset associated
to it via the bijection of Theorem 1.1. By Lemma 8.4, the bijection associates each
A € S(r,n) to the zero-dimensional boundary stratum Sy - A. And since it is
inclusion-preserving, we have

AeCs & Sp-Aes.
This proves that
Cs={AeSrn)| S-AeS},

so in particular, the latter is indeed a 7 -coset. The argument for the case of a A-face
F is identical. m]

One reason to like this interpretation—in addition to the fact that it is much
simpler to state than how we initially constructed the bijections of Theorem 1.1,
and in particular does not require the auxiliary machinery of chains—is that it
immediately shows that the bijections are S(r, n)-equivariant. To see this, we first
should note that there is a right action of S(r, n) on the sets of boundary strata,
T -cosets, and A-faces, in each case by setting

X-A={x-A|xeX}

for a boundary stratum, 7 -coset, or A-face X. Here, the fact that S(r, n) indeed
acts on each of these sets is a result of the following observations:

e The action of S(r,n) on Z:, preserves the topological type of C (in fact, it
preserves C itself) while permuting marked points, so it takes boundary strata
to boundary strata.

e The action of S(r, n) on 7 -cosets is equivalently described by

((% ...,s[d)B) A= (s, ... 50) - (BA),

so it takes 7 -cosets to 7 -cosets.

e The action of S(r,n) on C" on A}, takes points satisfying the conditions of
Remark 7.6 to points satisfying an analogous set of conditions, so it takes A-
faces to A-faces.

From here, it is essentially immediate from Proposition 8.5 that the bijections of
Theorem 1.1 respect these actions.

Remark 8.6. One way to confirm that the bijections of Theorem 1.1 are equivariant
is to verify that the above three S(r, n)-actions all correspond, under Theorem 1.1,

to an action on chains. Indeed, this is the case: the image of a chain (I, ..., I, a)
under the action of the element A € S(r, n) is the chain (1 1/ RN | ,2 a’) character-
ized by

1= Jteenl| A #£0)

tEI_,'

and
a'(0) = a(i) —mj, forall € € I},
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where i € [n] and m;y; € Z, are uniquely determined by the condition that
Aje = ¢™t. However, it requires some care to check that this action on chains
indeed matches the three actions above, so we will instead prove the equivariance
of Theorem 1.1 directly as a corollary of Proposition 8.5.

Corollary 8.7. The bijections of Theorem 1.1 are S(r, n)-equivariant.

Proof. Let S be a boundary stratum, and let Cg be the associated 7 -coset. Under
the action of B € S(r, n), we have

Cs-B={AB e S(r,n)|AecCs)={AecSrn) | AB™' € Cs).

The element AB~! € S(r, n) corresponds to the boundary stratum Sy - AB~!
E; (¢), by Lemma 8.4. Together with the fact that the bijection from 7 -cosets to
boundary strata is inclusion-preserving, this implies that

AB~! € Cy ifandonly if Sy-AB~! € S.
Thus, we have
Cs-B={AecSrn)|Sy-AB ' €S} ={AecSr,n)|Sy-AcS- B},

which, by Proposition 8.5, is precisely equal to Cs.p.

This proves that the bijection between the sets of boundary strata and 7 -cosets
is S(r, n)-equivariant, and an identical proof shows the same statement for the
bijection between A-faces of A/ and 7 -cosets. O
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