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ARTICLE INFO ABSTRACT

Keywords: Music listening involves many simultaneous neural operations, including auditory processing, working memory,
Brain network temporal sequencing, pitch tracking, anticipation, reward, and emotion, and thus, a full investigation of music
Modularity cognition would benefit from whole-brain analyses. Here, we quantify whole-brain activity while participants
Ei’;‘zlhty listen to a variety of music and speech auditory pieces using two network measures that are grounded in complex
Culture systems theory: modularity, which measures the degree to which brain regions are interacting in communities,

FMRI and flexibility, which measures the rate that brain regions switch the communities to which they belong. In a
music and brain connectivity study that is part of a larger clinical investigation into music listening and stroke
recovery at Houston Methodist Hospital’s Center for Performing Arts Medicine, functional magnetic resonance
imaging (fMRI) was performed on healthy participants while they listened to self-selected music to which they
felt a positive emotional attachment, as well as culturally familiar music (J.S. Bach), culturally unfamiliar music
(Gagaku court music of medieval Japan), and several excerpts of speech. There was a marked contrast among the
whole-brain networks during the different types of auditory pieces, in particular for the unfamiliar music. During
the self-selected and Bach tracks, participants’ whole-brain networks exhibited modular organization that was
significantly coordinated with the network flexibility. Meanwhile, when the Gagaku music was played, this
relationship between brain network modularity and flexibility largely disappeared. In addition, while the
auditory cortex’s flexibility during the self-selected piece was equivalent to that during Bach, it was more flexible
during Gagaku. The results suggest that the modularity and flexibility measures of whole-brain activity have the
potential to lead to new insights into the complex neural function that occurs during music perception of real-
world songs.

1. Introduction identified in all known musical systems” (p. 2). Given this heterogeneity,

many scientists distinguish between musicality and music (Honing et al.,

Visit any human habitation on earth and you are likely to find music
woven into the fabric of life: in a meta-analysis of 315 societies, Mehr
et al. (2019) found evidence of music in all of them. Yet although
omnipresent as a cultural phenomenon, music itself—ranging from a
Western orchestra to Aka polyphony, Tuvan throat singing, and Maori
powhiri—is extremely diverse. As Trehub et al. (2015) write “Strictly
speaking, there are no structural characteristics that have been

2015). As Patel (2019) explains, musicality refers to “the set of mental
capacities underlying basic musical behavior,” whereas music “is a
construct highly dependent on culture” (p. 460). Music cognition within
an individual brain lies at the intersection of the two: it is dependent on
musicality but shaped by culture.

Patel (2019) has written that “music cognition is not a unitary mental
phenomenon and instead involves a collection of distinct and interacting
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mental processes” (p. 459). This includes auditory processing, working
memory, temporal sequencing, pitch tracking, anticipation, reward, and
emotion (Zatorre and Salimpoor, 2013). The complex combination of
neural operations performed in the brain during music cognition ne-
cessitates analytic methods that take the functional activity of the
whole-brain into account. Furthermore, the use of real-world musical
stimuli is needed to begin to answer questions about the interaction
between musicality and culture within the brain.

A novel functional magnetic resonance imaging (fMRI) study we
have undertaken at Houston Methodist Hospital’s Center for the Per-
forming Arts Medicine addresses both the needs for a whole-brain
analysis method and presentation of real-world stimuli. As part of a
larger investigation of music’s role in stroke rehabilitation, our goal was
to compare the neurological responses between various musical and
speech stimuli. Participants without prior musical training were asked to
listen to long excerpts of six stimuli: a self-selected track for which they
felt a positive emotional connection, examples of music that were
culturally familiar (J.S. Bach) and unfamiliar (Gagaku court music of
medieval Japan), emotional and unemotional English speech, and
speech from a foreign language.

To quantify differences in brain response for the different auditory
pieces, we focus on two whole-brain network measures: modularity and
flexibility. Modularity has been widely applied to study brain networks
(Sporns and Betzel, 2016) as it measures the degree to which brain re-
gions can be grouped into modules based on their structural connections
or functional network of interactions (Newman, 2006). Flexibility is the
rate that brain regions change their module membership (Bassett et al.,
2011), and therefore can measure how dynamic the network structure is
while the brain performs a particular task. Importantly for the motiva-
tion of this work, modularity and flexibility are principles of design that
are rooted in complex systems theory (Simon, 1962) and appear in
diverse biological systems besides the brain (Bonomo, 2020). The degree
of dynamic, modular structure in brain networks is associated with
differences in cognitive performance under different task demands. In
previous work with this dataset, in which we only looked at the static
modularity, we found that those with higher modularity during the
self-selected song exhibited the biggest change in modularity during the
more novel auditory stimuli, while the familiar stimuli led to less
perturbation of the network structure (Bonomo et al., 2020). Prior
theory modeled the benefit of high modularity for performing fast,
simple cognitive tasks and the benefit of low modularity for longer, more
complex tasks (Chen and Deem, 2015), and experiments have demon-
strated this dichotomous connection between performance and both
resting-state (Yue et al., 2017) and task-based (Lebedev et al., 2018)
modularity. The opposite relationship has been experimentally observed
for flexibility, where low flexibility correlates with performance on
simple tasks, and high flexibility correlates with performance on com-
plex tasks (Ramos-Nunez et al., 2017). Furthermore, there is a negative
relationship between modularity and flexibility in resting-state fMRI
data (Ramos-Nunez et al., 2017). Here, we look at the
modularity-flexibility relationship during task-based fMRI to study how
the brain processes auditory pieces of varying familiarity.

For the musical pieces, we find that during the self-selected song and
Bach, there is a significant negative correlation between a participant’s
whole-brain modularity and flexibility. This relationship largely disap-
pears when the culturally unfamiliar Gagaku music is played. Further-
more, the auditory cortex is equally flexible during the self-selected
piece and Bach, while it was more flexible during Gagaku. We hypoth-
esize that the negative modularity-flexibility correlation may denote
that the brain, as a complex system, is configured to efficiently process
familiar stimuli, whereas it may be driven out of this configuration by
highly novel stimuli that require more effort to process. Overall, our
results suggest that the modularity and flexibility measures of whole-
brain activity have the potential to lead to new insights into the com-
plex neural function that occurs during music perception, in particular
during real-world music stimuli.
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2. Methods

We performed fMRI as 25 healthy adult participants actively listened
to six excerpts of music and speech. The neuroimaging run for each
auditory piece lasted 312 s. Further technical details about the partici-
pants and scans are found in Section 8. The auditory pieces included a
self-selected song (Self) and a playlist created by the researchers. The
playlist consisted of auditory selections chosen for their cultural famil-
iarity and unfamiliarity to the participants in the study (Bach and
Gagaku, respectively), emotional speech from Charlie Chaplin in the
film “The Great Dictator” (Chaplin), an unemotional newscast read by
Walter Cronkite (Cronkite), and unfamiliar foreign speech from the
South African Xhosa tribe (Xhosa).

We were particularly interested in seeing the contrasts in whole-
brain activity during the different musical pieces. For the self-selected
piece, participants were instructed to choose a song to which they felt
a strong emotional attachment. For the culturally familiar music, we
chose J.S. Bach’s 2-part Invention in C-Major, BWV 772, a short piano
work representative of traditional classical music originating in Europe
during the common practice period (17th to early 20th centuries AD).
For the culturally unfamiliar music, we selected a performance of
Gagaku, the court music of Japan. Dating from the 8th-12th centuries
AD, Gagaku is widely considered to be the oldest orchestral music in the
world and one of the oldest unbroken musical traditions. However, in
both sound and rhetoric, this aristocratic music is considered “remote”
and “esoteric” (Tanaka and Koto, 2016, p. 18). It is particularly dis-
orienting for naive listeners given the unique instrumental techniques,
including “glissandi, an accelerating repetition of the same note, an
undulation of the notes, noises such as that of breathings [and] shouts,
etc...” (Tamba, 1976, p. 8). The Gagaku track thus provided a strong
contrast to the other musical selections. Indeed, by quantifying
perceptual musical features, Bach and Self songs were more musically
similar to each other than either was to Gagaku (see Section 8).

To conduct a network analysis, we divided the brain into 84
anatomical regions (Brodmann areas, or BAs) and averaged the BOLD
signal over all fMRI voxels in each region (see Fig. 1). If two brain re-
gions exhibited similar BOLD signal time series during the neuroimaging
run, we inferred that these regions were working together to process the
stimulus and drew a network link between them. The resulting func-
tional activity network was then representative of how each auditory
piece was processed by the whole brain. In our analysis, we focused on
two measures to quantify the network structure: modularity (Newman,
2006), which gave us an overall summary of the brain network, and
flexibility (Bassett et al., 2011), which gave us information about how
dynamic the brain network was over time.

Modularity measures the extent to which the brain regions can be
grouped into communities, known as modules, based on sharing many
functional connections and having limited connections to the rest of the
brain (see Fig. 1A). In other words, a module contains communities of
brain regions that appear to all have highly coordinated activity while
processing the stimulus. Modularity is expressed as the number of links
inside modules divided by the total links in the network. High modu-
larity means that the network consists of discrete communities that are
substantially isolated from each other; in other words, these networks
have mostly intra-module links. Low modularity means that the com-
munities are less distinct and are substantially connected to other
communities; these networks have mostly inter-module links.

Meanwhile, flexibility determines how dynamic the network is over
the course of the auditory piece based on the rate that each brain region
changes its module membership (see Fig. 1B). To determine flexibility,
we used a sliding-window approach and extracted 80 short overlapping
portions of the neuroimaging run. A network was constructed for each of
these time windows; the modular structure was determined for each
network; and flexibility was computed for individual brain regions
based on differences in the network modules from one time window to
the next. It was calculated as the number of times that a brain region
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Fig. 1. The whole-brain network analysis methods. (A) The brain is divided into 84 anatomical regions that serve as network nodes. The BOLD signals for each brain
region from fMRI are compared to determine the network connections. A link is drawn between two brain regions if their signals are correlated over time: the
complete time series is used for modularity, while short overlapping windows of the time series are used for flexibility. (B) Modularity Analysis: Modularity is defined
as the ratio of links within modules to the total number of links. The main example has three modules with 13 intra-module links of 16 total links, and modularity is
therefore 0.8. Example networks for minimum (M = 0) and maximum (M = 1) modularity are also shown. (C) Flexibility Analysis: Flexibility for each brain region is
defined as the number of times the brain region changes its module membership, from one time window to the next, divided by the number of time windows. The
example network shows that Region 1 changes from the yellow to blue module one time over the two subsequent time windows, and its flexibility is therefore 0.5.
The overall flexibility is then the average of the flexibility values for individual brain regions. More details and full equations are described in the Section 8. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

changed its module membership divided by the number of subsequent
time windows. High flexibility means that the brain region has a high
rate of switching modules; in other words, the brain region is found to be
a part of a different community in almost every time window. Low
flexibility means that the brain region has a low rate of switching
modules; it mostly stays with its same community throughout the entire
run. The results were averaged over all brain regions to assign an overall
flexibility value to a participant’s brain during a particular auditory
piece.

The modularity and flexibility measures are based on similar
network principles; however, they are not inherently related. In
randomly simulated brain networks, the correlation coefficient between
the modularity and flexibility plotted for these networks is zero
(Ramos-Nunez et al., 2017). The correlation coefficient (r) quantifies
whether a straight line can be drawn through the data points, thus
determining if there is a significant relationship between the two mea-
sures. A strong positive relationship (r close to 1) means that higher
modularity is accompanied by higher flexibility, and lower modularity is
accompanied by lower flexibility. A stronger negative relationship (r
close to —1) means that higher modularity is associated with lower
flexibility, and vice versa. A null relationship (r = 0) means that there is
no overall trend between modularity and flexibility. The
modularity-flexibility relationship has not yet been explored during
task-based fMRI as we describe here. We were interested in whether this
relationship could distinguish differences in how participants processed
each auditory piece and, importantly, the culturally familiar music
versus the unfamiliar Gagaku.
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3. Results

When first comparing familiar music and speech, we found distinct
modularity-flexibility relationships (see Fig. 2A and B). There were
strong negative correlations during Chaplin (r = —0.68, p-value
0.030) and Cronkite (r = —0.58, p-value 0.063). In contrast, the
negative correlations were weaker during Self (r = —0.44, p-value =
0.032) and Bach (r = —0.46, p-value = 0.024). Though we are working
on the scale of the whole-brain, this result is consistent with an earlier
study of the auditory cortex, which found unique responses for music
and speech (Norman-Haignere et al., 2015). This suggests that the
modularity-flexibility relationship is able to distinguish different brain
states during auditory processing.

We then compared the self-selected and Bach with the Gagaku and
again found distinct modularity-flexibility relationships (see Fig. 2B and
C). The overall negative correlation reported above for Self and Bach
was absent during Gagaku: instead, there was no statistically significant
trend (r = —0.19, p-value = 0.507). A few participants’ brains exhibited
higher modularity and lower flexibility than the group averages, or vice
versa, however, the majority did not, suggesting that the participants’
brains were behaving more idiosyncratically than when listening to Self
and Bach. The same was true for Xhosa (r = 0.01, p-value = 0.966).

We performed power analyses for the Pearson correlation co-
efficients to determine the probability that our study found statistically
significant effects when these effects actually do exist (see Section 8).
For Chaplin, Cronkite, Self, and Bach there was very sufficient power (1-
$ =1.00) in the sample sizes for rejecting the null hypothesis, i.e.,
determining that the correlation coefficients were not r = 0. For Gagaku,
there was a marginally acceptable Type II error rate (8 = 0.234) for not
rejecting the null hypothesis, i.e., correctly concluding that there was no
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Fig. 2. The modularity-flexibility relationship during (A) English speech (Chaplin and Cronkite), (B) self-selected and culturally familiar music (Bach), and (C)
culturally unfamiliar music (Gagaku) and speech (Xhosa). Data points represent individual participants (colors for each participant are consistent across all six
graphs), and N is the number of participants that listened to that piece. Black lines represent linear fits, r is the Pearson correlation coefficient, p indicates the p-value
for two-tailed null hypothesis testing of r = 0, 1-4 indicates the statistical power to reject the null hypothesis, and f is the Type II error rate when the null hypothesis
was not rejected. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

correlation between modularity and flexibility. For Xhosa, however, therefore conclude that the modularity-flexibility relationships are
there was a very high Type II error rate (8 = 0.947) for not rejecting the weaker than they are for the other auditory pieces. Additional partici-
null hypothesis; in other words, we cannot necessarily conclude there is pants listening to Gagaku and Xhosa would be needed in order to narrow
a zero correlation. However, there is sufficient power to determine that down exactly how weak the correlations are.

the correlations between modularity and flexibility for Gagaku (1- Furthermore, we computed the non-parametric Spearman’s rank

f=0.871) and Xhosa (1-f = 0.996) are not r = —0.4, and we can correlation coefficient, p, for the relationship between each participant’s
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Fig. 3. The flexibilities for each brain region averaged over all participants. The color bar indicates the flexibility value, which can range from F = 0 to 1 (F = 0.60
was the maximum in our dataset). F = 0 means that the brain region never switched which module it was in throughout the auditory piece; F = 1 would mean that

the brain region switched its module membership at every time window. The brain figure keys at the bottom show the locations of each BA brain region and several
groups of functionally significant BAs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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modularity and flexibility during different auditory pieces, and we
found similar trends to the Pearson correlations. There is a strong
negative correlation that is statistically significant for the two English
speech excerpts (Chaplin, p = —0.75, p-value 0.013; Cronkite,
p = —0.76, p-value = 0.006). There were weaker negative correlations
that was statistically significant for Bach (p = —0.48, p-value = 0.017)
and marginally insignificant for Self (p = —0.32, p-value = 0.128). The
modularity and flexibility correlations were again highly insignificant
for Gagaku (p = —0.16, p-value = 0.566) and Click (p = —0.17, p-value
= 0.582).

In each of these cases, the reported flexibility values were averaged
over all brain regions. We then looked at the contributions of individual
regions. Fig. 3 shows the flexibilities of each brain region during each
auditory piece as averaged over all participants.

Brain regions involved in visual processing and somatosensory
function were generally the least flexible across all auditory pieces,
indicating that the activity within these respective groups of regions
remained synchronized throughout the duration of each auditory piece.
The anterior cingulate cortex (BA 33), a core emotion processing region
(Pereira et al., 2011), and the parahippocampal gyrus (BA 27) were the
most flexible across all auditory pieces, indicating that activity within
these regions was not highly correlated with the activity in other brain
regions. This suggests that part of the procedure for emotion during an
auditory stimulus (as estimated by activity in BAs 27 and 33) is a process
independent of the rest of the brain.

There was notably higher flexibility in several regions associated
with contentment during all three musical pieces versus during all three
speech excerpts. One was the inferior frontal gyrus (BAs 44, 45, 46),
which has been implicated in determining musical enjoyment (Koelsch
et al., 2006). Additionally, there was higher flexibility in the primary
and supplementary motor cortex (BAs 4 and 6, respectively) than during
the three speech pieces. The ventral tegmental area, a dopaminergic
region where activity is a proxy for pleasure, projects into these brain
regions (Hosp et al., 2019). These regions may be more dynamic with
which brain regions they interact during music as the participants
determine musical enjoyment.”

We took a closer look at the flexibility of the brain regions involved
in auditory processing (see Fig. 4). There was a significant difference in
the response of these regions during familiar music and speech, which
was in line with our results reported above and those reported by Nor-
man-Haignere et al. (2015). The flexibility was the same in these brain
regions during both Self and Bach. Interestingly, there was higher flex-
ibility during the Gagaku than during these familiar pieces. In other
words, the auditory regions were more dynamic and had a higher rate of

0.25F * b
N I
0.2} * 4
> I
£ ns. H
o 0.15 1
3
E 0.1F n.s. _
Chaplin Cronkite  Self Bach Xhosa Gagaku

Fig. 4. The average flexibilities of brain regions involved in auditory process-
ing (BAs 22, 41, 42) for all participants. Error bars indicate standard error. The
asterisk indicates a statistical significance of at least p-value < 0.05, and “n.s.”
indicates that the specified values are not significant. Individual significant p-
values are: Gagaku-Self p = 0.001, Gagaku-Bach p = 0.042, Gagaku-Xhosa
p < 0.001, Gagaku-Chaplin p < 0.001, Gagaku-Cronkite p < 0.001, Self-
Chaplin p = 0.002, Self-Cronkite p = 0.007, Bach-Chaplin p < 0.001, Bach-
Cronkite p = 0.001, Chaplin-Xhosa p = 0.006, Cronkite-Xhosa p = 0.017.
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changing modules during Gagaku: the auditory cortex was interacting
with more diverse groups of regions across the brain throughout the
unfamiliar music in order to process it. It is difficult to assess to what
degree these differences were due to the nature of the music itself or to
its unfamiliarity—after all, the two are intertwined. Nevertheless, our
experiment indicates that whole brain analysis is a promising way to
probe the brain’s responses to real-world exemplars.

4. Discussion

Our study analyzed the whole-brain processing of music and speech
and quantified the activity using the relationship between modularity
and flexibility. We found distinct contrasts in how the brain behaved
when listening to speech versus music, as well as Self and Bach versus
Gagaku. These results are in line with existing evidence for the impact of
enculturation in shaping musical minds (Neuhaus, 2003; Hannon and
Trehub, 2005a, 2005b; Hannon and Trainor, 2007; Morrison et al.,
2008; Nan et al., 2008, Morrison and Demorest, 2009; Soley and Han-
non, 2010; Cameron et al., 2015; Haumann et al., 2018). To the best of
our knowledge, our work is the first to examine differences in the dy-
namic modular organization of the functional brain network when
participants listen to music that differs in cultural familiarity.

During both Self and Bach, there was an overall relationship between
modularity and flexibility: the degree of community structure in a par-
ticipant’s brain network was negatively correlated with the dynamics of
the communities. However, during Gagaku, there was no significant
correlation between these measures. In addition, whereas the flexibility
of the auditory cortex was the same during Self and Bach, there was
increased flexibility during Gagaku. During an earlier stage of this study,
we analyzed brain activation for the first 12 participants (Karmonik
et al.,, 2016). On average over these participants, there was enhanced
blood oxygenation level dependent (BOLD) signals, increased functional
connectivity among activated voxels, and increased information flow
during the three musical excerpts, as compared to the speech pieces.
Furthermore, while there was individual variation, the average activa-
tion maps for Self, Bach, and Gagaku exhibited distinct traits. For
instance, while all three musical examples engaged the primary auditory
cortex, Gagaku showed the least overlap with the other stimuli. Self and
Bach both activated the superior frontal gyrus, involved in introspective
thought (Goldberg et al., 2006), while Gagaku uniquely activated the
superior parietal lobule, necessary for working memory (Koenigs et al.,
2009). The contrast with Self was particularly noticeable: while, as
anticipated, Self activated emotional centers such as the periaqueductal
gray and the anterior cingulate cortex (Pereira et al., 2011), the Gagaku
did not. Taken as a whole, we found that Self and Bach were more
closely related, while Gagaku was an outlier. These previous results, in
tandem with our modularity-flexibility analysis here, suggest that the
adult brain may treat culturally familiar repertoire in a significantly
different way than culturally unfamiliar music.

The modularity-flexibility relationship indicated that processing Self
and Bach was more similar to processing the English speech excerpts
than it was to processing Gagaku. We hypothesize that this may reflect
differences in processing efficiency. For context, previous work found a
strong negative correlation between modularity and flexibility
(r = —0.78) during resting-state fMRI (Ramos-Nunez et al., 2017), in
which participants are not presented with any external stimulus. Since
the brain is not being tasked with anything to process, the
modularity-flexibility relationship could indicate an optimized,
energy-saving network configuration. During a listening task, the brain
perceives each auditory stimulus by comparing it to known stimuli
templates in its auditory memory (Peretz and Coltheart, 2003; Zatorre
and Salimpoor, 2013). Self and Bach, recognized by the brain as familiar
music, could promote the negative correlation between modularity and
flexibility because the brain can efficiently process these musical pieces.
The novel and unpredictable composition of a culturally unfamiliar
piece makes it inherently more difficult to process (Zatorre and
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Salimpoor, 2013). The optimized functional organization may therefore
break down during Gagaku, as indicated by the lack of clear modular-
ity-flexibility relationship. The concept can be visualized by imagining
different configurations of the brain network representing different
possible states. These states can be mapped onto an energy landscape,
which is graph of the energy associated with all possible configurations
of a complex system. In our case, each configuration state is character-
ized by a modularity value, which represents the depth of the state, and
a flexibility value, which represents the rate that the brain transitions
from one state to another. Given that higher modularity makes a com-
plex system more stable (Simon, 1962) and more energy is needed to
overcome a larger barrier between states, the system is more likely to
transition from shallow states (low modularity, high flexibility) and less
likely to transition out of deeper states (high modularity, low flexibility).
This qualitative perspective was first put forward by Ramos-Nunez et al.
(2017). Applying this perspective to our work, a negative
modularity-flexibility relationship is assumed to be an optimal config-
uration for the brain to function efficiently and minimize energy. When
this relationship is not present, the brain is either using extra energy to
try to quickly explore the landscape and transition between deep states
(high modularity, high flexibility), or it is inefficiently exploring the
landscape by transitioning slowly between shallow states (low modu-
larity, low flexibility). A more rigorous theoretical investigation of this
hypothesis is needed and could be accomplished utilizing the mathe-
matical formalism commonly employed to study the energy landscape of
complex systems in condensed matter (Pietrucci, 2017).

Researchers have speculated about the degree to which the neural
communities involved in music perception are task-specific or shared
with other cognitive tasks. For instance, music and language processing
show considerable overlap, especially during early childhood (Patel,
2012; Patel, 2015; Patel and Morgan, 2017; Brandt et al., 2012). Like-
wise, while musical vernaculars differ widely between cultures, Mehr
et al. (2019) have shown that naive listeners often successfully rely on
affective cues such as complexity and levels of arousal to accurately
interpret the function of unfamiliar songs—succeeding precisely
because these affective cues are related to social cues in everyday life.
For the adult brain, listening to familiar repertoire has likely been
streamlined into more domain-specific networks, which may explain the
equal flexibility of the auditory cortex that we observed during Self and
Bach. The higher flexibility of the auditory cortex that we found during
Gagaku may suggest that participants’ brains are utilizing alternative
cues in order to decipher the culturally unfamiliar music.

It is worth noting that, the Bach and Gagaku have many other dif-
ferences in addition to the familiarity of their musical languages—for
instance, the Bach is a piano piece, but the Gagaku is written for an
ensemble of Asian instruments. While previous studies have mapped the
subsections of the auditory cortex that process specific musical features
(Woods et al., 2009; Leaver and Rauschecker, 2010; Norman-Haignere
et al., 2015), our study analyzed brain activity at a larger resolution in
which the auditory cortex was treated as a homogenous brain region. We
hypothesize that the whole-brain network approach would not be sen-
sitive enough to distinguish differences in traditional acoustical prop-
erties, such as pitch and timbre. In any case, consideration of the
differences in acoustical properties of the stimuli that impact brain
activation at the cellular level is less relevant to the aim of present study:
to study how the brain, as a complex system, adapts its functional or-
ganization while listening to a well-known song (Self), an unknown song
that contains musical features customary to the listener (Bach), and an
unknown song that contains musical features that are uncustomary to
the listener (Gagaku).” It is often difficult to interpret how activations in
particular regions integrate with the activity of the rest of the brain to
holistically process a stimulus (de-Wit et al., 2016), and so by taking a
whole-brain network approach, we are able to quantify differences in
the large-scale architecture of different brain states during music
listening. Additionally, isolated instances of pitch or other acoustic
features cannot necessarily be culturally grounded (Morrison and
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Demorest, 2009), and so by presenting longer stimuli, our participants
have a greater awareness of the musical character and continuity of each
selection.

5. Limitations

There are a few limitations of the present work. First, this is a small-
scale, pilot study. The results we present offer a promising new analysis
approach for the field and would be strengthened by including more
participants, furthermore, to adequately address the potential influence
of age and gender. Second, given the scale of the study, we were limited
in the number of stimuli we could test. Earlier studies found that even
when testing culturally different repertoires on participants of different
nationalities, a lack of difference in activation patterns can result when
the musical features of the repertoires are to similar (Demorest and
Morrison, 2003).

We therefore aimed for strongly contrasting ones, feeling that those
would provoke the most measurable results. However, this introduces
confounds and makes it hard to ascribe the brain behavior to any single
cause. Our methodology in follow-up work will be refined to create more
overlap in surface musical features, such as instrumentation, to further
tease out the effects of familiarity and unfamiliarity. Third, we were
certain that Bach was representative of recognizable classical music and
that Gagaku was representative of an unknown repertoire to the par-
ticipants in this study. However, the collection of psychological mea-
sures to specifically quantify music familiarity, comprehension,
preference, and emotional stimulation would allow us to further probe
how conscious experience contributes to differences in whole-brain
processing. This would also open the door for distinguishing how indi-
vidual participants process the various auditory pieces. Finally, an
additional caveat of our study is that many of the self-selected tracks
chosen by our participants contained lyrics. In future studies, it would be
advantageous to probe the impact of mixing language and music.

6. Future research

Scientists have long speculated the degree to which music cognition
is innate or acquired through exposure and learning. Our study helps lay
the groundwork for further research into this question. An increasing
number of cross-cultural music studies are being conducted, and while a
few involve neuroimaging (for instance, Demorest and Morrison, 2003;
Nan et al., 2008; Demorest et al., 2009), more are needed to explore the
varied brain responses during music cognition. Some researchers note
that it is increasingly difficult to find listeners who have never heard
Western music (McDermott et al., 2016; Stevens, 2012). However,
cross-cultural studies need not include Western music as one of the
musical traditions being analyzed (Jacoby et al., 2020). Music famil-
iarity and brain response from any two, or more, cultures could be
compared. In fact, investigations into the extent to which cultural
exposure shapes music cognition in a wide diversity of populations will
be crucial contributions to this field of research.

Seeing as our study was limited to those accustomed to Western
music, a logical next step would be to perform the same study with
aficionados of Gagaku music, as well as those conversant with both
Gagaku and Western musical traditions. It would be interesting to see
how the brain responses of each of these groups compared. Wong et al.
(2009) performed memory and recognition tasks with participants
raised with exposure to both Indian and Western musical traditions and
compared them with participants familiar with one musical culture or
the other. While most participants showed an in-culture bias, those who
were familiar with both Indian and Western music exhibited equal brain
responses to the music of both cultures (Wong et al., 2009). We would be
interested to see how the activation patterns and whole-brain network
measures of experts of Gagaku compare to those who were completely
unaccustomed to it.

Our study deliberately excluded trained musicians, but it would be
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salient to compare them to untrained listeners. Demorest and Morrison
(2003) found increased activation in both Chinese and American per-
formers in response to culturally familiar and unfamiliar stimuli as
compared to untrained listeners. It would be of particular interest to
explore whether the negative correlation between modularity and
flexibility also breaks down for professional musicians when listening to
culturally unfamiliar music.

7. Conclusion

In summary, we studied whole-brain activity from fMRI of a group of
healthy adult participants while they listened to various music and
speech pieces. Our complex systems theory approach and use of longer
excerpts of real-world stimuli allowed us to explore differences in music
processing of culturally familiar versus culturally unfamiliar music.
While there were significant trends in network modularity and flexi-
bility during Self and Bach, there was no trend during Gagaku. There
was also a noteworthy increase in the flexibility of the auditory cortex
for all participants during Gagaku, which suggests that participants’
brains were drawing upon novel resources to decipher this music.

Studying the whole brain enables us to study the complex synergies
between different brain regions and examine the degree to which it is
the same for everyone. This is germane in areas such as music therapy,
which must concern itself with the degree to which musical in-
terventions can be generalized or must be customized for individual
patients. Indeed, our results suggest that music processing may take
individual components of musicality and assemble them into interacting
communities based on both cultural exposure and personal preferences.

Because it is culturally omnipresent yet enormously varied, music
offers a particularly revealing window into how our brain engages with
experiences both familiar and new. Our work demonstrates the utility of
the modularity and flexibility measures of whole-brain network activity
to quantify the complex neural operations occurring during music
perception and to propose a theoretical grounding for why the brain
organizes and reorganizes itself during different types of music. As
Eagleman (2020) writes, “For humans at birth, the brain is remarkably
unfinished, and interaction with the world is necessary to complete it”
(p. 20). By using real world samples and whole brain analysis, we can
better understand how those interactions with the world shape our
musical brains.

8. Extended methods
8.1. Musical feature extraction

To quantify the difference in human perception of these auditory
pieces, as a proxy for differences in the overall listening experience, we
utilized the Rhythm Pattern feature extractor (Lidy and Schindler, 2016;
Lidy and Rauber, 2005; Rauber et al., 2003). This extractor calculates
the similarity between auditory signals by quantifying the combined
human perception of rhythm, pitch/melody, and timbre information
during an auditory piece. The feature set was developed to capture
differences in psychoacoustic phenomena while listening to music,
which we feel is more meaningful to our present study than differences
in acoustic statistics calculated directly from the auditory waveform.

Briefly, a Fourier transform is first computed for the audio signal, and
the frequencies are grouped into 24 psycho-acoustically motivated
critical-bands on the perceptual Bark scale (Zwicker, 1961). Spectral
masking is then performed to reproduce the phenomena of quiet sounds
being occluded from human hearing by louder sounds that are present
simultaneously, closely before, or closely after. Further processing is
performed, including transformation into different perceived loudness
scales. Another discrete Fourier Transform is computed to create a
time-invariant representation of the spectrum, known as the Rhythm
Pattern. This quantifies the amplitude modulations of the loudness in
individual Bark scale bands. These modulations of the loudness occur at
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different frequencies; the algorithm cuts off at 10 Hz, which corresponds
to a modulation of 600 bpm in the Bark scale bands. The amplitude
modulations are binned into 60 modulation frequencies per each of the
24 Bark bands, leading to a 1440-dimensional feature vector. The
Rhythm Pattern results for Bach and Gagaku are shown in Fig. 5.

Given the high dimensionality of these data (Aggarwal et al., 2001),
the Manhattan distance was used to calculate the distance between
musical feature vectors. A larger Manhattan distance means that the
auditory pieces were more musically distinct. The average distance from
Bach to Self songs was 869 + 31 (standard error of mean). The average
distance from Gagaku to Self songs was 1007 + 38, and the distance
from Gagaku to Bach was 1302.

8.2. Neuroimaging

Data were acquired from 25 participants (ages 18-82, nine males)
recruited from the Houston community that were not taking chronic
medication or psychoactive drugs. The group was heterogeneous in
gender, age, and degree of music education. The Houston Methodist
Hospital Institutional Review Board approved the research, and
informed consent was obtained from all participants. Imaging data were
collected at the MRI core of Houston Methodist Research Institute on a
Philips Ingenia 3.0 T scanner. Scans for the first 12 participants were
acquired during an earlier stage of the study (Karmonik et al., 2016;
Karmonik et al., 2020). Anatomical reference scans used a turbo field
echo pulse sequence with a field of view of 24 x 24 x 16.5 cm (1.0 mm
isotropic resolution, 8.2 ms repetition time, 3.8 ms echo time). The
task-based functional scans used an echo planar imaging pulse sequence
with a field of view of 22 x 22 x 12 cm for 130 brain volumes in each
run (1.5 x 1.5 x 3.0 mm resolution, axial orientation, 2400 ms repeti-
tion time, 35 ms echo time).

Based on the fMRI repetition time, each volume represented 2.4 s of
activity. The listening task followed a block design in which each scan
began with 24 s of silence, followed by 12 blocks of alternating auditory
stimulus and silence (each for 24 s), for a total run of 312 s (130 vol-
umes). The first 24 s of silence at the start of each run were not used in
analyses, leaving a 288 s time series with 120 volumes. Analyses were
conducted across the 288 s time series without specific regard for indi-
vidual blocks. We were interested in looking at the network architecture
of the sustained brain state as a whole during each run. It is assumed that
the brain is processing both auditory features and psychological
response (e.g., emotion, pleasure, memory) when the stimulus is on, and
only the latter when the stimulus is off. The block design encourages
better cognitive engagement, whereas presentation of the uninterrupted
auditory stimulus for 2 min 24 s (144 s) may lead to less active listening
during portions of the time series that would differ among participants.
Additionally, previous work with this dataset was able to determine
stimulus-specific activation in regions of interest using the silence block
as a control condition (Karmonik et al., 2016). The number of auditory
pieces that each participant listened to varied depending on the par-
ticipant’s tolerance for the total MRI scan duration. Data from one
participant were excluded due to technical difficulty. In the analyzed
data, 24 participants listened to Self, 24 listened to Bach, 15 listened to
Gagaku, 13 listened to Xhosa, 11 listened to Cronkite, and 10 listened to
Chaplin.

Standard preprocessing steps were taken to reduce artifacts in the
fMRI data, including correcting for motion, constant offset, and high-
frequency contributions in the BOLD signal, and implemented as
described in Karmonik et al. (2016). To construct the whole-brain
network, functional and anatomical MRI scans were combined using
AFNI software (Cox, 2012) and transformed into Talairach coordinates,
which spatially warps each participant’s brain image to a standardized,
three-dimensional space. The brain was then parcellated into 84 Brod-
mann areas (BAs). In prior work, the functional network was constructed
using other parcellation schemes and consistent trends were observed in
modularity analyses (Yue et al., 2017). Functional connectivity between
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BAs was determined by calculating pairwise Pearson correlation co-
efficients of BOLD time series. The undirected functional connectivity
matrix was then binarized to keep the top 400 edges, 11.5% network
density, to improve the signal-to-noise ratio (Yue et al., 2017; Chen and
Deem, 2015).

8.3. Quantifying brain response

Modularity, M, is calculated from the inferred functional networks of
each participant as they listened to each auditory piece using Newman’s
algorithm (Newman, 2006; Chen and Deem, 2015). The algorithm as-
signs BAs into modules, 6, based on the configuration that maximizes M
defined as

a;a;
L)

1
=222 (A,-,- -
k ijcoy
where L is the total number of links in the network, Aj; is 1 if there is a
link between BA i and BA j or otherwise 0, and g; is the total number of
links of BA i. The inner sum is evaluated for all ij pairs of BAs in module
k, o, and the outer sum is evaluated for all modules in the network. The
a;a; /2L term reduces M by the modularity that would be expected in a
random network.

The number and composition of modules are not predefined, but
rather deduced by the algorithm based on the grouping of brain regions
that optimizes the function for M. Briefly, the functional connectivity
matrix is input into the algorithm, and the algorithm takes a top-down
approach in determining modules. The nodes are first divided into two
groups based on the largest eigenvector of the connectivity matrix, and
modularity is calculated from this arrangement. Next the algorithm
checks what the modularity would be by moving each node between
groups. If modularity increases (above a threshold of 0.01), the best
move of nodes that maximizes modularity is performed. The algorithm
then attempts to subdivide the groups and repeats testing how modu-
larity would change when each node is moved among groups. This
continues until subdividing the groups further does not increase the
calculated modularity. The resulting groups are determined to be the
functional modules. This data-driven approach means that there is no
bias in assigning brain regions into particular modules based on any
assumed functional relationships. Since the modules are not universally
established or constrained, this allows us to meaningfully compute the
modularity and the rate that the modules are reorganized for different
auditory pieces.

Flexibility, F, is defined by the average rate that BA nodes changed
their module allegiance, as determined using a sliding window approach
(Bassett et al., 2011; Hutchison et al., 2013). Consistent with previous
studies, a 40-volume window is used, which is approximately where the
time series autocorrelations return to zero (Ramos-Nunez et al., 2017).
The windows are moved forward one volume at a time until reaching the
end of the 120-volume time series. A network is constructed in each
window, and Newman’s algorithm is used to determine the assignment
of BAs to modules. Since the algorithm may artificially label the same

M({c})

Gagaku

30

Modulation Frequency Index (bin)
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Fig. 5. Rhythm Patterns calculated using the
algorithm developed by Lidy and Schindler

0-25 (2016) (Lidy and Rauber, 2005; Rauber et al.,
0.20 2003) for Bach and Gagaku. The Bark fre-

quencies are 24 bands determined from psy-
0.15  ¢hoacoustic testing to be important to human
0.10 perception (Zwicker, 1961). The colormap

represents the amplitude modulation at the
0.05 binned frequency on the x-axis (bin 0 is a
0.00 modulation frequency of 0 Hz and bin 60 is a

modulation of 10 Hz). (For interpretation of the
references to color in this figure legend, the
reader is referred to the web version of this
article.)

40 50

module differently in two subsequent windows, the relabeling process
devised by Ramos-Nunez et al. (2017) is used. The average flexibility F
for all brain regions is then calculated as,

1 N T
F= m 21: Z(l - 6mi.fmi.t+l)

where N = 84 is the number of BAs, T = 80 is the number of time
windows of 40 volumes each, and m;; is the module assignment of BA i in
window t. The § is the Kronecker delta, which is 1 if the module
assignment of BA i is the same in time windows t and t + 1 or otherwise
0. The T-1 is included in the denominator to scale flexibility between
0 and 1, where F =1 means that all brain regions switched which
module that they were in at every consecutive time window, and F = 0
means that the division of brain regions into modules is completely static
over the duration of the stimulus. When analyzing the flexibility of in-
dividual BAs, F is calculated without computing the average over N.
We were motivated to look at the modularity-flexibility relationship
to study how the brain processes different auditory pieces because the
degree of dynamic, modular structure in brain networks is associated
with differences in cognitive performance under different task demands.
Prior theory modeled the benefit of high modularity for performing fast,
simple cognitive tasks and the benefit of low modularity for longer, more
complex tasks (Chen and Deem, 2015), and experiments have demon-
strated this dichotomous connection between performance and both
resting-state (Yue et al., 2017) and task-based (Lebedev et al., 2018)
modularity. The opposite relationship has been experimentally observed
for flexibility, where low flexibility correlates with performance on
simple tasks, and high flexibility correlates with performance on com-
plex tasks (Ramos-Nunez et al., 2017). Furthermore, there is a negative
relationship between modularity and flexibility in resting-state fMRI
data (Ramos-Nunez et al., 2017). Ramos-Nunez et al. (2017) previously
put forward a dynamical systems perspective, in which different orga-
nizations of the functional network represent different attractor states,
to intuitively explain this relationship: the modularity of the network
represents the depth of the state, and flexibility represents the rate that
the brain transitions from one attractor state to another; the system is
less likely to transition out of deeper states and more likely to transition
from shallow states. Using this perspective, a negative
modularity-flexibility relationship is assumed to be an optimal config-
uration for the brain to minimize energy and efficiently process stimuli.

8.4. Statistical analyses

All statistics and hypothesis testing were carried out using the
functions available in the MATLAB Statistics and Machine Learning
Toolbox (MATLAB, 2020). In our interpretation of the results, we
considered a p-value < 0.10 as an acceptable Type I error rate for
rejecting the null hypothesis, where p-value < 0.05 is considered sta-
tistically significant and p-value < 0.10 is marginally significant. We
considered 1-3 > 0.8 as sufficient statistical power and < 0.2 as an
acceptable Type II error rate for not rejecting the null hypothesis.
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In particular for the power analyses of the modularity-flexibility
relationship effect sizes, we calculated the power achieved for the
number of participants who listened to each auditory piece, when the
true values are the observed Pearson correlation coefficients (r), and the
null hypothesis is r = 0. For the auditory pieces in which we did not
reject the null hypothesis (Gagaku and Xhosa), we calculated the Type II
error rate ff as 1 — power. We conducted brief secondary power analyses
on Gagaku and Xhosa to assess if the modularity-flexibility relationship
effect sizes for these pieces (r = —0.19 and r = —0.01, respectively)
were weaker than those of the other auditory pieces (all having
r < —0.4); the statistical power achieved when the null hypothesis being
rejected is r = —0.4 was calculated.

Compliance with ethical standards

The authors declare that all experiments on human subjects were
conducted in accordance with the Declaration of Helsinki and that all
procedures were carried out with the adequate understanding and
written consent of the subjects. The authors also certify that formal
approval to conduct the experiments described has been obtained from
the human subjects review board of their institution and could be pro-
vided upon request.

Author contributions

AK.B., J.T.F., and C.K. designed the fMRI experiments. A.K.B. and J.
T.F. selected and prepared the auditory stimuli. C.K. carried out fMRI
collection and data preprocessing. M.E.B. developed the theoretical
framework and analyzed the data. A.K.B. and M.E.B. interpreted the
results and wrote the manuscript. All authors discussed the results and
provided critical feedback on the final manuscript.

Funding

The research was supported by the Center for Theoretical Biological
Physics at Rice University (National Science Foundation, PHY
1427654), the Ting Tsung and Wei Fong Chao Foundation, and the
Houston Methodist Center for Performing Arts Medicine. M.E.B. addi-
tionally supported by a training fellowship from the Gulf Coast Con-
sortia, on the NLM Training Program in Biomedical Informatics & Data
Science (T15LM007093).

CRediT authorship contribution statement

M.E. Bonomo: Conceptualization, Methodology, Software, Formal
analysis, Writing — original draft, Visualization. A.K. Brandt: Concep-
tualization, Methodology, Resources, Writing — original draft. J.T.
Frazier: Conceptualization, Funding acquisition, Resources, Writing —
review & editing. C. Karmonik: Conceptualization, Investigation, Data
curation, Resources, Writing — review & editing.

Conflicts of Interest

The authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Data Availability

The datasets generated and analyzed during the current study are
available from the corresponding author on reasonable request.

Acknowledgments

The authors would like to thank Fengdan Ye for helpful discussions
about the theory of this work. Part of this work appears in M.E.B.’s

106

IBRO Neuroscience Reports 12 (2022) 98-107

doctoral thesis (Bonomo, 2020).

References

Aggarwal, C.C., Hinneburg, A., Keim, D.A., 2001. On the surprising behavior of distance
metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (Eds.),
Database Theory — ICDT 2001. Lecture Notes in Computer Science, vol 1973.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44503-X_27.

Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T., 2011.
Dynamic reconfiguration of human brain networks during learning. Proc. Natl Acad.
Sci. USA 108, 7641-7646. https://doi.org/10.1073/pnas.1018985108.

Brandt, A., Gebrian, M., Slevc, L.R., 2012. Music and early language acquisition. Front.
Psychol. 3 (SEP) https://doi.org/10.3389/fpsyg.2012.00327.

Bonomo, M.E., 2020. Investigating Modular Structure and Function in Biology: from
Immunology to Cognition. Rice University. (https://hdl.handle.net/1911/109615).

Bonomo, M.E., Karmonik, C., Brandt, A.K., Frazier, J.T., 2020. Modularity allows
classification of human brain networks during music and speech perception.
Preprint. arXiv:2009.10308. (https://arxiv.org/abs/2009.10308).

Cameron, D.J., Bentley, J., Grahn, J.A., 2015. Cross-cultural influences on rhythm
processing: reproduction, discrimination, and beat tapping. Front. Psychol. 6 (Mar)
https://doi.org/10.3389/fpsyg.2015.00366.

Chen, M., Deem, M.W., 2015. Development of modularity in the neural activity of
children’s brains. Phys. Biol. 12, 016009 https://doi.org/10.1088/1478-3975/12/
1/016009.

Cox, R.W., 2012. AFNI: what a long strange trip it’s been. Neuroimage 62, 743-747.
https://doi.org/10.1016/j.neuroimage.2011.08.056.

de-Wit, L., Alexander, D., Ekroll, V., Wagemans, J., 2016. Is neuroimaging measuring
information in the brain? Psychonom. Bull. Rev. 23, 1415-1428. https://doi.org/
10.3758/513423-016-1002-0.

Demorest, S.M., Morrison, S.J., 2003. Exploring the influence of cultural familiarity and
expertise on neurological responses to music. Ann. N.Y. Acad. Sci. 999, 112-117.
https://doi.org/10.1196/annals.1284.011.

Demorest, S.M., Morrison, S.J., Stambaugh, L.A., Beken, M., Richards, T.L., Johnson, C.,
2009. An fMRI investigation of the cultural specificity of music memory. Soc. Cogn.
Affect. Neurosci. 5 (2-3), 282-291. https://doi.org/10.1093/scan/nsp048.

Eagleman, D., 2020. Livewired: The Inside Story of the Ever-changing Brain. Pantheon,
New York.

Goldberg, L1, Harel, M., Malach, R., 2006. When the brain loses its self: prefrontal
inactivation during sensorimotor processing. Neuron 50, 329-339. https://doi.org/
10.1016/j.neuron.2006.03.015.

Honing, H., ten Cate, C., Peretz, 1., Trehub, S.E., 2015. Without it no music: cognition,
biology and evolution of musicality. Philos. Trans. R. Soc. B: Biol. Sci. 370 (1664),
20140088 https://doi.org/10.1098/rstb.2014.0088.

Hannon, E.E., Trehub, S.E., 2005a. Metrical categories in infancy and adulthood.
Psychol. Sci. 16 (1), 48-55. https://doi.org/10.1111/j.0956-7976.2005.00779.x.

Hannon, E.E., Trehub, S.E., 2005b. Tuning in to musical rhythms: infants learn more
readily than adults. Proc. Natl Acad. Sci. USA 102 (35), 12639-12643. https://doi.
org/10.1073/pnas.0504254102.

Hannon, E.E., Trainor, L.J., 2007. Music acquisition: effects of enculturation and formal
training on development. Trends Cogn. Sci. https://doi.org/10.1016/j.
tics.2007.08.008.

Haumann, N.T., Kliuchko, M., Vuust, P., Brattico, E., 2018. Applying acoustical and
musicological analysis to detect brain responses to realistic music: a case study.
Appl. Sci. 8 (5), 716. https://doi.org/10.3390/app8050716.

Hosp, J.A., Coenen, V.A., Rijntjes, M., Egger, K., Urbach, H., Weiller, C., Reisert, M.,
2019. Ventral tegmental area connections to motor and sensory cortical fields in
humans. Brain Struct Funct. 224 (8), 2839-2855. https://doi.org/10.1007/500429-
019-01939-0.

Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D.,
Corbetta, M., Della Penna, S., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J.,
Handwerker, D.A., Keilholz, S., Kiviniemi, V., Leopold, D.A., de Pasquale, F.,
Sporns, O., Walter, M., Chang, C., 2013. Dynamic functional connectivity: promise,
issues, and interpretations. Neuroimage 80, 360-378. https://doi.org/10.1016/j.
neuroimage.2013.05.079.

Jacoby, N., Margulis, E.H., Clayton, M., Hannon, E., Honing, H., Iversen, J., Klein, T.R.,
Mebhr, S.A., Pearson, L., Peretz, 1., Perlman, M., Rainer, P., Ravignani, A., Savage, P.
E., Steingo, G., Stevens, C.J., Trainor, L., Trehub, S., Veal, M., Wald-Fuhrmann, M.,
2020. Cross-cultural work in music cognition: challenges, insights, and
recommendations. Music Percept. 37 (3), 185-195. https://doi.org/10.1525/
MP.2020.37.3.185.

Karmonik, C., Brandt, A., Anderson, J.R., Brooks, F., Lytle, J., Silverman, E., Frazier, J.T.,
2016. Music listening modulates functional connectivity and information flow in the
human brain. Brain Connect. 6 (8), 632-641. https://doi.org/10.1089/
brain.2016.0428.

Karmonik, C., Brandt, A, Elias, S., Townsend, J., Silverman, E., Shi, Z., Frazier, J.T.,
2020. Similarity of individual functional brain connectivity patterns formed by
music listening quantified with a data-driven approach. Int. J. Comput. Assist.
Radiol. Surg. 15 (4), 703-713. https://doi.org/10.1007/511548-019-02077-y.

Koelsch, S., Fritz, T., v Cramon, D.Y., Miiller, K., Friederici, A.D., 2006. Investigating
emotion with music: an fMRI study. Hum. Brain Mapp. 27, 239-250. https://doi.
org/10.1002/hbm.20180.

Koenigs, M., Barbey, A.K., Postle, B.R., Grafman, J., 2009. Superior parietal cortex is
critical for the manipulation of information in working memory. J. Neurosci. 29,
14980-14986. https://doi.org/10.1523/jneurosci.3706-09.2009.


https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.1073/pnas.1018985108
https://doi.org/10.3389/fpsyg.2012.00327
https://hdl.handle.net/1911/109615
https://arxiv.org/abs/2009.10308
https://doi.org/10.3389/fpsyg.2015.00366
https://doi.org/10.1088/1478-3975/12/1/016009
https://doi.org/10.1088/1478-3975/12/1/016009
https://doi.org/10.1016/j.neuroimage.2011.08.056
https://doi.org/10.3758/s13423-016-1002-0
https://doi.org/10.3758/s13423-016-1002-0
https://doi.org/10.1196/annals.1284.011
https://doi.org/10.1093/scan/nsp048
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref11
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref11
https://doi.org/10.1016/j.neuron.2006.03.015
https://doi.org/10.1016/j.neuron.2006.03.015
https://doi.org/10.1098/rstb.2014.0088
https://doi.org/10.1111/j.0956-7976.2005.00779.x
https://doi.org/10.1073/pnas.0504254102
https://doi.org/10.1073/pnas.0504254102
https://doi.org/10.1016/j.tics.2007.08.008
https://doi.org/10.1016/j.tics.2007.08.008
https://doi.org/10.3390/app8050716
https://doi.org/10.1007/s00429-019-01939-0
https://doi.org/10.1007/s00429-019-01939-0
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1525/MP.2020.37.3.185
https://doi.org/10.1525/MP.2020.37.3.185
https://doi.org/10.1089/brain.2016.0428
https://doi.org/10.1089/brain.2016.0428
https://doi.org/10.1007/s11548-019-02077-y
https://doi.org/10.1002/hbm.20180
https://doi.org/10.1002/hbm.20180
https://doi.org/10.1523/jneurosci.3706-09.2009

M.E. Bonomo et al.

Leaver, A.M., Rauschecker, J.P., 2010. Cortical representation of natural complex
sounds: effects of acoustic features and auditory object category. J. Neurosci. 30
(22), 7604-7612. https://doi.org/10.1523/JNEUROSCIL.0296-10.2010.

Lebedev, A.V., Nilsson, J., Lovdén, M., 2018. Working memory and reasoning benefit
from different modes of large-scale brain dynamics in healthy older adults. J. Cogn.
Neurosci. 30, 1033-1046. https://doi.org/10.1162/jocn_a_01260.

Lidy, T., A. Rauber, A., 2005. Evaluation of feature extractors and psycho-acoustic
transformations for music genre classification. In: Proceedings of the Sixth
International Conference on Music Information Retrieval. pp. 34-41.

Lidy, T., Schindler, A., 2016. Rhythm Pattern Music Feature Extractor by IFS @ TU-
Vienna GitHub Repository. (https://github.com/tuwien-musicir/rp_extract).

MATLAB, 2020. version 9.9.0.1495850 (R2020b). The MathWorks Inc., Natick,
Massachusetts.

McDermott, J.H., Schultz, A.F., Undurraga, E.A., Godoy, R.A., 2016. Indifference to
dissonance in native Amazonians reveals cultural variation in music perception.
Nature 535 (7613), 547-550. https://doi.org/10.1038/nature18635.

Mehr, S.A., Singh, M., Knox, D., Ketter, D.M., Pickens-Jones, D., Atwood, S., Lucas, C.,
Jacoby, N., Egner, A.A., Hopkins, E.J., Howard, R.M., Hartshorne, J.K., Jennings, M.
V., Simson, J., Bainbridge, C.M., Pinker, S., O’Donnell, T.J., Krasnow, M.M.,
Glowacki, L., 2019. Universality and diversity in human song. Science 366 (6468).
https://doi.org/10.1126/science.aax0868.

Morrison, S.J., Demorest, S.M., Stambaugh, L.A., 2008. Enculturation effects in music
cognition: the role of age and music complexity. J. Res. Music Educ. 56 (2), 118-129.
https://doi.org/10.1177,/0022429408322854.

Morrison, S.J., Demorest, S.M., 2009. Cultural constraints on music perception and
cognition. Prog. Brain Res. https://doi.org/10.1016/50079-6123(09)17805-6.

Nan, Y., Knosche, T.R., Zysset, S., Friedend, A.D., 2008. Cross-cultural music phrase
processing: an fMRI study. Hum. Brain Mapp. 29 (3), 312-328. https://doi.org/
10.1002/hbm.20390.

Neuhaus, C., 2003. Perceiving musical scale structures. Ann. N.Y. Acad. Sci. 999 (1),
184-188. https://doi.org/10.1196/annals.1284.026.

Newman, M.E., 2006. Modularity and community structure in networks. Proc. Natl.
Acad. Sci. USA 103, 8577-8582. https://doi.org/10.1073/pnas.0601602103.

Norman-Haignere, S., Kanwisher, N.G., McDermott, J.H., 2015. Distinct cortical
pathways for music and speech revealed by hypothesis-free voxel decomposition.
Neuron 88 (6), 1281-1296. https://doi.org/10.1016/j.neuron.2015.11.035.

Patel, A.D., 2012. Music, Language, and the Brain. Oxford University Press, pp. 1-526.
https://doi.org/10.1093/acprof:0s0/9780195123753.001.0001.

Patel, A.D., 2015. Sharing and nonsharing of brain resources for language and music. In:
Language, Music, and the Brain. The MIT Press, pp. 329-356. https://doi.org/
10.7551/mitpress/9780262018104.003.0014.

Patel, A.D., Morgan, E., 2017. Exploring cognitive relations between prediction in
language and music. Cogn. Sci. 41, 303-320. https://doi.org/10.1111/cogs.12411.

Patel, A.D., 2019. Evolutionary music cognition: cross-species studies. In: Rentfrow, P.J.,
Levitin, D.J. (Eds.), Foundations of Music Psychology: Theory and Research. MIT
Press, Cambridge, pp. 459-502.

107

IBRO Neuroscience Reports 12 (2022) 98-107

Pereira, C.S., Teixeira, J., Figueiredo, P., Xavier, J., Castro, S.L., Brattico, E., 2011. Music
and emotions in the brain: familiarity matters. PLoS One 6, €27241. https://doi.org/
10.1371/journal.pone.0027241.

Peretz, 1., Coltheart, M., 2003. Modularity of music processing. Nat. Neurosci. 6,
688-691. https://doi.org/10.1038/nn1083.

Pietrucci, F., 2017. Strategies for the exploration of free energy landscapes: unity in
diversity and challenges ahead. Rev. Phys. 2, 32-45. https://doi.org/10.1016/j.
revip.2017.05.001.

Ramos-Nunez, A.L, Fischer-Baum, S., Martin, R.C., Yue, Q., Ye, F., Deem, M.W., 2017.
Static and dynamic measures of human brain connectivity predict complementary
aspects of human cognitive performance. Front. Hum. Neurosci. 11, 420. https://doi.
org/10.3389/fnhum.2017.00420.

Rauber, A., Pampalk, E., Merkl, D., 2003. The SOM-enhanced JukeBox: organization and
visualization of music collections based on perceptual models. J. New Music Res. 32
(2), 193-210. https://doi.org/10.1076/jnmr.32.2.193.16745.

Simon, H.A., 1962. The architecture of complexity. Proc. Am. Philos. Soc. 106 (6),
467-482. (https://www.jstor.org/stable/985254).

Soley, G., Hannon, E.E., 2010. Infants prefer the musical meter of their own culture: a
cross-cultural comparison. Dev. Psychol. 46 (1), 286-292. https://doi.org/10.1037/
a0017555.

Sporns, O., Betzel, R.F., 2016. Modular brain networks. Annu. Rev. Psychol. 67,
613-640.

Stevens, C.J., 2012. Music perception and cognition: a review of recent cross-cultural
research. Top. Cogn. Sci. https://doi.org/10.1111/j.1756-8765.2012.01215.x.
Tamba, A., 1976. Aesthetics in the traditional music of Japan. World Music 18 (2), 3-10.
Tanaka, K., Koto, T., 2016. Traditional Japanese Music at a Glance. Academia Music Ltd.,

Tokyo.

Trehub, S.E., Becker, J., Morley, L., 2015. Cross-cultural perspectives on music and
musicality. Philos. Trans. R. Soc. B: Biol. Sci. https://doi.org/10.1098/
rstb.2014.0096.

Woods, D.L., Stecker, G.C., Rinne, T., Herron, T.J., Cate, A.D., et al., 2009. Functional
maps of human auditory cortex: effects of acoustic features and attention. PLoS One
4 (4), e5183. https://doi.org/10.1371/journal.pone.0005183.

Wong, P.C., Roy, A.K., Margulis, E.H., 2009. Bimusicalism: the implicit dual
enculturation of cognitive and affective systems. Music Percept. 27 (2), 81-88.
https://doi.org/10.1525/mp.2009.27.2.81.

Yue, Q., Martin, R.C., Fischer-Baum, S., Ramos-Nunez, A.l., Ye, F., Deem, M.W., 2017.
Brain modularity mediates the relation between task complexity and performance.
J. Cogn. Neurosci. 29, 1532-1546. https://doi.org/10.1162/jocn_a 01142.

Zatorre, R.J., Salimpoor, V.N., 2013. From perception to pleasure: music and its neural
substrates. Proc. Natl Acad. Sci. USA 110, 10430-10437. https://doi.org/10.1073/
pnas.1301228110.

Zwicker, E., 1961. Subdivision of the audible frequency range into critical bands
(Frequenzgruppen). J. Acoust. Soc. Am. 33 (2) https://doi.org/10.1121/1.1908630.


https://doi.org/10.1523/JNEUROSCI.0296-10.2010
https://doi.org/10.1162/jocn_a_01260
https://github.com/tuwien-musicir/rp_extract
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref27
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref27
https://doi.org/10.1038/nature18635
https://doi.org/10.1126/science.aax0868
https://doi.org/10.1177/0022429408322854
https://doi.org/10.1016/S0079-6123(09)17805-6
https://doi.org/10.1002/hbm.20390
https://doi.org/10.1002/hbm.20390
https://doi.org/10.1196/annals.1284.026
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1016/j.neuron.2015.11.035
https://doi.org/10.1093/acprof:oso/9780195123753.001.0001
https://doi.org/10.7551/mitpress/9780262018104.003.0014
https://doi.org/10.7551/mitpress/9780262018104.003.0014
https://doi.org/10.1111/cogs.12411
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref39
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref39
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref39
https://doi.org/10.1371/journal.pone.0027241
https://doi.org/10.1371/journal.pone.0027241
https://doi.org/10.1038/nn1083
https://doi.org/10.1016/j.revip.2017.05.001
https://doi.org/10.1016/j.revip.2017.05.001
https://doi.org/10.3389/fnhum.2017.00420
https://doi.org/10.3389/fnhum.2017.00420
https://doi.org/10.1076/jnmr.32.2.193.16745
https://www.jstor.org/stable/985254
https://doi.org/10.1037/a0017555
https://doi.org/10.1037/a0017555
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref47
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref47
https://doi.org/10.1111/j.1756-8765.2012.01215.x
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref49
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref50
http://refhub.elsevier.com/S2667-2421(21)00056-7/sbref50
https://doi.org/10.1098/rstb.2014.0096
https://doi.org/10.1098/rstb.2014.0096
https://doi.org/10.1371/journal.pone.0005183
https://doi.org/10.1525/mp.2009.27.2.81
https://doi.org/10.1162/jocn_a_01142
https://doi.org/10.1073/pnas.1301228110
https://doi.org/10.1073/pnas.1301228110
https://doi.org/10.1121/1.1908630

	Music to My Ears: Neural modularity and flexibility differ in response to real-world music stimuli
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	5 Limitations
	6 Future research
	7 Conclusion
	8 Extended methods
	8.1 Musical feature extraction
	8.2 Neuroimaging
	8.3 Quantifying brain response
	8.4 Statistical analyses

	Compliance with ethical standards
	Author contributions
	Funding
	CRediT authorship contribution statement
	Conflicts of Interest
	Data Availability
	Acknowledgments
	References


