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Abstract. We define a moduli space of rational curves with finite-order automorphism and
weighted orbits, and we prove that the combinatorics of its boundary strata are encoded by a
particular polytopal complex that also captures the algebraic structure of a complex reflection
group acting on the moduli space. This generalizes the situation for Losev–Manin’s moduli
space of curves (whose boundary strata are encoded by the permutohedron and related to
the symmetric group) as well as the situation for Batyrev–Blume’s moduli space of curves
with involution, and it extends that work beyond the toric context.

1. Introduction

The moduli spaceM0,n of genus-zero stable curves with n distinct marked points
is a fundamental object in algebraic geometry, in part due to its applicability—
to such fields as enumerative geometry, representation theory, and mathematical
physics, to name a few—but also because it is an interesting variety in its own
right. In particular, while M0,n is not toric when n ≥ 5, it shares some of the
combinatorial structure that a toric variety would enjoy. The Chow ring of a toric
variety, for example, is generated by the toric boundary (the positive-codimension
torus-invariant subvarieties) with relations described combinatorially in terms of
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fan data; analogously, Keel proved in [14] that the Chow ring ofM0,n is generated
by the modular boundary (the positive-codimension boundary strata) with relations
described combinatorially in terms of dual graphs.

One perspective on the close connection between M0,n and toric varieties
is that the moduli problem can be tweaked to produce a space that is, in fact,
toric. Losev and Manin studied a particularly significant such modification in [16],
constructing a moduli space Ln that parameterizes genus-zero curves with marked
points (y1, y2, z1, . . . , zn), where the marked points y1 and y2 are “heavy”—that
is, they cannot coincide with any other marked points—whereas the marked points
z1, . . . , zn are “light” in the sense that they are allowed to coincidewith one another.
The space Ln (which is birational to M0,n+2) is a toric variety, and its associated
polytope is the permutohedron �n : the convex hull in R

n of the n! points obtained
by permuting the coordinates of (1, 2, . . . , n). Moreover, Losev and Manin proved
that the torus-invariant strata ofLn are precisely the boundary strata, which implies
that there is a dimension-preserving, inclusion-preserving bijection{

boundary
strata in Ln

}
←→

{
faces
of �n

}
.

From a combinatorial perspective, on the other hand, the faces of �n have another
interpretation: they encode the generation of the symmetric group Sn by adjacent
transpositions. Namely, the d-dimensional faces of �n are in inclusion-preserving
bijection with the right cosets in Sn of subgroups of the form

〈τ1, . . . , τd〉 ⊆ Sn,

where τ1, . . . , τd are adjacent transpositions.
Batyrev andBlume extended thework ofLosev andManin in [2,3], constructing

a moduli space L2
n that parameterizes genus-zero curves with an involution σ ,

two light fixed points of σ , one heavy marked orbit of σ , and n light marked
orbits. Again, this moduli space is toric, and its torus-invariant strata are precisely
the boundary strata, so one obtains a dimension-preserving, inclusion-preserving
bijection {

boundary

strata in L2
n

}
←→

{
faces
of �2

n

}
.

Here, �2
n is the polytope known as the type-B permutohedron, which is the

convex hull in R
n of the 2nn! points obtained by permuting the coordinates of

(±1,±2, . . . ,±n). Also analogously to the Losev–Manin case, this polytope has
a group-theoretic interpretation, this time in terms of the complex reflection group
S(2, n) of n×n matrices all of whose nonzero entries are±1, and with exactly one
nonzero entry in each row and column.

The motivation for Batyrev and Blume’s work comes from the theory of root
systems. Specifically, they constructed a toric variety associated to any root system
and proved that Losev–Manin spaceLn is the toric variety associated to the classical
root system An−1,whileworking insteadwith the root system Bn yields theirmoduli

space L2
n . From the perspective of root systems, however, this seems to be the end
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of the line: Batyrev and Blume proved that the toric varieties in types C and D do
not have equally well-behaved modular interpretations.

In this paper, we propose a generalization of Losev–Manin and Batyrev–
Blume’s story in a different direction. Namely, rather than preserve the connection
to root systems, we preserve from Batyrev–Blume’s work the existence of an auto-
morphism σ but allow it to have any finite order r . The result is a moduli space
Lr
n that parameterizes genus-zero curves with an order-r automorphism, two light

fixed points, one heavy marked orbit, and n light marked orbits.
In one sense, the moduli spaces Lr

n break the story, because when r ≥ 3, they
are not toric. In particular, then, their boundary strata are not encoded by the faces
of a polytope. However, something perhaps more intriguing is true: we prove that
there exists a polytopal complex �r

n whose “�-faces” encode the boundary strata
of Lr

n . More specifically, �r
n is defined as the subset of

(
R

≥0 · μr

)n ⊆ C
n

bounded by certain hyperplanes (whereμr denotes the group of r th roots of unity),
and its�-faces are defined as the intersections of�r

n with collections of the bound-
ing hyperplanes. When r = 2, the complex �r

n specializes to the type-B permuto-
hedron�2

n and�-faces are ordinary faces, so Batyrev–Blume’s result is recovered.
Furthermore, we generalize the group-theoretic interpretation of both Losev–

Manin and Batyrev–Blume’s moduli spaces. Namely, let S(r, n) be the group of
n × n matrices all of whose nonzero entries are r th roots of unity, and with exactly
one nonzero entry in each row and column. Then S(r, n) is generated by the set

T :=
{
adjacent transpositions

si in Sn ⊆ S(r, n)

}
∪

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
s0 :=

⎛
⎜⎜⎜⎜⎜⎝

ζ 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0

. . .

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

where ζ is a primitive r th root of unity, and we define a d-dimensional T -coset to
be a right coset of the form

〈t1, . . . , td〉 · A ⊆ S(r, n)

with t1, . . . , td ∈ T and A ∈ S(r, n).
Our main theorem is the following:

Theorem 1.1. For any integers r ≥ 2 and n ≥ 0, there are dimension-preserving,
inclusion-preserving bijections

{
boundary
strata in Lr

n

}
←→

{ T -cosets
in S(r, n)

}
←→

{
�-faces
of �r

n

}
.
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Remark 1.2. More precisely, all three of the sets appearing in Theorem 1.1 depend
on the choice of a primitive r th root of unity ζ : the moduli space Lr

n is a union of
connected components Lr

n(ζ ), the definition of T given above involves a choice
of ζ , and ζ also appears in the definition of the bounding hyperplanes of �r

n and
hence of its �-faces. While we suppress this choice from the notation to make it
less cumbersome, Theorem 1.1 should be interpreted as a statement for each choice
of primitive r th root of unity; see Convention 4.3.

Remark 1.3. In fact, the bijections of Theorem 1.1 preserve quite a bit more of
the structure of the above three types of objects. In particular, we show that there
are product decompositions of boundary strata, T -cosets, and �-faces, as well as
S(r, n)-actions on each, and the bijections of Theorem 1.1 respect these. See Sect. 8
for the details.

When r = 2, Theorem 1.1 specializes to the results of Batyrev and Blume. For
larger values of r , the theorem indicates that the spaces Lr

n are unions of toric vari-
eties with independent torus actions, and in this way they occupy a middle ground
between toric varieties and the classical moduli spaces of genus-zero curves—a set-
ting in which the applicability of polyhedral methods is an intriguing new avenue
for study.

Let us illustrate the statement of Theorem 1.1 with two special cases, to give
the reader a flavor of the combinatorics involved.

Example 1.4. Let r = 2 and n = 2, which is part of Batyrev–Blume’s work. Then
�2

2 is the octagon inR
2 with vertices (±2,±1) and (±1,±2), and the combinatorial

content of Theorem 1.1 is that we can label the faces of �2
2 in two different ways,

both ofwhich are dimension-preserving and inclusion-preserving and are illustrated
in Fig. 1(A), (B).

First, in Fig. 1(A), we label each face of �2
2 by a boundary stratum in L2

2.
Such a stratum is described by an odd-length chain of rational curves—depicted
by its dual graph in the figure—where the involution reflects across the central
component, together with two marked fixed points of the involution (on the central
component) as well as light orbits (z01, z

1
1) and (z02, z

1
2) and a heavy orbit (y0, y1).

Second, as illustrated in Fig. 1(B), each face of �2
2 can be labeled by a T -coset

in S(2, 2). In this case, we have T = {s0, s1}, where

s0 =
(−1 0

0 1

)
and s1 =

(
0 1
1 0

)
.

The 0-dimensional T -cosets (which label the vertices) are the elements of S(2, 2),
while the 1-dimensional T -cosets are the right cosets in S(2, 2) of subgroups gen-
erated by a single element of T . Since the two elements of T together generate
S(2, 2), there is only a single 2-dimensional T -coset, which is the entire group and
labels the unique 2-dimensional face.

Example 1.5. Now, let r = 3 and n = 2, which is a new case in the current work. In
the previous example, the intersection of�2

2 ⊆ R
2 with each quadrant is a pentagon,
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(a) The polytope Δ2
2 with faces labeled by boundary strata in L2

2. The markings on the left side
of each stratum are omitted for clarity but are uniquely determined by the involution.

(b) The polytope Δ2
2 with faces labeled by T -cosets in S(2, 2).
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(a) The polytope Δ2
2 with faces labeled by boundary strata in L2

2. The markings on the left side
of each stratum are omitted for clarity but are uniquely determined by the involution.

(
0 1
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)

(
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)

(
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)(
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)

(
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(
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)
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(
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(
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(
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(
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S(2, 2)

(b) The polytope Δ2
2 with faces labeled by T -cosets in S(2, 2).

Fig. 1. The example of r = 2 and n = 2

and these pentagons meet in pairs when a coordinate changes sign. When r = 3,
by contrast, the polytopal complex �3

2 is a subset of(
R

≥0 · {1, ζ, ζ 2}
)

×
(
R

≥0 · {1, ζ, ζ 2}
)

⊆ C
2

where ζ is a primitive third root of unity. Its intersection with each of the subsets(
R

≥0 · ζ a
)

×
(
R

≥0 · ζ b
)

⊆ C
2

for a, b ∈ {0, 1, 2} is a pentagon, and these nine pentagons meet in triples when a
or b changes. This complex is depicted in Fig. 2, where we illustrate the statement
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S(3, 2)

y0

z01
〈s0〉

(
0 1
1 0

)

y0

z01z02

(
0 1
1 0

)

y0

z02z01

(
1 0
0 1

)
y0

z02

〈s0〉
(

1 0
0 1

)
y0

z02z11

(
ζ2 0
0 1

)

y0

z01z12

(
0 ζ2
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(
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Fig. 2. A projection of the polytope �3
2, with some �-faces labeled by both the boundary

strata in L3
2 and by the corresponding T -cosets in S(3, 2)

of Theorem 1.1 again by labeling some of the �-faces in two ways: first by the

boundary strata in L3
2, which are described by marked trees of rational curves with

μ3-symmetry, and second by T -cosets in S(3, 2).
The precise definition of �-faces is given in Definition 7.2, but, for now, we

simply remark that they are themselves polytopal complexes; in particular, the 0-
dimensional �-faces are the vertices labeled in black, the 1-dimensional �-faces
are the line segments labeled in green as well as the Y-shapes labeled in red and
blue, and there is only a single 2-dimensional �-face, which is the entire complex
�3

2. The key observation is that a 1-dimensional �-face may be adjacent to either
two or three 0-dimensional �-faces. This corresponds precisely to a fact about
boundary strata and about T -cosets:

• in L3
2, a 1-dimensional boundary stratum contains either two or three different

0-dimensional boundary strata, depending on whether there is a light orbit on
the central component;

• in S(3, 2), the 1-dimensional T -cosets 〈t〉 · A have either two or three elements,
depending on whether t is an adjacent transposition or t = s0.

These are special cases of the combinatorial phenomena that arise more generally
in what follows.
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Future and related work

In the sequel [6] to this paper, we prove that Lr
n can be realized as a wonderful

compactification of a particular hyperplane arrangement in a product of projective
spaces, fromwhichwededuce a presentation of itsChow ring, analogously toKeel’s
computation of A∗(M0,n) in [14] or the results of [4,5,15] for Hassett spaces. In
future work, we hope to probe further geometric and combinatorial properties of
Lr
n to more fully exploit its proximity to being a toric variety. For example, one

could study the tropical manifestation of Ln
r (along the lines of the work carried

out in [7,8,21] for Mg,n and Hassett spaces) or its symmetries (along the lines of
[18,19]). The birational geometry of Lr

n would also be very interesting to study.
In the case ofM0,n , the parallelism with toric varieties motivated Fulton’s famous
F-conjecture as well as the (now disproven) conjecture that the Cox ring of M0,n

is finitely-generated [9,11]. Perhaps the fact that Lr
n is “more toric” than M0,n—

in that it is combinatorially encoded by a polyhedral object—would make these
birational-geometric questions more amenable to study in this setting.

Plan of the paper

In Sect. 2, we precisely define the objects parameterized by the moduli space Lr
n .

The fact that there indeed exists a fine moduli space parameterizing these objects is
the content of Sect. 3; readers wishing to accept the existence ofLr

n are encouraged
to skip that section and proceed directly to the combinatorial material that follows.
Section 4defines the combinatorial data of decorated chains of subsets of {1, . . . , n},
and Sects. 5, 6, and 7 show that this data can be used to describe the boundary strata,
T -cosets, and�-faces, respectively. Finally, in Sect. 8,we combine the results of the
previous three sections to deduce Theorem 1.1, and we observe that the boundary
strata, T -cosets, and�-faces also have product decompositions and S(r, n)-actions
that are respected by the bijections between them.

2. The moduli space

Fix integers r ≥ 2 and n ≥ 0. Denote by μr ⊆ C
∗ the cyclic group of r th roots of

unity, and denote Zr = {0, 1, . . . , r − 1}.

2.1. Objects and families

We begin by specifying the underlying curves of the objects we are interested in
parameterizing. Throughout, varieties are considered over the field C.

Definition 2.1. An r -pinwheel curve is a tree of projective lines meeting at nodes,
consisting of a central projective line fromwhich r equal-length chains of projective
lines (“spokes”) emanate. If each of these spokes has k components, we say that
the pinwheel curve has length k; in the case where k = 0, the curve is simply P

1.
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z11
z21

z01

z12
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z04

z14
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z13

z23

y0

y1

y2

C•

Fig. 3. A stable length-two (3, 4)-curve, where each circle represents a P
1 component and

σ is the rotational automorphism. Not pictured are the marked points x+ and x−, which are
the two fixed points of σ and must both lie on the central component C•

The objects of our moduli space are built from r -pinwheel curves as follows.

Definition 2.2. An (r, n)-curve consists of the following data:

• an r -pinwheel curve C ;
• an order-r automorphism σ : C → C ;
• two distinct fixed points x+ and x− of σ ;
• n labeled r -tuples (z01, . . . , z

r−1
1 ), . . . , (z0n, . . . , z

r−1
n ) of points z ji ∈ C satisfy-

ing

σ(z ji ) = z j+1 mod r
i

for each i and j , where we allow that z ji = z j
′

i ′ and that z ji = x±;
• an additional labeled r -tuple (y0, . . . , yr−1) satisfying

σ(y�) = y�+1 mod r

for each �, whose elements are distinct from one another as well as from x±
and z ji .

We refer to an (r, n)-curve as stable if each irreducible component ofC contains
at least two “heavy” points—where the “heavy” points are the half-nodes and the
points y�—and any irreducible component with exactly two heavy points contains
at least one of the “light” points x± or z ji . (This is a special case of the stability
condition for Hassett spaces, which will play a major role in the construction of the
moduli space Lr

n in Sect. 3 below.)
It is straightforward to see that the stability condition forces y0, . . . , yr−1 to lie

on the r leaves of the pinwheel curve, in which case σ must consist of a rotation
taking each spoke of the pinwheel to another, and x± must both lie on the central
component, which we denote C•; see Fig. 3.
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Up to an automorphism of C , one can assume that x+ and x− are the points ∞
and 0, respectively, in the central component C• ∼= P

1, and that the node at which
the y0-spoke meets C• is the point 1 ∈ C• ∼= P

1. Under this identification, the
fact that σ has order r ensures that the y1-spoke meets C• at ζ ∈ P

1, where ζ is
a primitive r th root of unity. Once ζ is chosen, the points at which the remaining
spokes meetC• are determined, but ζ itself can be freely chosen to be any primitive
r th root of unity. We encode this choice in the following terminology.

Definition 2.3. Let ζ be a primitive r th root of unity. Given a stable (r, n)-curve,
let p� ∈ C• be the point at which the y�-spoke meets the central component, for
each � ∈ Zr . We say that the curve has type ζ if, under the unique automorphism
of the central component C• that sends

x+ �→ ∞, x− �→ 0, p0 �→ 1,

we have

p� �→ ζ �

for all � ∈ Zr .

Remark 2.4. A stable (r, n)-curve of type ζ can be viewed as a curve with an action
of the cyclic group μr , in which the generator ζ ∈ μr acts by the automorphism σ .

Having defined the objects of interest, we now specify the notions of family
and morphism of families.

Definition 2.5. A family of stable (r, n)-curves over a base scheme B is a flat,
proper morphism π : C → B equipped with an order-r automorphism σ of C such
that π ◦ σ = π , and sections x±, {z ji }, and {y�} of π such that for any geometric
point b ∈ B, the fiber

(
π−1(b); σ

∣∣
π−1(b); x±(b), {y�(b)}, {z ji (b)}

)

is a stable (r, n)-curve. If, furthermore, each fiber has type ζ , we say that the family
has type ζ .

Remark 2.6. If the base B is connected, then every fiber has the same type, so the
type of the family can be deduced from considering any single fiber.

Definition 2.7. Given families

(π : C → B; σ ; x±, {y�}, {z ji }) and (π ′ : C′ → B; σ ′; X±, {Y �}, {Z j
i })

over the same base B, amorphism of families is a morphism s : C → C′ satisfying

• π ′ ◦ s = π ;
• σ ′ ◦ s = s ◦ σ ;
• X± = s ◦ x±, Z j

i = s ◦ z ji , and Y � = s ◦ y�.
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The goal of Sect. 3 is to identify a fine moduli space representing the moduli
problem specified above, which we denote as follows.

Definition 2.8. For any integers r ≥ 2 and n ≥ 0, we denote by Lr
n(ζ ) the moduli

space of isomorphism classes of stable (r, n)-curves of type ζ , and we denote by
Lr
n =⊔ζ L

r
n(ζ ) themoduli space of all isomorphismclasses of stable (r, n)-curves.

The reader willing to accept the existence of such a fine moduli space may wish
to skip Sect. 3 entirely and proceed directly to the combinatorics in Sect. 4, and
they are encouraged to do so. First, however, we must describe the boundary strata
in Lr

n , which are critical to the combinatorics that follow.

2.2. Boundary strata

In any moduli space of curves, a boundary stratum is defined as the closure of the
locus of curves of a fixed topological type. More precisely, we have the following
definition of boundary strata in our case.

Definition 2.9. Any (C; σ ; x±, {y�}, {z ji }) ∈ Lr
n(ζ ) has an associated dual graph

consisting of

• a vertex v for each irreducible component Cv of C ;
• an edge between vertices v and w if the corresponding irreducible components
Cv and Cw meet at a node;

• a half-edge attached to the vertex v for each marked point on Cv , labeled by
the name x±, y�, or z ji of the marked point.

Given such a dual graph G, the corresponding boundary stratum SG ⊆ Lr
n(ζ ) is

defined as the closure of the set of curves with dual graph G.

In particular, passing to the closure means that SG includes also degenerations
of curves with dual graph G. It follows that one can detect in terms of dual graphs
when there is an inclusion of boundary strata: we have SG ⊆ SH if and only if H can
be obtained from G by edge-contraction of some subset of the edges, a procedure
that corresponds geometrically to degeneration of a curve in SH to a curve in SG .
For example, if G is the top dual graph in Fig. 4 and G1 and G2 are the two dual
graphs depicted below it, then we have SG ⊆ SG1 and SG ⊆ SG2 , corresponding
to the fact that both G1 and G2 can be obtained by edge-contraction from G.

3. Construction of the moduli space

We construct the moduli space of stable (r, n)-curves as a closed subscheme of
a more well-known moduli space constructed by Hassett in [12], so we begin by
recalling the necessary definitions from the theory of Hassett spaces. Throughout,
we denote

[n] = {1, 2, . . . , n}
and

[n]0 = {0, 1, . . . , n}.
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Fig. 4. The dual graph G of the curve in Fig. 3, and below it, two graphs obtained by
edge-contraction from G

3.1. Hassett spaces and maps between them

For any g ≥ 0, n ≥ 0 and any weight vector w = (w1, . . . , wn) ∈ (Q ∩ (0, 1])n
such that 2g +∑n

i=1 wi > 2, the associated Hassett space is a smooth Deligne–
Mumford stack Mg,w that is an alternate modular compactification of the moduli
spaceMg,n of smooth projective curves of genus g with n distinct marked points.

Specifically, elements ofMg,w are tuples (C; q1, . . . , qn), whereC is a projec-
tive curve of arithmetic genus g and only nodes as singularities, and q1, . . . , qn ∈ C
are marked points with weights w1, . . . , wn , satisfying the following two condi-
tions:

• the sum of the weights of any collection of coinciding marked points is at most
1;

• for each irreducible component D of C , if gD is the genus of D, nD is the
number of half-nodes of D, and {qi }i∈ID⊆[n] are the marked points of D, then

2gD − 2 + nD +
∑
i∈ID

wi > 0.

We refer to elements ofMg,w asw-stable curves. Note that the usual moduli space
of curves Mg,n is recovered by taking wi = 1 for all i ∈ [n].
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x+

x−
z2 z1 y

Fig. 5. A typical curve inM1
2

The special case of this construction that is relevant for the current work is when
g = 0 and the weight vector is

w =
⎛
⎝1

2
+ ε,

1

2
+ ε, 1, . . . , 1︸ ︷︷ ︸

r

, ε, . . . , ε︸ ︷︷ ︸
nr

⎞
⎠ (1)

for any fixed 0 < ε < 1/(nr + 2). Let

Mr
n := M0,w

denote the Hassett space with this weight vector, which is a smooth projective
scheme. Let Crn denote the universal curve over Mr

n . Suggestively, we denote the
marked points of Mr

n with weights 1/2 + ε by x+ and x−, the r marked points

with weight 1 by y0, . . . , yr−1, and the nr marked points with weight ε by z ji with
i ∈ [n] and j ∈ Zr .

Remark 3.1. It is possible to let r = 1 in this construction, in which caseM1
n is the

Hassett space with weight vector w = (1/2+ ε, 1/2+ ε, 1, ε, . . . , ε). We omit the

Zr -superscripts on the marked points in this case, so an element ofM1
n is denoted

(C; x+, x−, y, z1, . . . , zn). Here, the dual graph of C is a chain with y on one leaf
and (if C is reducible) x+ and x− on the unique other leaf; see an example of

an element in M1
2 in Fig. 5. While some readers may recognize such chains of

projective lines as the underlying curves of the elements in Losev–Manin space,

we stress that M1
n is not Losev–Manin space, which can instead be described as

M0,w′ with w′ = (1, 1, ε, . . . , ε).

When r ≥ 2, the choice of the weight vector w ensures that the r -pinwheel
curvesC that underlie stable (r, n)-curves are elements ofMr

n . However, not every
element ofMr

n is such a curve. Thus, the goal of the next subsection is to identify
a closed subscheme

Lr
n ⊆ Mr

n

that is a fine moduli space for stable (r, n)-curves. The definition of this sub-
scheme involves two families of morphisms between Hassett spaces, which we
now describe.

First, for every map α : [n]0 → Zr , there is a morphism

πα : Mr
n → M1

n

given on C-points by

πα(C; x±, {y�}, {z ji }) = (C; x±, yα(0), zα(1)
1 , . . . , zα(n)

n ).
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Fig. 6. A visualization of the map πα in the case where α(0) = 0, α(1) = 0, α(2) = 2,
α(3) = 1, α(4) = 2. The marked points x± are on the central component and are not
pictured. The faded marked points are forgotten under πα and the faded solid circles indicate
contracted components as a result of forgetting some of the marked points

That is, πα forgets the marked points not in {x±, yα(0), zα(1)
1 , . . . , zα(n)

n } and con-
tracts any resulting unstable components of C ; see Fig. 6.

In fact, one can upgrade πα from a morphism on C-points to a morphism on
families. Namely, for any base scheme B and any map f : B → Mr

n , there are
associated maps

fα : B → M1
n and ψα, f : f ∗Crn → f ∗

α C1n

satisfying the following conditions:

• If f ∗Crn is marked by the sections x±, {y�}, {z ji }, then f ∗
α C1n is the stabilization

of (
f ∗Crn; x±, yα(0), zα(1)

1 , . . . , zα(n)
n

)
.

• The map ψα, f is the contraction map, which contracts unstable components in
each fiber.

The key special case for what follows is when B = Mr
n and f = id, in which

case fα = πα and the map ψα,id is a birational morphism that we denote by ψα for
simplicity. These maps then fit into the following diagram:

Crn

��

ψα �� π∗
αC1n

����
��
��
��

�� C1n

��

Mr
n

πα �� M1
n .

(2)

To define the other family of morphisms between Hassett spaces, we first note

that there is a natural isomorphism betweenM2
0 andP

1 given by associating q ∈ P
1

to

(P1;∞, 0, 1, q) ∈ M2
0.
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Given this, for every i ∈ Zr , we can define a morphism

λi : Mr
n → M2

0
∼= P

1

by sending the point (C; x±, {y�}, {z ji }) ∈ Mr
n to the element of P

1 corresponding

to the point (C; x+, x−, yi , yi+1) ∈ M2
0.

As above, the morphism λi can be described functorially: to any scheme B and
any map f : B → Mr

n , we associate maps

fi : B → M2
0

∼= P
1 and ϕi, f : f ∗Crn → f ∗

i C20

satisfying the following conditions:

• If f ∗Crn is marked by the sections x±, {y�}, {z ji }, then f ∗
i C1n is the stabilization

of

(
f ∗Crn, x+, x−, yi , yi+1

)
.

• The map ϕi, f is the standard contraction map.

Again, we will be particularly interested in the case where B = Mr
n and f = id,

in which case fi = λi and ϕi,id is a birational morphism that we denote simply by
ϕi . These maps then fit into a diagram as follows:

Crn

��

ϕi �� λ∗
i C20

����
��
��
��

�� C20

��

Mr
n

λi �� M2
0 = P

1.

(3)

Equipped with these morphisms between Hassett spaces, we are prepared to
describe our moduli space. In fact, we define separate moduli spaces

Lr
n(ζ ) ⊆ Mr

n

for each primitive r th root of unity ζ , parameterizing stable (r, n)-curves of type ζ .
The moduli spaces for different r th roots of unity are all isomorphic to one another,
and the full moduli space

Lr
n =
⊔
ζ

Lr
n(ζ )

parameterizing all stable (r, n)-curves is a disjoint union of these isomorphic com-
ponents.
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3.2. Construction of the moduli space

Let ζ ∈ C be a primitive r th root of unity, and for any α : [n]0 → Zr and any
b ∈ Zr , denote by α + b the function [n]0 → Zr defined by

(α + b)(x) =
(
α(x) + b

)
mod r.

We define Lr
n(ζ ) as the subscheme of Mr

n obtained from the following fiber dia-
gram:

Lr
n(ζ ) Mr

n

∏
α:[n]0→Zr

M1
n × {ζ }

( ∏
α:[n]0→Zr

M1
n × M1

n

)
× ∏

i∈Zr

P
1.

∏
α πα×πα+1× ∏

i∈Zr
λi

�

Here, the map � is the product of the diagonal embeddings of M1
n into∏

α

(
M1

n × M1
n

)
and of {ζ } into each P

1, and the upper map is the inclusion

of Lr
n(ζ ) intoMr

n .
To interpret this fiber diagram more explicitly, note that elements of Lr

n(ζ ) ⊆
Mr

n are defined by the condition that there are isomorphisms of pointed curves

(
C; x±, yα(0), zα(1)

1 , . . . , zα(n)
n

) ∼=
(
C; x±, yα(0)+1, zα(1)+1

1 , . . . , zα(n)+1
n

)
(4)

for all α : [n]0 → Zr , and

(C; x+, x−, yi , yi+1) ∼= (C;∞, 0, 1, ζ ) (5)

for all i ∈ Zr . The first step in proving that Lr
n(ζ ) is indeed a fine moduli space

for stable (r, n)-curves of type ζ is to verify that its points are in bijection with
isomorphism classes of such curves.

Lemma 3.2. If (C; x±, {y�}, {z ji }) ∈ Lr
n(ζ ), then there exists a unique automor-

phism σ of C making (C; σ ; x±, {y�}, {z ji }) into a stable (r, n)-curve of type ζ ,

and the elements of Lr
n(ζ ) are precisely the elements of Mr

n for which such an
automorphism exists.

Proof. Fix an element (C; x±, {y�}, {z ji }) ∈ Lr
n(ζ ), and let C• be the component

of C containing x+. Then each y� lies on some (possibly empty) tree of projective
lines attached to C• at a point p�, and x− lies on some (possibly empty) tree of
projective lines attached to C• at a point p−.

A priori, some of these trees could coincide with one another. However, they
cannot all be identical—that is, x−, y0, . . . , yr−1 cannot all lie on a single tree
emanating from C•—since this would force the only special points on C• to be a
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single node, the marked point x+, and possibly some of the z ji . With the weights
(1), such a curve cannot be stable.

Thus, there must be at least one y� on a different tree than x−. In this case, we
can choose an automorphism s of C• such that

s(x+) = ∞, s(p−) = 0, s(p�) = 1,

and the condition (5) ensures that

s(p�+1) = ζ.

(In particular, note that this means that the y�+1-tree is distinct from both the y�-tree
and the x−-tree.) Applying (5) again with � replaced by � + 1 shows that

s(p�+2) = ζ 2.

Continuing in this way proves that x− and the y�’s lie on r + 1 distinct trees
emanating from C•, attached (under the automorphism s) at 0 and roots of unity.

Each such tree must end in one or more leaves. However, the weights (1) ensure
that a leaf must either contain at least one y� or both of x+ and x−. Therefore, the
x−-tree must be empty (that is, x− ∈ C•) and each of the y�-trees must be a chain
of projective lines ending in a single leaf with y�. What remains to be shown, then,
is that each of these r chains has the same length—which, in particular, implies
that C admits an automorphism σ taking y� to y�+1 for each �—and that this
automorphism takes z ji to z j+1

i for each i ∈ [n] and j ∈ Zr .
To see this, first notice that a repeated application of (4) shows(
C; x±, yα(0), zα(1)

1 , . . . , zα(n)
n ) ∼= (C; x±, yα(0)+i , zα(1)+i

1 , . . . , zα(n)+i
n

)

for all i ∈ Zr . This implies that if z0i lies on the yα(0)-spoke of C , then z ji lies on
the y j+α(0)-spoke. In particular, for each fixed i ∈ [n], no two of the marked points
z0i , . . . , z

r−1
i can lie on the same spoke, and furthermore, if one of these lies on the

central component, then they all do.
In light of this, we can define a function α : [n]0 → Zr as follows. First, set

α(0) = 0. Then, for each i ∈ [n] such that the marked points z0i , . . . , z
r−1
i do not

lie on the central component, set α(i) ∈ Zr so that zα(i)
i lies on the y0-spoke of

C . Finally, for each i ∈ [n] such that the marked points z0i , . . . , z
r−1
i do lie on the

central component, set α(i) ∈ Zr to be any value. For example, for the curve in
Fig. 3, we have

α(0) = 0, α(1) = anything in Z3, α(2) = 1, α(3) = 0, α(4) = 2.

For thisα, themorphismπα does no contraction on the y0-spoke ofC but it contracts
all of the other spokes; see Fig. 7.

By the same token, the morphism πα+1 contracts all spokes except for the
y1-spoke, which remains intact. The condition (4) thus implies that the y0- and
y1-spokes are isomorphic pointed curves, meaning they are chains of the same
length and the isomorphism between them takes any z ji in the y0-spoke to z j+1

i .
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Fig. 7. The image of the curve in Fig. 3 under πα , where α(0) = 0, α(1) ∈ Z3, α(2) = 1,
α(3) = 0 and α(4) = 2

Repeating this reasoning for each successive spoke shows thatC has the appropriate
radial symmetry and therefore there exists an automorphism σ that makes C into
an (r, n)-curve of type ζ . Since the behavior of this automorphism is specified on
at least three points of the central component, it is unique.

Conversely, it is clear that (4) and (5) hold for any (r, n)-curve of type ζ , so
such curves are precisely the elements of Lr

n(ζ ). ��
The recipe in the proof of Lemma 3.2 for producing a function α : [n]0 → Zr

from a stable (r, n)-curve will be useful in what follows, so before proceeding, we
take a moment to record it in the following definition.

Definition 3.3. Let (C; σ ; x±, {y�}, {z ji }) be a stable (r, n)-curve, which we abbre-
viate by C for conciseness. We say that a function α : [n]0 → Zr is compatible
with C if for each i ∈ [n] such that the i th light orbit z0i , . . . , z

r−1
i does not lie on

the central component, the marked point zα(i)
i lies on the yα(0)-spoke of C .

Remark 3.4. The notion of compatibility satisfies the following properties:

(1) If (C; x±, {y�}, {z ji }) is compatible with α, then (C; x±, {y�}, {z ji }) is compat-
ible with α + b for all b ∈ Zr .

(2) If (C; x±, {y�}, {z ji }) is compatible with α, then so are all other (r, n)-curves
with the same dual graph.

(3) Let G and H be dual graphs of (r, n)-curves such that H is obtained via edge-
contraction from G. If α is compatible with (r, n)-curves with dual graph G,
then it is also compatible with (r, n)-curves with dual graph H . In particular, a
smooth (r, n)-curve is compatible with every α : [n]0 → Zr .

Remark 3.4 implies that, for fixedα : [n]0 → Zr , the locus of curves not compatible
with α is a union of boundary strata. Conversely, the locus of curves that are
compatible with α forms an open set, which we denote by

Uα ⊆ Ln
r (ζ ) (6)

in what follows.
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3.3. Proof of fine moduli space

At this point, we have shown via Lemma 3.2 that the points ofLr
n(ζ ) are in bijection

with stable (r, n)-curves of type ζ . In order to know that Lr
n(ζ ) is a fine moduli

space for these objects, though, we must also construct a universal family. This can
nearly be bootstrapped fromMr

n : if

ι : Lr
n(ζ ) → Mr

n

denotes the inclusion, then we can define a universal curve Crn(ζ ) over Lr
n(ζ ) by

Crn(ζ ) := ι∗Crn, (7)

where Crn is the universal curve over Mr
n . Furthermore, we can define sections

x±, y�, and zij of Crn(ζ ) by pullback of the corresponding sections of Crn . What
remains, however, is to construct a universal automorphism σ of Crn(ζ ). This is the
key content of the following theorem.

Theorem 3.5. Let r ≥ 2 and n ≥ 0 be integers, and let ζ be a primitive rth root of
unity. Then Lr

n(ζ ) is a fine moduli space for stable (r, n)-curves of type ζ .

Proof. Let Crn(ζ ) and its sections x±, y�, and zij be defined as in (7) and the sub-
sequent paragraph. To prove the theorem, it suffices to construct an automorphism
σ of Crn(ζ ) such that

σ ◦ x+ = x+, σ ◦ x− = x−, σ ◦ y� = y�+1, and σ ◦ z ji = z j+1
i (8)

for all i ∈ [n] and all �, j ∈ Zr . Indeed, if such an automorphism σ exists, then it
makes Crn(ζ ) into a family of stable (r, n)-curves, and this family is of type ζ by
Lemma 3.2. It follows that, for any base scheme B, one can restrict the bijection

{morphisms B → Mr
n} ↔ {families of w-stable curves over B}/ ∼=, (9)

which exists by virtue of Mr
n being a fine moduli space for w-stable curves, to

yield

{morphisms B→Lr
n(ζ )}→ {families of stable (r, n)-curves of typeζover B}/ ∼=

f �→ f ∗(Crn(ζ )
)
. (10)

Because it is the restriction of a bijection, the map in (10) is certainly injective.
It is also surjective, because a family of stable, type-ζ (r, n)-curves over B yields
a family of w-stable curves by forgetting σ , and the latter is the pullback of the
universal family on Mr

n under some f : B → Mr
n by the surjectivity of (9). The

fact that each fiber of the family is in fact a stable (r, n)-curve of type ζ implies,
by Lemma 3.2, that f lands in Lr

n(ζ ). Thus, the map in (10) is a bijection, which
says precisely that Lr

n(ζ ) is the requisite fine moduli space.
To construct the automorphism σ of Crn(ζ ), we patch together automorphisms

defined locally on open subsets of Crn(ζ ). Toward defining these open sets, let
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α : [n]0 → Zr be any function, and let Uα ⊆ Lr
n(ζ ) be as in (6). For any b ∈ Zr ,

consider the morphism

πα+b
∣∣
Uα

: Uα → M1
n .

Geometrically, this morphism leaves the yα(0)+b-spoke unchanged but contracts all
other spokes. In particular, since each individual spoke is isomorphic to each other
spoke, we see that

πα+b
∣∣
Uα

= πα+b′
∣∣
Uα

for any b, b′ ∈ Zr .
Now, let Cα ⊆ Crn(ζ ) be the restriction of Crn(ζ ) to Uα . Each of the morphisms

πα+b
∣∣
Uα

can be lifted to a birational morphism

ψα+b : Cα → π∗
α+b(C1n)

as in (2), which performs the above contraction of all but the yα(0)+b spoke on each
fiber of Cα . Note that since the particular spokes being contracted depend on b, we
have

ψα+b �= ψα+b′

if b �= b′.
For any α : [n]0 → Zr and any b ∈ Zr , denote by

Vα,b ⊆ Cα

the largest open subset of Cα on which the birational morphism ψα+b is an iso-
morphism. Geometrically, Vα,b is obtained from Cα by removing all spokes in each
fiber except for the yα(0)+b-spoke, including removing the points in the central
component of the fiber at which these spokes are attached. In particular, from this
geometric description we see that {Vα,b}b∈Zr covers Cα , and therefore varying over
all α, we obtain an open cover of Crn(ζ ).

Our goal, now, is to construct an isomorphism

σα,b : Vα,b → Vα,b+1

relative toUα , whichwill serve as the local definition of the universal automorphism
σ . The key observation is that

ψα+b(Vα,b) = ψα+b+1(Vα,b+1) (11)

for every b ∈ Zr , from which it follows that σα,b can be defined as the composition
of the two isomorphisms

Vα,b

ψα+b|Vα,b−−−−−→ ψα+b(Vα,b) = ψα+b+1(Vα,b+1)
(ψα+b+1|Vα,b+1 )−1

−−−−−−−−−−−→ Vα,b+1. (12)
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To prove (11), first observe that, by the definition of the maps ψα+b and πα , we
have

ψα+b(Vα,b) = ψα+b(Csmα ) ∪
⎛
⎝π∗

α(C1n) \
⋃
� �=0

im
(
ψα+b ◦ yα(0)+b+�

)⎞⎠ , (13)

where Csmα ⊆ Cα is the open set whose fibers are smooth curves. For any � �= 0, let
us describe the morphism

ψα+b ◦ yα(0)+b+� : Uα → π∗
α(C1n)

in geometric terms, by describing its behavior on closed points. Let C be a closed
point of Uα , which corresponds to a marked curve (C; x±, {y�}, {z ji }). The image
of C under πα is a point that corresponds to a marked curve C ′, and the image
of C under ψα+b ◦ yα(0)+b+� is a closed point of C ′ that we will denote qb,�. By
definition, C ′ is a chain of projective lines with x± together on an end component
that we denote by C•. In this notation, we have qb,� ∈ C•, and if we denote the
node of C• by p, then (5) implies

(C•; x+, x−, p, qb,�) ∼= (P1;∞, 0, 1, ζ �).

Since this result does not depend on b, we see that the morphism ψα+b ◦ yα(0)+b+�

is independent of b for any � �= 0. Given thatψα+b(Csmα ) is alsomanifestly indepen-
dent of b, it follows from (13) that ψα+b(Vα,b) is independent of b, which proves
(11).

Lastly, we glue the local morphisms σα,b defined by (12) to give a global mor-
phism

σ : Crn(ζ ) → Crn(ζ )

over the base Lr
n(ζ ). To see that the morphisms σα,b indeed agree on the overlaps

in their domain, we restrict to fibers of Crn(ζ ) and describe the maps σα,b on closed

points. Given any (C; x±, {y�}, {z ji }) ∈ Lr
n(ζ ), let us also denote by C ⊆ Crn(ζ )

the corresponding fiber of the universal curve. By Lemma 3.2, C is an (r, n)-curve;
we denote its central component by C• as usual, and we denote by C(b) the sub-
curve obtained by taking the union of C• and the spoke containing yb. Suppose
α : [n]0 → Zr is compatible with C . Setting

C◦(b) := C(b) ∩ Vα,b = C(b) \
⋃
b′ �=b

C(b′), (14)

we observe that σα,b|C◦(b) defines an isomorphism onto C◦(b + 1) that fixes x±,
takes yα(0) to yα(0)+1, and takes zα(i)

i to zα(i)+1
i . As in the proof of Lemma 3.2, this

forces σα,b|C•∩C◦(b) to be rotation by ζ , once coordinates are chosen on C• such
that x+ = ∞, x− = 0, and the node connecting C• to yα(0) is 1. This shows that
σα,b|C◦(b) agrees with τ |C◦(b), where τ is the unique automorphism of C making it
into an (r, n)-curve of type ζ . In particular, because this description of σα,b depends
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only on the fiber of Crn(ζ ) and not on α or b, the local morphisms σα,b indeed glue
to give a global automorphism σ of Crn(ζ ).

Having equipped the universal curve with a universal automorphism σ , which
(by the argument of the previous paragraph) makes it into a family of (r, n)-curves
of type ζ , the proof of the theorem is complete. ��

3.4. Geometric observations

We conclude this section with some geometric observations about the moduli space
Lr
n(ζ ). Since these are not needed for the currentwork,wegiveonlybrief indications

of the proofs.

Observation 3.6. The moduli space Lr
n(ζ ) is smooth, and its boundary (the union

of the positive-codimension boundary strata) is a simple normal crossings divisor.

To prove Observation 3.6, one can leverage the analogous result for the Hassett

space M1
n . In particular, one can show that the morphisms

πα|Uα : Uα → M1
n

are isomorphisms of Uα onto an open set U ⊆ M1
n . (Specifically, expressing

elements of M1
n as (C; x±, y, {zi }) as in Remark 3.1, let C• be the component

containing x±. Then, after choosing coordinates onC• in which x+ = ∞, x− = 0,

and the half-node of C• is 1, the open set U ⊆ M1
n consists of curves for which

none of the light points zi lies at an r th root of unity inC•.) The local isomorphisms

πα take the boundary stratification of Lr
n(ζ ) to the boundary stratification of M1

n ,
so Observation 3.6 follows from the analogous statement for Hassett spaces, which
is shown in [12].

In addition to πα|Uα , there is another natural map from Lr
n(ζ ) to M1

n : rather
than remembering a single spoke of an (r, n)-curve as πα|Uα does, one can identify
all r spokes with each other. This leads to the following observation.

Observation 3.7. There exists a surjective morphism

p : Lr
n(ζ ) → M1

n

that sends an (r, n)-curve C with automorphism σ to the quotient C/σ , and p

realizes M1
n as the quotient L

r
n(ζ )/(Zr )

n .

This relates Lr
n(ζ ) with moduli spaces parameterizing coverings of rational

curves with marked points: it provides a compactification of the moduli space of
coverings with marked orbits that is related to the Harris–Mumford admissible
covers spaces [13] in the same way in which Hassett spaces are related to Mg,n .
Other works in this direction can be found in [10], where a different choice of
weights is made that allows ramification points to collide.

Bothπα|Uα and p canbe interpreted fromapolytopal perspective, using thatM1
n

is a toric variety (and hence has an associated polytope) whereas Lr
n(ζ ), as we will

see below, has an associated polytopal complex. We return to this in Remark 7.14.
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4. Decorated chains

Having constructed the moduli space Lr
n of stable (r, n)-curves, we begin the com-

binatorial heart of the paper: proving that the same combinatorics encodes the
boundary strata inLr

n , the T -cosets in the complex reflection group S(r, n), and the
�-faces of the polytopal complex �r

n . The key idea that yields the correspondence
between these three types of objects is that all three can be indexed by the discrete
data of decorated chains, which we now define.

Definition 4.1. Let r ≥ 2 and n ≥ 0. A Zr -decorated chain of subsets of [n] (or
simply chain, for short) is a tuple

Ĩ = (I1, . . . , Ik, a),

where

∅ = I0 � I1 � · · · � Ik ⊆ [n]
and

a : Ik → Zr .

We refer to k as the length of the chain. The possibility that k = 0 is allowed, in
which case we make the convention that there is a unique length-0 chain given by
Ĩ = (∅, a) for the unique function a : ∅ → Zr . If n = 0, then the length-0 chain is
the only chain.

In the following three sections, we describe a bijective procedure for produc-
ing, from a chain Ĩ, either a boundary stratum S Ĩ (Proposition 5.4), a T -coset C Ĩ
(Proposition 6.6), or a �-face F Ĩ of �r

n (Proposition 7.15). Furthermore, we inter-
pret both the dimension of a stratum (or T -coset, or �-face) and the inclusion
relation between strata (or T -cosets, or �-faces) in terms of corresponding fea-
tures of the chain Ĩ. In particular, the inclusion relation is described in terms of the
following relation on chains.

Definition 4.2. Let Ĩ = (I1, . . . , Ik, a) and J̃ = (J1, . . . , J�, b) be chains of length
k and � respectively. We say that Ĩ refines J̃ if

{J1, . . . , J�} ⊆ {I1, . . . , Ik}
and

b = a
∣∣
J�

.

(Note that if a chain Ĩ of length k refines a chain J̃ of length �, then J� ⊆ Ik and so
the restriction of a on J� is well-defined.)

We will find in what follows that

• the boundary stratum S Ĩ has codimension k, where Ĩ is a chain of length k,
• for boundary strata S Ĩ and S̃J, we have S Ĩ ⊆ S̃J if and only if Ĩ refines J̃,
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and the exact same statements holdwith boundary strata replaced by T -cosets or�-
faces. Thus, passing through chains provides the dimension-preserving, inclusion-
preserving bijection of Theorem 1.1.

More precisely, we should note that everything that follows depends on the
choice of a primitive r th root of unity ζ : the boundary stratum S Ĩ lies inside a par-
ticular component Lr

n(ζ ), the definition of the generating set T of S(r, n) depends
on a choice of ζ , and the �-faces of �r

n are described by intersecting with certain
hyperplanes whose definition depends on ζ . Thus, we make the following conven-
tion once and for all:

Convention 4.3. Throughout what follows, ζ is a fixed choice of primitive rth root
of unity.

With this set-up in place, we are ready to flesh out the association of chains to
each of the requisite objects.

5. Combinatorics of the boundary strata

Recall from Sect. 2.2 that the boundary strata in Lr
n(ζ ) are the closures of the loci

of curves of a fixed topological type.Wemake use of the following labeling scheme
for the components of the underlying curves in a boundary stratum, illustrated in
Fig. 8.

Notation 5.1. Let (C; σ ; x±, {y�}, {z ji }) be a stable (r, n)-curve, where C is an r -
pinwheel curve of length k. (Recall from Definition 2.1 that this means that each
of the r spokes of C has k components.) For each � ∈ Zr , denote by

C�
1, . . . ,C

�
k

the components of the spoke containing y�, where y� ∈ C�
1 and the other compo-

nents are labeled in order from outermost to innermost. Denote the central compo-
nent by Ck+1.

From here, the construction of a boundary stratum in Lr
n(ζ ) from a chain is as

follows.

Definition 5.2. Let Ĩ = (I1, . . . , Ik, a) be a chain. The associated boundary stratum
S Ĩ ⊆ Lr

n(ζ ) is the closure of the locus of curves

(C; x±, y0, . . . , yr−1, z11, . . . , z
r−1
n ) ∈ Lr

n(ζ ),

where C is a length-k r -pinwheel curve and, using Notation 5.1, we have

(1) for each j ∈ {1, . . . , k}, the light marked points on C0
j are precisely

{za(i)
i | i ∈ I j \ I j−1},

where I0 = ∅;
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z11
z21

z01

z12

z22

z02

z24

z04

z14

z03

z13

z23

y0

C0
1C0

2

y1

C1
1

C1
2

y2

C2
1

C2
2

C3

Fig. 8. An element of L4
3 with components labeled via Notation 5.1

(2) the light marked points on the central component Ck+1 are

{z�i | i ∈ [n] \ Ik, � ∈ Zr } ∪ {x±}.

Example 5.3. Let r = 3 and n = 4, and consider the chain Ĩ = (I1, I2, a) of length
2, where

I1 = {3}, I2 = {2, 3, 4}

and a : I2 → Z3 is given by

a(2) = 1, a(3) = 0, a(4) = 2.

The associated boundary stratum S Ĩ is the closure of the locus of elements of the
topological type illustrated in Fig. 8 above. In particular, notice that I1 indexes
the orbits on the outermost components, I2 indexes the orbits on the two outermost
components, and elements of [n]\ I2 correspond to orbits in the central component.
The decoration a indicates the member of each orbit that lies on the y0-spoke of
the pinwheel.

The key combinatorial proposition about boundary strata is the following.

Proposition 5.4. Let r ≥ 2 and n ≥ 0. The association

Ĩ �→ S Ĩ

is a bijection from the set of Zr -decorated chains of subsets of [n] to the set of
boundary strata of Lr

n(ζ ). Furthermore, this bijection satisfies

(i) length(̃I) = codim(S Ĩ),

(ii) S Ĩ ⊆ S̃J if and only if Ĩ refines J̃.
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Proof. The surjectivity of Ĩ �→ S Ĩ is clear, since if S ⊆ Lr
n(ζ ) is a boundary stratum

with associated dual graph G, then G has a pinwheel shape and thus one can define
I j ⊆ [n] to index the marked points on the outermost j vertices of the y0-spoke of

the pinwheel. The requirement that za(i)
i lies on the y0-spoke of the pinwheel for

all i ∈ Ik thus defines a function a : Ik → Zr for which S Ĩ = S.
Injectivity of the association Ĩ �→ S Ĩ follows from item (ii) of the proposition,

since it is only possible that Ĩ and J̃ refine one another if Ĩ = J̃. Item (ii), on the
other hand, follows directly from the containment of boundary strata described in
Sect. 2.2. In particular, if S Ĩ and S̃J are boundary strata with associated dual graphs
G Ĩ and G J̃, then S Ĩ ⊆ S̃J if and only if G J̃ can be obtained from G Ĩ by edge-
contraction of some subset of the edges of G Ĩ. Since contracting edges combines
the marked points on adjacent vertices, this is the case if and only if Ĩ refines J̃.

Finally, for item (i), let S = S Ĩ be a boundary stratum with associated dual
graph G, where length(̃I) = k and therefore G is a pinwheel graph in which each
spoke has k vertices. Choose any

α : [n]0 → Zr

that is compatible with a generic element of S (that is, with any curve with dual
graph exactlyG), where compatibility is defined as in Definition 3.3. In the notation
of Sect. 3.1, there is a morphism

πα : Lr
n(ζ ) → M1

n

that maps S(ζ ) birationally onto the boundary stratum S0 ⊆ M1
n whose dual graph

G0 consists of only the y0-spoke of G together with the central vertex. This dual
graph G0 has k edges, so the well-known results on Hassett spaces imply that

codimM1
n
(S0) = k. Given that Lr

n(ζ ) is birational to M1
n , it follows that

codimLr
n(ζ )

(
S(ζ )
) = codimM1

n
(S0) = k,

as claimed. ��
In addition to encoding the dimension and inclusion of boundary strata, we

note that the chain Ĩ also encodes one further piece of geometric information:
the decomposition of a boundary stratum into a product of smaller-dimensional
moduli spaces. More precisely, let Ln denote the Losev–Manin space mentioned
in the introduction; in the language of Hassett spaces, this can be described as

Ln = M0,(1,1,ε,...,ε),

where there are n marked points of weight ε and ε ≤ 1/n. In particular, elements of
Ln are chains of projective lines with two “heavy” marked points (one on each end
component of the chain) and n “light”marked points. It is worth stressing that, while
we used the Losev–Manin space in the introduction to motivate the present work,
the spaces Ln are not actually the r = 1 case of the spaces Lr

n . See Remark 8.1.
With this notation, the following proposition gives a product decomposition of

the boundary stratum S Ĩ, in which the factors can be read off directly from the chain
Ĩ.
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Proposition 5.5. For any chain Ĩ = (I1, . . . , Ik, a), there is a natural isomorphism
between the boundary stratum S Ĩ and a product of smaller-dimensional moduli
spaces, as follows:

S Ĩ
∼= Lr

|[n]\Ik | ×
k∏
j=1

L|I j\I j−1|.

Proof. This is essentially immediate from the definition of S Ĩ: the factor ofL
r
|[n]\Ik |

parameterizes the central component, and the factorsL|I j\I j−1| each parameterize a
component of one spoke of the pinwheel (which determines all of the other spokes).
��

6. Combinatorics of the complex reflection group

Wenext introduce the groupwhose structure is combinatorially related to the bound-

ary stratification of Lr
n(ζ ). This group, denoted S(r, n), consists of all n × n matri-

ces whose only nonzero entries are in the group μr of r th roots of unity, and with
exactly one nonzero entry in each row and column. (By convention, S(r, 0) is a
trivial group.) Note that for any n ≥ 0, there is a natural group isomorphism

Sn = S(1, n),

where the permutation σ ∈ Sn is identified with the matrix whose i th column is the
σ(i)th standard basis vector.

Remark 6.1. The group S(r, n) is an example of a complex reflection group (a
finite group acting on C

n generated by elements whose action fixes a complex
hyperplane), and in the classification of complex reflection groups, it is denoted
G(r, 1, n). It is sometimes also referred to as the “generalized symmetric group”
and can be equivalently described as the wreath product μr � Sn . For more on
complex reflection groups, see [17].

It is well-known that the symmetric group Sn is generated by the set of adjacent
transpositions. The complex reflection groups S(r, n) have an analogous generating
set: define

T = {s0, s1, . . . , sn−1} ⊆ S(r, n), (15)

where

s0 :=

⎛
⎜⎜⎜⎜⎜⎝

ζ 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0

. . .

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠
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and for 1 ≤ i ≤ n − 1, the element si ∈ Sn ⊆ S(r, n) is the adjacent transposition
swapping i and i + 1, or in other words, the matrix obtained by swapping the i th
and (i + 1)st columns of the n × n identity matrix. (Note that the definition of s0
makes use of the choice of primitive r th root of unity ζ in Convention 4.3.)

It is straightforward to see that T generates S(r, n): multiplying the identity
matrix I by adjacent transpositions can bring any column to the first column, and
multiplying by powers of s0 can change the entry in the first column to any power
of ζ . More generally, the following remark describes the structure of subgroups of
S(r, n) generated by elements of T .

Remark 6.2. Fix a subset S ⊆ T and let HS be the subgroup of S(r, n) generated
by the subset S. Define {s j1, . . . , s jk } := T \S, where 0 ≤ j1 < · · · < jk ≤ n−1.
Then HS is equal to the group of block-diagonal matrices⎛

⎜⎜⎜⎜⎜⎜⎜⎝

S(r, j1)
S j2− j1

S j3− j2
. . .

S jk− jk−1

Sn− jk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⊆ S(r, n).

That is, the upper-left block is an element of the complex reflection group S(r, j1),
while the remaining blocks are elements of the indicated symmetric groups.

The key objects of interest for this paper are the right cosets in S(r, n) of
the subgroups described by Remark 6.2. The following definition establishes the
terminology.

Definition 6.3. A T -coset in S(r, n) is a right coset of the form

〈t1, . . . , td〉 · A ⊆ S(r, n)

for some d ≥ 0, where t1, . . . , td ∈ T and A ∈ S(r, n). We say that a T -coset as
above, where t1, . . . , td are distinct, has dimension d or codimension n − d.

In particular, a singleton {A} ⊆ S(r, n) is a 0-dimensional T -coset. The 1-
dimensional T -cosets are of the form

〈si 〉 · A
for si ∈ T , and they thus have either two elements or r elements, depending on
whether i ≥ 1 or i = 0. Since T generates S(r, n), the only n-dimensional T -coset
is the entire group.

Analogously to Definition 5.2, we now describe a procedure for producing a
T -coset from a chain Ĩ.

Definition 6.4. Let Ĩ = (I1, . . . , Ik, a) be a chain. Define the subgroup H Ĩ ⊆
S(r, n) by

H Ĩ := 〈{si | n − i /∈ {|I1|, . . . , |Ik |}〉,
and let A ∈ S(r, n) be any matrix satisfying the following two conditions:
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(i) for each j ∈ {1, . . . , k}, the last |I j | rows of A have nonzero entries in the
columns indexed by I j—that is,

I j = {b ∈ [n] | Aab �= 0 for some a > n − |I j |}, (16)

where Aab denotes the entry in the ath row and bth column of A;
(ii) for each i ∈ Ik , the unique nonzero entry in column i of A is ζ−a(i).

We define the T -coset associated to Ĩ as

C Ĩ = H Ĩ · A.

To make the elements of C Ĩ more explicit, note that in the notation of
Remark 6.2, we have H Ĩ = HS (̃I) for the set

S (̃I) := {si | n − i /∈ {|I1|, . . . , |Ik |} ⊆ T . (17)

Thus, the set {s j1, . . . , s jk } := T \ S (̃I) in Remark 6.2 is given by

j1 = n − |Ik |
j2 = n − |Ik−1|

...

jk = n − |I1|,
and therefore H Ĩ is the group of block-diagonal matrices

H Ĩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S(r, |[n] \ Ik |)
S|Ik\Ik−1|

S|Ik−1\Ik−2|
. . .

S|I2\I1|
S|I1|

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⊆ S(r, n).

From here, one sees from Remark 6.2 and the definition of A in Definition 6.4 that
C Ĩ is equal to the set of matrices illustrated in Fig. 9. The conditions defining the
matrix A are equivalent to requiring that A belong to this set, which in particular
implies that the definition ofC Ĩ does not depend on the choice of A satisfying those
conditions.

To illustrate the construction of Definition 6.4, we compute the associated T -
coset for the same chain that we considered in Sect. 5.

Example 6.5. As in Example 5.3, let r = 3 and n = 4, and let Ĩ be the chain

Ĩ = ({3}, {2, 3, 4}, a) ,

where a : I2 → Z3 is given by

a(2) = 1, a(3) = 0, a(4) = 2.

Then

H Ĩ = 〈si | 4 − i /∈ {1, 3}〉 = 〈s0, s2〉,
and C Ĩ = H Ĩ · A for any matrix A such that
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nonzero entries in [n] \ Ik columns,
any values in μr

...

nonzero entries in I2 \ I1 columns,

entry in column i is ζ−a(i)

nonzero entries in I1 columns,

entry in column i is ζ−a(i) last |I1|
rows

last |I2|
rows

last |Ik|
rows

Fig. 9. A typical element of the T -coset C Ĩ. The action of H Ĩ permutes rows within each of
the blocks separated by dotted lines, and multiplies elements of the top-most block by r th
roots of unity

(i) the last row has its nonzero entry in column 3, and that entry is ζ 0; and
(ii) the last three rows have their nonzero entries in columns 2, 3, and 4, and those

entries are ζ−1 = ζ 2, ζ 0, and ζ−2 = ζ 1, respectively.

The action of H Ĩ on matrices of this form multiplies the first row by roots of unity
and swaps the second and third rows. Thus, we have

C Ĩ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

ζ i 0 0 0
0 0 0 ζ 1

0 ζ 2 0 0
0 0 ζ 0 0

⎞
⎟⎟⎠
∣∣∣∣ i ∈ Z3

⎫⎪⎪⎬
⎪⎪⎭

∪

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

ζ i 0 0 0
0 ζ 2 0 0
0 0 0 ζ 1

0 0 ζ 0 0

⎞
⎟⎟⎠
∣∣∣∣ i ∈ Z3

⎫⎪⎪⎬
⎪⎪⎭

.

With the association Ĩ �→ C Ĩ established, we are prepared to state an analogue
for T -cosets of Proposition 5.4.

Proposition 6.6. Let r ≥ 2 and n ≥ 0. The association

Ĩ �→ C Ĩ

is a bijection from the set of Zr -decorated chains of subsets of [n] to the set of
T -cosets in S(r, n). Furthermore, this bijection satisfies

(i) length(̃I) = codim(C Ĩ),
(ii) C Ĩ ⊆ CJ̃ if and only if Ĩ refines J̃.

Proof. The surjectivity of Ĩ �→ C Ĩ is clear, since given an arbitrary T -coset

C = 〈s�1 , . . . , s�n−k 〉 · A,
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one can define sets I1 ⊆ · · · ⊆ Ik by (16). Condition (ii) of Definition 6.4
then uniquely defines a function a : Ik → Zr , and by construction, setting
Ĩ = (I1, . . . , Ik, a) gives C = C Ĩ.

Injectivity of this association will follow from item (ii), while item (i) is imme-
diate from the definition of codim(C Ĩ). Thus, what remains is to prove item (ii).

Let

Ĩ = (I1, . . . , Ik, a)

and

J̃ = (J1, . . . , J�, b),

and suppose that Ĩ refines J̃. Then

{I1, . . . , Ik} ⊇ {J1, . . . , J�}
and hence

{|I1|, . . . , |Ik |} ⊇ {|J1|, . . . , |J�|}.
From here, it is straightforward to unpack that

S (̃I) ⊆ S (̃J),

where S (̃I) is defined by (17) and S (̃J) is defined analogously. Furthermore, a

matrix A satisfying the conditions of Definition 6.4 for Ĩ will satisfy the same

conditions for J̃, so the same matrix can be chosen to represent both cosets. It
follows that C Ĩ ⊆ CJ̃.

Conversely, suppose that C Ĩ ⊆ CJ̃. This means that one can choose the same
representative for both cosets, so we have

H Ĩ · A ⊆ H̃J · A (18)

for amatrix A ∈ C Ĩ. The elements ofC Ĩ differ from A by permuting the rowswithin
blocks as in Fig. 9, so in order for the containment (18) to hold, the corresponding
blocks for CJ̃ must be unions of the blocks for C Ĩ. That is, we must have

{|I1|, . . . , |Ik |} ⊇ {|J1|, . . . , |J�|}.
In particular, for any i ∈ {1, . . . , �}, we must have |Ji | = |I j | for some j ∈
{1, . . . , k}, so the set Ji indexing the columns with nonzero entries in the last |Ji |
rows of A is equal to the set I j indexing the columns with nonzero entries in the
last |I j | rows of A. That is, we have

{I1, . . . , Ik} ⊇ {J1, . . . , J�}.
Since a and b are determined by the same matrix A, we also have b = a|Ik ,
concluding the proof that Ĩ refines J̃. ��
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We end this section by noting that, analogously to the way in which Proposi-
tion 5.5 gives a product decomposition of a boundary stratum in terms of the com-
binatorial data of a chain, the T -cosets in S(r, n) have decompositions as products
of groups dictated by their associated chains. To state the decomposition, for any
chain Ĩ, let

� Ĩ : S(r, |[n] \ Ik |) × S(r, |Ik \ Ik−1|) × · · · × S(r, |I2 \ I1|) × S(r, |I1|) ↪→ S(r, n)

(19)

be the embedding of the left-hand side as block-diagonal matrices in S(r, n), where
the first factor is embedded as the first |[n] \ Ik | rows and the columns indexed by
[n] \ Ik , and similarly for the remaining factors.

Proposition 6.7. For any chain Ĩ = (I1, · · · , Ik, a), let C Ĩ = H Ĩ · A be the asso-
ciated T -coset. Then there is a natural isomorphism between H Ĩ and a product of
complex reflection groups, as follows:

H Ĩ
∼= S(r, |[n] \ Ik |) ×

k∏
j=1

S|I j\I j−1|. (20)

More specifically, let � Ĩ be as in (19) and let A j ∈ S(r, |I j \ I j−1|) be any matrix
whose entry in the �th column is ζ−a(�) for each � ∈ I j \ I j−1. Then

C Ĩ = � Ĩ

⎛
⎝S(r, |[n] \ Ik |) ×

k∏
j=1

S|I j\I j−1| · A j

⎞
⎠ . (21)

Proof. Recall from Remark 6.2 that, if S ⊆ T and HS denotes the subgroup of
S(r, n) generated by S, then the block-diagonal decomposition gives an isomor-
phism

HS ∼= S(r, j1) × S j2− j1 × S j3− j2 × · · · × S jk− jk−1 × Sn− jk ,

in which 0 ≤ j1 < · · · < jk ≤ n − 1 are defined by

j ∈ { j1, . . . , jk} ⇔ s j /∈ S. (22)

The group H Ĩ is equal to HS (̃I) for the set S (̃I) ⊆ T defined by

si ∈ S (̃I) ⇔ n − i /∈ {|I1|, . . . , |Ik |}. (23)

Combining (22) and (23) shows that the isomorphism (20) is given by the block-
diagonal decomposition. The elements of C Ĩ are precisely the matrices with this
block-diagonal decomposition and entry ζ−a(i) in column i for all i ∈ Ik , which
proves (21). ��
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7. Combinatorics of the permutohedral complex

The third setting that is combinatorially related to the boundary stratification of
Lr
n(ζ ) and to the T -coset structure of S(r, n) is the permutohedral complex. To

define it, we set

Y := R
≥0 · μr ⊆ C

for any r ≥ 2, and we set

δnk := n + (n − 1) + · · · + (n − k + 1)

for any n ≥ 1 and k ∈ [n].

Definition 7.1. Let r ≥ 2 and n ≥ 0. The n-dimensional r -permutohedral com-
plex is defined as

�r
n :=

{
(x1, . . . , xn) ∈ Yn

∣∣∣∣∣
∑
i∈I

|xi | ≤ δn|I | for all I ⊆ [n]
}

if n ≥ 1, or as a single point if n = 0.

Because in general �r
n is not a polytope (rather, as we will prove in Corol-

lary 7.12 below, it is a polytopal complex), defining the appropriate notion of
“face” requires some care. We carry this out in the following definition.

Definition 7.2. A decorated subset of [n] is Ĩ = (I, a), where I ⊆ [n] and
a : I → Zr is any function; in other words, it is a length-1 decorated chain. Any
decorated subset has an associated hyperplane

HĨ :=
{

(x1, . . . , xn) ∈ C
n

∣∣∣∣∣
∑
i∈I

ζa(i) · xi = δn|I |

}
⊆ C

n .

A �-face of �r
n is defined as any nonempty intersection

�r
n ∩ HĨ1 ∩ · · · ∩ HĨk ,

where Ĩ1, . . . , Ĩk are a choice of distinct decorated subsets of [n].

When r = 2, the complex �2
n is in fact a polytope in R

n (in particular, �2
2 is

the octagon illustrated in Fig. 1, and more generally, �2
n is known as the type-B

permutohedron) and its �-faces are precisely its faces in the usual sense. When
r ≥ 3, on the other hand, the �-faces of �r

n are themselves polytopal complexes.
We illustrate this in an example before proving it in general.
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Example 7.3. Let r = 3 and n = 2. Given Ĩ = (I, a) with I = {1, 2} and a : I →
Z3 defined by

a(1) = 2, a(2) = 0,

the associated �-face is

�3
2 ∩ HĨ = {(x1, x2) ∈ �3

2 | ζ 2x1 + ζ 0x2 = 3}.
Geometrically, this is a line segment, and there are nine such �-faces of �3

2 given
by changing the powers of ζ in the coefficients of the defining equations; see the
nine green line segments labeled in Fig. 2. On the other hand, given Ĩ ′ = (I ′, a′)
where I ′ = {1} and a′(1) = 2, the �-face associated to Ĩ ′ is

�3
2 ∩ HĨ ′ = {(x1, x2) ∈ �3

2 | ζ 2x1 = 2}.
One can check that this is equivalent to

{2ζ 1} × {x2 ∈ Y | |x2| ≤ 1},
which is the union of three line segments in a “Y” shape. There are three such
�-faces given by changing the value of a′(1), labeled in red in Fig. 2, and there are
three similar �-faces given by the equations ζ i x2 = 2 for 0 ≤ i ≤ 2, labeled in
blue in Fig. 2.

In addition, �3
2 has 0-dimensional �-faces given by intersecting two 1-

dimensional �-faces; it is straightforward to check that each such nonempty inter-
section is a single point. Finally, although Fig. 2 shows �3

2 as the union of nine
pentagons, these together constitute just a single 2-dimensional face.

This example illustrates that �r
n is a polytopal complex glued from n-

dimensional polytopes, and that a �-face given by intersecting �r
n with k distinct

hyperplanes is a polytopal complex glued from (n − k)-dimensional polytopes.
Before proving these observations in general, it is useful to draw on another key
observation: a condition on the decorated subsets Ĩ1, . . . , Ĩk must be satisfied in
order to ensure that the corresponding �-face is nonempty.

Lemma 7.4. Let Ĩ1, . . . , Ĩk be decorated subsets of [n], where Ĩ j = (I j , a j ) for
each j . Then

�r
n ∩ HĨ1 ∩ · · · ∩ HĨk �= ∅

if and only if, after possibly reordering Ĩ1, . . . , Ĩk , the tuple (I1, . . . , Ik, ak) is a
Zr -decorated chain of subsets of [n].
Proof. Since n is fixed throughout this proof, we write δnk as simply δk to avoid
cluttering the notation.

Without loss of generality, we assume that the decorated sets Ĩ1, · · · , Ĩk are
distinct. To prove the forward direction, it suffices to show that

�r
n ∩ HĨ ∩ HJ̃ �= ∅ �⇒ Ĩ ⊆ J̃ .
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Suppose, then, that x ∈ �r
n ∩ HĨ ∩ HJ̃ , and let Ĩ = (I, a) and J̃ = (J, b). The fact

that x ∈ �r
n means in particular that x ∈ Yn , so

x = (λ1c1, . . . , λncn)

for some λi ∈ R
≥0 and ci ∈ μr . We claim that

ci = ζ−a(i)

for all i ∈ I .
To see this, note that since x ∈ HĨ we have∑

i∈I
λi · ζa(i)ci = δ|I |, (24)

and x ∈ �r
n we obtain ∑

i∈I
λi ≤ δ|I |.

From the triangle inequality we obtain

δ|I | =
∣∣∣∣∣
∑
i∈I

λi · ζa(i)ci

∣∣∣∣∣ ≤
∑
i∈I

∣∣∣λi · ζa(i)ci
∣∣∣ =∑

i∈I
λi ≤ δ|I |.

Thus, the triangle inequality is in fact an equality, which is only possible if the
complexnumbersλi ·ζa(i)ci are all non-negative real scalarmultiples of one another.
Since their sum is a positive real number by (24), they must each individually be
non-negative real numbers; that is,

λi · ζa(i)ci ∈ R
≥0 (25)

for each i . Furthermore, λi �= 0 for all i ∈ I , since if λ j = 0 for some j ∈ I , then
∑

i∈I\{ j}
λi = δ|I | > δ|I |−1,

violating one of the inequalities in the definition of �r
n . Thus, we have λi > 0 for

all i , so (25) implies ζa(i)ci ∈ R
≥0∩μr . We conclude that ci = ζ−a(i), as claimed.

This proves that, once that ζ is fixed, the decorations on I are determined by
the coefficients ci on x ∈ �r

n ∩ HĨ ∩ HJ̃ , and the exact same argument shows
that the decorations on J are given by the same formula. Thus, what remains to be
proved is that either I ⊆ J or J ⊆ I . To see this, notice that we can now express
x ∈ HĨ ∩ HJ̃ by the equations

∑
i∈I

λi = δ|I | and
∑
i∈J

λi = δ|J |.

From these equations, we deduce that∑
i∈I∪J

λi =
∑
i∈I

λi +
∑
i∈J

λi −
∑

i∈I∩J

λi = δ|I | + δ|J | −
∑

i∈I∩J

λi .
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By the defining inequalities of �r
n , we have

∑
i∈I∩J

λi ≤ δ|I∩J |,

so
∑
i∈I

λi +
∑
i∈J

λi −
∑

i∈I∩J

λi ≥ δ|I | + δ|J | − δ|I∩J |,

or in other words,
∑

i∈I∪J

λi ≥ δ|I | + δ|J | − δ|I∩J |. (26)

But a straightforward calculation shows that if |I ∩ J | is strictly less than both |I |
and |J |, then

δ|I | + δ|J | − δ|I∩J | > δ|I |+|J |−|I∩J |.

Given that δ|I |+|J |−|I∩J | = δ|I∪J |, we would then obtain from (26) that

∑
i∈I∪J

λi > δ|I∪J |,

contradicting one of the defining inequalities of �r
n . Thus, we must have either

|I ∩ J | = |I | or |I ∩ J | = |J |, meaning that either I ⊆ J or J ⊆ I . This concludes
the proof of the forward direction of the lemma.

For the reverse direction, it suffices to show the statement when k = n and
Ĩ1, . . . , Ĩn are distinct, because any chain can be extended to a maximal one. In
light of this, let

Ĩ = (I1, . . . , In, a)

be a maximal chain, which can equivalently be expressed as

I1 = {i1}
I2 = {i1, i2}
...

In = {i1, i2, . . . , in} = [n]
for some i1, . . . , in . Setting

xi j = ζ−a(i j ) · (n + 1 − j) (27)

for each j , it is straightforward to check that (x1, . . . , xn) ∈ �r
n ∩ HĨ1 ∩ · · · ∩ HĨn ,

where Ĩ j := (I j , a|I j ). Therefore,�r
n∩HĨ1 ∩· · ·∩HĨn �= ∅, so the reverse direction

of the lemma is proved. ��
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The key upshot of Lemma 7.4 is that the�-faces of�r
n , like the boundary strata

and T -cosets, can be indexed by chains. The notation, analogously to the previous
two sections, is as follows.

Definition 7.5. Let Ĩ = (I1, . . . , Ik, a) be a chain. Then the�-face of�r
n associated

to Ĩ is

F Ĩ := �r
n ∩ HĨ1 ∩ · · · ∩ HĨk ,

where Ĩ j = (I j , a|I j ) for each j .

In the special case where the chain Ĩ is maximal, the �-face F Ĩ is a single point
of �r

n , which we refer to as a vertex. Note that Eq. (27) makes the coordinates
of the vertex associated to a maximal chain Ĩ explicit. More generally, the proof
of Lemma 7.4 gives an explicit description of the elements of F Ĩ for any chain Ĩ,
which we collect in the following remark for future reference.

Remark 7.6. Suppose Ĩ = (I1, . . . , Ik, a) is a chain. Then (x1, . . . , xn) ∈ Yn lies
in F Ĩ if and only if the following conditions are satisfied:

(C1) (x1, . . . , xn) ∈ �r
n , or in other words,∑

i∈I
|xi | ≤ δn|I |

for all I ⊆ [n];
(C2) xi ∈ R

≥0 · ζ−a(i) for all i ∈ Ik ;
(C3) for all j ∈ {1, . . . , k},

∑
i∈I j

|xi | = δn|I j |.

Let us illustrate the passage from a chain to its associated �-face for the same
chain considered in Examples 5.3 and 6.5 above.

Example 7.7. Let r = 3 and n = 4, and consider again the chain Ĩ = (I1, I2, a),
where

I1 = {3}, I2 = {2, 3, 4}
and a : I2 → Z3 is given by

a(2) = 1, a(3) = 0, a(4) = 2.

The associated �-face F Ĩ ⊆ �3
4 is, by definition,

F Ĩ =

⎧⎪⎨
⎪⎩(x1, . . . , x4) ∈ Y4

∣∣∣∣∣∣∣

∑
i∈I |xi | ≤ δ4|I | for all I ⊆ [4]

ζ 0x3 = 4

ζ 1x2 + ζ 0x3 + ζ 2x4 = 9

⎫⎪⎬
⎪⎭ .
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F
˜I = × ×

Fig. 10. The �-face F Ĩ ⊆ �3
4 of Example 7.7, decomposed as a product according to its

x3-coordinate, its (x2, x4)-coordinates, and its x1-coordinate

It is illuminating to divide the four coordinates according to the decomposition

[4] = I1 ∪
(
I2 \ I1

)
∪
(
[4] \ I2

)
= {3} ∪ {2, 4} ∪ {1}.

For the coordinates in each of these sets, we have the following conditions:

• The coordinate x3 must satisfy

x3 ∈ R
≥0 · ζ 0,

and by the second equality in the above expression for F Ĩ, we have

|x3| = 4. (28)

Thus, the value of x3 is completely determined.
• The coordinates x2 and x4 must satisfy

x2 ∈ R
≥0 · ζ 2 and x4 ∈ R

≥0 · ζ 1,

and by the second and third equalities in the above expression for F Ĩ, we have

|x2| + |x4| = 5. (29)

Thus, (x2, x4) lie in a line segment.
• The coordinate x1 can lie in any of the three branches ofY. Combining Eqs. (28)
and (29) with the first inequality of F Ĩ, we see that |x1| ≤ 1. Thus,

x1 ∈ �3
1,

which is the Y-shaped region depicted in Fig. 10.

Combining these conditions, we find that F Ĩ is the product shown in Fig. 10.

The product decomposition of F Ĩ illustrated in Fig. 10 can be interpreted as
a product of the standard permutohedra of dimensions zero and one, and the per-
mutohedral complex �3

1. (We recall the definition of the standard permutohedra in
Definition 7.9 below.) To see the permutohedron arising more clearly, it is illumi-
nating to consider one additional example.
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×

Fig. 11. The �-face F Ĩ′ ⊆ �3
4 of Example 7.8, decomposed as a product according to its

(x2, x3, x4)-coordinates and its x1-coordinate

Example 7.8. Let Ĩ′ be the chain obtained by removing I1 from the chain Ĩ of
Example 7.7. Then

F Ĩ′ =
{
(x1, . . . , x4) ∈ Y4

∣∣∣∣
∑

i∈I |xi | ≤ δ4|I | for all I ⊆ [4]
ζ 1x2 + ζ 0x3 + ζ 2x4 = 9

}
.

As before, x1 ∈ �3
1 and is independent from x2, x3, x4. The coordinates x2, x3, x4,

on the other hand, must satisfy

x2 ∈ R
≥0 · ζ 2, x3 ∈ R

≥0 · 1, x4 ∈ R
≥0 · ζ

as well as

|x2| + |x3| + |x4| = 9,

One can check that these conditions, together with the inequalities in F Ĩ′ , shows
that x2, x3, x4 lie in a hexagon with vertices

(4ζ 2, 3, 2ζ ), (4ζ 2, 2, 3ζ ), (3ζ 2, 4, 2ζ ), (3ζ 2, 2, 4ζ ), (2ζ 2, 4, 3ζ ), (2ζ 2, 3, 4ζ ).

See Fig. 11.

Generalizing the above examples, we now prove that each �-face of �r
n is

equal to a product of smaller permutohedral complexes and permutohedra; this
will provide the analogue of Propositions 5.5 and 6.7 (the product decomposi-
tions of boundary strata and T -cosets, respectively), and furthermore, the product
decomposition will be used to verify the dimension of each �-face.

First, we must recall the definition of the standard permutohedron.

Definition 7.9. The permutohedron �n is the set of points (x1, . . . , xn) ∈ R
n

satisfying the inequalities ∑
i∈I

xi ≤ δn|I |

for all I � [n] and the equality ∑
i∈[n]

xi = δnn .

(Analogously to the situation for Losev–Manin space, we point out again that while
the analogy to the permutohedron motivates the definition of �r

n , it is not literally
the case that setting r = 1 in the definition of �r

n recovers �n . See Remark 8.1.)
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It is well-known that �n is a polytope of dimension n− 1. More generally, one
obtains other polytopes of the same dimension by shifting �n , as follows.

Definition 7.10. Let γ ∈ R. The γ -shifted permutohedron �n + γ is the set of
points (x1, . . . , xn) ∈ R

n satisfying the inequalities
∑
i∈I

xi ≤ δn|I | + |I | · γ

for all I � [n] and the equality
∑
i∈[n]

xi = δnn + nγ.

Given these definitions, we have the following alternative description of a face
F Ĩ of �r

n .

Proposition 7.11. Let Ĩ = (I1, . . . , Ik, a) be a chain. Then F Ĩ is equal to the set of
points (x1, . . . , xn) ∈ C

n that satisfy the following conditions:

(C1’) (xi )i∈[n]\Ik ∈ �r|[n]\Ik |, or in other words,∑
i∈I

|xi | ≤ δ
|[n]\Ik |
|I |

for all I ⊆ [n] \ Ik;
(C2’) xi ∈ R

≥0 · ζ−a(i) for all i ∈ Ik;
(C3’) for all j ∈ {1, . . . , k}, the point (|xi |)i∈I j\I j−1 lies in the shifted permutohe-

dron

�|I j\I j−1| + γ j

for γ j := |[n] \ I j |.
Proof. ByRemark 7.6, it suffices to show that conditions (C1) – (C3) are equivalent
to conditions (C1′) – (C3′).

First, suppose that (x1, . . . , xn) ∈ C
n satisfies (C1) – (C3). Then, given I ⊆

[n] \ Ik , we have ∑
i∈I

|xi | =
∑

i∈I∪Ik

|xi | −
∑
i∈Ik

|xi |

≤ δn|I |+|Ik | −
∑
i∈Ik

|xi |

= δn|I |+|Ik | − δn|Ik |
= δ

|[n]\Ik |
|I | ,

where the first equality follows from the fact that I and Ik are disjoint, the inequality
from (C1), and the second equality from (C3). Thus, (x1, . . . , xn) satisfies (C1′).
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Condition (C2′) is identical to condition (C2), so there is nothing to check.
Finally, for condition (C3′), let j ∈ {1, . . . , k}. Then

∑
i∈I j\I j−1

|xi | =
∑
i∈I j

|xi | −
∑

i∈I j−1

|xi |

= δn|I j | − δn|I j−1|
= δ

|[n]\I j−1|
|I j\I j−1|

= δ
|I j\I j−1|
|I j\I j−1| + ∣∣[n] \ I j

∣∣ · ∣∣I j \ I j−1
∣∣ ,

which is the equality in the definition of the shifted permutohedron �|I j\I j−1| +γ j .
Furthermore, for any I � I j \ I j−1, we have

∑
i∈I

|xi | =
∑

i∈I j−1∪I

|xi | −
∑

i∈I j−1

|xi |

≤ δn|I |+|I j−1| − δn|I j−1|
= δ

|[n]\I j−1|
|I |

= δ
|I j\I j−1|
|I | + ∣∣[n] \ I j

∣∣ · |I | ,
which are the inequalities in the definition of the shifted permutohedron. Thus,
(x1, . . . , xn) satisfies (C3′).

For the reverse direction, suppose that (x1, . . . , xn) ∈ C
n satisfies (C1′) – (C3′).

It is automatic that (x1, . . . , xn) ∈ Yn satisfies (C2). For (C1), note that for any
I ⊆ [n], we have

∑
i∈I

|xi | =
∑

i∈I\Ik
|xi | +

k∑
j=1

∑
i∈I∩(I j\I j−1)

|xi |

≤ δ
|[n]\Ik |
|I\Ik | +

k∑
j=1

(
δ
|I j\I j−1|
|I∩(I j\I j−1)| + ∣∣[n] \ I j

∣∣ · ∣∣I ∩ (I j \ I j−1)
∣∣ )

= δ
|[n]\Ik |
|I\Ik | +

k∑
j=1

(
δ
|[n]\I j−1|
|I∩(I j\I j−1)|

)
,

For notational convenience, we define

n j := |[n] \ I j−1| and a j := |I ∩ (I j \ I j−1)|
for each j ∈ {1, . . . , k + 1}, where I0 = ∅ and Ik+1 = [n]. In this notation, the
above is expressed as

∑
i∈I

|xi | ≤
k+1∑
j=1

δ
n j
a j .
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From here, using the fact that n1 ≥ n2 ≥ · · · ≥ nk+1 and a j ≤ n j+1 − n j for each
j , one can check that

k+1∑
j=1

δ
n j
a j ≤ δ

n1
a1+···+ak+1

and hence ∑
i∈I

|xi | ≤ δ
n1
a1+···+ak+1

= δn|I |,

proving that (x1, . . . , xn) ∈ Yn satisfies (C1). We also have, for � ∈ {1, . . . , k},
that

∑
i∈I�

|xi | =
�∑

j=1

∑
i∈I j\I j−1

|xi |

=
�∑

j=1

(
δ
|I j\I j−1|
|I j\I j−1| + ∣∣[n] \ I j

∣∣ · ∣∣I j \ I j−1
∣∣)

=
�∑

j=1

(
δn|I j | − δn|I j−1|

)

= δn|I�|,

proving that (x1, . . . , xn) satisfies (C3) and completing the proof of the proposition.
��

As a corollary, we find that the �-faces of �r
n have a product decomposition,

which shows that they are polytopal complexes of the expected dimension.

Corollary 7.12. For any chain Ĩ, we have

F Ĩ = �r|[n]\Ik | × ϕa

⎛
⎝ k∏

j=1

(�|I j\I j−1| + γ j )

⎞
⎠ , (30)

where ϕa : R
|Ik | → C

|Ik | multiplies the i th coordinate by ζ−a(i), and γ j :=
|[n] \ I j |. In particular, F Ĩ is a polytopal complex of dimension n − k.

Proof. The product decomposition (30) follows immediately from Proposi-
tion 7.11. For the “in particular,” it suffices to prove that �r

n itself is a polytopal
complex of dimension n. If this is the case, then (30) implies that F Ĩ is a product
of polytopal complexes and polytopes, so it is a polytopal complex. Furthermore,
using the fact that dim(�m) = m − 1, we find that the dimension of F Ĩ is

|[n] \ Ik | +
k∑
j=1

(
|I j \ I j−1| − 1

)
= n − k,



E. Clader et al.

as claimed.
To prove that�r

n is a polytopal complex of dimension n, for every c : [n] → Zr

define

Yn
c = (R≥0 · ζ c(1)) × · · · × (R≥0 · ζ c(n)) ⊆ Yn .

Then Yn
c is naturally identified with R

n , and under this identification, we have

�r
n ∩ Yn

c =
⎧⎨
⎩(x1, . . . , xn) ∈ R

n

∣∣∣∣∣∣
∑
i∈I

xi ≤ δn|I | for all I ⊆ [n],
xi ≥ 0 for all i ∈ [n]

⎫⎬
⎭ .

In particular, �r
n ∩Yn

c is a polytope in R
n , and it contains the origin as well as the n

standard basis vectors e1, . . . , en . Since these are n+1 affinely independent points
in R

n , it follows that �r
n ∩ Yn

c has dimension n. Thus, we have an expression

�r
n =

⋃
c:[n]→Zr

(�r
n ∩ Yn

c )

as a union of n-dimensional polytopes intersecting only along the faces where some
subset of the coordinates is equal to zero. That is, �r

n is a polytopal complex of
dimension n. ��
Remark 7.13. The proof of Corollary 7.12 shows that the individual n-dimensional
polytopes �r

n ∩ Yn
c that are glued to form �r

n are independent of r . Setting r = 2,
we find that�2

n is, in fact, a polytope (the type-B permutohedron) and the polytopes
that comprise any �r

n are the intersection of �2
n with an octant. When n = 2, for

example, �2
2 is an octagon whose intersection with each quadrant is a pentagon,

and these pentagons are visible in Fig. 2 as the building blocks of �3
2.

Remark 7.14. The polytopes �r
n ∩ Yn

c for different choices of c are all isomorphic

to one another, and they are precisely the polytope of the toric variety M1
n that

arose in Sect. 3. In particular, one can interpret the maps

πα|Uα : Uα → M1
n

and

p : Lr
n(ζ ) → M1

n

of Sect. 3.4 in polytopal terms: the map πα|Uα amounts to looking locally at a single
octant �r

n ∩Yn
c of �r

n , while the map p amounts to identifying all of the octants of
�r

n with one another.

We are now ready to prove that—just as in the settings of boundary strata and
T -cosets—the �-face structure of �r

n is precisely captured by chains.

Proposition 7.15. Let r ≥ 2 and n ≥ 0. The association

Ĩ �→ F Ĩ

is a bijection from the set of Zr -decorated chains of subsets of [n] to the set of
�-faces of �r

n. Furthermore, this bijection satisfies
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(i) length(̃I) = codim(F Ĩ),

(ii) F Ĩ ⊆ F̃J if and only if Ĩ refines J̃.

Proof. The surjectivity of Ĩ �→ F Ĩ is the content of Lemma 7.4. The injectivity will
follow from item (ii) of the proposition, since the only way that Ĩ is a refinement
of J̃ and vice versa is if Ĩ = J̃. Item (i) is immediate from Corollary 7.12.

Thus, all that remains is to prove item (ii). One direction is clear: if Ĩ is a
refinement of J̃, then the hyperplanes intersected to form F̃J are a subset of the
hyperplanes intersected to form F Ĩ, so F Ĩ ⊆ F̃J.

Conversely, suppose that F Ĩ ⊆ F̃J, where

Ĩ = (I1, . . . , Ik, a),

J̃ = (J1, . . . , J�, b).

By completing Ĩ to a maximal chain (which, in particular, involves extending a to
a function a : [n] → Zr ), one can find a vertex

v := (x1, . . . , xn) ∈ F Ĩ.

Equation (27) implies that, for each i ∈ {1, . . . , n}, we have
xi = ζ−a(i)λi

for some λi ∈ [n]. The fact that v ∈ F Ĩ ⊆ F̃J then implies that

∑
i∈J j

ζb(i) · ζ−a(i)λi = δ|J j |

for each j , and from here, the same triangle inequality argument from Lemma 7.4
shows that a(i) = b(i) for all i ∈ J j . Thus, the decorations on J̃ agree with the
decorations on Ĩ where both are defined, and what remains is to prove that

{J1, . . . , J�} ⊆ {I1, . . . , Ik}. (31)

If not, then one possibility is that J� = [n] whereas Ik �= [n]. In this case,
however, if i ∈ [n]\Ik , then for any s ∈ Zr one can construct a vertex (x1, . . . , xn) ∈
F Ĩ with xi = ζ sλi . By contrast, any vertex of F̃J has xi = ζ−b(i)λi , so it cannot
be the case that F Ĩ ⊆ F̃J.

Having ruled out this possibility, the failure of (31) implies that

{J1, . . . , J�, [n]} � {I1, . . . , Ik, [n]}, (32)

and from here, we can cite the known face structure of the permutohedron �n (see,
for example, [20, Proposition 2.6] or [1, Section 4.1]). In particular, faces of �n

are indexed by subsets of [n] in which the largest is [n] itself, and if we set

FJ1,...,J�,[n] :=
⎧⎨
⎩(x1, . . . , xn) ∈ �n

∣∣∣∣∣∣
∑
i∈J j

xi = δ|J j | for all j

⎫⎬
⎭
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and similarly

FI1,...,Ik ,[n] :=
⎧⎨
⎩(x1, . . . , xn) ∈ �n

∣∣∣∣∣∣
∑
i∈I j

xi = δ|I j | for all j

⎫⎬
⎭ ,

then it is known that (32) implies

FJ1,...,J�,[n] � FI1,...,Ik ,[n].

That is, there exists (x1, . . . , xn) ∈ FJ1,...,J�,[n] with (x1, . . . , xn) /∈ FI1,...,Ik ,[n]. It
is straightforward to see that, for any extension of a to a function [n] → Zr , we
have

(ζ−a(1)x1, . . . , ζ
−a(n)xn) ∈ F̃J

but

(ζ−a(1)x1, . . . , ζ
−a(n)xn) /∈ F Ĩ.

This contradicts our assumption that F Ĩ ⊆ F̃J and thus completes the proof. ��
The previous two sections concluded with a product decomposition of the rele-

vant objects, and we close this section by briefly noting that the analogous product
decomposition also holds for �-faces.

Remark 7.16. For any chain Ĩ = (I1, . . . , Ik, a), there is an isomorphism

F Ĩ
∼= �r|[n]\Ik | ×

k∏
j=1

�|I j\I j−1|.

(The word “isomorphism” here can be taken to mean “combinatorial equivalence,”
or more strongly, “isometry” under the standard inner products onR

n andC
n .) This

follows directly from Corollary 7.12.

8. Proof of Theorem 1.1 and Enhancements

We are now positioned to complete the proof of the main theorem:
Theorem 1.1 For any integers r ≥ 2 and n ≥ 0, there are dimension-preserving,
inclusion-preserving bijections{

boundary
strata in Lr

n

}
←→

{ T -cosets
in S(r, n)

}
←→

{
�-faces
of �r

n

}
.

Proof. Propositions 5.4, 6.6, and 7.15 give bijections between each of these three
sets and the set of Zr -decorated chains of subsets of [n], and in each case, the
dimension is encoded by the co-length of a chain and the inclusion relation is
encoded by refinement of chains. ��

In fact, the statement of Theorem 1.1 can be enhanced to incorporate two pieces
of additional structure: product decompositions of the three types of objects and an
action of S(r, n) on each. The remainder of this last section of the paper is devoted
to carrying out these enhancements.
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8.1. Product decompositions

Theorem 1.1 is an analogue of results pertaining to the Losev–Maninmoduli spaces
Ln studied in [16]. There, the relevant group is the symmetric group Sn (in which
there is a precisely analogous definition of T -cosets with T the set of adjacent trans-
positions), and the relevant polytopal complex is the permutohedron �n (which, in
this case, is actually a polytope). The theorem, then, is that there are dimension-
preserving and inclusion-preserving bijections{

boundary
strata in Ln

}
←→

{T -cosets
in Sn

}
←→

{
faces
of �n

}
. (33)

Remark 8.1. The analogy between (33) and Theorem 1.1, and the fact that Sn is
the r = 1 case of S(r, n), suggests that Ln and �n should be viewed “morally” as
the r = 1 cases of Lr

n and �r
n , respectively, despite the fact that these objects are

not literally recovered by setting r = 1 in the higher-r construction. Setting r = 1

in the definition of Lr
n , in particular, yields the space M1

n , which we observed in
Remark 3.1 is not equal to Losev–Manin space.

With this analogy established, we note that the bijections of Theorem 1.1 pre-
serve rich geometric structures of Lr

n in a way that incorporates the corresponding
structures in Losev–Manin spaces encoded by (33). More precisely, we have seen
in Proposition 5.5, Proposition 6.7, and Remark 7.16 that

• a boundary stratum in Lr
n is isomorphic to a product with one factor Lr

n′ for
some n′ and all other factors Losev–Manin spaces;

• a T -coset C Ĩ in S(r, n) is a coset of a subgroup isomorphic to a product with
one factor S(r, n′) for some n′ and the other factors symmetric groups;

• a �-face F Ĩ in �r
n is isomorphic to a product with one factor �r

n′ for some n′
and all other factors permutohedra.

The following theorem says that the bijections of Theorem 1.1 are compatible with
these product decompositions.

Theorem 8.1. Under the bijections of Theorem 1.1, a boundary stratum S Ĩ natu-
rally isomorphic (via Proposition 5.5) with

Lr
nk+1

×
k∏
j=1

Ln j

corresponds to a T -coset C Ĩ naturally identified (via Proposition 6.7) with

S(r, nk+1) ×
k∏
j=1

Sn j · A j ,

and to a �-face F Ĩ naturally isomorphic (via Remark 7.16) with

�r
nk+1

×
k∏
j=1

�n j .
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In particular, if Ĩ = (I1, . . . , Ik, a), then

nk+1 = |[n] \ Ik | and n j = |I j \ I j−1|
for all j ∈ {1, . . . , k}.
Proof. This follows from Proposition 5.5, Proposition 6.7, and Remark 7.16, which
describe the product decomposition of a boundary stratum, T -coset, or �-face
corresponding to a given chain Ĩ. ��

8.2. Actions and equivariance

Another key feature of each of the three settings of interest is the existence of a
right action by S(r, n). In particular:

• S(r, n) acts onLr
n(ζ ), because an element ofLr

n(ζ ) is determined by the choice
of the curve C and the first element z01, . . . , z

0
n in each light orbit. Thus, for any

A ∈ S(r, n) we can view the matrix-vector product

(z01, . . . , z
0
n) · A

as a new tuple of elements of C by identifying ζ k · zij with σ k(zij ), so setting

(C; z01, . . . , z0n) · A := (C; (z01, . . . , z
0
n) · A)

gives an action of S(r, n) on Lr
n(ζ ).

• S(r, n) acts on itself by multiplication on the right.
• S(r, n) acts on �r

n by matrix-vector multiplication

(x1, . . . , xn) · A
for (x1, . . . , xn) ∈ �r

n .

We will see in Lemma 8.4 that the action on Lr
n(ζ ) takes 0-dimensional

boundary strata to 0-dimensional boundary strata, and the action on �r
n takes 0-

dimensional �-faces to 0-dimensional �-faces. Moreover, the bijections of Theo-
rem 1.1 are equivariant under these actions. Before proving this in general, let us
illustrate it in two examples.

Example 8.2. In the case of (r, n) = (2, 2), let

A =
(

0 1
−1 0

)
.

Then the action of A on�2
2 rotates by π/4 counterclockwise. On S(2, 2), the action

is simply right-multiplication, whereas on L2
2, the action is described by

(z01, z02) · A = (z12, z01);
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in other words, if (C; z01, z02) specifies an element of L2
2, then

(C; z01, z02) · A = (C; z̃01, z̃02)

in which z̃01 = z12 and z̃
0
2 = z01. From here, consulting Fig. 1(A) shows that the bijec-

tion between 0-dimensional boundary strata in L2
2 and vertices of �2

2 is S(2, 2)-
equivariant: if (C; z01, z02) is a 0-dimensional boundary stratum corresponding to a
vertex v ∈ �2

2, then (C; z10, z20) · A is the 0-dimensional boundary stratum corre-
sponding to the vertex v · A. Similarly, from Fig. 1(B), one sees that if B ∈ S(2, 2)
is a group element (that is, a 0-dimensional T -coset) corresponding to a vertex
v ∈ �2

2, then B · A is the group element corresponding to v · A.

Example 8.3. In the case of (r, n) = (3, 4), let

A =

⎛
⎜⎜⎝
0 ζ 2 0 0
0 0 0 ζ

0 0 ζ 2 0
1 0 0 0

⎞
⎟⎟⎠ . (34)

Then we have

(z01, z
0
2, z

0
3, z

0
4)

⎛
⎜⎜⎝
0 ζ 2 0 0
0 0 0 ζ

0 0 ζ 2 0
1 0 0 0

⎞
⎟⎟⎠ = (z04, z

2
1, z

2
3, z

1
2),

which means that after the action of A, the first elements of the light orbits are
located at the points where z04, z

2
1, z

2
3, z

1
2 were located before the action of A. For

instance, the action of A sends the element of L3
4(ζ ) in Fig. 12(A) to the element

in Fig. 12(B).
Unpacking the bijections of Theorem1.1, one sees that the curve in Fig. 12(A) is

the 0-dimensional boundary stratum corresponding to the T -coset {I } containing
only the identity matrix, and corresponding to the vertex (1, 2, 3, 4) ∈ �3

2. On
the other hand, the curve in Fig. 12(B) is the 0-dimensional boundary stratum
corresponding to the chain

Ĩ = ({1}, {1, 3}, {1, 3, 4}, {1, 2, 3, 4}, a),

where

a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2,

from which it is straightforward to check that it corresponds to the T -coset {A} =
{A · I } and to the vertex (4, ζ 2, 3ζ 2, 2ζ ) = (1, 2, 3, 4) · A of �3

2. Thus, in this case,
we again see that the bijections of Theorem 1.1 are S(2, 3)-equivariant.
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x± z01 z02 z03 z04 y0

z11

z12

z13

z14

y1

z21

z22

z23

z24

y2

(a) An element C in L3
4(ζ).

x± z12 z24 z13 z01 y0

z22

z04

z23

z11

y1

z02

z41

z03

z21

y2

(b) The element C · A in L3
4(ζ).

Fig. 12. The action of A ∈ S(3, 4) defined by (34) on an element of L3
4(ζ )

To confirm that the bijections between 0-dimensional objects are S(r, n)-
equivariant in general, we denote by S0 ∈ Lr

n(ζ ) the zero-dimensional bound-
ary stratum corresponding under Theorem 1.1 to the 0-dimensional T -coset
{I } ⊆ S(r, n). Specifically, this means that the y0-spoke of S0 contains the light
marked points z01, . . . , z

0
n , with one on each component in order from innermost to

outermost, or in other words that

zij ∈ Ci
n+1− j .

For instance, Fig. 12(A) illustrates S0 ⊆ L3
4(ζ ).

Lemma 8.4. The bijections{
zero-dimensional

boundary
strata in Lr

n(ζ )

}
←→ S(r, n) ←→

{
vertices
of �r

n

}

of Theorem 1.1 identify A ∈ S(r, n) with the boundary stratum S0 · A and with the
vertex (1, . . . , n) · A ∈ �r

n.

Proof. All of these objects correspond to maximal chains

Ĩ = (I1, . . . , In, a)

with a : [n] → Zr , for which the sets I1, . . . , In can be expressed as

I1 = {i1}
I2 = {i1, i2}

...

In = {i1, i2, . . . , in} = [n]
for some i1, . . . , in ∈ [n]. In this notation:
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(i) the associated boundary stratum S Ĩ is defined by the condition that

the unique light marked point on the component C0
j is z

a(i j )
i j

for each j ∈ [n];
(ii) the associated T -coset is the singleton C Ĩ = {A}, where A is the matrix

defined by the condition that

row n + 1 − j of A has nonzero entry ζ−a(i j ) in column i j

for each j ∈ [n];
(iii) the associated �-face is the vertex F Ĩ = {(x1, . . . , xn)} with coordinates

defined by

xi j = ζ−a(i j ) · (n + 1 − j)

for each j ∈ [n]. (See Eq. (27).)
In particular, it is straightforward to see that the vertex in (iii) is equal to

(x1, . . . , xn) = (1, . . . , n) · A
for the matrix A in (ii), which verifies one half of the lemma.

For the other half of the lemma, we must show that S Ĩ = S0 · A. To see this, let
{zij } denote the elements of the light orbits in S0, so that, by the definition of S0,
we have

zij ∈ Ci
n+1− j .

If {z̃ij } denote the elements of the light orbits in S0 · A, then the definition of the
action and of A implies that

z̃0i j = z
−a(i j )
n+1− j ∈ C

−a(i j )
j ,

In particular, S0 · A has just one light marked point on each of the components C0
j

for j ∈ [n], and that marked point is z̃
a(i j )
i j

. This exactly agrees with the above
description of S Ĩ, so S Ĩ = S0 · A. ��

From here, the fact that the bijections of Theorem 1.1 are inclusion-preserving
gives a concise reinterpretation of the bijections in general.

Proposition 8.5. The bijections{
boundary

strata in Lr
n(ζ )

}
←→

{ T -cosets
in S(r, n)

}
←→

{
�-faces
of �r

n

}

of Theorem 1.1 identify a boundary stratum S with

{A ∈ S(r, n) | S0 · A ∈ S} ⊆ S(r, n)

and identify a �-face F with

{A ∈ S(r, n) | (1, . . . , n) · A ∈ F} ⊆ S(r, n),

both of which are T -cosets.
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Proof. Let S be a boundary stratum, and letCS ⊆ S(r, n) be the T -coset associated
to it via the bijection of Theorem 1.1. By Lemma 8.4, the bijection associates each
A ∈ S(r, n) to the zero-dimensional boundary stratum S0 · A. And since it is
inclusion-preserving, we have

A ∈ CS ⇔ S0 · A ∈ S.

This proves that

CS = {A ∈ S(r, n) | S0 · A ∈ S},
so in particular, the latter is indeed a T -coset. The argument for the case of a�-face
F is identical. ��

One reason to like this interpretation—in addition to the fact that it is much
simpler to state than how we initially constructed the bijections of Theorem 1.1,
and in particular does not require the auxiliary machinery of chains—is that it
immediately shows that the bijections are S(r, n)-equivariant. To see this, we first
should note that there is a right action of S(r, n) on the sets of boundary strata,
T -cosets, and �-faces, in each case by setting

X · A := {x · A | x ∈ X}
for a boundary stratum, T -coset, or �-face X . Here, the fact that S(r, n) indeed
acts on each of these sets is a result of the following observations:

• The action of S(r, n) on Lr
n preserves the topological type of C (in fact, it

preserves C itself) while permuting marked points, so it takes boundary strata
to boundary strata.

• The action of S(r, n) on T -cosets is equivalently described by(
〈s�1, . . . , s�d 〉B

)
· A = 〈s�1, . . . , s�d 〉 · (BA),

so it takes T -cosets to T -cosets.
• The action of S(r, n) on C

n on �r
n takes points satisfying the conditions of

Remark 7.6 to points satisfying an analogous set of conditions, so it takes �-
faces to �-faces.

From here, it is essentially immediate from Proposition 8.5 that the bijections of
Theorem 1.1 respect these actions.

Remark 8.6. One way to confirm that the bijections of Theorem 1.1 are equivariant
is to verify that the above three S(r, n)-actions all correspond, under Theorem 1.1,
to an action on chains. Indeed, this is the case: the image of a chain (I1, . . . , Ik, a)
under the action of the element A ∈ S(r, n) is the chain (I ′

1, . . . , I
′
k, a

′) character-
ized by

I ′
j =
⋃
i∈I j

{� ∈ [n] | Ai� �= 0}

and
a′(�) = a(i) − mi� for all � ∈ I ′

k,
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where i ∈ [n] and mi� ∈ Zr are uniquely determined by the condition that
Ai� = ζmi� . However, it requires some care to check that this action on chains
indeed matches the three actions above, so we will instead prove the equivariance
of Theorem 1.1 directly as a corollary of Proposition 8.5.

Corollary 8.7. The bijections of Theorem 1.1 are S(r, n)-equivariant.

Proof. Let S be a boundary stratum, and let CS be the associated T -coset. Under
the action of B ∈ S(r, n), we have

CS · B = {AB ∈ S(r, n) | A ∈ CS} = {A ∈ S(r, n) | AB−1 ∈ CS}.
The element AB−1 ∈ S(r, n) corresponds to the boundary stratum S0 · AB−1 ∈
Lr
n(ζ ), by Lemma 8.4. Together with the fact that the bijection from T -cosets to

boundary strata is inclusion-preserving, this implies that

AB−1 ∈ CS if and only if S0 · AB−1 ∈ S.

Thus, we have

CS · B = {A ∈ S(r, n) | S0 · AB−1 ∈ S} = {A ∈ S(r, n) | S0 · A ∈ S · B},
which, by Proposition 8.5, is precisely equal to CS·B .

This proves that the bijection between the sets of boundary strata and T -cosets
is S(r, n)-equivariant, and an identical proof shows the same statement for the
bijection between �-faces of �r

n and T -cosets. ��
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