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Abstract

Motivation: Biological processes are regulated by underlying genes and their interactions that form gene regulatory
networks (GRNs). Dysregulation of these GRNs can cause complex diseases such as cancer, Alzheimer’s and dia-
betes. Hence, accurate GRN inference is critical for elucidating gene function, allowing for the faster identification
and prioritization of candidate genes for functional investigation. Several statistical and machine learning-based
methods have been developed to infer GRNs based on biological and synthetic datasets. Here, we developed a
method named AGRN that infers GRNs by employing an ensemble of machine learning algorithms.

Results: From the idea that a single method may not perform well on all datasets, we calculate the gene importance
scores using three machine learning methods—random forest, extra tree and support vector regressors. We calcu-
late the importance scores from Shapley Additive Explanations, a recently published method to explain machine
learning models. We have found that the importance scores from Shapley values perform better than the traditional
importance scoring methods based on almost all the benchmark datasets. We have analyzed the performance of
AGRN using the datasets from the DREAM4 and DREAMS5 challenges for GRN inference. The proposed method,
AGRN—an ensemble machine learning method with Shapley values, outperforms the existing methods both in the
DREAM4 and DREAMS5 datasets. With improved accuracy, we believe that AGRN inferred GRNs would enhance our
mechanistic understanding of biological processes in health and disease.

Availabilityand implementation: https:/github.com/DuaaAlawad/AGRN.

Contact: thoque@uno.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

The inference of gene regulation considers an underdetermined
problem because the number of possible interactions exceeds the
number of measurements available. This underdetermined problem,

1 Introduction

Different cell types have their distinct gene expression profiles, and

cells differentiate from one cell state to another by changing their ex-
pression profile via regulating gene transcription. In this regulatory
mechanism, a transcription factor binds to the promoter of a gene
target to modulate its expression. The causal interactions between
the transcription factors and their target genes collectively can drive
a biological process and are known as a gene regulatory network
(GRN) (Marbach et al., 2012). Hence, inferring accurate GRNss is
essential for a mechanistic understanding of biological processes in
healthy and pathological states (MacNeil, 2011). The availability of
a massive collection of gene expression data allows for inference of
high-throughput and large-scale network topology. Several compu-
tational methods for inferring GRNs from these expression data
have been developed and employed in real-world applications (Liu
Wei, 2020).
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which is viewed as a complex problem, has produced many algo-
rithms that attempt various ways to address this inherent difficulty
(Lim, 2013). To infer the topology of large GRNs, many researchers
have made great efforts to solve the network inference problem.
They presented different algorithms that often compute pair-wise in-
formation measures between genes (Chan, 2017). These algorithms
can differ depending on the machine learning concept used to pre-
dict the regulation weights between gene pairs. Based on the level of
supervision, there are three categories of machine learning methods:
unsupervised, supervised and semi-supervised. Supervised learning is
the process of giving a machine learning model labeled data. The
labeled dataset typically comprises of data gained through experi-
ence, whereas unsupervised learning entails utilizing unlabeled data.
In actuality, it is frequently impossible to secure labels in these
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circumstances. For example, there is insufficient data understanding,
or the labeling is too expensive. While semi-supervised learning
involves working with a dataset that is divided into two parts: a
labeled component and an unlabeled half. This method is frequently
employed when identifying the data or collecting labeled data is too
difficult or costly. The labeled portion of the data may likewise be of
poor quality.

Unsupervised methods infer GRNs from the expression data and
include the following three types of methods: regression-based, in-
formation theory-based and correlation-based. In regression-based
methods, target genes select transcription factors through sparse lin-
ear regression. Such a method is TIGRESS which uses the least angle
regression feature selection technique paired with stability selection
to tackle the network inference problem (Haury, 2012). Information
theory-based methods tend to rank edges based on mutual informa-
tion. ARACNE is a method that reconstructs GRNs based on a
Gaussian kernel estimator to determine the mutual information be-
tween the expression profiles of genes with a sparsity constraint
(Adam et al., 2006). It filters out non-significant as well as indirect
interactions. Correlation-based methods calculate correlations be-
tween gene pairs. Such a method is ANOVerence which proposed
the eta-squared score (%) as an alternate measure for evaluating
gene dependencies (Robert Kiiffner, 2012). The method used ana-
lysis of variance to derive a non-parametric and non-linear correl-
ation coefficient as gene importance scores. ANOVerence is fast and
simple to use and does not require the input data to be discretized.
In DREAMS, ANOVerence was rated the best performer on real-
world expression data.

Supervised learning methods have been developed to train differ-
ent classifiers that infer regulatory interactions. Many studies have
demonstrated that carefully trained supervised models outperform
unsupervised methods (Cerulo et al., 2010; Maetschke Stefan, 2013;
Mordelet and Vert, 2008). These supervised methods decompose
the GRN inference problem into a large number of subproblems to
estimate local models for characterizing the genes regulated by each
transcription factor (Maetschke Stefan, 2013). A few such methods
are GENIE3 (Huynh-Thu, 2010), PPCOR (Kim, 2015), LEAP
(Specht and Li, 2017), PIDC (Chan et al., 2017) and GRNBoost2
(Moerman et al., 2019). Huynh-Thu et al. developed the GENIE3
algorithm, which used tree-based methods, random forest or extra
tree regression to infer GRN (Huynh-Thu, 2010). An input gene’s
importance in predicting a target gene’s expression pattern is inter-
preted as a possible regulatory link. The network is then reverse
engineered by aggregating putative regulatory linkages across all
genes to produce ratings of the interactions. The GENIE3 algorithm
was the best performer in DREAM4 (Greenfield, 2010) and
DREAMS (Marbach ef al., 2012), two major GRN inference chal-
lenges held in 2009 and 2010. Furthermore, in PPCOR, Kim et al.
computes the partial and semi-partial correlation coefficients for
every pair of genes with respect to all the other variables to infer the
gene regulatory network. In addition, LEAP, Alicia et al. reconstructs
gene regulatory networks by calculating the Pearson correlation coef-
ficient, while in PIDC, Chan et al. developed a fast, efficient algo-
rithm that uses partial information decomposition (PID) to identify
regulatory relationships between genes. Moreover, Moerman T et al
introduced (GRNBoost2) which is a fast alternative for GENIE3, es-
pecially suited for datasets with tens of thousands of samples. Like
GENIE3, GRNBoost2 trains a regression model to select the most
important regulators for each gene in the dataset. GRNBoost2
achieves its efficiency by using stochastic Gradient Boosting Machine
regression with early-stopping regularization to infer the network.

Semi-supervised learning methods also have been used to infer
GRNs. For example, Patel and Wang (2015) presented semi-
supervised approaches for GRN prediction based on random forests
and support vector machines, two machine learning algorithms.
Unlabeled data were used to train semi-supervised learning models.
They investigated both inductive and transductive learning methods,
using an iterative mechanism to generate reliable negative training
data from the unlabeled data. They used gene expression data from
Escherichia coli and Saccharomyces cerevisiae to evaluate the per-
formance of their strategies using a semi-supervised algorithm.

With recent advances in deep learning, some methods predict
gene regulatory relationships through a deep learning framework.
Such a method is CNNC (Bar-Joseph, 2019), which employs a con-
volutional neural network (CNN) to predict GRN from single-cell
RNA-seq expression data. The method transformed the expression
data lacking locality into an image-like object that CNNs could op-
erate well. Then CNNs were used to learn the gene interactions,
causality inferences, functional assignments and disease gene predic-
tions. In addition, Wang et al. proposed a gene regulatory graph
neural network approach for reconstructing GRNs from scratch
using gene expression data (Wang Juexin, 2020). They defined the
GRN inference as a graph classification task, i.e. the algorithm
determined whether a subgraph with two nodes at its center con-
tained a link between them. A positive subgraph was formed by a
linked pair of transcription factors and target gene together with
their neighbors, whereas a negative subgraph was formed by an
unlinked transcription factor and target gene pair together with their
neighbors.

Although significant progress has been made, the GRN inference
problem is far from being solved. In this study, we focus on improving
the performance of the gene regulation prediction model using ensem-
ble machine learning, which has emerged as a way to achieve better
predictive performance than using single machine learning algorithms
(Suraj et al., 2019; Zhang and Ma, 2012). Ensemble learning is a ma-
chine learning technique in which multiple models are trained to solve
the same problem and then combined to produce better results
(Dietterich, 2000). Ensemble methods aim to reduce individual ma-
chine learning models’ bias and/or variance by combining several of
them into a robust (ensemble model) model that achieves better
results. Additionally, this study wuses the Shapley Additive
Explanations (SHAP) as an importance score-based feature selection
method (Lopez de Prado, 2020) and consider as the first work that
uses Shapley values as gene interactions scores. The SHAP value is
one of the most widely used measures of feature importance by com-
puting the contribution of each feature to the prediction. In this work,
we explore several machine learning algorithms along with SHAP and
propose a novel method named AGRN, which aims to find the im-
portance scores for the links of the GRN from an ensemble machine
learning algorithm. We combine the SHAP importance scores from
three distinct methods, namely, extra tree regressor (ETR), random
forest regressor (RFR) and support vector regressor (SVR).
Furthermore, we optimize the hyperparameter of SVR and iteratively
calculate importance scores using SVR by taking a subset from the
dataset. Finally, we take the optimized weighted average of the scores
to calculate the final importance score. Benchmarking results show
that our ensemble-based method outperforms other comparable meth-
ods. We believe that the good performance of AGRN will be useful to
predict GRNs more accurately, which can increase our understanding
of how biological processes work in health and disease.

2 Methods

This section formally discusses the definition of the gene regulatory
network (GRN) inference problem, the datasets we used to evaluate
our method and the performance evaluation metrics. Finally, we dis-
cuss the AGRN framework to predict GRN.

2.1 Problem definition

The problem can be defined with expression data as a matrix where
each row represents the expression levels of all G genes in one of the
S samples.

X110 X12 - X1G
X211 X22 o X2G

> Xs,g: the expression value of gene g in sample s
Xs1  Xs2 ... XSG

The algorithm’s output is then described as a directed graph in which
each node represents a single gene, and a directed edge from node i to j
indicates that gene i governs the expression of gene j (Joeri Ruyssinck,
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2014). A score is assigned to each conceivable edge in the network, indi-
cating the degree of certainty that this is a true regulatory link.

2.2 Datasets

This study uses gene expression data to infer the directed network top-
ology of the target GRN. We do not make any further assumptions
regarding whether the data was generated using gene knockouts, multi-
factorial perturbations, steady-state observations or other experimental
settings. Also, self-regulatory interactions are ignored, and no time-
related information is considered. Throughout this study, we used a
directed topology setting similar to the setup used in the DREAM chal-
lenges (Alberto de la Fuente, 2014; Marbach ef al., 2009), allowing for
a fair comparison of different techniques. The DREAM (elaborated as
Dialogue for Reverse Engineering Assessments and Methods) chal-
lenges provide researchers with benchmark datasets for GRN inference
to evaluate the findings. These challenges are considered to be the most
comprehensive evaluations of GRN inference methods.

This research uses multifactorial perturbation data generated for
the DREAM4 and DREAMS5 (Marbach ez al,, 2012) challenges.
DREAM4 dataset comprises five synthetic networks, each with 100
genes, whereas the DREAMS dataset comprises synthetic and real-
world data from DREAMS. In this work, we use iz silico data for the
synthetic data and E. coli gene expression for the real-world data
(Akesson, et al., 2021). Multifactorial expression data are static steady-
state measurements obtained by slightly perturbing all genes simultan-
eously. Expression profiles obtained from biological replicates and dif-
ferent patients may be considered multifactorial data. These are easier
and less expensive to obtain than knockout/knockdown or time-series
data. As a result, multifactorial data are now more often used in prac-
tice. However, they are less useful for predicting edge directionality,
making the task of inferring regulatory networks more difficult.
Furthermore, the underlying network (the gold standard) is distributed
along with the simulated expression data in the DREAM4 challenge to
assess the quality of any inference made using the data, which is an im-
portant aspect. The numbers of genes and transcription factors (TFs) in
each dataset used in this study are shown in (Supplementary Table S1).

2.3 Performance evaluation metrics

AGRN ranks regulatory linkages from most confident to least confi-
dent. We employed a Precision-Recall (PR) curve (Jesse Davis,
2006) and a Receiver Operating Characteristic (ROC) curve (Yang
Shengping, 2017) to evaluate the rankings. The PR curves give a
more informative picture of an algorithm’s performance. For differ-
ent thresholds on the significance scores, the PR curves show the re-
lationship between the proportion of true positives among all
predictions (precision) and the percentage of true positives that are
retrieved (recall). In contrast, the ROC curve shows the true positive
rate versus the false positive rate. We sorted the regulatory linkages
by importance scores in descending order to evaluate the networks,
keeping only the top 100 000 predictions similar to the setup used in
the DREAM competition (Joeri Ruyssinck, 2014). The area under
the ROC curve (AUROC) and the area under the PR curve (AUPR)
are then calculated based on the benchmark data.

2.3.1 Framework of AGRN

In AGRN, we determine the weight of the regulatory connection be-
tween the transcription factor (input gene) and the target gene, which
is similar to how a machine learning approach determines feature im-
portance. We adopt an ensemble machine learning approach to pre-
dicting an accurate GRN. The ensemble machine learning approach
has recently been successfully applied to solve various bioinformatics
problems (Joeri Ruyssinck, 2014). On a classification or regression
task, a combination of machine learning models can harness the capa-
bilities of a range of well-performing models and make predictions
that outperform any single model in the ensemble (Dietterich, 2000).
Although an algorithm may perform admirably on one problem, there
is no reason to expect that it will perform equally well on another
problem where the same assumptions may not hold. The ‘no free
lunch’ (NFL) theorem (Adam, 2019) states that no single machine

learning algorithm is universally the best-performing solution for all
cases (Manisha Panta et al., 2021; Sumaiya Igbal, 2018).

To select the regressors for the ensemble, we examine the perform-
ance of seven individual regression algorithms, namely decision tree
regressor (DTR), random forest regressor (RFR), extra tree regressor
(ETR), extreme gradient boosting regressor (XGBR), Adaboost regressor
(ABR), support vector regressor (SVR) and light gradient boosting ma-
chine (LGBM). The algorithms and their configuration details are briefly
discussed here. DTR: It is a tree-based learning algorithm. A decision
tree, consisting of decision nodes and leaf nodes, is incrementally devel-
oped by splitting the dataset into smaller subsets. The method can handle
both categorical and numerical data (Sayed, 2012). RFR: It is a super-
vised learning algorithm that uses the ensemble learning method for re-
gression (Breiman, 2001). It is a meta-estimator that aggregates many
decision trees (bagging). The random forest creates trees in parallel, and
these trees have no interaction. At the training time, the algorithm cre-
ates a large number of decision trees and outputs the average prediction
(regression) of the individual trees. ETR: It is an ensemble machine learn-
ing method that uses averaging to improve predictive accuracy and con-
trol over-fitting by fitting a number of randomized decision trees from
the original learning sample (Geurts, 2006). XGBR: This is another ML
algorithm with the same principle of gradient boosting (Chen and
Guestrin, 2016). The method uses more regularized model formalization
to control over-fitting, which further leads to improved performance.
XGBR also provides faster computational speed in addition to increased
performance. ABR: This algorithm uses decision trees as weak learners
added sequentially to the ensemble learning (Shrestha, 2004). The mod-
el’s predictions are employed in a future model to correct prediction mis-
takes. The method weighs the training dataset to focus on the training
examples where previous models made prediction errors. SVR: This re-
gression method allows us to determine how much error is acceptable in
the model and choose a line or hyperplane that fits the data (Alawad
et al., 2020). We optimized the parameter epsilon regression and the
cost parameter C using a Bayesian optimization algorithm. LGBM: This
is a tree-based learning algorithm that grows the tree vertically and choo-
ses the leaf based on the loss (Guolin Ke, 2017). The method uses the
gradient boosting framework, which is a fast algorithm that can handle
large datasets and has a shallow memory requirement.

Our proposed algorithm needs to quickly predict the GRN be-
cause identifying a network involving p genes requires rerunning the
algorithm p times. The ensemble’s regressors are chosen so that each
regressor’s underlying principle of learning is distinct from others,
and the ensemble algorithm runs fast. By comparing the performance
of the seven methods based on AUROC and AUPR (Supplementary
Fig. S1), we found that RFR, ETR and SVR are the top-performing
methods, where RFR and ETR are two tree-based regressors and
SVR is a support vector machine-based regressor. So, we select these
three methods to create our ensemble method AGRN.

RFR and ETR are two tree-based regressors that consist of many
decision trees to improve the prediction performance. Each decision
tree is constructed by recursively partitioning, which starts from the
root node (known as the first parent); each node can be split into left
and right child nodes. These nodes can then be further split and be-
come parent nodes of their resulting children nodes. The split deci-
sion depends on the mean squared error (MSE), as shown in
Equation 1 (James Bergstra, 2012; Sayed, 2012).

1 N
MSE (1) = 5> (0" = 51)* (1)
tieD,
5 = > 9 @
N, i€D,

Here, N; is the number of training samples at node t, D; is the
training subset at node t, y) is the true target value, and y; is the
predicted target value (sample mean).

Although RFR and ETR are similar in general concept (ensemble tree
method), there are two main differences between them; RFR uses boot-
strap replicas, which means it subsamples the input data with replace-
ment. In contrast, ETR uses the whole original sample. Also, the selection
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of cut points to split the nodes is different; RFR chooses the optimum
split (to reduce the variance), whereas ETR chooses it randomly.

In our ensemble-based method, GRN inference begins with deter-
mining the relevance of each feature in each regression problem. As a re-
sult, enhancing how we extract the feature’s importance scores is
crucial, as it serves as a putative proof of a regulatory relationship be-
tween a gene pair. However, the conventional method for extracting
feature importance from the tree-based method may be inconsistent, i.e.
it is possible that the most important feature may not get the highest fea-
ture importance score (Lundberg, 2018). For example, the tree-based
models can assign different scores to two equally important features de-
pending on the level of splitting done with the features. The feature that
splits first will be given a larger importance score. To overcome this
limitation, we use the Shapley values as the feature importance scores in
the two tree-based methods, RFR and ETR. Shapley Additive
Explanations (SHAP) is a popular technique to explain machine learn-
ing models (Shapley, 1998). The idea behind SHAP is that the outcome
of each possible combination (or coalition) of features should be consid-
ered when determining the importance of a single feature (Patel and
Wang, 2015). Shapley values can be calculated using Equation 3, which
represents an average over all possible subsets of marginal contribution
for the features used in the model (Rozemberczki, et al., 2022).

ISt @ — IS| = 1!

i (W(SU ) — v (9) (3)
Sc{-P\G) '

¢j (v) =

where j is a feature, ¢; is the Shapley value for feature j, p is the
number of features, S is the subset of features before adding the
j™ feature and v is the prediction value.

We calculate the Shapley values for each gene of the sample, and
they represent the input gene’s impact on the target genes that the in-
put gene is related to.

On the other hand, we have selected SVR with a linear kernel be-
cause of its fast computation time. Several studies (Ganapathy and
Peddinti, 2018; Huang et al., 2018) have demonstrated the success
of SVR and its efficient performance. SVR has characteristics that
substantially impact our ensemble method AGRN, such as handling
large feature spaces (Hua and Sun, 2001). Also, SVR has an excel-
lent mathematical property that we can significantly improve the
model’s performance by improving certain model parameters (Lee
and Mangasarian, 2001). Suppose given training data {(x;,y;),1=1,
2, ..., n}, with input x;, y; € R and the main function for linear re-
gression is (Smola and Scholkopf, 2004; Zheng, 2015):

y=wlx + b (4)

where w € R is the regression coefficient vector, and b € R is the
intercept. The SVR model employs a loss function, which is not sen-
sitive if the difference between the observation (y;) and the predic-
tion (w'x; + b) is less than a predefined level £. We can obtain the
SVR model from the linear model in Equation 4 by solving the fol-
lowing constrained minimization problem:

1 n u
minee ) = 3w S, 6 3d]
i=1

Subjecttoy; — wix; — b < & +¢& )
whx +b —y <&+
& >0¢8 > 0fori=1,2, ..., n

where 0 is the objective function of SVR, & is the predefined margin
of error tolerance, & = (¢1,&,...,¢,)  and & = (&5,&,...,&)T
where &, & are the slack variables, which are part of the error
that exceeds the error tolerance €. & and & can be considered as
the effort we should make to bring the prediction (w”x; + b) to
E-neighborhood of the observation y;, if the distance between the
prediction and observation y; is above the predefined error tolerance
&. Also, } wTw is the term used to measure the regression model’s
complexity, and the regularization parameter C>0 balances the
model complexity and the error on the training set made by the
model. By using Lagrange Multiplier Method & Karush-Kuhn-
Tucker (KKT) conditions, the previous optimization can be solved

through its dual problem to obtain the following linear SVR in
Equation (Zheng, 2015):

n

y:Z(aifcc;‘)xiTerb (6)

=1

where b represents the bias term, which can be calculated from the
set of support vectors, and the coefficient terms Y7 (o — of) xT
represent w! which is mentioned in Equation 4. This SVR model is
implemented in the machine learning package Scikit-learn
(Pedregosa, 2011).

To compute the feature importance for linear SVR, we calculate
the coefficient score, which considers an efficient way to measure
the feature importance in linear models of the machine learning al-
gorithm. In addition, we found that calculating SHAP for SVR had
no effect on performance and is computationally expensive.
Moreover, in NIMEFI, the author found that sampling the dataset
iteratively to calculate the importance scores from multiple SVR
models produces better results than using the entire dataset with one
single model (Joeri Ruyssinck, 2014). This work motivated us to
choose SVR as one of the methods for our ensemble method. We fol-
low the same setup that is used in NIMEFI (Joeri Ruyssinck, 2014).
Using an expression data matrix consisting of rows and columns,
the rows represent the observations while the columns represent the
genes. In each iteration, y; represents a target gene while y_; repre-
sent as transcription factors (input genes). We select r subsampling
of observation where r is a uniformly randomly generated integer
number between 20% and 80% of the observations (rows of the ex-
pression data matrix). The subsampling process is repeated 200
times to generate 200 models for each target gene. We select the top
five interactions in each iteration based on the importance score (co-
efficient score). Then we sum the importance scores from 200 itera-
tions and use them as the final importance scores for SVR.

Setting SVR parameters is crucial since incorrect parameter selec-
tion can considerably impact accuracy. To optimize the SVR param-
eters, there are three common approaches, namely grid search
(Yuting Sun, 2021), random search (James Bergstra, 2012; Ruder,
2017) and the probabilistic model-based approach (Jingging Liu,
2006). In this work, we have used the Bayesian optimization algo-
rithm, which is a probabilistic model-based approach for finding op-
timal hyperparameters (Feurer, et al., 2014). The algorithm is better
than the random search and faster than the grid search (James
Bergstra, 2012). In SVR, we optimize two important parameters,
the margin of tolerance (e), within which no penalty is given to
errors, and the regularization parameter (C), which means how
much we want to avoid misclassification in each training data, as
shown in Equation 5. (Pedregosa, 2011; Smola and Schélkopf,
2004; Wang Yisen, 2019).

After collecting the importance scores from the three methods,
we take a weighted average to calculate the aggregate importance
scores, as shown in Equation 7.

o1 (§,(R)) +wyx (§,(E)) + 3% (Gg(SV))
s w1+ Wy + w3

7

where R, is the final importance score for gene g, w;is equal to 1,
¢,(R) is the Shapley value of gene g using RFR, w; is equal to 0.5,
¢, (E) is the Shapley value of gene g using ETR, ;3 is equal to 0.1,
Cy(SV) is the coefficient value of gene g using SVR. We applied a
grid search technique (Alawad et al., 2020) to find the optimal
weights to calculate the final importance scores. Finally, we calcu-
lated the z-score of final importance scores for genes in order to
have a better understanding of the distribution of importance scores
as shown in Equation 8.

R, —
2~ score =&t ®)
G
where R, is the final importance score for gene g, u is the mean of
final importance scores, o is the standard deviation of final import-
ance scores for genes.
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The overall framework of AGRN to predict a GRN from the ex-
pression data is shown in Figure 1.

3 Results

In this section, first, we present the results of using seven machine
learning algorithms to infer gene regulatory networks (GRN). Next,
we demonstrate the performance of SHAP-based importance scores
compared to the traditional importance scores. Finally, the proposed
method, AGRN, is compared with other comparable methods in the
literature.

The performance of the seven regression approaches is compared
in terms of AUROC and AUPR (Supplementary Fig. S1). The results
indicate that the best-performing model is SVR based on the average
AUROC from the five networks, while the best performer is ETR
based on the average AUPR (Supplementary Fig. S1). Results from
the tree-based methods, ETR and RFR, are very close. So, we select
the three best-performing methods: ETR, RFR and SVR, for further
analysis.

After selecting the best three regression methods, we created an
experimental setup with different combinations of SVR, ETR, RFR,
ShapBasedOnRFR and ShapBasedOnETR, as shown in
Supplementary Figures S2-S5. The ROC curve and the Precision-
Recall curve are also shown in Supplementary Figures S6-S8. From
these empirical results, we found that ShapBasedOnRFR,
ShapBasedOnETR and SVR perform better in most of the DREAM4
and DREAMS datasets. These motivated us to take the average im-
portance scores from these three methods. However, we found that
SVR performs well in some datasets but not in others. So, we took
the weighted average of these three methods. We run a grid search
algorithm in Network#1 of the DREAM4 dataset to find the opti-
mal weights. Then, we use the optimal weights in the remaining
datasets to compute the final importance score for AGRN. The
selected optimal weights for RFR, ETR and SVR are 10, 5 and 1,
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Fig. 1. The framework of the AGRN to predict the gene regulatory network. AGRN
combines three ML methods (ETR, RFR and SVR) and calculates the final import-
ance scores using an optimized weighted average

respectively. In the following sections, we compare the performance
of AGRN with the other comparable methods such as: GENIE3,
GRNBoost2, PPCOR, LEAP and PIDC.

3.1 Comparison with some existing methods

To evaluate the effectiveness of AGRN, we have rerun five bench-
marking methods that are mentioned in (Pratapa, et al., 2020), such
as GRNBoost2, PPCOR, PIDC, GEINE3 and LEAP, using four
datasets from DREAM4 and three datasets from DREAMS.

Figures 2 and 3 show the AUROC and AUPRC of these com-
pared methods on the four datasets. As can be seen, AGRN outper-
forms the compared methods on all four simulated datasets from
DREAM4. We observed an improvement over the five methods
(GRNBOOST2, PPCOR, GENIE3, LEAP and PIDC). Also, AGRN
performs better than the widely used method GENIE3.

Compared with the second-ranked method on Networkl in
DREAM4, AGRN has a 2.83% increase in AUROC and a 19.21%
increase in AUPRC. On Network 2, AGRN achieves an improve-
ment of 2.48% in AUROC and 13.51% in AUPRC over the second-
ranked method. For Network 3 in DREAM4, AGRN has a 3.11%
higher AUROC and a 25.23% higher AUPRC than the second-
ranked method. In addition, compared with the second-ranked
algorithm (GENIE3) on Network4 in DREAM4, AGRN has a
3.94% increase in AUROC and a 26.5% increase in AUPRC.

On the other hand, using iz silico network from the DREAMS
dataset, AGRN shows an improvement of 3.8% and 8.83% com-
pared to the second-ranked method (GRNBoost2) based on
AUROC and AUPR, respectively (Supplementary Figs S10 and S11).
Moreover, using E. coli network from the DREAMS dataset, com-
pared with GENIE3, AGRN gains an improvement of 7.65% and
7.14% based on AUROC and AUPR, respectively (Supplementary
Figs S10 and S11). On the other hand, compared with the first-
ranked method (LEAP) on S. cerevisiae network from the DREAMS
dataset, AGRN has a -8.42% decrease in AUROC and a
-17.21% decrease in AUPRC. Overall, the results clearly indicate
that AGRN, an ensemble of techniques such as ShapBasedOnRFR,
ShapBasedOnETR and SVR, may be utilized to infer GRNs more ac-
curately than other comparable methods.

To further visualize how many interactions have been correctly
predicted in AGRN, we construct the GRN from Network#5 of the
DREAM4 dataset. 72 of the top 100 AGRN predictions are accur-
ate, whereas GENIE3 makes 69 such accurate predictions. Incorrect
predictions in AGRN and GENIE3 are 28 and 31, respectively
(Supplementary Fig. S9a and b). Thus, AGRN predicted three add-
itional interactions compared with GENIE3, and we presented the
false positive interactions in the Venn diagram (Supplementary Fig.
S9c). In addition, we calculate the z-score of gene importance scores
with their target genes (Supplementary Table S5), and we found that
all false positive edges are derived from the three highest z-score val-
ues of feature importance calculated by AGRN and GENIE3.

3.2 Computer runtime

We optimize the runtime by parallelizing the code that can use all the
available processors in a system. The studies were conducted on a 64-
processor Linux server with 128 GB of RAM. To predict GRNG, all 64
processors were utilized. We compare the runtimes (in minutes) of our
ensemble method (AGRN) and its constituent methods (RFR, ETR and
SVR) using the DREAM4 datasets (Supplementary Table S2) and the
DREAMS datasets (Supplementary Table S3). We found that SVR took
more runtime than the tree-based methods, RFR and ETR. In AGRN,
we optimize the hyperparameter of SVR for each target gene which is
computationally expensive for a large number of genes. However, we
found that SHAP-based importance scores perform better in most cases
compared with SVR, as shown in Supplementary Figures S2-S5. So, in
the AGRN tool, we keep an option to select either the weighted
average of SHAP-based RFR and SHAP-based ETR or the
weighted average of all three methods based on the available com-
puting resources. In addition, we compare the runtimes (in
minutes) of our ensemble method (AGRN) and the five bench-
marking methods (GRNBoost2, PPCOR, PIDC, GEINE3 and
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Fig. 2. AUROC scores of the compared GRN inference algorithms on four DREAM4 datasets for (a) Network1, (b) Network2, (c) Network3 and (d) Network4

LEAP) using three datasets from DREAMS (Supplementary Table
S4). We found that AGRN is the second fastest execution method
after PPCOR.

4 Conclusion

By combining three disparate machine learning algorithms, we devel-
oped an ensemble machine learning method named AGRN that infers
GRNGs using the importance scores. AGRN achieves competitive per-
formance on both the DREAM4 and DREAMS datasets. We have ana-
lyzed the performance of AGRN using the DREAM4 multifactorial
datasets, which include five synthetic networks, and the DREAMS data-
sets of synthetic data (7 silico) and real-world data (E. coli). To compare
with other algorithms, we used the same settings for the DREAM4 and
DREAMS challenges. In AGRN, we combined the importance scores
calculated in each of RFR and ETR based on their Shapley values. In
addition, importance scores were calculated from multiple SVR models
with iterative sampling. Moreover, we optimize the SVR hyperpara-
meters and use the weighted average of the three methods
(ShapBasedOnRFR, ShapBasedOnETR, SVR) to have the final import-
ance scores. The comparison of AGRN with five benchmarking methods
(GRNBoost2, PPCOR, GENIE3, LEAP and PIDC) using five networks
from the DREAM4 dataset and two datasets from DREAMS shows
that AGRN outperforms the other methods. For example, in Network 1
from DREAM4, AGRN has a 2.83% higher AUROC and a 19.21%
higher AUPRC than the second-ranked algorithm. In addition, compared

with the second-ranked algorithm on Network4 in DREAM4, AGRN
has a 3.94% increase in AUROC and a 26.50% increase in AUPRC.
On the other hand, using the in silico data from DREAMS, compared
with the second-ranked method (GRNBoost2), AGRN achieves an im-
provement of 2.42% and 8.83% based on AUROC and AUPR scores,
respectively. Also, using E. coli dataset, the comparison shows that
AGRN achieves an improvement of 7.65% and 7.14% based on the
AUROC and AUPR scores, respectively. Therefore, these results allow
us to conclude that, rather than using a single importance score, AGRN
can improve performance on GRN inference by combining importance
scores from SHAP-based RFR, SHAP-based ETR and optimized SVR.
We believe that the ability of our ensemble method to infer GRN with
higher accuracy will have a greater impact on understanding biological
systems and disease processes.

The main limitation of this work is the datasets used, DREAM4
and DREAMS, which are from relatively well-studied small model
species and contain synthetic data. These are the only benchmark
data with experimentally validated gold standard regulatory rela-
tionships. With increased regulatory relationship identification,
AGRN can be trained and evaluated on more species, including
humans, mice and plants.
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