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DISCONTINUOUS GALERKIN METHODS FOR STOCHASTIC MAXWELL
EQUATIONS WITH MULTIPLICATIVE NOISE

Jiawei Sun1, Chi-Wang Shu2 and Yulong Xing1,*

Abstract. In this paper we propose and analyze finite element discontinuous Galerkin methods for
the one- and two-dimensional stochastic Maxwell equations with multiplicative noise. The discrete
energy law of the semi-discrete DG methods were studied. Optimal error estimate of the semi-discrete
method is obtained for the one-dimensional case, and the two-dimensional case on both rectangular
meshes and triangular meshes under certain mesh assumptions. Strong Taylor 2.0 scheme is used as
the temporal discretization. Both one- and two-dimensional numerical results are presented to validate
the theoretical analysis results.
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1. Introduction

Stochastic Maxwell equations are commonly used to model microscopic origins of randomness in electromag-
netism. The concept of stochastic Maxwell equations was firstly introduced by Rytov et al. [1] to describe the
fluctuations of an electromagnetic field. In [2], Ord et al. studied the Mark Kac random walk model and modified
it into the Maxwell field equations in 1+1 dimensions. Such a model describes most of the telegraph equations,
and the author’s modification of the Kac model constructed a strong connection between the telegraph and
Maxwell equations. In [3] Horsin et al. applied an abstract approach and a constructive approach by gener-
alizing the Hilbert uniqueness method to analyze the approximate controllability of the stochastic Maxwell
equations. Furthermore in [4] the deterministic and stochastic integrodifferential equations in Hilbert spaces
were studied and the well-posedness for the Cauchy problem of the integrodifferential equation was analyzed.
Such results were motivated by mathematical modeling of electromagnetic fields in complex random media.

Numerical methods are often used to solve Maxwell equations with various forms of stochasticity. In [5],
Benner et al. studied the time-harmonic Maxwell’s equations with some uncertainty in material parameters.
They compared stochastic collocation and Monte Carlo simulation, and computed a reduced model in order
to lower the computational cost. In [6] Jung considered the wave and Maxwell equations with fluctuations
by a random change in media parameters. The author used polynomial chaos Galerkin projections to develop
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the evolution of probability distribution function. Later in [7] Jung et al. studied two-dimensional transverse
magnetic Maxwell equations with multiple random interfaces. They applied the polynomial chaos projection
method, and computed the stochastic and deterministic parts separately. Furthermore, stochastic collocation
methods for metamaterial Maxwell’s equations are studied by Li et al. [8]. They considered the equations
with random coefficient and random initial conditions. They also developed regularity analysis for stochastic
metamaterial Maxwell’s equations.

In the recent years, there have been many studies on various numerical methods for the stochastic Maxwell
equations with either additive or multiplicative noises. In [9], Hong et al. studied the stochastic Maxwell equa-
tions driven by a multiplicative noise, which are given as follows:

𝜖 dE = ∇× H − 𝜆H ∘ d𝑊, 𝜇 dH = −∇× E + 𝜆E ∘ d𝑊, (1.1)

where H represents the magnetic field, E stands for the electric field, 𝜆 is the scale of the noise, ∘ denotes
the stochastic integral in Stratonovich sense, and 𝑊 is a space time mixed Wiener process. They studied the
multi-symplectic structure and the energy conservation law for (1.1), and developed a fully discrete numer-
ical method which conserves both multi-symplecticity and energy on the discrete level. Furthermore, Cohen
et al. [10] analyzed the general form of stochastic Maxwell equations with multiplicative noise, and constructed
an exponential integrator which has a general mean square convergence order of 0.5 in time, and first order
temporal rate under some assumptions. Chen et al. [11] applied a semi-implicit scheme for the model under a
general setting and showed that the proposed method has the mean-square order of 0.5 in time. In [12], Zhang
et al. presented a nice review article to summarize numerical methods for different kinds of stochastic Maxwell
equations with both additive noise and multiplicative noise, including (1.1) studied in [9], and the model

𝜖 dE −∇× H d𝑡 = −J𝑒(𝑡,x,E,H) d𝑡− J𝑟
𝑒(𝑡,x,E,H) d𝑊,

𝜇 dH + ∇× E d𝑡 = −J𝑚(𝑡,x,E,H) d𝑡− J𝑟
𝑚𝑡,x,E,H) d𝑊, (1.2)

which was studied in [11]. The properties of stochastic Maxwell equations are also provided in that paper. Hong
et al. [13] studied the stochastic wave equation and developed numerical schemes that preserve the averaged
energy evolution law. Both the compact finite difference method and the interior penalty discontinuous Galerkin
(DG) finite element methods were proposed. Finite element approximations of a class of nonlinear stochastic
wave equations with multiplicative noise were recently investigated in [14].

In [11], Chen et al. established the regularity properties of the solution of stochastic Maxwell equations with
multiplicative noise (1.2). Let M be the differential operator defined as

M =
(︂

0 ∇×
−∇× 0

)︂
.

It was shown in [11] that, under certain assumptions, the solutions are uniformly bounded in the following way:

sup
𝑡∈[0,𝑡end]

‖U(𝑡)‖𝐿𝑝(Ω;𝒟(Mℓ)) ≤ 𝐶
(︁

1 + ‖U0‖𝐿𝑝(Ω;𝒟(Mℓ))

)︁
, (1.3)

for any given integer 𝑙, 𝑝 ≥ 2, 𝑡 ∈ [0, 𝑡end], where U = (E𝑇 ,H𝑇 )𝑇 and 𝒟(Mℓ) stands for the domain of Mℓ, the
ℓ-th power of the operator M, with the associated norm: ‖U‖𝒟(Mℓ) = (‖U‖2𝐿2 +

⃦⃦
MℓU

⃦⃦2
𝐿2)

1
2 . Furthermore, the

Hölder continuity of the solution holds in 𝒟(M𝑙−1) norm in the expectation sense:

E‖U(𝑡) − U(𝑠)‖𝑝
𝒟(M𝑙−1) ≤ |𝑡− 𝑠|

𝑝
2 . (1.4)

The high order DG finite element methods are considered in this paper. The DG method is a class of
finite element methods that uses discontinuous piecewise polynomials as the basis functions, and was first
introduced by Reed and Hill [15] to solve linear transport equation. In the early 1990s, Cockburn et al. studied
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the extension of DG methods for hyperbolic conservation laws in a series of papers [16–19]. DG methods adopt
many advantages from both finite element and finite volume methods, including hp-adaptivity flexibility, efficient
parallel implementation, the ability of handling complicated boundary conditions, etc., making them a popular
choice for numerical methods of conservation laws.

In [20], Cheng et al. studied DG methods for the one-dimensional (1D) deterministic two-way wave equations,
and investigated a family of 𝐿2 stable high order DG methods defined through a general form of numerical fluxes.
A systematic study of stability, error estimates, and dispersion analysis was carried out. In a recent paper [21],
Sun and Xing extended the analysis on optimal error estimate to multi-dimensional wave equations. For the DG
methods with generalized numerical fluxes, one key idea to the optimal error estimate was by constructing a
global projection on unstructured meshes, which will also be useful for the analysis in this paper. Recently, DG
methods have been extended for stochastic partial differential equations. Li et al. investigated DG methods [22]
for stochastic conservation laws with multiplicative noise and provided optimal error estimate for the semilinear
equations.

In this paper, we present the DG methods for both one- and two-dimensional (2D) stochastic Maxwell
equations with multiplicative noise. This is an extension of our previous work [23], where we studied multi-
symplectic DG methods for stochastic Maxwell equations with additive noise. We showed in [23] that the
proposed methods satisfy the discrete form of the stochastic energy linear growth property and preserve the
multi-symplectic structure on the discrete level. Optimal error estimate of the semi-discrete DG method was also
analyzed in [23]. Another related work was studied by Chen [24], where a symplectic full discretization of multi-
dimensional stochastic Maxwell equations with additive noise is provided. DG methods were used for spatial
discretization and midpoint method was used for temporal discretization. A first order convergence in time and
1.5th order convergence in space was discussed in [24]. In this work, we plan to apply DG spatial discretization
with generalized numerical fluxes to stochastic Maxwell equations with multiplicative noise. We will present the
discrete energy growth property of the numerical solutions obtained from our semi-discrete DG scheme, following
the energy law of the exact solutions. With the help of a global projection constructed in [21], we present optimal
error estimate of the semi-discrete DG methods for stochastic Maxwell equations with multiplicative noise for
both one- and two-dimensional cases. In the two-dimensional case, we study both rectangular meshes and
triangular meshes. Strong Taylor 2.0 temporal discretization is combined with the semi-discrete DG method to
derive a fully discrete method for numerical implementation. Both one- and two-dimensional numerical results
are presented to validate the theoretical analysis results. Compared with stochastic Maxwell equations with
additive noise studied in [23], stochastic Maxwell equations with multiplicative noise involve the nonlinear
noise, which brings extra complication to the analysis. We can only show the error estimate in the expectation
sense, i.e., E‖𝑢− 𝑢ℎ‖2 ≤ 𝐶ℎ𝑘+1, while in the additive noise case, the exact error estimate ‖𝑢− 𝑢ℎ‖ ≤ 𝐶ℎ𝑘+1

was obtained. Multi-symplectic structure was investigated in the additive noise case, which no longer holds
for the system with multiplicative noise. In addition, unstructured triangular meshes are considered in this
paper.

The structure of this paper is as follows. Section 2 describes the DG method for one-dimensional stochastic
Maxwell equations with multiplicative noises. Energy growth and the optimal error estimate of the proposed
method are provided. Section 3 studies the DG scheme for two-dimensional stochastic Maxwell equations. Both
rectangular meshes and triangular meshes are considered. The corresponding discrete energy law and optimal
error estimate are also studied for both cases. The temporal discretization is briefly discussed in Section 4.
Section 5 presents the numerical results to validate the theoretical results. Conclusion remarks are provided in
Section 6. Throughout this paper, the spatial 𝐿2 norm is denoted by ‖·‖, and 𝐶 represents a generic positive
constant independent of the spatial and temporal step size ℎ and ∆𝑡, which can take different values in dif-
ferent cases. With an abuse of notation, we denote 𝐻𝑠 as the standard Sobolev space for both scalar-valued
functions and vector-valued functions. Furthermore, 𝑊𝑡 represents the standard Brownian motion starting
from 0.
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2. One-dimensional stochastic Maxwell equations with multiplicative noise

In this section, we consider one-dimensional stochastic Maxwell equations with multiplicative noise:{︃
d𝑣 = −𝑢𝑥 d𝑡+ 𝑓(𝑥, 𝑡, 𝑢, 𝑣) d𝑊𝑡,

d𝑢 = −𝑣𝑥 d𝑡+ 𝑔(𝑥, 𝑡, 𝑢, 𝑣) d𝑊𝑡,
(2.1)

where 𝑥 ∈ 𝐼, 𝑡 ∈ [0, 𝑡end], and 𝑊𝑡 is a standard one-dimensional Brownian motion on a given probability space
(Ω,ℱ ,P) and 𝑓, 𝑔 are functions that satisfy the following Lipschitz continuous and linear growth assumptions:

|𝑓(𝑥, 𝑡, 𝑢1, 𝑣1) − 𝑓(𝑥, 𝑡, 𝑢2, 𝑣2)| + |𝑔(𝑥, 𝑡, 𝑢1, 𝑣1) − 𝑔(𝑥, 𝑡, 𝑢2, 𝑣2)| ≤ 𝐶(|𝑢1 − 𝑢2| + |𝑣1 − 𝑣2|),
|𝑓(𝑥, 𝑡, 𝑢, 𝑣)| + |𝑔(𝑥, 𝑡, 𝑢, 𝑣)| ≤ 𝐶(1 + |𝑢| + |𝑣|). (2.2)

For simplicity, the periodic boundary condition is considered in this paper.
The stochastic Maxwell equations with multiplicative noise (2.1) satisfy the following energy law. A similar

result was discussed in [13] for stochastic wave equations.

Theorem 2.1 (Continuous energy law). Let 𝑢 and 𝑣 be the solutions to the model (2.1) under periodic boundary
condition. For any 𝑡, the global stochastic energy satisfies the following energy law

E
(︂∫︁

𝐼

𝑢2(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡) d𝑥
)︂

=
∫︁

𝐼

𝑢2(𝑥, 0) + 𝑣2(𝑥, 0) d𝑥+
∫︁ 𝑡

0

E
(︁
‖𝑓‖2 + ‖𝑔‖2

)︁
d𝜏. (2.3)

Proof. By utilizing Itô’s lemma and equations (2.1), we have

d
(︂∫︁

𝐼

𝑢2(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡) d𝑥
)︂

=
∫︁

𝐼

(2𝑢 d𝑢+ d⟨𝑢, 𝑢⟩𝑡 + 2𝑣 d𝑣 + d⟨𝑣, 𝑣⟩𝑡) d𝑥

= −
∫︁

𝐼

(2𝑢𝑣𝑥 + 2𝑣𝑢𝑥) d𝑡 d𝑥+ 2
∫︁

𝐼

(𝑔𝑢+ 𝑓𝑣) d𝑊𝑡 d𝑥+
∫︁

𝐼

d⟨𝑢, 𝑢⟩𝑡 + d⟨𝑣, 𝑣⟩𝑡 d𝑥

= 2
∫︁

𝐼

(𝑔𝑢+ 𝑓𝑣) d𝑊𝑡 d𝑥+
∫︁

𝐼

d⟨𝑢, 𝑢⟩𝑡 + d⟨𝑣, 𝑣⟩𝑡 d𝑥, (2.4)

where the last equality follows from the integration by parts and periodic boundary condition. Integrating over
time leads to∫︁

𝐼

𝑢2(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡) d𝑥 =
∫︁

𝐼

𝑢2(𝑥, 0) + 𝑣2(𝑥, 0) d𝑥+ 2
∫︁ 𝑡

0

∫︁
𝐼

(𝑔𝑢+ 𝑓𝑣) d𝑥 d𝑊𝑡 +
∫︁

𝐼

⟨𝑢, 𝑢⟩𝑡 + ⟨𝑣, 𝑣⟩𝑡 d𝑥. (2.5)

Integrating the second equation of (2.1) over 𝑡 leads to

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) +
∫︁ 𝑡

0

−𝑣𝑥 d𝜏 +
∫︁ 𝑡

0

𝑔(𝑥, 𝜏, 𝑢, 𝑣) d𝑊𝜏 , (2.6)

therefore, we have ∫︁
𝐼

⟨𝑢, 𝑢⟩𝑡 d𝑥 =
∫︁

𝐼

⟨∫︁ 𝑡

0

𝑔(𝑥, 𝜏, 𝑢, 𝑣) d𝑊𝜏 ,

∫︁ 𝑡

0

𝑔(𝑥, 𝜏, 𝑢, 𝑣) d𝑊𝜏

⟩
𝑡

d𝑥.

By Itô isometry, we obtain

E
∫︁

𝐼

⟨𝑢, 𝑢⟩𝑡 d𝑥 =
∫︁ 𝑡

0

E‖𝑔‖2 d𝜏.
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For the same reason, it follows that

E
∫︁

𝐼

⟨𝑣, 𝑣⟩𝑡 d𝑥 =
∫︁ 𝑡

0

E‖𝑓‖2 d𝜏.

Note that the process
∫︀ 𝑡

0

∫︀
𝐼
(𝑔𝑢+𝑓𝑣) d𝑥 d𝑊𝑡 is an Itô integral, thus it has zero expectation. Taking the expectation

of (2.5) yields the continuous energy law (2.3). �

The one-dimensional computational domain 𝐼 is partitioned into subintervals 𝐼𝑗 = [𝑥𝑗−1/2, 𝑥𝑗+1/2], 𝑗 =
1, 2, · · · , 𝑁 . Let us denote 𝑥𝑗 = (𝑥𝑗−1/2 + 𝑥𝑗+1/2)/2 to be the center of each subinterval. Denote ℎ𝑗 = 𝑥𝑗+1/2 −
𝑥𝑗−1/2 to be the mesh size of each subinterval and ℎ = max𝑗 ℎ𝑗 to be the maximum mesh size. We further
assume that the ratio ℎ/ℎ𝑗 is bounded over all 𝑗 during mesh refinement. The piecewise polynomial solution
and test function space 𝑉 𝑘

ℎ is defined as

𝑉 𝑘
ℎ =

{︀
𝑤ℎ : 𝑤ℎ|𝐼𝑗 ∈ 𝑃 𝑘(𝐼𝑗), 𝑗 = 1, 2, · · · , 𝑁

}︀
,

where 𝑃 𝑘(𝐼𝑗) stands for the space of polynomials of degree up to 𝑘 on the cell 𝐼𝑗 . Since the function in 𝑉 𝑘
ℎ can

be discontinuous at cell interface, we use (𝑤+
ℎ )𝑗+1/2 and (𝑤−

ℎ )𝑗+1/2 to represent the limit of 𝑤ℎ ∈ 𝑉 𝑘
ℎ at the

interface 𝑥𝑗+1/2 from the right and left respectively. We denote the average and jump of the functions at the
cell interfaces by {𝑤ℎ} =

(︀
𝑤+

ℎ + 𝑤−
ℎ

)︀
/2 and [𝑤ℎ] = 𝑤+

ℎ − 𝑤−
ℎ .

The DG scheme for the one-dimensional model (2.1) takes the following formulation: for 𝑥 ∈ 𝐼, (𝜔, 𝑡) ∈
Ω × [0, 𝑡end], find 𝑣ℎ(𝜔, 𝑥, 𝑡), 𝑢ℎ(𝜔, 𝑥, 𝑡) ∈ 𝑉 𝑘

ℎ , such that for any test functions 𝜙, ̃︀𝜙 ∈ 𝑉 𝑘
ℎ , it holds that

∫︁
𝐼𝑗

d𝑣ℎ𝜙(𝑥) d𝑥 =

(︃∫︁
𝐼𝑗

𝑢ℎ𝜙𝑥 d𝑥−
(︀̂︀𝑢ℎ𝜙

−)︀
𝑗+ 1

2
+
(︀̂︀𝑢ℎ𝜙

+
)︀
𝑗− 1

2

)︃
d𝑡+

∫︁
𝐼𝑗

𝑓𝜙 d𝑊𝑡 d𝑥, (2.7)

∫︁
𝐼𝑗

d𝑢ℎ ̃︀𝜙(𝑥) d𝑥 =

(︃∫︁
𝐼𝑗

𝑣ℎ ̃︀𝜙𝑥 d𝑥−
(︀̂︀𝑣ℎ ̃︀𝜙−)︀

𝑗+ 1
2

+
(︀̂︀𝑣ℎ ̃︀𝜙+

)︀
𝑗− 1

2

)︃
d𝑡+

∫︁
𝐼𝑗

𝑔 ̃︀𝜙 d𝑊𝑡 d𝑥, (2.8)

where ̂︀𝑢ℎ, ̂︀𝑣ℎ are the numerical fluxes defined on the cell interfaces.
In recent years, there are much attention on studying and analyzing generalized numerical fluxes with various

parameters, in order to provide more flexible numerical dissipation with potential applications to complex
systems. In this paper, we follow the study in [20,21] and consider the following generalized numerical fluxes

̂︀𝑢ℎ = {𝑢ℎ} + 𝛼[𝑢ℎ] − 𝛽1[𝑣ℎ], ̂︀𝑣ℎ = {𝑣ℎ} − 𝛼[𝑣ℎ] − 𝛽2[𝑢ℎ], (2.9)

for some 𝛼 ∈ R and 𝛽1, 𝛽2 ≥ 0. The upwind flux can be recovered with the parameters 𝛼 = 0, 𝛽1 = 𝛽2 = 1/2.
In addition, 𝛼 = 1/2, 𝛽1 = 𝛽2 = 0 gives the alternating numerical which is popular in the local DG method. A
subgroup of such numerical fluxes, named “𝛼𝛽” fluxes, were considered in [20] for one-dimensional deterministic
two-way wave equations, and optimal error estimate were investigated based on a specially constructed projection
operator. DG method with more general numerical fluxes were studied in [21] for the one- and multi-dimensional
deterministic wave equations. To provide an optimal error estimate, the key ingredient was to construct an
optimal global projection on one-dimensional meshes or multi-dimensional unstructured meshes, which will also
be utilized in this paper. Note that similar DG method was studied in [24] for the stochastic Maxwell equation
with additive noise, using a specific choice of numerical fluxes (upwind flux) and slightly different treatment of
the noise term. Linear polynomial space was considered there, and the convergence rate of 𝑝− 1/2 in space was
obtained when the regularity 𝐻𝑝 (𝑝 = 1, 2) of the exact solution is ensured.

Next, we start by showing the following semi-discrete energy law satisfied by the numerical solutions of the
proposed DG methods.
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Theorem 2.2 (Semi-discrete energy law). Let 𝑣ℎ and 𝑢ℎ be the numerical solutions obtained in (2.7) and (2.8)
with 𝛽1, 𝛽2 ≥ 0, and let 𝒫(𝑓) and 𝒫(𝑔) be the 𝐿2 projections of 𝑓 and 𝑔 onto 𝑉 𝑘

ℎ , then we have

E
(︁
‖𝑢ℎ(𝑥, 𝑡)‖2 + ‖𝑣ℎ(𝑥, 𝑡)‖2

)︁
≤ ‖𝑢ℎ(𝑥, 0)‖2 + ‖𝑣ℎ(𝑥, 0)‖2 +

∫︁ 𝑡

0

E
(︁
‖𝒫(𝑓)‖2 + ‖𝒫(𝑔)‖2

)︁
d𝑠.

Moreover, the equality holds when 𝛽1 = 𝛽2 = 0 in the numerical fluxes (2.9).

Proof. Taking the test functions 𝜙 = 𝑣ℎ in (2.7) and ̃︀𝜙 = 𝑢ℎ in (2.8), and adding the resulting two equations
together, we have∫︁

𝐼𝑗

(d𝑢ℎ)𝑢ℎ + (d𝑣ℎ)𝑣ℎ d𝑥 =
∫︁

𝐼𝑗

𝑔𝑢ℎ + 𝑓𝑣ℎ d𝑥 d𝑊𝑡 +

(︃∫︁
𝐼𝑗

𝑢ℎ(𝑣ℎ)𝑥 d𝑥+ 𝑣ℎ(𝑢ℎ)𝑥 d𝑥

)︃
d𝑡

+
(︁(︀

({𝑢ℎ} + 𝛼[𝑢ℎ] − 𝛽1[𝑣ℎ])𝑣+ℎ
)︀
𝑗− 1

2
−
(︀
({𝑢ℎ} + 𝛼[𝑢ℎ] − 𝛽1[𝑣ℎ])𝑣−ℎ

)︀
𝑗+ 1

2

)︁
d𝑡

+
(︁(︀

({𝑣ℎ} − 𝛼[𝑣ℎ] − 𝛽2[𝑢ℎ])𝑢+ℎ
)︀
𝑗− 1

2
−
(︀
({𝑣ℎ} − 𝛼[𝑣ℎ] − 𝛽2[𝑢ℎ])𝑢−ℎ

)︀
𝑗+ 1

2

)︁
d𝑡

=
∫︁

𝐼𝑗

𝑔𝑢ℎ + 𝑓𝑣ℎ d𝑥 d𝑊𝑡 +
(︁

Θ𝑗− 1
2
− Θ𝑗+ 1

2

)︁
d𝑡−

(︁
𝛽1[𝑣ℎ]2𝑗+ 1

2
+ 𝛽2[𝑢ℎ]2𝑗+ 1

2

)︁
d𝑡

≤
∫︁

𝐼𝑗

𝑔𝑢ℎ + 𝑓𝑣ℎ d𝑥 d𝑊𝑡 +
(︁

Θ𝑗− 1
2
− Θ𝑗+ 1

2

)︁
d𝑡, (2.10)

where

Θ =
(︂

1
2

+ 𝛼

)︂
𝑣−ℎ 𝑢

+
ℎ +

(︂
1
2
− 𝛼

)︂
𝑢−ℎ 𝑣

+
ℎ .

Note that the equality in (2.10) holds when 𝛽1 = 𝛽2 = 0 in the numerical fluxes (2.9).
By Itô’s formula, we have

d(𝑢ℎ)2 = 2𝑢ℎ d𝑢ℎ + d⟨𝑢ℎ, 𝑢ℎ⟩𝑡, d(𝑣ℎ)2 = 2𝑣ℎ d𝑣ℎ + d⟨𝑣ℎ, 𝑣ℎ⟩𝑡. (2.11)

It follows from (2.7) that for any 𝜙 ∈ 𝑉 𝑘
ℎ ,∫︁

𝐼𝑗

𝑣ℎ(𝑥, 𝑡)𝜙(𝑥) d𝑥 =
∫︁

𝐼𝑗

𝑣ℎ(𝑥, 0)𝜙(𝑥) d𝑥+
∫︁ 𝑡

0

(︃∫︁
𝐼𝑗

𝑢ℎ𝜙𝑥 d𝑥−
(︀̂︀𝑢ℎ𝜙

−)︀
𝑗+ 1

2
+
(︀̂︀𝑢ℎ𝜙

+
)︀
𝑗− 1

2

)︃
d𝜏

+
∫︁ 𝑡

0

∫︁
𝐼𝑗

𝑓𝜙 d𝑥 d𝑊𝜏 , (2.12)

therefore, for any continuous semimartingale 𝑌 ,∫︁
𝐼𝑗

⟨𝑣ℎ, 𝑌 ⟩𝑡𝜙(𝑥) d𝑥 =

⟨∫︁
𝐼𝑗

𝑣ℎ𝜙 d𝑥, 𝑌

⟩
𝑡

=

⟨∫︁ 𝑡

0

∫︁
𝐼𝑗

𝑓𝜙 d𝑥 d𝑊𝜏 , 𝑌

⟩
𝑡

=

⟨∫︁ 𝑡

0

∫︁
𝐼𝑗

𝒫(𝑓)𝜙 d𝑥 d𝑊𝜏 , 𝑌

⟩
𝑡

, (2.13)

where the second equality follows from applying (2.12), and the last equality comes from the 𝐿2 projection
property: ∫︁

𝐼𝑗

(𝑓 − 𝒫(𝑓))𝑣 d𝑥 = 0, ∀𝑣(𝑥) ∈ 𝑉 𝑘
ℎ .

Let us represent the numerical solutions 𝑣ℎ in the cell 𝐼𝑗 as

𝑣ℎ(𝜔, 𝑥, 𝑡) =
𝑘∑︁

𝑙=0

𝑣𝑙
𝑗(𝜔, 𝑡)𝜑𝑙

𝑗(𝑥),



DISCONTINUOUS GALERKIN METHODS FOR STOCHASTIC MAXWELL EQUATIONS 847

where {𝜑𝑙
𝑗} represents the set of orthogonal Legendre basis of 𝑉 𝑘

ℎ over cell 𝐼𝑗 . It can be shown that (2.12) and
(2.13) lead to∫︁

𝐼𝑗

⟨𝑣ℎ, 𝑣ℎ⟩𝑡 d𝑥 =
∫︁

𝐼𝑗

⟨
𝑣ℎ,

𝑘∑︁
𝑙=0

𝑣𝑙
𝑗𝜑

𝑙
𝑗

⟩
𝑡

d𝑥 =
𝑘∑︁

𝑙=0

∫︁
𝐼𝑗

⟨︀
𝑣ℎ, 𝑣

𝑙
𝑗

⟩︀
𝑡
𝜑𝑙

𝑗 d𝑥 =
𝑘∑︁

𝑙=0

⟨∫︁ 𝑡

0

∫︁
𝐼𝑗

𝒫(𝑓)𝜑𝑙
𝑗 d𝑥 d𝑊𝜏 , 𝑣

𝑙
𝑗

⟩
𝑡

=
𝑘∑︁

𝑙=0

∫︁
𝐼𝑗

⟨∫︁ 𝑡

0

𝒫(𝑓) d𝑊𝜏 , 𝑣
𝑙
𝑗𝜑

𝑙
𝑗

⟩
𝑡

d𝑥 =
∫︁

𝐼𝑗

⟨∫︁ 𝑡

0

𝒫(𝑓) d𝑊𝜏 , 𝑣ℎ

⟩
𝑡

d𝑥, (2.14)

Let us denote 𝒫(𝑓) =
∑︀𝑘

𝑙=0(𝑃𝑓 )𝑙
𝑗𝜑

𝑙
𝑗 . Repeating the same process as in (2.14), we can obtain∫︁

𝐼𝑗

⟨∫︁ 𝑡

0

𝒫(𝑓) d𝑊𝜏 , 𝑣ℎ

⟩
𝑡

d𝑥 =
∫︁

𝐼𝑗

⟨∫︁ 𝑡

0

𝒫(𝑓) d𝑊𝜏 ,

∫︁ 𝑡

0

𝒫(𝑓) d𝑊𝜏

⟩
𝑡

d𝑥, (2.15)

which leads to ∫︁
𝐼𝑗

⟨𝑣ℎ, 𝑣ℎ⟩𝑡 d𝑥 =
∫︁

𝐼𝑗

⟨∫︁ 𝑡

0

𝒫(𝑓) d𝑊𝜏 ,

∫︁ 𝑡

0

𝒫(𝑓) d𝑊𝜏

⟩
𝑡

d𝑥 =: 𝑚𝑎(𝑣ℎ, 𝑓). (2.16)

Similarly, we have ∫︁
𝐼𝑗

⟨𝑢ℎ, 𝑢ℎ⟩𝑡 d𝑥 =
∫︁

𝐼𝑗

⟨∫︁ 𝑡

0

𝒫(𝑔) d𝑊𝜏 ,

∫︁ 𝑡

0

𝒫(𝑔) d𝑊𝜏

⟩
𝑡

d𝑥 =: 𝑚𝑎(𝑢ℎ, 𝑔). (2.17)

Integrating (2.10) over 𝑡, summing up over all cells 𝐼𝑗 and utilizing the results in (2.11), (2.16) and (2.17),
we have

‖𝑢ℎ(𝑥, 𝑡)‖2 + ‖𝑣ℎ(𝑥, 𝑡)‖2 ≤ ‖𝑢ℎ(𝑥, 0)‖2 + ‖𝑣ℎ(𝑥, 0)‖2 +𝑚𝑎(𝑣ℎ; 𝑓) +𝑚𝑎(𝑢ℎ; 𝑔)

+
∫︁ 𝑡

0

∫︁
𝐼

𝑔𝑢ℎ + 𝑓𝑣ℎ d𝑥 d𝑊𝜏 , (2.18)

with periodic boundary conditions. Note that the process
∫︀ 𝑡

0

∫︀
𝐼
𝑔𝑢ℎ + 𝑓𝑣ℎ d𝑥 d𝑊𝜏 is an Itô integral, thus it

has zero expectation. Taking expectation of equation (2.18), and applying Itô isometry onto 𝑚𝑎(𝑣ℎ; 𝑓) and
𝑚𝑎(𝑢ℎ; 𝑔), we have

E
(︁
‖𝑢ℎ(𝑥, 𝑡)‖2 + ‖𝑣ℎ(𝑥, 𝑡)‖2

)︁
≤ ‖𝑢ℎ(𝑥, 0)‖2 + ‖𝑣ℎ(𝑥, 0)‖2 +

∫︁ 𝑡

0

E
(︁
‖𝒫(𝑓)‖2 + ‖𝒫(𝑔)‖2

)︁
d𝜏,

which finishes the proof. �

Next, we will provide an optimal error estimate analysis of the proposed semi-discrete DG method. We start
by defining a pair of global projection operators which will be used in the error estimate analysis: on any cell
𝐼𝑗 and for any pair of smooth functions (𝑞(𝑥), 𝑟(𝑥)), define 𝒫𝛼,𝛽1 and 𝒫−𝛼,𝛽2 as∫︁

𝐼𝑗

(︀
𝒫𝛼,𝛽1𝑞 − 𝑞(𝑥)

)︀
𝑤(𝑥) d𝑥 = 0, ∀𝑤(𝑥) ∈ 𝑃 𝑘−1(𝐼𝑗), ∀𝑗, (2.19)∫︁

𝐼𝑗

(︀
𝒫−𝛼,𝛽2𝑟 − 𝑟(𝑥)

)︀
𝑤(𝑥) d𝑥 = 0, ∀𝑤(𝑥) ∈ 𝑃 𝑘−1(𝐼𝑗), ∀𝑗, (2.20)(︀{︀

𝒫𝛼,𝛽1𝑞
}︀

+ 𝛼
[︀
𝒫𝛼,𝛽1𝑞

]︀
− 𝛽1

[︀
𝒫𝛼,𝛽1𝑟

]︀)︀
𝑗+ 1

2
= 𝑞
(︁
𝑥𝑗+ 1

2

)︁
, ∀𝑗, (2.21)(︀{︀

𝒫−𝛼,𝛽2𝑟
}︀
− 𝛼

[︀
𝒫−𝛼,𝛽2𝑟

]︀
− 𝛽2

[︀
𝒫−𝛼,𝛽2𝑞

]︀)︀
𝑗+ 1

2
= 𝑟
(︁
𝑥𝑗+ 1

2

)︁
, ∀𝑗. (2.22)

This set of global projections was also introduced by Sun and Xing [21], and the following property on the
projection error is studied in Lemma 2.1 of [21] and will be useful in the error estimate analysis.
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Lemma 2.3 (Projection error). If 𝛼2 + 𝛽1𝛽2 ̸= 0, the projections 𝒫𝛼,𝛽1 , 𝒫−𝛼,𝛽2 in (2.19)–(2.22) are well
defined. Furthermore, let 𝑞, 𝑟 ∈ 𝐻𝑘+1 be smooth functions, then there exists some constant 𝐶 such that⃦⃦

𝒫𝛼,𝛽1𝑞 − 𝑞
⃦⃦2

+
⃦⃦
𝒫−𝛼,𝛽2𝑟 − 𝑟

⃦⃦2 ≤ 𝐶ℎ2𝑘+2
(︁
‖𝑞‖2𝐻𝑘+1 + ‖𝑟‖2𝐻𝑘+1

)︁
.

Theorem 2.4 (Optimal error estimate). Suppose 𝛽1, 𝛽2 ≥ 0 and 𝛼2 +𝛽1𝛽2 ̸= 0. Let 𝑢ℎ and 𝑣ℎ be the numerical
solutions obtained by the semi-discrete DG method (2.7), (2.8), and 𝑢, 𝑣 ∈ 𝐿2(Ω× [0, 𝑡end], 𝐻𝑘+2) be the strong
solutions to (2.1) with 𝑓(·, ·, 𝑢(·), 𝑣(·)), 𝑔(·, ·, 𝑢(·), 𝑣(·)) ∈ 𝐿2(Ω× [0, 𝑡end], 𝐻𝑘+1), then there exists some constant
𝐶 such that

E
(︁
‖𝑢− 𝑢ℎ‖2 + ‖𝑣 − 𝑣ℎ‖2

)︁
≤ 𝐶ℎ2𝑘+2, (2.23)

where the convergence rate is optimal with respect to the polynomial degree 𝑘.

Proof. Since the exact solutions 𝑣 and 𝑢 also satisfy equations (2.7) and (2.8), taking the difference of the
semi-discrete method and the equations satisfied by the exact solutions yields the following error equations∫︁

𝐼𝑗

d(𝑣 − 𝑣ℎ)𝜙(𝑥) d𝑥 =

(︃∫︁
𝐼𝑗

(𝑢− 𝑢ℎ)𝜙𝑥 d𝑥−
(︀
(𝑢− ̂︀𝑢ℎ)𝜙−)︀

𝑗+ 1
2

+
(︀
(𝑢− ̂︀𝑢ℎ)𝜙+

)︀
𝑗− 1

2

)︃
d𝑡

+
∫︁

𝐼𝑗

(𝑓(𝑥, 𝑡, 𝑢, 𝑣) − 𝑓(𝑥, 𝑡, 𝑢ℎ, 𝑣ℎ))𝜙 d𝑥 d𝑊𝑡, (2.24)

∫︁
𝐼𝑗

d(𝑢− 𝑢ℎ)̃︀𝜙(𝑥) d𝑥 =

(︃∫︁
𝐼𝑗

(𝑣 − 𝑣ℎ)̃︀𝜙𝑥 d𝑥−
(︀
(𝑣 − ̂︀𝑣ℎ)̃︀𝜙−)︀

𝑗+ 1
2

+
(︀
(𝑣 − ̂︀𝑣ℎ)̃︀𝜙+

)︀
𝑗− 1

2

)︃
d𝑡

+
∫︁

𝐼𝑗

(𝑔(𝑥, 𝑡, 𝑢, 𝑣) − 𝑔(𝑥, 𝑡, 𝑢ℎ, 𝑣ℎ))̃︀𝜙 d𝑥 d𝑊𝑡, (2.25)

for any 𝜙, ̃︀𝜙 ∈ 𝑉 𝑘
ℎ . Decompose the numerical error into the following two terms

𝑣 − 𝑣ℎ = 𝜉𝑣 − 𝜖𝑣, 𝑢− 𝑢ℎ = 𝜉𝑢 − 𝜖𝑢, (2.26)

where

𝜉𝑣 = 𝒫−𝛼,𝛽2𝑣 − 𝑣ℎ ∈ 𝑉 𝑘
ℎ , 𝜖𝑣 = 𝒫−𝛼,𝛽2𝑣 − 𝑣, 𝜉𝑢 = 𝒫𝛼,𝛽1𝑢− 𝑢ℎ ∈ 𝑉 𝑘

ℎ , 𝜖𝑢 = 𝒫𝛼,𝛽1𝑢− 𝑢.

For the initial condition, we choose

𝑣ℎ(𝑥, 0) = 𝒫−𝛼,𝛽2𝑣(𝑥, 0), 𝑢ℎ(𝑥, 0) = 𝒫𝛼,𝛽1𝑢(𝑥, 0),

hence 𝜉𝑣(𝑥, 0) = 𝜉𝑢(𝑥, 0) = 0. For 𝑞 ∈ {𝑓, 𝑔} and any 𝑤 ∈ 𝑉 𝑘
ℎ , define

ℰ𝑗
𝑞 (𝑤) =

∫︁
𝐼𝑗

(𝑞(𝑥, 𝑡, 𝑢, 𝑣) − 𝑞(𝑥, 𝑡, 𝑢ℎ, 𝑣ℎ))𝑤 d𝑥 d𝑊𝑡,

which is an Itô differential, hence we have E
(︀
ℰ𝑗

𝑞 (𝑤)
)︀

= 0. By choosing the test functions 𝜙 = 𝜉𝑣, ̃︀𝜙 = 𝜉𝑢 in
(2.24), (2.25) and summing up the equations, we obtain∫︁

𝐼𝑗

d𝜉𝑣𝜉𝑣 + d𝜉𝑢𝜉𝑢 d𝑥 =
∫︁

𝐼𝑗

d𝜖𝑣𝜉𝑣 + d𝜖𝑢𝜉𝑢 d𝑥+ ℰ𝑗
𝑓 (𝜉𝑣) + ℰ𝑗

𝑔 (𝜉𝑢)

+

(︃∫︁
𝐼𝑗

𝜉𝑢𝜉𝑣
𝑥 d𝑥−

(︀
({𝜉𝑢} + 𝛼[𝜉𝑢] − 𝛽1[𝜉𝑣])(𝜉𝑣)−

)︀
𝑗+ 1

2
+
(︀
({𝜉𝑢} + 𝛼[𝜉𝑢] − 𝛽1[𝜉𝑣])(𝜉𝑣)+

)︀
𝑗− 1

2

)︃
d𝑡
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−

(︃∫︁
𝐼𝑗

𝜖𝑢𝜉𝑣
𝑥 d𝑥−

(︀
({𝜖𝑢} + 𝛼[𝜖𝑢] − 𝛽1[𝜖𝑣])(𝜉𝑣)−

)︀
𝑗+ 1

2
+
(︀
({𝜖𝑢} + 𝛼[𝜖𝑢] − 𝛽1[𝜖𝑣])(𝜉𝑣)+

)︀
𝑗− 1

2

)︃
d𝑡

+

(︃∫︁
𝐼𝑗

𝜉𝑣𝜉𝑢
𝑥 d𝑥−

(︀
({𝜉𝑣} − 𝛼[𝜉𝑣] − 𝛽2[𝜉𝑢])(𝜉𝑢)−

)︀
𝑗+ 1

2
+
(︀
({𝜉𝑣} − 𝛼[𝜉𝑣] − 𝛽2[𝜉𝑢])(𝜉𝑢)+

)︀
𝑗− 1

2

)︃
d𝑡

−

(︃∫︁
𝐼𝑗

𝜖𝑣𝜉𝑢
𝑥 d𝑥−

(︀
({𝜖𝑣} − 𝛼[𝜖𝑣] − 𝛽2[𝜖𝑢])(𝜉𝑢)−

)︀
𝑗+ 1

2
+
(︀
({𝜖𝑣} − 𝛼[𝜖𝑣] − 𝛽2[𝜖𝑢])(𝜉𝑢)+

)︀
𝑗− 1

2

)︃
d𝑡

=
∫︁

𝐼𝑗

d𝜖𝑣𝜉𝑣 + d𝜖𝑢𝜉𝑢 d𝑥+
(︁̃︀Θ𝑗− 1

2
− ̃︀Θ𝑗+ 1

2

)︁
d𝑡+ ℰ𝑗

𝑓 (𝜉𝑣) + ℰ𝑗
𝑔 (𝜉𝑢) −

(︁
𝛽1[𝜉𝑣]2𝑗+ 1

2
+ 𝛽2[𝜉𝑢]2𝑗+ 1

2

)︁
d𝑡,

≤
∫︁

𝐼𝑗

d𝜖𝑣𝜉𝑣 + d𝜖𝑢𝜉𝑢 d𝑥+
(︁̃︀Θ𝑗− 1

2
− ̃︀Θ𝑗+ 1

2

)︁
d𝑡+ ℰ𝑗

𝑓 (𝜉𝑣) + ℰ𝑗
𝑔 (𝜉𝑢), (2.27)

where ̃︀Θ =
(︀
1
2 + 𝛼

)︀
(𝜉𝑢)+(𝜉𝑣)− +

(︀
1
2 − 𝛼

)︀
(𝜉𝑣)+(𝜉𝑢)−. The last equality follows from the definition of the special

projection which leads to (for the error term 𝜖𝑣 = 𝒫−𝛼,𝛽2𝑣 − 𝑣, 𝜖𝑢 = 𝒫𝛼,𝛽1𝑢− 𝑢)∫︁
𝐼𝑗

𝜖𝑢𝜉𝑣
𝑥 d𝑥 =

∫︁
𝐼𝑗

𝜖𝑣𝜉𝑢
𝑥 d𝑥 = ({𝜖𝑢} + 𝛼[𝜖𝑢] − 𝛽1[𝜖𝑣])𝑗± 1

2
= ({𝜖𝑣} − 𝛼[𝜖𝑣] − 𝛽2[𝜖𝑢])𝑗± 1

2
= 0,

and an integration by parts which leads to∫︁
𝐼𝑗

𝜉𝑢𝜉𝑣
𝑥 d𝑥+

∫︁
𝐼𝑗

𝜉𝑣𝜉𝑢
𝑥 d𝑥−

(︀
({𝜉𝑢} + 𝛼[𝜉𝑢] − 𝛽1[𝜉𝑣])(𝜉𝑣)−

)︀
𝑗+ 1

2
+
(︀
({𝜉𝑢} + 𝛼[𝜉𝑢] − 𝛽1[𝜉𝑣])(𝜉𝑣)+

)︀
𝑗− 1

2

−
(︀
({𝜉𝑣} − 𝛼[𝜉𝑣] − 𝛽2[𝜉𝑢])(𝜉𝑢)−

)︀
𝑗+ 1

2
+
(︀
({𝜉𝑣} − 𝛼[𝜉𝑣] − 𝛽2[𝜉𝑢])(𝜉𝑢)+

)︀
𝑗− 1

2

= ̃︀Θ𝑗− 1
2
− ̃︀Θ𝑗+ 1

2
−
(︁
𝛽1[𝜉𝑣]2𝑗+ 1

2
+ 𝛽2[𝜉𝑢]2𝑗+ 1

2

)︁
.

By Itô’s lemma, we have

d(𝜉𝑣)2 = 2 d𝜉𝑣𝜉𝑣 + d⟨𝜉𝑣, 𝜉𝑣⟩𝑡, d(𝜉𝑢)2 = 2 d𝜉𝑢𝜉𝑢 + d⟨𝜉𝑢, 𝜉𝑢⟩𝑡. (2.28)

Note that

d
(︀
𝒫𝛼,𝛽1𝑢

)︀
= 𝒫𝛼,𝛽1(d𝑢) = 𝒫𝛼,𝛽1(−𝑣𝑥 d𝑡+ 𝑔 d𝑊𝑡) = 𝒫𝛼,𝛽1(−𝑣𝑥 d𝑡) + 𝒫𝛼,𝛽1(𝑔) d𝑊𝑡.

We then have, for any test function ̃︀𝜙,∫︁
𝐼𝑗

(︀
d𝒫𝛼,𝛽1𝑢

)︀̃︀𝜙 d𝑥 =
∫︁

𝐼𝑗

𝒫𝛼,𝛽1(−𝑣𝑥)̃︀𝜙 d𝑥 d𝑡+
∫︁

𝐼𝑗

̃︀𝜙𝒫𝛼,𝛽1(𝑔) d𝑥 d𝑊𝑡. (2.29)

Subtracting (2.8) from (2.29), we have∫︁
𝐼𝑗

d𝜉𝑢 ̃︀𝜙 d𝑥 =

(︃∫︁
𝐼𝑗

(−𝑣ℎ̃︁𝜙𝑥 + 𝒫𝛼,𝛽1(−𝑣𝑥)̃︀𝜙) d𝑥+ (̂︁𝑣ℎ ̃︀𝜙−)𝑗+ 1
2
− (̂︁𝑣ℎ ̃︀𝜙+)𝑗− 1

2

)︃
d𝑡

+
∫︁

𝐼𝑗

(𝒫𝛼,𝛽1(𝑔(·, 𝑢, 𝑣)) − 𝑔(·, 𝑢ℎ, 𝑣ℎ))̃︀𝜙 d𝑥 d𝑊𝑡. (2.30)

Therefore, after integrating over 𝑡, we have∫︁
𝐼𝑗

𝜉𝑢 ̃︀𝜙 d𝑥 =
∫︁ 𝑡

0

(︃∫︁
𝐼𝑗

(︀
−𝑣ℎ̃︁𝜙𝑥 + 𝒫𝛼,𝛽1(−𝑣𝑥)̃︀𝜙)︀ d𝑥+

(︀̂︁𝑣ℎ ̃︀𝜙−)︀
𝑗+ 1

2
−
(︀̂︁𝑣ℎ ̃︀𝜙+

)︀
𝑗− 1

2

)︃
d𝜏
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+
∫︁ 𝑡

0

∫︁
𝐼𝑗

(︀
𝒫𝛼,𝛽1(𝑔(·, 𝑢, 𝑣)) − 𝑔(·, 𝑢ℎ, 𝑣ℎ)

)︀̃︀𝜙 d𝑥 d𝑊𝜏 . (2.31)

For any semimartingale 𝑌 , we have∫︁
𝐼𝑗

⟨𝜉𝑢, 𝑌 ⟩𝑡 ̃︀𝜙 d𝑥 =

⟨∫︁ 𝑡

0

∫︁
𝐼𝑗

(𝒫𝛼,𝛽1(𝑔(·, 𝑢, 𝑣)) − 𝑔(·, 𝑢ℎ, 𝑣ℎ))̃︀𝜙 d𝑥 d𝑊𝜏 , 𝑌

⟩
𝑡

. (2.32)

Let us write 𝜉𝑢 =
∑︀𝑘

𝑙=0(𝜉𝑢)𝑙
𝑗𝜑

𝑙
𝑗 . Repeating the same process as in (2.14) yields∫︁

𝐼𝑗

⟨𝜉𝑢, 𝜉𝑢⟩𝑡 d𝑥 =
∫︁

𝐼𝑗

⟨∫︁ 𝑡

0

𝒫𝛼,𝛽1(𝑔(·, 𝑢, 𝑣)) − 𝑔(·, 𝑢ℎ, 𝑣ℎ) d𝑊𝜏 , 𝜉
𝑢

⟩
𝑡

d𝑥. (2.33)

This can be separated into two terms∫︁
𝐼𝑗

⟨𝜉𝑢, 𝜉𝑢⟩𝑡 d𝑥 =
∫︁

𝐼𝑗

⟨∫︁ 𝑡

0

𝒫𝛼,𝛽1(𝑔(·, 𝑢, 𝑣)) − 𝑔(·, 𝑢, 𝑣) d𝑊𝜏 , 𝜉
𝑢

⟩
𝑡

d𝑥

+
∫︁

𝐼𝑗

⟨∫︁ 𝑡

0

𝑔(·, 𝑢, 𝑣) − 𝑔(·, 𝑢ℎ, 𝑣ℎ) d𝑊𝜏 , 𝜉
𝑢

⟩
𝑡

d𝑥

≤ 1
2

∫︁
𝐼𝑗

⟨𝜉𝑢, 𝜉𝑢⟩𝑡 d𝑥+ 𝐶

∫︁
𝐼𝑗

⟨∫︁ 𝑡

0

𝒫𝛼,𝛽1(𝑔) − 𝑔 d𝑊𝜏 ,

∫︁ 𝑡

0

𝒫𝛼,𝛽1(𝑔) − 𝑔 d𝑊𝜏

⟩
𝑡

d𝑥

+ 𝐶

∫︁
𝐼𝑗

⟨∫︁ 𝑡

0

𝑔(·, 𝑢, 𝑣) − 𝑔(·, 𝑢ℎ, 𝑣ℎ) d𝑊𝜏 ,

∫︁ 𝑡

0

𝑔(·, 𝑢, 𝑣) − 𝑔(·, 𝑢ℎ, 𝑣ℎ) d𝑊𝜏

⟩
𝑡

d𝑥.

(2.34)

where the last inequality follows from applying Cauchy inequality. Introduce the notations

𝑄𝑢1 =
∫︁

𝐼𝑗

⟨∫︁ 𝑡

0

𝒫𝛼,𝛽1(𝑔) − 𝑔 d𝑊𝜏 ,

∫︁ 𝑡

0

𝒫𝛼,𝛽1(𝑔) − 𝑔 d𝑊𝜏

⟩
𝑡

d𝑥,

𝑄𝑢2 =
∫︁

𝐼𝑗

⟨∫︁ 𝑡

0

𝑔(·, 𝑢, 𝑣) − 𝑔(·, 𝑢ℎ, 𝑣ℎ) d𝑊𝜏 ,

∫︁ 𝑡

0

𝑔(·, 𝑢, 𝑣) − 𝑔(·, 𝑢ℎ, 𝑣ℎ) d𝑊𝜏

⟩
𝑡

d𝑥.

Recall the assumptions (2.2), and by Itô isometry we have

E(𝑄𝑢2) =
∫︁

𝐼𝑗

∫︁ 𝑡

0

E|𝑔(·, 𝑢, 𝑣) − 𝑔(·, 𝑢ℎ, 𝑣ℎ)|2 d𝜏 d𝑥 ≤ 𝐶

∫︁
𝐼𝑗

∫︁ 𝑡

0

E
(︀
|𝑢− 𝑢ℎ|2 + |𝑣 − 𝑣ℎ|2

)︀
d𝜏 d𝑥

= 𝐶

∫︁
𝐼𝑗

∫︁ 𝑡

0

E
(︁
|𝜉𝑢 − 𝜖𝑢|2 + |𝜉𝑣 − 𝜖𝑣|2

)︁
d𝜏 d𝑥,

(2.35)

and

E(𝑄𝑢1) =
∫︁

𝐼𝑗

∫︁ 𝑡

0

E
(︀
𝒫𝛼,𝛽1𝑔 − 𝑔

)︀2
d𝜏 d𝑥.

Therefore, after taking the expectation of equation (2.34), we conclude∫︁
𝐼𝑗

E(⟨𝜉𝑢, 𝜉𝑢⟩𝑡) d𝑥 ≤ 𝐶E(𝑄𝑢1 +𝑄𝑢2)

≤ 𝐶

∫︁
𝐼𝑗

∫︁ 𝑡

0

E
(︀
𝒫𝛼,𝛽1𝑔 − 𝑔

)︀2
d𝜏 d𝑥+ 𝐶

∫︁
𝐼𝑗

∫︁ 𝑡

0

E
(︁
|𝜉𝑢 − 𝜖𝑢|2 + |𝜉𝑣 − 𝜖𝑣|2

)︁
d𝜏 d𝑥, (2.36)
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and for the same reason,∫︁
𝐼𝑗

E(⟨𝜉𝑣, 𝜉𝑣⟩𝑡) d𝑥 ≤ 𝐶

∫︁
𝐼𝑗

∫︁ 𝑡

0

E
(︀
𝒫−𝛼,𝛽2𝑓 − 𝑓

)︀2
d𝜏 d𝑥+ 𝐶

∫︁
𝐼𝑗

∫︁ 𝑡

0

E
(︁
|𝜉𝑢 − 𝜖𝑢|2 + |𝜉𝑣 − 𝜖𝑣|2

)︁
d𝜏 d𝑥. (2.37)

After summing over all cells 𝐼𝑗 , utilizing the periodic boundary conditions and integrating equations (2.27),
(2.28) from 0 to 𝑡, we can take the expectation of the resulting equations and obtain

E
(︁
‖𝜉𝑢(𝑥, 𝑡)‖2 + ‖𝜉𝑣(𝑥, 𝑡)‖2

)︁
≤ ‖𝜉𝑢(𝑥, 0)‖2 + ‖𝜉𝑣(𝑥, 0)‖2 + 2E

(︂∫︁ 𝑡

0

∫︁
𝐼

d𝜖𝑣𝜉𝑣 + d𝜖𝑢𝜉𝑢 d𝑥 d𝜏
)︂

+
∫︁ 𝑡

0

∫︁
𝐼

E(⟨𝜉𝑢, 𝜉𝑢⟩𝑡) d𝑥 d𝜏 +
∫︁ 𝑡

0

∫︁
𝐼

E(⟨𝜉𝑣, 𝜉𝑣⟩𝑡) d𝑥 d𝜏.

Following the same derivation of equation (2.30), we have∫︁
𝐼

d𝜖𝑢 ̃︀𝜙 d𝑥 =
∫︁

𝐼

(︀
𝑣𝑥 − 𝒫𝛼,𝛽1(𝑣𝑥)

)︀̃︀𝜙 d𝑥 d𝑡+
∫︁

𝐼

(︀
𝒫𝛼,𝛽1(𝑔) − 𝑔

)︀̃︀𝜙 d𝑥 d𝑊𝑡. (2.38)

Based on the assumptions, we know that
∫︀

𝐼𝑗
(𝒫𝛼,𝛽1(𝑔) − 𝑔)̃︀𝜙 d𝑥 d𝑊𝑡 is a martingale. Therefore

E
(︂∫︁ 𝑡

0

∫︁
𝐼

d𝜖𝑢𝜉𝑢 d𝑥
)︂

= E
(︂∫︁ 𝑡

0

∫︁
𝐼

(︀
𝑣𝑥 − 𝒫𝛼,𝛽1(𝑣𝑥)

)︀
𝜉𝑢 d𝑥 d𝜏

)︂
≤ 𝐶ℎ2𝑘+2 +

∫︁ 𝑡

0

E‖𝜉𝑢(𝑥, 𝜏)‖2 d𝜏, (2.39)

after applying the error estimate of the projection in Lemma 2.3. Similarly, we have

E
(︂∫︁ 𝑡

0

∫︁
𝐼

d𝜖𝑣𝜉𝑣 d𝑥
)︂

≤ 𝐶ℎ2𝑘+2 +
∫︁ 𝑡

0

E‖𝜉𝑣(𝑥, 𝜏)‖2 d𝜏. (2.40)

Note that the initial condition satisfies ‖𝜉𝑣(𝑥, 0)‖ = ‖𝜉𝑢(𝑥, 0)‖ = 0, and we can utilize the results in (2.36)–(2.40)
to obtain

E
(︁
‖𝜉𝑣(𝑥, 𝑡)‖2 + ‖𝜉𝑣(𝑥, 𝑡)‖2

)︁
≤ 2E

(︂∫︁ 𝑡

0

∫︁
𝐼

d𝜖𝑣𝜉𝑣 + d𝜖𝑢𝜉𝑢 d𝑥
)︂

+ 𝐶E
(︂∫︁ 𝑡

0

⃦⃦
𝒫𝛼,𝛽1𝑔 − 𝑔

⃦⃦2
+
⃦⃦
𝒫−𝛼,𝛽2𝑓 − 𝑓

⃦⃦2
d𝜏
)︂

+ 𝐶E
(︂∫︁ 𝑡

0

‖𝜉𝑣(𝑥, 𝜏)‖2 + ‖𝜉𝑢(𝑥, 𝜏)‖2 d𝜏
)︂

+ 𝐶ℎ2𝑘+2

≤ 𝐶

∫︁ 𝑡

0

E
(︁
‖𝜉𝑣(𝑥, 𝜏)‖2 + ‖𝜉𝑢(𝑥, 𝜏)‖2

)︁
d𝜏 + 𝐶ℎ2𝑘+2.

The optimal error estimate (2.23) follows from applying Gronwall’s inequality and the optimal projection
error. �

Remark 2.5. In the proof, we assumed enough regularity of the exact solutions to study the “best” spatial
convergence rate of the proposed method. Such convergence rate has also been observed on some numerical
examples in Section 5.

3. Two-dimensional stochastic Maxwell equations with multiplicative noise

In this section, we study two-dimensional stochastic Maxwell equations in the following form⎧⎪⎨⎪⎩
d𝐸 − 𝑇𝑥 d𝑡+ 𝑆𝑦 d𝑡 = 𝑓(x, 𝑡,𝑢) d𝑊𝑡,

d𝑆 + 𝐸𝑦 d𝑡 = 𝑔(x, 𝑡,𝑢) d𝑊𝑡,

d𝑇 − 𝐸𝑥 d𝑡 = 𝑟(x, 𝑡,𝑢) d𝑊𝑡,

(3.1)
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where x = (𝑥, 𝑦)𝑇 ∈ Ω, 𝑡 ∈ [0, 𝑡end], 𝑢 = (𝐸,𝑆, 𝑇 ) and 𝑓, 𝑔, 𝑟 are smooth functions that satisfy the following
Lipschitz continuous and linear growth assumptions:

|𝑓(x, 𝑡,𝑢1) − 𝑓(x, 𝑡,𝑢2)| + |𝑔(x, 𝑡,𝑢1) − 𝑔(x, 𝑡,𝑢2)| + |𝑟(x, 𝑡,𝑢1) − 𝑟(x, 𝑡,𝑢2)| ≤ 𝐶|𝑢1 − 𝑢2|, (3.2)
|𝑓(x, 𝑡,𝑢)| + |𝑔(x, 𝑡,𝑢)| + |𝑟(x, 𝑡,𝑢)| ≤ 𝐶(1 + |𝐸| + |𝑆| + |𝑇 |). (3.3)

We refer to the beginning of Section 2 on the discussion of regularity properties of the solutions. For this model,
we have the following energy law satisfied by exact solutions. The proof follows almost the same analysis as that
of Theorem 2.1 and is skipped here.

Theorem 3.1 (Continuous energy law). Let 𝐸, 𝑆, 𝑇 be solutions to the equation (3.1) on the bounded domain
Ω with the periodic boundary condition, then for any 𝑡, the global stochastic energy satisfies the following energy
law

E
(︂∫︁

Ω

𝐸(x, 𝑡)2 + 𝑆(x, 𝑡)2 + 𝑇 (x, 𝑡)2 dx
)︂

=
∫︁
Ω

𝐸(x, 0)2 + 𝑆(x, 0)2 + 𝑇 (x, 0)2 dx +
∫︁ 𝑡

0

E
(︁
‖𝑓‖2 + ‖𝑔‖2 + ‖𝑟‖2

)︁
d𝜏. (3.4)

3.1. Triangular meshes

In this subsection we will consider DG methods for stochastic Maxwell equations with multiplicative noise
on triangular discretization of the domain Ω, and carry out the corresponding analysis. Firstly we rewrite the
equation (3.1) in the following compact form:

d𝐸 = ∇ · U d𝑡+ 𝐹 (x, 𝑡, 𝐸,U) d𝑊𝑡, dU = ∇𝐸 d𝑡+ G(x, 𝑡, 𝐸,U) d𝑊𝑡, (3.5)

where U = (𝑇,−𝑆)𝑇 , and 𝐹 and G are functions satisfying (3.2) and (3.3).
Let Ω = ∪𝐾∈𝒯ℎ

𝐾 be a quasi-uniform triangulation of the domain Ω, and Γ be the collection of triangle faces.
For a triangle 𝐾, and a face F ∈ 𝜕𝐾, let n be the outer normal vector on F . Given a face F , let nF denote
the unit vector across F , whose direction is not essential for unspecified 𝐾. We define the finite element DG
space 𝑉 𝑘

ℎ as
𝑉 𝑘

ℎ =
{︀
𝑣ℎ : 𝑣ℎ|𝐾 ∈ 𝑃 𝑘(𝐾)

}︀
,

where 𝑃 𝑘 is the space of polynomial of degree at most 𝑘. Vℎ is used to denote (𝑉 𝑘
ℎ )2, and denote (𝑃 𝑘)2 as P𝑘.

For a given face F , let 𝐾± be the two neighboring cells. For any function 𝑤 or vector valued function v, define

𝑤± = lim
x→𝜕𝐾,x∈𝐾±

𝑤(x), v± = lim
x→𝜕𝐾,x∈𝐾±

v(x).

The vector n± is the outer normal vector on 𝐹 with respect to 𝐾±. Finally, we define the following notations
for averages and jumps across a face F :

{𝑤} =
1
2
(︀
𝑤+ + 𝑤−)︀, {v} =

1
2
(︀
v+ + v−)︀, (3.6)

[𝑤n] = 𝑤+n+ + 𝑤−n−, [v · n] = v+ · n+ + v− · n−. (3.7)

Note that over all the triangles and faces, we have the following equalities∑︁
𝐾∈𝒯ℎ

∫︁
𝜕𝐾

𝑤v · n d𝑠 =
∑︁
F ∈Γ

∫︁
𝐹

𝑤+n+ · v+ + 𝑤−n− · v− d𝑠 =
∑︁
F ∈Γ

∫︁
𝐹

{𝑤}[n · v] + [𝑤n] · {v} d𝑠. (3.8)

The DG scheme for the two-dimensional system (3.5) is: find 𝐸ℎ ∈ 𝑉 𝑘
ℎ , Uℎ ∈ V𝑘

ℎ, such that for all test
functions 𝜙 ∈ 𝑉 𝑘

ℎ , 𝜓 ∈ V𝑘
ℎ, it holds that∫︁

𝐾

d𝐸ℎ𝜙 dx +
∫︁

𝐾

Uℎ · ∇𝜙 dx d𝑡−
∫︁

𝜕𝐾

ℱ1(Uℎ, 𝐸ℎ) · 𝜙n d𝑠 d𝑡 =
∫︁

𝐾

𝐹𝜙 dx d𝑊𝑡, (3.9)
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𝐾

dUℎ ·𝜓 dx +
∫︁

𝐾

𝐸ℎ∇ ·𝜓 dx d𝑡−
∫︁

𝜕𝐾

ℱ2(𝐸ℎ,Uℎ)𝜓 · n d𝑠 d𝑡 =
∫︁

𝐾

G ·𝜓 dx d𝑊𝑡, (3.10)

where the numerical fluxes are chosen to be

ℱ1(Uℎ, 𝐸ℎ) = {Uℎ} −𝛼[Uℎ · n] − 𝛽1[𝐸ℎn], ℱ2(𝐸ℎ,Uℎ) = {𝐸ℎ} +𝛼 · [𝐸ℎn] − 𝛽2[Uℎ · n], (3.11)

with 𝛼 = 𝛼 sgn(r · nF )nF for some number 𝛼. Note that these generalized numerical fluxes can be viewed as
two-dimensional extension of the one-dimensional numerical fluxes (2.9).

Next, we start by showing the following semi-discrete energy law satisfied by numerical solutions of the
proposed DG methods.

Theorem 3.2 (Semi-discrete energy law). Let 𝐸ℎ and Uℎ be the numerical solutions obtained in (3.9) and
(3.10) with 𝛽1 ≥ 0, 𝛽2 ≥ 0, then we have

E
(︁
‖𝐸ℎ(x, 𝑡)‖2 + ‖Uℎ(x, 𝑡)‖2

)︁
≤ ‖𝐸ℎ(x, 0)‖2 + ‖Uℎ(x, 0)‖2 +

∫︁ 𝑡

0

E
(︁
‖𝒫(𝐹 )‖2 + ‖𝒫(G)‖2

)︁
d𝜏. (3.12)

Moreover, the equality holds when 𝛽1 = 𝛽2 = 0 in the numerical fluxes (3.11).

Proof. By taking the test function 𝜙 = 𝐸ℎ in (3.9) and 𝜓 = Uℎ in (3.10), and summing the resulting equations
over all cells 𝐾, we obtain∫︁

Ω

d𝐸ℎ𝐸ℎ + dUℎ · Uℎ dx +
∫︁
Ω

Uℎ · ∇𝐸ℎ + 𝐸ℎ∇ · Uℎ dx d𝑡

−
∑︁

𝐾∈𝒯ℎ

∫︁
𝜕𝐾

ℱ1(Uℎ, 𝐸ℎ) · 𝐸ℎn + ℱ2(𝐸ℎ,Uℎ)Uℎ · n d𝑠 d𝑡 =
∫︁
Ω

𝐹𝐸ℎ + G · Uℎ dx d𝑊𝑡.
(3.13)

By an integration by parts and applying the equality (3.8), we can have∫︁
Ω

Uℎ · ∇𝐸ℎ + 𝐸ℎ∇ · Uℎ dx d𝑡−
∑︁

𝐾∈𝒯ℎ

∫︁
𝜕𝐾

ℱ1(Uℎ, 𝐸ℎ) · 𝐸ℎn + ℱ2(𝐸ℎ,Uℎ)Uℎ · n d𝑠 d𝑡

=
∑︁

𝐾∈𝒯ℎ

∫︁
𝜕𝐾

𝐸ℎUℎ · n d𝑠 d𝑡−
∑︁
F ∈Γ

∫︁
𝐹

ℱ1(Uℎ, 𝐸ℎ) · [𝐸ℎn] + ℱ2(𝐸ℎ,Uℎ)[Uℎ · n] d𝑠 d𝑡

=
∑︁

𝐾∈𝒯ℎ

∫︁
𝜕𝐾

𝐸ℎUℎ · n d𝑠 d𝑡−
∑︁
F ∈Γ

∫︁
𝐹

({Uℎ} −𝛼[Uℎ · n]) · [𝐸ℎn] + ({𝐸ℎ} +𝛼 · [𝐸ℎn])[Uℎ · n] d𝑠 d𝑡

+
∑︁
F ∈Γ

∫︁
𝐹

𝛽1|[𝐸ℎn]|2 + 𝛽2[Uℎ · n]2 d𝑠 d𝑡 =
∑︁
F ∈Γ

∫︁
𝐹

𝛽1|[𝐸ℎn]|2 + 𝛽2[Uℎ · n]2 d𝑠 d𝑡.

(3.14)

Therefore, equation (3.13) becomes∫︁
Ω

d𝐸ℎ𝐸ℎ + dUℎ · Uℎ dx +
∑︁
F ∈Γ

∫︁
𝐹

𝛽1|[𝐸ℎn]|2 + 𝛽2[Uℎ · n]2 d𝑠 d𝑡 =
∫︁
Ω

𝐹𝐸ℎ + G · Uℎ dx d𝑊𝑡. (3.15)

By Itô’s lemma, we have

d𝐸ℎ𝐸ℎ =
1
2

(d(𝐸ℎ)2 − d⟨𝐸ℎ, 𝐸ℎ⟩𝑡), dUℎ · Uℎ =
1
2

(𝑑|Uℎ|2 − d⟨Uℎ,Uℎ⟩𝑡).

Following an exact same process as in the derivation of (2.16), and applying the Itô isometry, we have∫︁
𝐾

E⟨𝐸ℎ, 𝐸ℎ⟩𝑡 dx =
∫︁

𝐾

∫︁ 𝑡

0

E(𝒫(𝐹 ))2 d𝜏 dx,
∫︁

𝐾

E⟨Uℎ,Uℎ⟩𝑡 dx =
∫︁

𝐾

∫︁ 𝑡

0

E(𝒫(G))2 d𝜏 dx.
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By plugging these into (3.15), integrating over time 𝑡, summing over all 𝐾, and taking expectation, we obtain

E
(︁
‖𝐸(x, 𝑡)‖2 + ‖U(x, 𝑡)‖2

)︁
≤ ‖𝐸(x, 0)‖2 + ‖U(x, 0)‖2 +

∫︁ 𝑡

0

E
(︁
‖𝒫(𝐹 )‖2 + ‖𝒫(G)‖2

)︁
d𝜏, (3.16)

where we use the fact that the right-hand side of (3.13)
∫︀
Ω
𝐹𝐸ℎ + G · Uℎ dx d𝑊𝑡 is a martingale, hence its

expectation equals to zero. It is easy to observe that the equality holds when 𝛽1 = 𝛽2 = 0. �

Similar to the one-dimensional case, to provide the optimal error estimate, we need to introduce the following
pair of projections PUU and 𝒫𝐸𝐸 [21]: for any 𝐾 ∈ 𝒯ℎ,∫︁

𝐾

(︀
PUU − U

)︀
· v dx = 0, ∀v ∈ P𝑘−1(𝐾), ∀𝐾 ∈ 𝒯ℎ, (3.17)∫︁

𝐾

(︀
𝒫𝐸𝐸 − 𝐸

)︀
𝑤 dx = 0, ∀𝑤 ∈ 𝑃 𝑘−1(𝐾), ∀𝐾 ∈ 𝒯ℎ, (3.18)∫︁

𝜕𝐾

ℱ1

(︀
PUU,𝒫𝐸𝐸

)︀
· 𝜇n d𝑠 =

∫︁
𝜕𝐾

U · 𝜇n d𝑠, ∀𝜇 ∈ 𝑃 𝑘(F ), ∀F ∈ Γ, (3.19)∫︁
𝜕𝐾

ℱ2

(︀
𝒫𝐸𝐸,PUU

)︀
𝜈 d𝑠 =

∫︁
𝜕𝐾

𝐸𝜈 d𝑠, ∀𝜈 ∈ 𝑃 𝑘(F ), ∀F ∈ Γ. (3.20)

The following lemma on the projection is studied in Lemma 3.1 of [21] and will be useful in the analysis of error
estimate. The detailed proof is skipped here, but we remark that when 𝛽1 = 0, an additional assumption on
the unit normal direction is needed, namely, there exists a unit vector r such that |r · nF | ≥ 𝜅 > 0 for all nF .
Further discussion can be found in [21].

Lemma 3.3. Suppose 𝛽1 ≥ 0, 𝛽2 > 0, and |𝛼|2 + 𝛽1𝛽2 ̸= 0, then the projection pair defined in (3.17)–(3.20) is
well defined, and there exists some constant 𝐶 independent of mesh size ℎ, such that⃦⃦

PUU − U
⃦⃦2

+
⃦⃦
𝒫𝐸𝐸 − 𝐸

⃦⃦2 ≤ 𝐶ℎ2𝑘+2
(︁
‖U‖2𝐻𝑘+1 + ‖𝐸‖2𝐻𝑘+1

)︁
.

Theorem 3.4 (Optimal error estimate). Suppose 𝛽1 ≥ 0, 𝛽2 > 0, and |𝛼|2 + 𝛽1𝛽2 ̸= 0. Let 𝐸ℎ and Uℎ be the
numerical solutions obtained by semi-discrete DG method (3.9), (3.10), and (𝐸,U𝑇 ) ∈ 𝐿2(Ω × [0, 𝑡end];𝐻𝑘+2)
are strong solutions, and (𝐹,G𝑇 ) ∈ 𝐿2(Ω × [0, 𝑡end], 𝐻𝑘+1), then there exists some constant 𝐶 such that

E
(︁
‖𝐸 − 𝐸ℎ‖2 + ‖U − Uℎ‖2

)︁
≤ 𝐶ℎ2𝑘+2.

Proof. For simplicity, for 𝑓, 𝜙 ∈ 𝑉 𝑘
ℎ , and g, 𝜓 ∈ V𝑘

ℎ, introduce the notation

𝒜𝐾(𝑓,g;𝜙,𝜓) =
∫︁

𝐾

g · ∇𝜙+ 𝑓∇ ·𝜓 dx d𝑡−
∫︁

𝜕𝐾

ℱ1(g, 𝑓) · 𝜙n + ℱ2(𝑓,g)𝜓 · n d𝑠 d𝑡.

We further define

𝜉U = PUU − Uℎ, 𝜉𝐸 = 𝒫𝐸𝐸 − 𝐸ℎ, 𝜖U = PUU − U, 𝜖𝐸 = 𝒫𝐸𝐸 − 𝐸,

and choose the initial condition

Uℎ(x, 0) = PUU(x, 0), 𝐸ℎ(x, 0) = 𝒫𝐸𝐸(x, 0),

hence 𝜉𝐸(x, 0) = 0, 𝜉U(x, 0) = 0.
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It can be observed that the following error equations hold∫︁
𝐾

d
(︀
𝜉𝐸 − 𝜖𝐸

)︀
𝜙 dx +

∫︁
𝐾

(︀
𝜉U − 𝜖U

)︀
· ∇𝜙 dx d𝑡−

∫︁
𝜕𝐾

ℱ1

(︀
𝜉U − 𝜖U, 𝜉𝐸 − 𝜖𝐸

)︀
· 𝜙n d𝑠 d𝑡

=
∫︁

𝐾

(𝐹 (𝐸,U) − 𝐹 (𝐸ℎ,Uℎ))𝜙 dx d𝑊𝑡,∫︁
𝐾

d
(︀
𝜉U − 𝜖U

)︀
·𝜓 dx +

∫︁
𝐾

(︀
𝜉𝐸 − 𝜖𝐸

)︀
∇ ·𝜓 dx d𝑡−

∫︁
𝜕𝐾

ℱ2

(︀
𝜉𝐸 − 𝜖𝐸 , 𝜉U − 𝜖U

)︀
𝜓 · n d𝑠 d𝑡

=
∫︁

𝐾

(G(𝐸,U) − G(𝐸ℎ,Uℎ)) ·𝜓 dx d𝑊𝑡,

where we dropped the dependence of 𝐹 , G on x, 𝑡 for simplicity. Taking the test functions 𝜙 = 𝜉𝐸 and 𝜓 = 𝜉U,
and summing up two equations, we obtain∫︁

𝐾

d𝜉𝐸𝜉𝐸 + d𝜉U · 𝜉U dx −
∫︁

𝐾

d𝜖𝐸𝜉𝐸 + d𝜖U · 𝜉U dx + 𝒜𝐾

(︀
𝜉𝐸 , 𝜉U; 𝜉𝐸 , 𝜉U

)︀
−𝒜𝐾

(︀
𝜖𝐸 , 𝜖U; 𝜉𝐸 , 𝜉U

)︀
=
∫︁

𝐾

(𝐹 (𝐸,U) − 𝐹 (𝐸ℎ,Uℎ))𝜉𝐸 + (G(𝐸,U) − G(𝐸ℎ,Uℎ)) · 𝜉U dxd𝑊𝑡.

(3.21)

From our definition of projections (3.17)–(3.20), we can conclude that 𝒜𝐾(𝜖𝐸 , 𝜖U; 𝜉𝐸 , 𝜉U) = 0. Following the
exact same analysis as in (3.14), we can have∑︁

𝐾∈𝒯ℎ

𝒜𝐾

(︀
𝜉𝐸 , 𝜉U; 𝜉𝐸 , 𝜉U

)︀
=
∑︁
F ∈Γ

∫︁
𝐹

𝛽2
1

⃒⃒[︀
𝜉𝐸n

]︀⃒⃒2
+ 𝛽2

[︀
𝜉U · n

]︀2
d𝑠 d𝑡 ≥ 0.

In addition, the term 𝑀1 :=
∫︀

𝐾
(𝐹 (𝐸,U) − 𝐹 (𝐸ℎ,Uℎ))𝜉𝐸 + (G(𝐸,U) − G(𝐸ℎ,Uℎ)) · 𝜉U dx d𝑊𝑡 on the right-

hand side is an martingale, and its expectation equals to zero. Therefore, summing the equation (3.21) over all
the cells 𝐾 leads to ∫︁

Ω

d𝜉𝐸𝜉𝐸 + d𝜉U · 𝜉U dx ≤
∫︁
Ω

d𝜖𝐸𝜉𝐸 + d𝜖U · 𝜉U dx +𝑀1. (3.22)

Following the same derivation of equations (2.39) and (2.40), we have

E
(︂∫︁

Ω

∫︁ 𝑡

0

d𝜖𝐸𝜉𝐸 + d𝜖U · 𝜉U dx
)︂

≤ 𝐶ℎ2𝑘+2 + 𝐶

∫︁ 𝑡

0

E
(︁⃦⃦
𝜉𝐸(x, 𝜏)

⃦⃦2
+
⃦⃦
𝜉U(x, 𝜏)

⃦⃦2)︁
d𝜏. (3.23)

By Itô lemma, we have

d𝜉𝐸𝜉𝐸 =
1
2

(︁
d
(︀
𝜉𝐸
)︀2 − d

⟨︀
𝜉𝐸 , 𝜉𝐸

⟩︀
𝑡

)︁
, d𝜉U · 𝜉U =

1
2
(︀
d|𝜉U|2 − d

⟨︀
𝜉U, 𝜉U

⟩︀
𝑡

)︀
.

Follow the same process as the steps in (2.29)–(2.36) in one-dimensional case, we have∫︁
𝐾

E
(︀⟨︀
𝜉𝐸 , 𝜉𝐸

⟩︀
𝑡

+
⟨︀
𝜉U, 𝜉U

⟩︀
𝑡

)︀
dx ≤ 𝐶

∫︁
𝐾

∫︁ 𝑡

0

E
(︁⃒⃒
𝒫𝐸𝐹 − 𝐹

⃒⃒2
+ |PUG − G|2

)︁
d𝜏 dx

+ 𝐶

∫︁
𝐾

∫︁ 𝑡

0

E
(︀
|𝜉𝐸 − 𝜖𝐸 |2 + |𝜉U − 𝜖U|2

)︀
d𝜏 dx.

(3.24)

Summing over all the cells 𝐾, combining these results with (3.22), integrating over time 𝑡, and taking expectation,
we will have

E
(︁⃦⃦
𝜉𝐸(x, 𝑡)

⃦⃦2
+
⃦⃦
𝜉U(x, 𝑡)

⃦⃦2)︁ ≤
⃦⃦
𝜉𝐸(x, 0)

⃦⃦2
+
⃦⃦
𝜉U(x, 0)

⃦⃦2
+𝐶

∫︁ 𝑡

0

E
(︁⃦⃦
𝜉𝐸(x, 𝜏)

⃦⃦2
+
⃦⃦
𝜉U(x, 𝜏)

⃦⃦2)︁
d𝜏 +𝐶ℎ2𝑘+2,
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after utilizing the optimal projection error in Lemma 3.3. Note that the chosen initial condition satisfies
𝜉𝐸(𝑥, 0) = 𝜉U(𝑥, 0) = 0, we have

E
(︁
‖𝐸 − 𝐸ℎ‖2 + ‖U − Uℎ‖2

)︁
≤ 𝐶ℎ2𝑘+2,

after applying Gronwall’s inequality and the optimal projection error. �

3.2. Rectangular meshes

In this subsection, we will investigate DG methods on cartesian meshes, and study the stability and error
estimate of the proposed methods. The stability result and its proof is similar to the case of triangular meshes,
but different technique is needed for the proof of optimal error estimate, which will be discussed in details.

The two-dimensional rectangular computational domain Ω is set to be 𝐼×𝐽 , and we consider the rectangular
partition with the cells denoted by 𝐼𝑖×𝐽𝑗 = [𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2
]× [𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2
] for 𝑖 = 1, 2, · · · , 𝑁𝑥 and 𝑗 = 1, 2, · · · , 𝑁𝑦.

Let 𝑥𝑖 = 1
2 (𝑥𝑖− 1

2
+ 𝑥𝑖+ 1

2
), and 𝑦𝑗 = 1

2 (𝑦𝑗− 1
2

+ 𝑦𝑗+ 1
2
) . Furthermore, we define the mesh size in both directions

as ℎ𝑥,𝑖 = 𝑥𝑖+ 1
2
−𝑥𝑖− 1

2
, ℎ𝑦,𝑗 = 𝑦𝑗+ 1

2
− 𝑦𝑗− 1

2
, with ℎ𝑥 = max𝑖 ℎ𝑥,𝑖, ℎ𝑦 = max𝑗 ℎ𝑦,𝑗 and ℎ = max(ℎ𝑥, ℎ𝑦) being the

maximum mesh size. Similar to the one-dimensional case, we define the two dimensional piecewise polynomial
space V𝑘

ℎ as follows:

V𝑘
ℎ =

{︀
𝑤(𝑥, 𝑦) : 𝑤|𝐼𝑖×𝐽𝑗

∈ 𝑄𝑘(𝐼𝑖 × 𝐽𝑗) = 𝑃 𝑘(𝐼𝑖) ⊗ 𝑃 𝑘(𝐽𝑗), 𝑖 = 1, 2, · · · , 𝑁𝑥; 𝑗 = 1, 2, · · · , 𝑁𝑦

}︀
.

The DG scheme for (3.1) is as follows: find 𝐸ℎ, 𝑆ℎ, 𝑇ℎ ∈ V𝑘
ℎ, such that for all 𝜙, 𝜓, 𝜑 ∈ V𝑘

ℎ,∫︁
𝐽𝑗

∫︁
𝐼𝑖

d𝐸ℎ𝜙 d𝑥 d𝑦 = −
∫︁

𝐽𝑗

𝒜𝐼𝑖
(𝑇ℎ, 𝜙;𝛼1) d𝑦 d𝑡+

∫︁
𝐼𝑖

𝒜𝐽𝑗
(𝑆ℎ, 𝜙;−𝛼2) d𝑥 d𝑡

+
∫︁

𝐽𝑗

∫︁
𝐼𝑖

𝑓𝜙 d𝑥 d𝑦 d𝑊𝑡, (3.25)∫︁
𝐽𝑗

∫︁
𝐼𝑖

d𝑆ℎ𝜓 d𝑥 d𝑦 =
∫︁

𝐼𝑖

𝒜𝐽𝑗
(𝐸ℎ, 𝜓;𝛼2) d𝑥 d𝑡+

∫︁
𝐽𝑗

∫︁
𝐼𝑖

𝑔𝜓 d𝑥 d𝑦 d𝑊𝑡, (3.26)∫︁
𝐽𝑗

∫︁
𝐼𝑖

d𝑇ℎ𝜑 d𝑥 d𝑦 = −
∫︁

𝐽𝑗

𝒜𝐼𝑖(𝐸ℎ, 𝜑;−𝛼1) d𝑦 d𝑡+
∫︁

𝐽𝑗

∫︁
𝐼𝑖

𝑟𝜑 d𝑥 d𝑦 d𝑊𝑡, (3.27)

where, for simplicity, the following operators are defined: for 𝛼 ∈ R, 𝑝, 𝑞 ∈ V𝑘
ℎ,

𝒜𝐼𝑖
(𝑝, 𝑞;𝛼) =

∫︁
𝐼𝑖

𝑝𝑞𝑥 d𝑥−
(︀̂︁𝑝𝛼𝑞

−)︀
𝑖+ 1

2 ,𝑦
+
(︀̂︁𝑝𝛼𝑞

+
)︀
𝑖− 1

2 ,𝑦
,

𝒜𝐽𝑗 (𝑝, 𝑞;𝛼) =
∫︁

𝐽𝑗

𝑝𝑞𝑦 d𝑦 −
(︀̂︁𝑝𝛼𝑞

−)︀
𝑥,𝑗+ 1

2
+
(︀̂︁𝑝𝛼𝑞

+
)︀
𝑥,𝑗− 1

2

with the numerical fluxes defined as follows:

for 𝑞 ∈ V𝑘
ℎ and 𝛼 ∈ {±𝛼1,±𝛼2} ⊂ R, ̂︁𝑞𝛼 = {𝑞} + 𝛼[𝑞]. (3.28)

Note that the numerical fluxes (3.28) can be viewed as a special case of (2.9) with 𝛽1 = 𝛽2 = 0. They are chosen
such that the optimal error estimate can be easily analyzed.

We first provide the following semi-discrete energy law satisfied by numerical solutions of the proposed DG
methods on rectangular meshes. The proof is identical to that of Theorem 3.2, and is skipped here.

Theorem 3.5 (Semi-discrete energy law). Let 𝐸ℎ, 𝑆ℎ, 𝑇ℎ ∈ V𝑘
ℎ be the numerical solutions of the semi-discrete

DG methods (3.25)–(3.27), then we have
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E
(︁
‖𝐸ℎ(𝑥, 𝑦, 𝑡)‖2 + ‖𝑆ℎ(𝑥, 𝑦, 𝑡)‖2 + ‖𝑇ℎ(𝑥, 𝑦, 𝑡)‖2

)︁
(3.29)

= ‖𝐸ℎ(𝑥, 𝑦, 0)‖2 + ‖𝑆ℎ(𝑥, 𝑦, 0)‖2 + ‖𝑇ℎ(𝑥, 𝑦, 0)‖2 +
∫︁ 𝑡

0

E(‖𝒫(𝑓)‖2 + ‖𝒫(𝑔)‖2 + ‖𝒫(𝑟)‖2) d𝜏.

Before we study the error estimate, some preparations on projections are provided. Let us define the gener-
alized Radau projection as

P𝛼
𝑥 = 𝒫𝛼,0

𝑥 ⊗ 𝒫𝑦, P𝛼
𝑦 = 𝒫𝑥 ⊗ 𝒫𝛽,0

𝑦 , P𝛼,𝛽 = 𝒫𝛼,0
𝑥 ⊗ 𝒫𝛽,0

𝑦 , (3.30)

where 𝒫 is the standard one-dimensional 𝐿2 projection, and 𝒫𝛼,0
𝑥 , 𝒫𝛽,0

𝑦 are the one-dimensional generalized
Radau projections (2.19)–(2.22) defined as follows: On the cell 𝐼𝑖, 𝐽𝑗 and for any function 𝑞(𝑥), 𝑟(𝑦), the pro-
jections 𝒫𝛼,0

𝑥 ,𝒫𝛽,0
𝑦 into the space 𝑉 𝑘

ℎ are given by∫︁
𝐼𝑖

(︀
𝒫𝛼,0

𝑥 𝑞 − 𝑞(𝑥)
)︀
𝜑(𝑥) d𝑥 = 0, ∀𝜑(𝑥) ∈ 𝑃 𝑘−1(𝐼𝑖), and

(︀{︀
𝒫𝛼,0

𝑥 𝑞
}︀

+ 𝛼
[︀
𝒫𝛼,0𝑞

]︀)︀
𝑖+ 1

2
= 𝑞
(︁
𝑥𝑖+ 1

2

)︁
,∫︁

𝐽𝑗

(︀
𝒫𝛽,0

𝑦 𝑟 − 𝑟(𝑦)
)︀
𝜓(𝑦) d𝑦 = 0, ∀𝜓(𝑦) ∈ 𝑃 𝑘−1(𝐽𝑗), and

(︀{︀
𝒫𝛽,0

𝑦 𝑟
}︀

+ 𝛼
[︀
𝒫𝛽,0𝑟

]︀)︀
𝑗+ 1

2
= 𝑟
(︁
𝑦𝑗+ 1

2

)︁
.

The following lemmas are studied in [25] and will be useful in our error estimate analysis.

Lemma 3.6 (Superconvergence property). Let P𝛼,𝛽 be the projection defined in (3.30) with 𝛼, 𝛽 ̸= 0. For any
function 𝑤(𝑥, 𝑦) ∈ 𝐻𝑘+1, denote 𝜖 = P𝛼,𝛽𝑤 − 𝑤. For any 𝜑 ∈ V𝑘

ℎ, there exists some constant 𝐶 such that⃒⃒⃒⃒
⃒∑︁

𝑖,𝑗

∫︁
𝐽𝑗

𝒜𝐼𝑖
(𝜖, 𝜑, 𝛼) d𝑦

⃒⃒⃒⃒
⃒ ≤ 𝐶ℎ𝑘+1‖𝜑‖,

⃒⃒⃒⃒
⃒∑︁

𝑖,𝑗

∫︁
𝐼𝑖

𝒜𝐽𝑗
(𝜖, 𝜑, 𝛽) d𝑥

⃒⃒⃒⃒
⃒ ≤ 𝐶ℎ𝑘+1‖𝜑‖.

Lemma 3.7 (Projection error). Let Π be any projection defined in (3.30) with 𝛼, 𝛽 ̸= 0. For any function
𝑤(𝑥, 𝑦) ∈ 𝐻𝑘+1, there exists some constant 𝐶 such that

‖Π𝑤 − 𝑤‖ ≤ 𝐶ℎ𝑘+1‖𝑤‖𝐻𝑘+1 .

Now we turn to the optimal error estimate.

Theorem 3.8 (Optimal error estimate). Suppose 𝛼1, 𝛼2 ̸= 0, and let 𝐸ℎ, 𝑆ℎ, 𝑇ℎ ∈ V𝑘
ℎ be the numerical solutions

given by the DG scheme (3.25)–(3.27), and 𝐸, 𝑇, 𝑆 ∈ 𝐿2(Ω × [0, 𝑡end];𝐻𝑘+2) are exact solutions to (3.1), and
𝑓, 𝑔, 𝑟 ∈ 𝐻𝑘+1, then there exists some constant 𝐶 such that

E
(︁
‖𝐸 − 𝐸ℎ‖2 + ‖𝑆 − 𝑆ℎ‖2 + ‖𝑇 − 𝑇ℎ‖2

)︁
≤ 𝐶ℎ2𝑘+2. (3.31)

Proof. We start by introducing

𝜉𝐸 = P−𝛼1,𝛼2𝐸 − 𝐸ℎ, 𝜉𝑆 = P−𝛼2
𝑦 𝑆 − 𝑆ℎ, 𝜉𝑇 = P𝛼1

𝑥 𝑇 − 𝑇ℎ,

𝜖𝐸 = P−𝛼1,𝛼2𝐸 − 𝐸, 𝜖𝑆 = P−𝛼2
𝑦 𝑆 − 𝑆, 𝜖𝑇 = P𝛼1

𝑥 𝑇 − 𝑇,

which leads to
𝐸 − 𝐸ℎ = 𝜉𝐸 − 𝜖𝐸 , 𝑆 − 𝑆ℎ = 𝜉𝑆 − 𝜖𝑆 , 𝑇 − 𝑇ℎ = 𝜉𝑇 − 𝜖𝑇 .

We choose the initial conditions as follows:

𝐸ℎ(𝑥, 𝑦, 0) = P−𝛼1,𝛼2𝐸(𝑥, 𝑦, 0), 𝑆ℎ(𝑥, 𝑦, 0) = P−𝛼2
𝑦 𝑆(𝑥, 𝑦, 0), 𝑇ℎ(𝑥, 𝑦, 0) = P𝛼1

𝑥 𝑇 (𝑥, 𝑦, 0),
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hence, 𝜉𝐸(𝑥, 𝑦, 0) = 𝜉𝑆(𝑥, 𝑦, 0) = 𝜉𝑇 (𝑥, 𝑦, 0) = 0.
Since both numerical solutions and exact solutions satisfy equations (3.25)–(3.27), we have the following error

equations ∫︁
𝐽𝑗

∫︁
𝐼𝑖

d(𝐸 − 𝐸ℎ)𝜙 d𝑥 d𝑦 = −
∫︁

𝐽𝑗

𝒜𝐼𝑖(𝑇 − 𝑇ℎ, 𝜙;𝛼1) d𝑦 d𝑡+
∫︁

𝐼𝑖

𝒜𝐽𝑗 (𝑆 − 𝑆ℎ, 𝜙;−𝛼2) d𝑥 d𝑡

+
∫︁

𝐽𝑗

∫︁
𝐼𝑖

(𝑓(𝑥, 𝑡,𝑢) − 𝑓(𝑥, 𝑡,𝑢ℎ))𝜙 d𝑥 d𝑦 d𝑊𝑡, (3.32)∫︁
𝐽𝑗

∫︁
𝐼𝑖

d(𝑆 − 𝑆ℎ)𝜓 d𝑥 d𝑦 =
∫︁

𝐼𝑖

𝒜𝐽𝑗 (𝐸 − 𝐸ℎ, 𝜓;𝛼2) d𝑥 d𝑡

+
∫︁

𝐽𝑗

∫︁
𝐼𝑖

(𝑔(𝑥, 𝑡,𝑢) − 𝑔(𝑥, 𝑡,𝑢ℎ))𝜓 d𝑥 d𝑦 d𝑊𝑡, (3.33)∫︁
𝐽𝑗

∫︁
𝐼𝑖

d(𝑇 − 𝑇ℎ)𝜑 d𝑥 d𝑦 = −
∫︁

𝐽𝑗

𝒜𝐼𝑖(𝐸 − 𝐸ℎ, 𝜑;−𝛼1) d𝑦 d𝑡

+
∫︁

𝐽𝑗

∫︁
𝐼𝑖

(𝑟(𝑥, 𝑡,𝑢) − 𝑟(𝑥, 𝑡,𝑢ℎ))𝜑 d𝑥 d𝑦 d𝑊𝑡, (3.34)

for all 𝜙,𝜓, 𝜑 ∈ V𝑘
ℎ. Choose the test functions 𝜙 = 𝜉𝐸 , 𝜓 = 𝜉𝑆 , 𝜑 = 𝜉𝑇 , and notice that∫︁

𝐽𝑗

𝒜𝐼𝑖(𝜖
𝑇 , 𝜉𝐸 ;𝛼1) d𝑦 d𝑡 =

∫︁
𝐼𝑖

𝒜𝐽𝑗 (𝜖𝑆 , 𝜉𝐸 ;−𝛼2) d𝑥 d𝑡 = 0,

following the definition of the projections. For a function 𝑞 ∈ {𝑓, 𝑔, 𝑟} and 𝑤 ∈ V𝑘
ℎ, define

E𝑖,𝑗
𝑞 (𝑤) =

∫︁
𝐽𝑗

∫︁
𝐼𝑖

(𝑞(𝑥, 𝑡,𝑢) − 𝑞(𝑥, 𝑡,𝑢ℎ))𝑤 d𝑥 d𝑦 d𝑊𝑡,

which is an Itô integral, hence we have E
(︀
E𝑖,𝑗

𝑞 (𝑤)
)︀

= 0 for any 𝑤. Therefore, equations (3.32)-(3.34) become
∫︁

𝐽𝑗

∫︁

𝐼𝑖

d𝜉𝐸𝜉𝐸 d𝑥 d𝑦 −
∫︁

𝐽𝑗

∫︁

𝐼𝑖

d𝜖𝐸𝜉𝐸 d𝑥 d𝑦 = −
∫︁

𝐽𝑗

𝒜𝐼𝑖

(︁
𝜉𝑇 , 𝜉𝐸 ; 𝛼1

)︁
d𝑦 d𝑡 +

∫︁

𝐼𝑖

𝒜𝐽𝑗

(︁
𝜉𝑆 , 𝜉𝐸 ;−𝛼2

)︁
d𝑥 d𝑡 + E𝑖,𝑗

𝑓

(︁
𝜉𝐸

)︁
,

∫︁

𝐽𝑗

∫︁

𝐼𝑖

d𝜉𝑆𝜉𝑆 d𝑥 d𝑦 −
∫︁

𝐽𝑗

∫︁

𝐼𝑖

d𝜖𝑆𝜉𝑆 d𝑥 d𝑦 =

∫︁

𝐼𝑖

𝒜𝐽𝑗

(︁
𝜉𝐸 , 𝜉𝑆 ; 𝛼2

)︁
d𝑥 d𝑡 −

∫︁

𝐼𝑖

𝒜𝐽𝑗

(︁
𝜖𝐸 , 𝜉𝑆 ; 𝛼2

)︁
d𝑥 d𝑡 + E𝑖,𝑗

𝑔

(︁
𝜉𝑆

)︁
,

∫︁

𝐽𝑗

∫︁

𝐼𝑖

d𝜉𝑇 𝜉𝑇 d𝑥 d𝑦 −
∫︁

𝐽𝑗

∫︁

𝐼𝑖

d𝜖𝑇 𝜉𝑇 d𝑥 d𝑦 = −
∫︁

𝐽𝑗

𝒜𝐼𝑖

(︁
𝜉𝐸 , 𝜉𝑇 ;−𝛼1

)︁
d𝑦 d𝑡 +

∫︁

𝐽𝑗

𝒜𝐼𝑖

(︁
𝜖𝐸 , 𝜉𝑇 ;−𝛼1

)︁
d𝑦 d𝑡 + E𝑖,𝑗

𝑟

(︁
𝜉𝑇

)︁
.

Summing up these equations and applying integration by parts, we obtain∫︁
𝐽𝑗

∫︁
𝐼𝑖

d𝜉𝐸𝜉𝐸 + d𝜉𝑆𝜉𝑆 + d𝜉𝑇 𝜉𝑇 d𝑥 d𝑦

=
∫︁

𝐽𝑗

∫︁
𝐼𝑖

d𝜖𝐸𝜉𝐸 + d𝜖𝑆𝜉𝑆 + d𝜖𝑇 𝜉𝑇 d𝑥 d𝑦 −
∫︁

𝐽𝑗

(︁
Π𝑖− 1

2 ,𝑦 − Π𝑖+ 1
2 ,𝑦

)︁
d𝑦 d𝑡+

∫︁
𝐼𝑖

(︃
Π̄𝑥,𝑗− 1

2
− Π̄𝑥,𝑗+ 1

2

)︃
d𝑥 d𝑡

−
∫︁

𝐼𝑖

𝒜𝐽𝑗 (𝜖𝐸 , 𝜉𝑆 ;𝛼2) d𝑥 d𝑡+
∫︁

𝐽𝑗

𝒜𝐼𝑖(𝜖
𝐸 , 𝜉𝑇 ;−𝛼1) d𝑦 d𝑡+ E𝑖,𝑗

𝑓

(︀
𝜉𝐸
)︀

+ E𝑖,𝑗
𝑔

(︀
𝜉𝑆
)︀

+ E𝑖,𝑗
𝑟

(︀
𝜉𝑇
)︀
, (3.35)

where

Π =
(︂

1
2

+ 𝛼1

)︂(︀
𝜉𝑇
)︀+(︀

𝜉𝐸
)︀−

+
(︂

1
2
− 𝛼1

)︂(︀
𝜉𝑇
)︀−(︀

𝜉𝐸
)︀+
, Π̄ =

(︂
1
2

+ 𝛼2

)︂(︀
𝜉𝑆
)︀−(︀

𝜉𝐸
)︀+

+
(︂

1
2
− 𝛼2

)︂(︀
𝜉𝑆
)︀+(︀

𝜉𝐸
)︀−
.
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By Itô’s lemma, we have

d
(︀
𝜉𝐸
)︀2

= 2 d𝜉𝐸𝜉𝐸 + d
⟨︀
𝜉𝐸 , 𝜉𝐸

⟩︀
𝑡
, d

(︀
𝜉𝑆
)︀2

= 2 d𝜉𝑆𝜉𝑆 + d
⟨︀
𝜉𝑆 , 𝜉𝑆

⟩︀
𝑡
, d

(︀
𝜉𝑇
)︀2

= 2 d𝜉𝑇 𝜉𝑇 + d
⟨︀
𝜉𝑇 , 𝜉𝑇

⟩︀
𝑡
.

Following the same process as in the derivation of (2.36), we have∫︁
𝐽𝑗

∫︁
𝐼𝑖

E
⟨︀
𝜉𝐸 , 𝜉𝐸

⟩︀
𝑡
d𝑥 d𝑦 ≤ 𝐶

∫︁
𝐽𝑗

∫︁
𝐼𝑖

∫︁ 𝑡

0

E
(︀
P−𝛼1,𝛼2(𝑓) − 𝑓

)︀2 d𝜏 d𝑥 d𝑦 + 𝐶Ee𝑖,𝑗 ,∫︁
𝐽𝑗

∫︁
𝐼𝑖

E
⟨︀
𝜉𝑆 ,
⟩︀

𝑡
d𝑥 d𝑦 ≤ 𝐶

∫︁
𝐽𝑗

∫︁
𝐼𝑖

∫︁ 𝑡

0

E
(︀
P−𝛼2

𝑦 (𝑔) − 𝑔
)︀2 d𝜏 d𝑥 d𝑦 + 𝐶Ee𝑖,𝑗 ,∫︁

𝐽𝑗

∫︁
𝐼𝑖

E
⟨︀
𝜉𝑇 , 𝜉𝑇

⟩︀
𝑡
d𝑥 d𝑦 ≤ 𝐶

∫︁
𝐽𝑗

∫︁
𝐼𝑖

∫︁ 𝑡

0

E(P𝛼1
𝑥 (𝑟) − 𝑟)2 d𝜏 d𝑥 d𝑦 + 𝐶Ee𝑖,𝑗 ,

where

e𝑖,𝑗 :=
∫︁

𝐽𝑗

∫︁
𝐼𝑖

∫︁ 𝑡

0

⃒⃒
𝜉𝐸 − 𝜖𝐸

⃒⃒2
+
⃒⃒
𝜉𝑆 − 𝜖𝑆

⃒⃒2
+
⃒⃒
𝜉𝑇 − 𝜖𝑇

⃒⃒2
d𝜏 d𝑥 d𝑦.

After taking expectation on equation (3.35), summing over all the cells, and integrating over 𝑡, we have

1
2

∫︁
𝐽

∫︁
𝐼

E
(︁(︀
𝜉𝐸
)︀2

+
(︀
𝜉𝑆
)︀2

+
(︀
𝜉𝑇
)︀2)︁

d𝑥 d𝑦

=
1
2

∫︁
𝐽

∫︁
𝐼

E
(︀⟨︀
𝜉𝐸 , 𝜉𝐸

⟩︀
𝑡

+
⟨︀
𝜉𝑆 , 𝜉𝑆

⟩︀
𝑡

+
⟨︀
𝜉𝑇 , 𝜉𝑇

⟩︀
𝑡

)︀
d𝑥 d𝑦 +

∫︁
𝐽

∫︁
𝐼

∫︁ 𝑡

0

E(d𝜉𝐸𝜉𝐸 + d𝜉𝑆𝜉𝑆 + d𝜉𝑇 𝜉𝑇 ) d𝑥 d𝑦

≤ 𝐶

∫︁ 𝑡

0

E
(︁⃦⃦

P−𝛼1,𝛼2(𝑓) − 𝑓
⃦⃦2 + ‖P𝛼1

𝑥 (𝑟) − 𝑟‖2 +
⃦⃦
P−𝛼2

𝑦 (𝑔) − 𝑔
⃦⃦2)︁ d𝜏

+
∫︁

𝐽

∫︁
𝐼

∫︁ 𝑡

0

E
(︀
d𝜖𝐸𝜉𝐸 + d𝜖𝑆𝜉𝑆 + d𝜖𝑇 𝜉𝑇

)︀
d𝑥 d𝑦 + 𝐶ℎ𝑘+1

∫︁ 𝑡

0

E
(︀⃦⃦
𝜉𝑇
⃦⃦

+
⃦⃦
𝜉𝑆
⃦⃦)︀

d𝜏 + 𝐶
∑︁
𝑖,𝑗

Ee𝑖,𝑗 .

Following the same derivation of equations (2.39) and (2.40), we have∫︁
𝐽

∫︁
𝐼

∫︁ 𝑡

0

E
(︀
d𝜖𝐸𝜉𝐸 + d𝜖𝑆𝜉𝑆 + d𝜖𝑇 𝜉𝑇

)︀
d𝑥 d𝑦 ≤ 𝐶ℎ2𝑘+2

+
∫︁ 𝑡

0

E
(︁⃦⃦
𝜉𝐸(𝑥, 𝑦, 𝜏)

⃦⃦2
+
⃦⃦
𝜉𝑆(𝑥, 𝑦, 𝜏)

⃦⃦2
+
⃦⃦
𝜉𝑇 (𝑥, 𝑦, 𝜏)

⃦⃦2)︁
d𝜏,

after applying the superconvergence property in Lemma 3.6. We utilize the projection error property and Young’s
inequality to obtain

E
(︁⃦⃦
𝜉𝐸
⃦⃦2

+
⃦⃦
𝜉𝑆
⃦⃦2

+
⃦⃦
𝜉𝑇
⃦⃦2)︁ ≤ 𝐶

∫︁ 𝑡

0

E
(︁⃦⃦
𝜉𝐸(𝑥, 𝑦, 𝜏)

⃦⃦2
+
⃦⃦
𝜉𝑆(𝑥, 𝑦, 𝜏)

⃦⃦2
+
⃦⃦
𝜉𝑇 (𝑥, 𝑦, 𝜏)

⃦⃦2)︁
d𝜏 + 𝐶ℎ2𝑘+2.

The optimal error estimate (3.31) follows from applying Gronwall’s inequality and the optimal projection
error. �

4. Temporal discretization

After DG spatial discretization, the semi-discrete DG methods (2.7) and (2.8), or (3.9), (3.10) can be obtained.
To solve the resulting stochastic differential equations, we present Taylor 2.0 strong scheme [22] as the temporal
discretization in this section.
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Let us consider the general matrix-valued stochastic differential equations of the form{︃
𝑑𝑋𝑖,𝑗

𝑡 = 𝑎𝑖,𝑗(𝑋𝑡) d𝑡+ 𝑏𝑖,𝑗(𝑋𝑡) d𝑊𝑡, 𝑡 > 0
𝑋𝑖,𝑗

0 = 𝑥𝑖,𝑗
0 ,

(4.1)

with 𝑖 = 0, 1, · · · ,𝑚 and 𝑗 = 0, 1, · · · ,𝑀 + 1. Suppose that 𝑌 𝑖,𝑗
𝑛 is a numerical approximation of 𝑋𝑖,𝑗

𝑡𝑛
at the

time 𝑡𝑛, and 𝑌 𝑖,𝑗
0 = 𝑥𝑖,𝑗

0 . The recurrent equation between 𝑌 𝑖,𝑗
𝑛 and 𝑌 𝑖,𝑗

𝑛+1 is derived below. Define the following
operators:

ℒ0𝑉 =
𝑀+1∑︁
𝑗=0

𝑚∑︁
𝑖=0

𝑎𝑖,𝑗 𝜕𝑉

𝜕𝑥𝑖,𝑗
+

1
2

𝑀+1∑︁
𝑙,𝑗=0

𝑚∑︁
𝑚,𝑖=0

𝑏𝑖,𝑗𝑏𝑚,𝑙 𝜕2𝑉

𝜕𝑥𝑖,𝑗𝜕𝑥𝑚,𝑙
,

and

ℒ1𝑉 =
𝑀∑︁

𝑗=0

𝑚∑︁
𝑖=0

𝑏𝑖,𝑗
𝜕𝑉

𝜕𝑥𝑖,𝑗

where 𝑉 : R(𝑚+1)×(𝑀+2) → R is a twice differentiable function. As studied in Section 10.5 of [26] and Appendix
A of [22], the following Taylor scheme has 2.0 order of convergence:

𝑌 𝑖,𝑗
𝑛+1 = 𝑌 𝑖,𝑗

𝑛 + 𝑎𝑖,𝑗(𝑌𝑛)𝜏 + 𝑏𝑖,𝑗(𝑌𝑛)∆𝑊 +
1
2
ℒ1𝑏𝑖,𝑗(𝑌𝑛)

(︀
(∆𝑊 )2 − 𝜏

)︀
+

1
2
ℒ0𝑎𝑖,𝑗(𝑌𝑛)𝜏2 + ℒ0𝑏𝑖,𝑗(𝑌𝑛)(∆𝑊𝜏 − ∆𝑍) + ℒ1𝑎𝑖,𝑗(𝑌𝑛)∆𝑍

+
1
6
ℒ1ℒ1𝑏𝑖,𝑗(𝑌𝑛)

(︁
(∆𝑊 )2 − 3𝜏

)︁
∆𝑊 + ℒ1ℒ0𝑏𝑖,𝑗(𝑌𝑛)(−∆𝑈 + ∆𝑊∆𝑍)

+ ℒ1ℒ1𝑎𝑖,𝑗(𝑌𝑛)
(︂

1
2

∆𝑈 − 1
4
𝜏2
)︂

+ ℒ0ℒ1𝑏𝑖,𝑗(𝑌𝑛)
(︂

1
2

∆𝑈 − ∆𝑊∆𝑍 +
1
2

(∆𝑊 )2𝜏 − 1
4
𝜏2
)︂

+
1
24

ℒ1ℒ1ℒ1𝑏𝑖,𝑗(𝑌𝑛)
(︀
(∆𝑊 )4 − 6(∆𝑊 )2𝜏 + 3𝜏2

)︀
, (4.2)

where
𝜏 = 𝑡𝑛+1 − 𝑡𝑛, ∆𝑊 = 𝑊𝑡𝑛+1 −𝑊𝑡𝑛 ,

and

∆𝑍 =
∫︁ 𝑡𝑛+1

𝑡𝑛

𝑊𝑠 −𝑊𝑡𝑛
d𝑠, ∆𝑈 =

∫︁ 𝑡𝑛+1

𝑡𝑛

(𝑊𝑠 −𝑊𝑡𝑛
)2 d𝑠.

To numerically compute the stochastic variables ∆𝑊 , ∆𝑍 and ∆𝑈 , we define a new process

𝑣(𝑠) =
𝑊𝑡𝑛+𝜏𝑠 −𝑊𝑡𝑛√

𝜏
, 𝑠 ∈ [0, 1],

and have

∆𝑊 = 𝜏
1
2 𝑣(1), ∆𝑍 = 𝜏

3
2

∫︁ 1

0

𝑣(𝑠) d𝑠, ∆𝑈 = 𝜏2
∫︁ 1

0

𝑣2(𝑠) d𝑠,

which can be evaluated by solving the following system of equations⎧⎪⎨⎪⎩
d𝑥 = d𝑣(𝑠), 𝑥(0) = 0,
d𝑦 = 𝑥𝑑𝑠, 𝑦(0) = 0,
d𝑧 = 𝑥2 d𝑠, 𝑧(0) = 0.

(4.3)

at the moment 𝑠 = 1. The system (4.3) can be solved numerically to obtain the approximation of ∆𝑊 , ∆𝑍 and
∆𝑈 . We refer to Appendix A.2.2 of [22] for the details of implementation.
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Table 1. Numerical error and convergence rates of 1D case when 𝑘 = 1.

Nx Nt
(︀
E‖𝑒𝑢‖2)︀1/2

Rate
(︀
E‖𝑒𝑣‖2)︀1/2

Rate

20 200 0.02537 – 7.855E−3 –
40 400 6.407E−3 1.9851 1.978E−3 1.9893
80 800 1.567E−3 2.0313 4.837E−4 2.0320
160 1600 3.913E−4 2.0022 1.206E−4 2.0046

Table 2. Numerical error and convergence rates of 1D case when 𝑘 = 2.

Nx Nt
(︀
E‖𝑒𝑢‖2)︀1/2

Rate
(︀
E‖𝑒𝑣‖2)︀1/2

Rate

20 200 6.254E−4 − 2.073E−4 −
40 400 7.970E−5 2.9722 2.383E−5 3.1204
80 800 9.808E−6 3.0225 3.127E−6 2.9302
160 1600 1.269E−6 2.9500 4.071E−7 2.9412

5. Numerical experiment

In this section we present numerical results of the proposed scheme for the one-dimensional and two-
dimensional stochastic Maxwell equations with multiplicative noise. We use polynomials of degree 𝑘 in our
proposed DG methods for spatial discretization, and Taylor 2.0 strong scheme for the temporal discretization.
The accuracy tests are provided for both 1D case and 2D case to demonstrate the convergence rate. The time
history of the discrete energy is also presented for both examples. The Monte-Carlo method is used to compute
the stochastic term, and the expectation is computed by averaging over all the samples.

We first consider the following one-dimensional equations{︃
d𝑣 = −𝑢𝑥 d𝑡+ 𝑣 d𝑊𝑡,

d𝑢 = −𝑣𝑥 d𝑡+ 𝑢 d𝑊𝑡,

with periodic boundary conditions and the exact solutions given by{︃
𝑣 = (sin(𝑥− 𝑡) + cos(𝑥+ 𝑡))𝑒𝑊𝑡− 1

2 𝑡,

𝑢 = (sin(𝑥− 𝑡) − cos(𝑥+ 𝑡))𝑒𝑊𝑡− 1
2 𝑡.

(5.1)

The computational domain is set to be [0, 2𝜋], and the final time 𝑇 = 0.5. Nx and Nt are used to denote the
number of space steps and time steps, and we use uniform meshes as spatial discretization. The numerical initial
condition is taken as the projection of the exact solutions (5.1) at 𝑡 = 0. We apply Monte Carlo simulation
with 3000 samples to approximate the expectation. Table 1 and Table 2 show the convergence rate of numerical
errors 𝑒𝑢 = 𝑢 − 𝑢ℎ and 𝑒𝑣 = 𝑣 − 𝑣ℎ, when 𝑘 = 1 and 𝑘 = 2 respectively. In both examples ∆𝑡 is chosen small
enough to ensure the spatial error dominates, and we can observe the optimal error estimate (the expected
(𝑘 + 1)-th order of convergence), which is consistent with the result in Theorem 2.4 for the semi-discrete DG
method.

Next we consider the two-dimensional stochastic Maxwell equations⎧⎪⎨⎪⎩
d𝐸 − 𝑇𝑥 d𝑡+ 𝑆𝑦 d𝑡 = 𝐸 d𝑊𝑡,

d𝑆 + 𝐸𝑦 d𝑡 = 𝑆 d𝑊𝑡,

d𝑇 − 𝐸𝑥 d𝑡 = 𝑇 d𝑊𝑡,
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Table 3. Numerical error and convergence rates of 2D case when 𝑘 = 1.

Nx Ny Nt (E‖𝑒𝐸‖2)1/2 Rate (E‖𝑒𝑆‖2)1/2 Rate (E‖𝑒𝑇 ‖2)1/2 rate

20 20 20 0.02582 − 0.01807 − 0.01807 −
40 40 40 6.690E−3 1.9484 4.674E−3 1.9510 4.674E−3 1.9510
80 80 80 1.648E−3 2.0215 1.160E−3 2.0106 1.160E−3 2.0106
160 160 160 3.984E−4 2.0482 2.810E−4 2.0453 2.810E−4 2.0453

Table 4. Numerical error and convergence rates of 2D case when 𝑘 = 2.

Nx Ny Nt (E‖𝑒𝐸‖2)1/2 Rate (E‖𝑒𝑆‖2)1/2 Rate (E‖𝑒𝑇 ‖2)1/2 rate

20 20 20 8.029E−4 − 5.741E−4 − 5.741E−4 −
40 40 40 1.052E−4 2.9317 7.509E−5 2.9347 7.509E−5 2.9347
80 80 80 1.254E−5 3.0695 9.113E−6 3.0425 9.113E−6 3.0425
160 160 160 1.572E−6 2.9952 1.179E−6 2.9507 1.179E−6 2.9507

Figure 1. The time history of the averaged energy. Left: 1D result; Right: 2D result.

with periodic boundary conditions. The exact solutions take the form

⎧⎪⎨⎪⎩
𝐸 = (sin(𝑥+ 𝑡) − cos(𝑦 + 𝑡))𝑒𝑊𝑡− 1

2 𝑡,

𝑆 = sin(𝑥+ 𝑡)𝑒𝑊𝑡− 1
2 𝑡,

𝑇 = cos(𝑦 + 𝑡)𝑒𝑊𝑡− 1
2 𝑡.

(5.2)

The space domain is [0, 2𝜋]2. The numerical initial condition is taken as the projection of the exact solutions
(5.2) at 𝑡 = 0. Nx, Ny and Nt are used to denote the number of space cells in 𝑥, 𝑦 directions, and the number of
time steps, and uniform rectangular meshes are considered as spatial discretization. We run the simulation until
final time 𝑇 = 0.1. Monte Carlo simulation with 500 samples is used to approximate the expectation. Table 3
and Table 4 present the convergence rate of numerical errors 𝑒𝑤 = 𝑤 − 𝑤ℎ, 𝑤 = 𝐸,𝑆, 𝑇 , for the cases of 𝑘 = 1
and 𝑘 = 2 respectively. We can observe that in both cases, the optimal convergence rate is achieved.

The discrete energy law satisfied by the numerical solutions was studied in Theorem 2.2 for the one-
dimensional system, and in Theorems 3.2 and 3.5 for the two-dimensional system. In Figure 1, the time history
of averaged energy is shown for two cases.
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6. Conclusion remarks

In this paper we applied high order DG scheme for one- and two-dimensional stochastic Maxwell equations
with multiplicative noise. We provide the semi-discrete energy law for both cases. Optimal error estimate of
the semi-discrete method is obtained for one-dimensional case, and two-dimensional case on both rectangular
meshes and triangular meshes under certain mesh assumptions. The semi-discrete method is combined with
strong Taylor 2.0 temporal discretization, and numerical results are presented to validate the optimal error
estimates and the growth of energy.
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20-1-0055 and Yulong Xing’s work is partially supported with NSF grant DMS-1753581.
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