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Abstract. We present an algorithm for computing circuit polynomials in the algebraic rigidity matroid A(CM,,)
associated to the Cayley—Menger ideal CM,, for n points in 2D. It relies on combinatorial resultants,
a new operation on graphs that captures properties of the Sylvester resultant of two polynomials
in this ideal. We show that every rigidity circuit has a construction tree from K, graphs based on
this operation. Our algorithm performs an algebraic elimination guided by such a construction tree
and uses classical resultants, factorization, and ideal membership. To highlight its effectiveness, we
implemented the algorithm in Mathematica: it took less than 15 seconds on an example where a
Grobner basis calculation took 5 days and 6 hours. Additional speed-ups are obtained using non-K4
generators of the Cayley—Menger ideal and simple variations on our main algorithm.
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1. Introduction. The focus of this paper is the following problem straddling combinatorial
rigidity and algebraic matroids.

Main Problem. Given a rigidity circuit, compute its corresponding circuit polynomial.

Its motivation comes from the following ubiquitous problem in distance geometry.

Localization. A graph together with weights associated to its edges is given. The goal
is to find placements for its vertices in some Euclidean space (2D, in our case), so that
the resulting edge lengths match the given weights. To this purpose we set up a system of
quadratic equations with unknowns corresponding to the Cartesian coordinates of the vertices.
The possible placements (or realizations) are among its (real) solutions and can be found with
numerical methods (see, e.g., [36, 49, 3]). A related problem is to look for the possible values
of a single unknown distance corresponding to a nonedge (a pair of vertices that are not
connected by an edge). If we could solve this second problem for a collection of nonedge
pairs that, together with the original edges, contain a trilateration, then one placement for
the graph could be obtained afterwards in linearly many steps of quadratic equation solving.

*Received by the editors August 2, 2021; accepted for publication (in revised form) February 13, 2023; published
electronically May 23, 2023. This paper extends the conference abstract 37th International Symposium on Compu-
tational Geometry (SoCG 2021), Leibniz Internat. Proc. Inform. (LIPlcs) 189, Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik, Dagstuhl, Germany, 2021, pp. 52:1-52:16, where the main result was announced, and includes results
from the preprint Faster Algorithms for Circuits in the Cayley-Menger Algebraic Matroid, 2021.

https://doi.org/10.1137 /21M1437986
Funding: The work of the second author was supported by the NSF through grants CCF:1703765 and
CCF:2212309.

TComputer Science Department, Smith College, Northampton, MA 01063 USA (gmalic@smith.edu, http://www.

goranmalic.com; istreinu@smith.edu, streinu@cs.umass.edu, http://cs.smith.edu/~istreinu).

345

©) 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license



Downloaded 05/28/23 to 73.238.155.83 . Redistribution subject to CCBY license

346 GORAN MALIC AND ILEANA STREINU

Rigidity circuits. The generic version of the single unknown distance problem, where the
weights are symbols rather than concrete numbers, is amenable to techniques from rigidity
theory. In 2D, one can predict whether, generically, the set of solutions for the unique unknown
distance will be discrete (if the given graph is rigid) or continuous (if the graph is flexible). We
formulate the problem algebraically by using Cayley coordinates X, = {z;; : 1 <i < j < n},
with z;; denoting the squared distance between vertices 7 and j, and n being the number of
vertices. There are certain dependencies between these variables, captured by the polynomials
f € Q[X,] generating the Cayley—Menger ideal. When G is a minimally rigid graph, the
addition of a new edge e induces a unique subgraph C' C GU{e}, which is a circuit in the 2D
rigidity matroid whose bases are the minimally rigid graphs. There also exists a unique (up
to multiplication by a scalar) polynomial dependency pc between the distances corresponding
to the edges of C'. This is a circuit polynomial in the Cayley—Menger ideal and is the main
object of study in this paper. The unique unknown distance problem is solved by substituting
in this circuit polynomial concrete values for the edge weights of G and then computing the
roots of the resulting univariate polynomial.

How tractable is the problem? Circuit polynomial computations can be done, in principle,
by using the Grébner basis algorithm with an elimination order.! In the worst case, this is a
doubly exponential method, but in practice the complexity and performance of Grébner basis
algorithms depends heavily on the choice of a monomial order. There exist known cases,
e.g., zero-dimensional polynomial ideals [15, 32], which have single-exponential complexity
with respect to any monomial order. However, elimination orders have been reported to be-
have badly. In general, the main problems of elimination theory, such as the Ideal Triviality
Problem, the Ideal Membership Problem for Complete Intersections, the Radical Member-
ship Problem, the General Elimination Problem, and the Noether Normalization, are in the
PSPACE complexity class [40].

In our experimentation, the GroebnerBasis function of Mathematica 12 (running on a 2019
iMac computer with 6 cores at 3.6 Ghz) took 5 days and 6 hours to compute the Desargues-
plus-one circuit (a graph on 6 vertices) reported in Table 1 of section 13, but in most cases it
timed out or crashed.

Overview of results. Our goal is to make such calculations more tractable by taking ad-
vantage of structural information inherent in the problem. We describe a new algorithm to
compute a circuit polynomial with known support. It relies on resultant-based elimination
steps guided by a novel inductive construction for rigidity circuits. Inductive constructions
have been often used in rigidity theory, most notably the Henneberg sequences for Laman
graphs [27] and Henneberg II sequences for 3-connected rigidity circuits [5]. We argue that
our combinatorial construction is more natural due to its direct algebraic interpretation, a
property not shared with any of the other previously known constructions. We have imple-
mented our method in Mathematica and applied it successfully to compute all but one of the
circuit polynomials on up to 6 vertices, as well as a few on 7 and 8 vertices, the largest of which
having over nine million terms. The previously mentioned example of the Desargues-plus-one
circuit that took over 5 days to complete with GroebnerBasis, was solved by our algorithm in
less than 15 seconds.

!See Exercises 5 and 6 in [13, Chapter 3, section 1].
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The only example on 6 vertices that remained elusive was the circuit polynomial for
the K3 3-plus-one circuit (see Table 1 in section 13): the computational resources for its
computation far exceeded the capabilities of both our machines and of an HPC system we
experimented with. We succeeded by extending the basic algorithm to work with additional
generators of the Cayley—Menger ideal, besides those corresponding to K4’s. These are irre-
ducible polynomials supported on dependent rigid graphs that are not necessarily circuits.

Related work. Our approach builds upon ideas from distance geometry and rigidity theory
and combines them with the theory of algebraic matroids. The former enjoy a long and
distinguished history—too long to survey here, but see [6, 14]. Combinatorial and linear
(but not algebraic) matroids occupy a central place in rigidity theory [24, 55]. To the best of
our knowledge, the study of circuit polynomials in arbitrary polynomial ideals was initiated
in the Ph.D. thesis of Rosen [45]. His Macaulay2 code [46] is useful for exploring small cases,
but the Cayley—Menger ideal is beyond its reach. A recent article [47] popularizes algebraic
matroids and uses for illustration the smallest circuit polynomial K4 in the Cayley—Menger
ideal. We could not find nontrivial examples anywhere. Indirectly related to our problem
are results such as [54], where an explicit univariate polynomial of degree 8 is computed
(for an unknown angle in a K3 3 configuration given by edge lengths, from which the placement
of the vertices is determined), and [48], for its usage of Cayley coordinates in the study of
configuration spaces of some families of distance graphs. A closely related problem is that of
computing the number of embeddings of a minimally rigid graph [9], which has received a lot
of attention in recent years (see, e.g., [11, 1, 19, 18], to name a few). References to specific
results in the literature that are relevant to the theory developed here and to our proofs are
given throughout the paper.

Overview of the paper. Our main theoretical result is split into a combinatorial theorem,
Theorem 1, and an algebraic theorem, Theorem 2, each with an algorithmic counterpart and
each preceded by a section introducing the concepts necessary for a self-contained presentation.
Section 2 reviews 2D combinatorial rigidity matroids. Then in section 3 we define the com-
binatorial resultant of two graphs as an abstraction of the classical resultant, prove Theorem
1, and describe the algorithm for computing a combinatorial circuit-resultant (CCR) tree.

Theorem 1. FEach rigidity circuit can be obtained, inductively, by applying combinatorial
resultant operations starting from Ky circuits. The construction is captured by a binary resul-
tant tree whose nodes are intermediate rigidity circuits and whose leaves are Ky graphs.

This leads to a graph algorithm for finding a CCR tree of a circuit. Each step of the con-
struction can be carried out in polynomial time using variations on the pebble game matroidal
sparsity algorithms [35] combined with Hopcroft and Tarjan’s linear time 3-connectivity al-
gorithm [28]. However, it is conceivable that the tree could be exponentially large, and thus
the entire construction could take an exponential number of steps: understanding in detail
the algorithmic complexity of our method remains a problem for further investigation.

In sections 4, 5, 6, and 7 we include a brief, self-contained overview of the algebraic
concepts relevant to this paper: ideals and their algebraic matroids, the Cayley—Menger ideal,
resultants, and the circuit polynomials in the Cayley—Menger ideal. In section 8 we prove the
following theorem.

Theorem 2. Fach circuit polynomial can be obtained, inductively, by applying resultant
operations. The procedure is guided by the combinatorial circuit-resultant (CCR) tree from
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Theorem 1 and builds up from Ky circuit polynomials. At each step, the resultant produces a
polynomial that may not be irreducible. A polynomial factorization and a test of membership
in the ideal are then applied to identify the factor which is the actual circuit polynomial.

The algorithmic counterpart of Theorem 2 appears in section 9. Overall, the resulting
algebraic elimination algorithm runs in exponential time, in part because of the growth in size
of the polynomials that are being produced. Several theoretical open questions remain, whose
answers may affect the precise time complexity analysis.

In section 10 we define and characterize a more general combinatorial resultant tree which
generalizes the CCR tree by allowing more freedom in the choice of graphs used at the leaves
of the tree: besides K circuits, we now can use dependent rigid graphs. This extension
allows the use of polynomials supported on dependent sets in the Cayley—Menger ideal that
are not necessarily circuits. The dependent, noncircuit generators of the Cayley—Menger ideal
are discussed in section 11, and the full generalization of our main algorithm is given in
section 12.

The preliminary experimental results we carried out with the implementation of our
method in Mathematica are discussed in section 13. We used Mathematica v13 on an 2019
iMac with the following specifications: Intel 15-9600K 3.7GHz, 16GB RAM, macOS Monterey
12.3.1. We also explored Macaulay2, but it was much slower than Mathematica (hours vs.
seconds) in computing one of our examples. The resulting polynomials are made available on
a GitHub repository [39].

Open questions are introduced throughout the paper and in the concluding remarks,
section 14.

Further connections: Circuit polynomials in matroid theory. The matroid theory literature
is rich in realizability questions of various sorts [43] and has seen in recent years a surge
of interest in algebraic matroids. Ingleton [29] proved that algebraic matroids over fields of
characteristic 0 are linearly realizable, but this is not the case in positive characteristic [43].
Recently, [7] identified an infinite class of algebraic matroids over fields of positive character-
istic that have a linear representation in the same characteristic, namely, those for which the
so-called Lindstrom valuation is trivial. The problem of computing the Lindstrém valuation
was addressed in [12], where the fundamental step is to compute all circuit polynomials of a
given algebraic matroid in positive characteristic. We remark that for the algebraic matroids
whose combinatorial structure allows descriptions of their circuits in terms of an operation
similar to our combinatorial resultants, the methods presented in this paper are applicable
and likely to be more efficient than Grobner basis methods.

Remark. The main results of this paper have been announced in the conference abstract
[37] and in [38].

2. Preliminaries: Rigidity circuits. We start with the combinatorial aspects of our prob-
lem and review the relevant notions and results from combinatorial rigidity theory of bar-and-
joint frameworks in dimension 2.

Notation. We work with (sub)graphs given by subsets E of edges of the complete graph
K,, on vertices [n]:={1,...,n}. If G is a (sub)graph, then V(G), respectively, E(G), denotes
its vertex set, respectively, edge set. The support of G is E(G). The vertex span V(E) of
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edges E is the set of all edge-endpoint vertices. A subgraph G is spanning if its edge set E(G)
spans [n]. The neighbors N(v) of vertex v are the vertices adjacent to v in G.

Frameworks. A 2D bar-and-joint framework is a pair (G,p) of a graph G = (V, F) and a
placement map p: V — R%. We view the edges as rigid bars and the vertices as rotational joints
which allow the framework to deform continuously as long as the bars retain their original
lengths. The realization space of the framework is the set of all of its possible placements in
the plane with the same bar lengths. Two realizations are congruent if they are related by a
planar isometry. The configuration space of the framework is made of congruence classes of
realizations. The deformation space of a given framework (G,p) is the connected component
of the configuration space that contains this particular placement (given by p). A framework
is rigid if its deformation space consists of exactly one configuration, and is flexible otherwise.
We say that a framework is minimally rigid if it is rigid and, when any of its edges is removed,
it becomes flexible.

Laman graphs. The concept of a generic framework is introduced rigorously in section 5.
All but a measure-zero set of possible placements of a graph are generic. The following theorem
allows us to refer to the rigidity and flexibility of a generic framework solely in terms of its
underlying graph. The proof goes through the intermediate concept of infinitesimal rigidity,
which implies rigidity; this is also introduced in section 5.

Theorem 3 (see [44, 33]). A generic bar-and-joint framework is minimally rigid in 2D
if and only if its underlying graph G = (V,E) satisfies two conditions: (a) it has exactly
|E| =2|V|—3 edges, and (b) any proper subset V! C'V with |V'| > 2 of vertices spans at most
2|V'| — 3 edges.

A graph satisfying the conditions of Theorem 3 is said to be a Laman graph, or just Laman.
The hereditary property (b) is also referred to as the (2,3)-sparsity condition. Together,
properties (a) and (b) define a graph said to be (2, 3)-tight (in addition to being (2,3)-sparse).

Theorem 3 allows us to talk now about (minimal) rigidity of graphs rather than frame-
works. A Laman graph is minimally rigid and becomes flexible when any of its edges is
removed. Adding extra edges to a Laman graph keeps it rigid, but the minimality is lost:
these graphs are said to be rigid and overconstrained or dependent. In short, for a graph to be
rigid, its vertex set must span a Laman graph; otherwise the graph is flexible. Other graphs
may be simultaneously flexible and overconstrained. In this paper, we work primarily with
graphs which are rigid and dependent. The minimally dependent ones, called rigidity circuits,
are introduced next.

Matroids. A matroid is an abstraction capturing (in)dependence relations among collec-
tions of elements from a ground set and is inspired by both linear dependencies (among, say,
rows of a matrix) and algebraic constraints imposed by algebraic equations on a collection of
otherwise free variables. The standard way to specify a matroid is via its independent sets,
which have to satisfy certain axioms (which we omit, and refer the interested reader to [43]).
A base is a maximal independent set, and a set which is not independent is said to be depen-
dent. A minimal dependent set is called a circuit. Relevant for our purposes are the following
general aspects: (a) (hereditary property) a subset of an independent set is also independent;
(b) all bases have the same cardinality, called the rank of the matroid. Further properties will
be introduced in context, as needed.
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In this paper we encounter three types of rigidity-related matroids: a graphic’ matroid,
defined on a ground set given by all the edges F,, :={ij: 1 <1i < j <n} of the complete graph
K,,; this is the (2, 3)-sparsity matroid or the generic 2D rigidity matroid described below; a
linear matroid, defined on an isomorphic set of row vectors of the rigidity matriz associated
to a bar-and-joint framework; and an algebraic matroid, defined on an isomorphic ground
set of variables X,, := {a:ij : 1 <4 < j < n}; this is the algebraic matroid associated to the
Cayley—Menger ideal. The linear and algebraic matroids will be defined in section 5.

The (2, 3)-sparsity matroid: Independent sets, bases, circuits. The (2, 3)-sparse graphs on n
vertices form the collection of independent sets for a matroid S,, on the ground set F of edges
of the complete graph K, [55], called the (generic) 2D rigidity matroid, or the (2,3)-sparsity
matroid. The bases of the matroid S, are the maximal independent sets, and hence are
Laman graphs. A set of edges which is not sparse is a dependent set. For instance, adding
one edge to a Laman graph creates a dependent set of 2n — 2 edges, called a Laman-plus-one
graph; examples are given in Figure 1.

A minimal dependent set is a (sparsity) circuit. The edges of a circuit span a subset of
the vertices of V. A circuit spanning V is said to be a spanning or mazimal circuit in the
sparsity matroid 8,,. See Figure 1 (right) and Figure 2 for examples.

A Laman-plus-one graph contains a unique subgraph which is minimally dependent, in
other words, a unique circuit. A spanning rigidity circuit C' = (V, E) is a special case of a
Laman-plus-one graph: it has a total of 2n—2 edges but it satisfies the (2, 3)-sparsity condition
on all proper subsets of at most n’ < n — 1 vertices. Simple sparsity considerations can be
used to show that the removal of any edge from a spanning circuit results in a Laman graph.

Combining graphs and circuits. We define now operations that combine two graphs (with
some common vertices and edges) into one.

> XS

Figure 1. A Laman-plus-one graph contains a unique circuit (highlighted): (Left and center) The circuit is
not spanning the entire verter set. (Right) A spanning circuit.

<> D X X

Figure 2. The four types of spanning circuits on n =6 vertices: 2D double-banana, 5-wheel W5, Desargues-
plus-one, and K3 3-plus-one.

2Not to be confused with the matroid of spanning trees of the complete graph.
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Figure 3. (Left to right) Separating a 2-connected circuit into three 3-connected circuits via 2-split oper-
ations. (Right to left) Combining three 3-connected circuits into a larger (not-3-connected) one, via 2-sum
operations.

If G; and G4 are two graphs, we use a consistent notation for their number of vertices and
edges n; = |V(G;)|, m; = |E(G;)|, i = 1,2, and for their union and intersection of vertices and
edges, as in V, =V(G1) UV (G2), V4 =V(G1) NV (Ga), ny = |V, nn = |Vn|, and similarly
for edges, with my = |Ey| and mn =|En|. The common subgraph of two graphs G and Gy is
Gm == (Vm, Em)

Let G and G2 be two graphs with exactly two vertices u,v € V and one edge uv € En in
common. Their 2-sum is the graph G = (V, E) with V =V, and E = E_\{uv}. The inverse
operation of splitting G into G and Gy is called a 2-split or 2-separation (Figure 3).

Lemma 4 (see [5, Lemmas 4.1 and 4.2]). The 2-sum of two circuits is a circuit. The 2-split
of a circuit is a pair of circuits.

Connectivity. It is well known and easy to show that a circuit is always a 2-connected
graph. If a circuit is not 3-connected, we refer to it simply as a 2-connected circuit. The
Tutte decomposition [51] of a 2-connected graph into 3-connected components amounts to
identifying separating pairs of vertices. For a circuit, the separating pairs induce 2-split
(inverse of 2-sum) operations and produce smaller circuits (see also Lemma 2.4(c) in [5]). Thus
a 2-connected circuit can be constructed from 3-connected circuits via 2-sums, as illustrated
in the right-to-left sequence from Figure 3.

Inductive constructions for 3-connected circuits. A Henneberg II extension (also called an
edge splitting operation) is defined for an edge uv and a nonincident vertex w, as follows: the
edge uv is removed, and a new vertex a and three new edges au,av,aw are added. Berg and
Jordan [5] have shown that if G is a 3-connected circuit, then a Henneberg II extension on
G is also a 3-connected circuit. The inverse Henneberg 11 operation on a circuit removes one
vertex of degree 3 and adds a new edge among its three neighbors in such a way that the
result is also a circuit; see Figure 4. Berg and Jordan have shown that every 3-connected
circuit admits an inverse Henneberg I1 operation which also maintains 3-connectivity. As a
consequence, a 3-connected circuit has an inductive construction, i.e., it can be obtained from
K4 by Henneberg II extensions that maintain 3-connectivity. Their proof is based on the
existence of two nonadjacent vertices with 3-connected inverse Henneberg II circuits. We will
make use in section 3 of the following weaker result, which does not require maintaining of
3-connectivity in the inverse Henneberg II operation.
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Figure 4. A Henneberg 11 extension of the Desargues-plus-one circuit.

<2<

Figure 5. A complete K4 graph, a 4-wheel Wy, their common edges (dotted, with elimination edge in red),
and their combinatorial resultant, which has more than 2n — 2 edges and thus is not a circuit.

Lemma 5 (Theorem 3.8 in [5]). Let G = (V,E) be a 3-connected circuit with |V| > 5.
Then either G has four vertices that admit an inverse Henneberg II that is a circuit, or G has
three pairwise nonadjacent vertices that admit an inverse Henneberg Il that is a circuit (not
necessarily 3-connected).

3. Combinatorial resultant constructions. We define now a new operation, the combina-
torial resultant of two graphs, prove Theorem 1, and describe its algorithmic implications.

3.1. Definition: Combinatorial resultant. Let GG; and G2 be two distinct graphs with
nonempty intersection En # () and let e € E~ be a common edge. The combinatorial resultant
of G and G5 on the elimination edge e is the graph CRes(G1, Ge,e) with vertex set V[, and
edge set Fy\{e}.

The 2-sum appears as a special case of a combinatorial resultant when the two graphs
have exactly one edge in common, which is eliminated by the operation. Circuits are closed
under the 2-sum operation, but they are not closed under this general combinatorial resultant
operation; two examples are shown in Figures 5 and 6.

Circuit-valid combinatorial resultants. We are interested in combinatorial resultants that
produce circuits from circuits. Towards this goal, we say that two circuits are properly inter-
secting if their common subgraph (of common vertices and common edges) is Laman. The
example in Figure 5 is not properly intersecting, but those in Figures 6 and 7 are.

Lemma 6. The combinatorial resultant of two circuits has m =2n — 2 edges if and only if
the common subgraph Gn of the two circuits is Laman.

Proof. Let (1 and Csy be two circuits with n; vertices and m; edges, i = 1,2, and let C
be their combinatorial resultant with n vertices and m edges. By inclusion-exclusion n =
ni +no — nn and m =my + mo — mn — 1. Substituting here the values for mi =2n1 — 2 and
mo=2ng —2, weget m=2n; —2+2n3—2—mn—1=2(n; +ng—nn) —2+2n,—3—mn =
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O ................ ...O.
ol
o o

Figure 6. A 4-wheel Wu, a complete K4 graph, their common Laman graph (dotted, with red elimination
edge), and their combinatorial resultant, which is a Laman-plus-one graph but not a circuit.

o 2

o L
o}

Figure 7. A 4-wheel Wy and a complete K4 graph, their common Laman graph (dotted, with red elimination
edge), and their combinatorial resultant, the 5-wheel W5 circuit.

(2n —2) 4+ (2nA — 3) — mn. We have m = 2n — 2 if and only if mn = 2nn — 3. Since both C)
and Coq are circuits, it is not possible that one edge set is included in the other: circuits are
minimally dependent sets of edges and thus cannot contain other circuits. As a proper subset
of both Ey = E(Cy) and Ey = E(C3), En satisfies the hereditary (2,3)-sparsity property. If
furthermore G has exactly 2nn — 3 edges, then it is Laman. |

It is important to retain that the common subgraph is defined on both the common vertex
and the common edge set. The following lemma allows us to sometimes consider just the
graph induced on the common vertexr set in the union of G; and Gs, when checking if two
circuits are properly intersecting. This observation is applicable to the type of combinatorial
resultants used from now on in this paper.

Lemma 7. Let C; = (V1,E1) and Cy = (Va, E2) be two circuits whose common vertex set
V is a strict subset of both Vi and Va. If the common subgraph Gn = (Vn, En) is Laman, then
neither C1 nor Cy contains additional edges (besides En) spanned by their common vertices.

Proof. Assume that C) contains an additional edge spanned by VA. Since (Vh, En) is
Laman, this edge induces a circuit, entirely contained in C; and spanned by a proper subset
of the vertices of V7; this contradicts the fact that C'y is a circuit: by the definition of a circuit,
as a minimal dependent set of edges, a circuit cannot contain a subgraph that is smaller, yet
dependent. [ |

A combinatorial resultant operation applied to two properly intersecting circuits is said
to be circuit-valid if it results in a spanning circuit. An example is shown in Figure 7. Being
properly intersecting is a necessary condition for the combinatorial resultant of two circuits
to produce a circuit, but the example in Figure 6 shows that this is not sufficient.

Open Problem 8. Find necessary and sufficient conditions for the combinatorial resultant
of two circuits to be a circuit.
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Our first goal is to show that each circuit can be obtained from K4 circuits via a sequence
of circuit-valid combinatorial resultant operations, in a manner that adds at least one new
vertex at each step.

3.2. Proof of Theorem 1. We prove now that each rigidity circuit can be obtained,
inductively, by applying combinatorial resultant operations starting from K, circuits. The
proof handles separately the 2- and 3-connected cases. In section 2 we have seen that a
2-connected circuit can be obtained from 3-connected circuits via 2-sums. The bulk of the
proof is in the following proposition, which handles the 3-connected circuits.

Proposition 9. Let C = (V, E) be a 3-connected circuit spanning n+ 1> 5 vertices. Then
we can find two circuits, A and B, such that A has n vertices, B has at most n vertices, and
C can be represented as the combinatorial resultant of A and B.

Proof. We apply Lemma 5 to find two nonadjacent vertices a and b of degree 3 such that
a circuit A can be produced via an inverse Henneberg II operation on vertex a in C (see
Figure 8). Let the neighbors of vertex a be N(a) = {u,v,w} such that e = uv was not an edge
of C' and is the one added to obtain the new circuit A= (V' \{a}, (F\{au,av,aw}) U {uv}).

To define circuit B, we first let L be the subgraph of C' induced by V\{b}. Simple sparsity
consideration shows that L is a Laman graph. The graph D obtained from L by adding
the edge e = uv, as in Figure 9 (left), is a Laman-plus-one graph containing the three edges
incident to a (which are not in A) and the edge e (which is in A). D contains a unique circuit
B (Figure 9, left) with edge e € B (see, e.g., [43, Proposition 1.1.6]). It remains to prove
that B contains a and its three incident edges. If B does not contain a, then it is a proper
subgraph of A. But this contradicts the minimality of A as a circuit. Therefore a is a vertex

Figure 8. The 3-connected circuit C spanning n + 1 vertices with two nonadjacent vertices a (red) and b
(blue) of degree 3. Note that N(a) and N(b) may not be disjoint. An inverse Henneberg 11 at a removes the
red edges at a and adds dotted red edge e =uv. Circuit A (red).

Figure 9. Remove from C the edges from b (blue dotted) and add red edge e. Circuit B (blue).
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in B, and because a vertex in a circuit cannot have degree less than 3, B contains all three of
its incident edges.

The combinatorial resultant CRes(A, B, e) of the circuits A and B with e the eliminated
edge satisfies the desired property that C' = CRes(4, B, e). |

3.3. Algorithmic aspects. Algorithm 3.1 captures the procedure described in
Proposition 9. It can be applied recursively until the base case K, is attained. Its main
steps, the inverse Henneberg II step on a circuit at line 4 and finding the unique circuit in a
Laman-plus-one graph at line 6, can be carried out in polynomial time using slight variations
of the (2,3)- and (2, 2)-sparsity pebble games from [35].

The algorithm faces many choices for the two degree-3 vertices a and b. These choices
may lead to different representations of a circuit as the combinatorial resultant of two other
circuits.

Corollary 10. The representation of C as the combinatorial resultant of two smaller circuits
is in general not unique. An example is the “double-banana” 2-connected circuit shown in
Figure 10.

3.4. Combinatorial circuit-resultant tree. Each one of the possible constructions of a
circuit using combinatorial resultant operations can be represented in a tree structure. Let
C' be a rigidity circuit with n vertices. A combinatorial circuit-resultant (CCR) tree T for
the circuit C' is a rooted binary tree with C' as its root and such that (a) the nodes of T¢: are
circuits; (b) circuits on level I have at most n — [ vertices; (c) the two children {C},C}} of

Algorithm 3.1 Inverse Combinatorial Resultant

Input: 3-connected circuit C'

Output: circuits A, B and edge e such that C' = CRes(A4, B, e)

1: for each vertex a of degree 3 do

2:  if inverse Henneberg II is possible on a

3: and there is a nonadjacent degree 3 vertex b then

4: Get the circuit A and the edge e by inverse Henneberg I in C on a
5: Let D = C without b (and its edges) and with new edge e

6: Compute the unique circuit B in D

7 return circuits A, B and edge e

Figure 10. The 2-connected double-banana circuit can be obtained as a combinatorial resultant from two
K4 graphs (left, 2-sum), and from two wheels on 4 vertices sharing two triangles (right). Dashed lines indicate
the eliminated edges, and in each case one of the two circuits is highlighted to distinguish Ka from Wi.
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Figure 11. A CCR tree for the Desargues-plus-one circuit. To help the reader visualize the common Laman

subgraphs and the eliminated edge at each node of the tree, the lower circuits are shown, in black and with large
vertices, in the context of the combinatorial resultant circuit above them (light gray).

a parent circuit C; are such that C; = CRes(C}, Cy, e) for some common edge e; and (d) the
leaves are complete graphs on 4 vertices. An example is illustrated in Figure 11.

Complexity of CCR trees. If the intermediate circuits are all 3-connected, the depth of a
tree obtained by our method is n — 4, and this is the worst possible case. The best case for
depth is logn and occurs when all the intermediate circuits are 2-connected and are split into
two circuits of the same size.

In terms of size (number of nodes), the CCR tree may be, in principle, anywhere between
linear to exponential in size. Best cases occur when the resultant tree is path-like, with each
internal node having a K leaf, or when the tree is balanced of depth logn and each resultant
operation is a 2-sum. Conceivably, the worst case (exponential size) could be a complete
(balanced) binary tree of linear depth: each internal node at level k would combine two
circuits with the same number of vertices n —k — 1 into a circuit with n — k vertices. Sporadic
examples of small, full height, and balanced CCR trees exist (e.g., for K3s-plus-one), but we
do not know how far they generalize.

Open Problem 11. Are there infinite families of circuits with linear-depth, balanced CCR
trees?

It would be interesting to understand the worst-case size of these trees, even if families as
above do not exist.

Open Problem 12. Characterize the circuits produced by the worst-case size of the CCR
tree.

Understanding the worst cases may help our Algorithm 3.1 avoid the corresponding choices
of vertices a and b in steps 1-3. The goal would then be to produce the best CCR tree, or
at least a good one, according to some well-defined measure of CCR tree complexity. We will
return to this question in section 9.
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In order to answer Problems 11 and 12 one may have to do experimentation with CCR
trees. However, the number of trees can be very large, which leads to the following.

Open Problem 13. Develop an efficient algorithm for enumerating CCR trees of a circuit.
Open Problem 14. Compute or estimate the number of distinct CCR trees of a circuit.

4. Preliminaries: ldeals and algebraic matroids. We turn now to the algebraic aspects of
our problem in order to introduce algebraic matroids and circuit polynomials. We work over
the field of rational numbers Q. In this section, the set of variables X,, denotes X, = {z; :
1 <i < n}; when we turn to the Cayley-Menger ideal, it will be X, = {x;; : 1 <i < j <n}.
Polynomial rings R are always of the form R = Q[X], over sets of variables X C X,,. The
support supp f of a polynomial f € Q[X,] is the set of indeterminates appearing in it. The
degree of a variable z in a polynomial f is denoted by deg,, f.

4.1. Polynomial ideals. A set of polynomials I C Q[X] is an ideal of Q[X] if it is closed
under addition and multiplication by elements of Q[X]. Every ideal contains the zero ideal {0}.
A generating set for an ideal is a set S C Q[X] of polynomials such that every polynomial in
the ideal is a finite algebraic combination of elements in S with coefficients in Q[X|. Hilbert’s
Basis Theorem (see, e.g., [13]) guarantees that every ideal in a polynomial ring has a finite
generating set. Ideals generated by a single polynomial are called principal. An ideal [ is
a prime ideal if, whenever fg € I, then either f € I or g € I. A polynomial is irreducible
(over Q) if it cannot be decomposed into a product of nonconstant polynomials in Q[X].
A principal ideal is prime if and only if it is generated by an irreducible polynomial. An ideal
generated by two or more irreducible polynomials is not necessarily prime. The dimension
dim I of an ideal I of Q[X] is the cardinality of the maximal subset S C X with the property
I'nQ[s]={0}.

Let I be an ideal of Q[X,,] and X’ C X,, nonempty. The elimination ideal of I with respect
to X' is the ideal I N Q[X’] of the ring Q[X’]. Elimination ideals frequently appear in the
context of Grébner bases [10, 13] which give a general approach for computing elimination
ideals: if G is a Grobner basis for I with respect to an elimination order (see Exercises 5 and 6
in section 1 of Chapter 3 in [13]), e.g., the lexicographic order with x;, > z;, >...>z; , then
the elimination ideal I NQ[x;, .., .., ;] which eliminates the first k indeterminates from I in
the specified order has G N Q[z;, ,,,...,2;,] as its Grébner basis.

4.2. Algebraic independence and algebraic matroids. Recall that a set of vectors in a
vector space is linearly dependent if there is a nontrivial linear relationship between them.
Similarly, given a finite collection A of complex numbers, we say that A is algebraically de-
pendent if there is a nontrivial polynomial relationship between the numbers in A.

Definition 15. Let k be a field (e.g., k = Q) and k C F a field extension of k. A finite
subset A={aq,...,an} of F is said to be algebraically dependent over k if there is a nonzero
(multivariate) polynomial with coefficients in k vanishing on A. Otherwise, we say that A is
algebraically independent over k.

It was noticed by van der Waerden that the algebraically independent subsets A of a finite
subset E of F' satisfy matroid axioms [52, 53] and therefore define a matroid.
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Definition 16. Let k be a field and k C F a field extension of k. Let E ={aq,...,an} be a
finite subset of F'. The algebraic matroid on E over k is the matroid whose independent sets
are the algebraically independent (over k) subsets of E.

4.3. Algebraic matroid of a prime ideal. An equivalent definition of algebraic matroids,
in terms of polynomial ideals, is more useful for the purposes of this paper. Intuitively, a
collection of variables is independent with respect to an ideal I if it is not constrained by any
polynomial in I, and is dependent otherwise. The algebraic matroid induced by the ideal is,
informally, a matroid on the ground set of variables X,, whose independent sets are subsets
of variables that are not supported by any polynomial in the ideal. Its dependent sets are
supports of polynomials in the ideal.

Definition 17. Let I be a prime ideal in the polynomial ring Q[X,]. The algebraic matroid
of I, denoted A(I), is the matroid (X,,Z) whose independent sets are

T={XCX,|INQ[X]={0}.

4.4. Equivalence of the definitions. It is well known that every algebraic matroid of a
prime ideal I arises as an algebraic matroid of a field extension in the sense of Definition 16,
and vice versa. For completeness, we include a proof.

From a field extension to a prime ideal. Let E'={ay,...,a,} be a set of elements in a field
extension of (Q, and let M be the algebraic matroid on F over Q whose dependent sets are
algebraically dependent subsets A C E. To realize M as an algebraic matroid of a prime ideal
I of Q[X,,], we define I := ker ¢ as the kernel of the homomorphism ¢ : Q[X,,]| = Q(a1,...,ay)
mapping x; — «; for i € {1,...,n} and a > a for a € Q. Kernels of homomorphisms are known
to be prime ideals [34]. The kernel ker ¢ is nonzero, since any polynomial in ker ¢ defines a
dependency in M, and any dependent set A C {a1,...,a,} in M vanishes on a polynomial
in Q[X,]. Let Q[X4] be the ring of polynomials supported on subsets of X4 := ¢~ 1(A4). We
have ker p N Q[X 4] # {0} if and only if A is a dependent set of M. Hence ¢ induces an
isomorphism between dependent sets in the matroid induced by ker ¢ and M.

From a prime ideal to a field extension. Let I be a prime ideal in Q[X,]. We con-
struct a finite field extension F' and a subset {Z71,...,7,} € F via an isomorphism that
takes sets X C X,, that are in/dependent in the ideal I to algebraically in/dependent sets
X c {71,...,@n}. The quotient ring Q[X,,]/I is an integral domain with a well-defined frac-
tion field F' = Frac (Q[X,]/I) which contains Q as a subfield. The image of X,, under the
canonical injections Q[X,] — Q[X,,]/I < Frac (Q[X,|/I) = F is the subset {z1,...,7T,} of F,
where Z; denotes the equivalence class of z; in both Q[X,,]/I and F.

Let X be a nonempty subset of X,, (taken w.l.o.g. to be X = {z1,...,2;}), and let
X ={71,...,7;} in F be its image under the canonical injections. The set X is by definition
algebraically dependent over Q if and only if there exists a nonzero polynomial f € Q[x1, ..., x;]
vanishing on X, i.e., f(Z1,...,7;) = 0. This happens if and only if f(x1,...,2;) € I, that is,
if and only if 7 N Q[X] # {0}. Similarly, X is algebraically independent over Q if and only if
1nQIX] = {0}.

We are now ready to define the core algebraic concept underlying this paper.
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4.5. Circuits and circuit polynomials. A circuit in a matroid is a minimal dependent
set. In an algebraic matroid, a circuit C' C X,, is a minimal set of variables supported by
a polynomial in the prime ideal I defining the matroid. An irreducible polynomial whose
support is a circuit C' is called a circuit polynomial and is denoted by pc. A theorem of Dress
and Lovész [16] states that, up to multiplication by a constant, a circuit polynomial pc is the
unique irreducible polynomial in the ideal with the given support C C X,,. We'll just say, in
short, that it is unique.

We retain the following property, stating that circuit polynomials generate elimination
ideals supported on circuits.

Theorem 18 (see [47, Theorem 11]). Let I be a prime ideal in Q[X,,] and C C X, a circuit
of the algebraic matroid A(I). The ideal I N Q[C] is principal, prime, and generated by the
circust polynomaial pe.

5. The Cayley—Menger ideal. In this section we introduce the 2D Cayley—Menger ideal
CM,,. We will show® that its algebraic matroid is isomorphic to the (2,3)-sparsity matroid
S.. As a consequence, we get a full combinatorial characterization of the supports of circuit
polynomials in the Cayley—Menger ideal: they are in one-to-one correspondence with the
rigidity circuits introduced in section 2.

Throughout this section and later, when working with the Cayley—Menger ideal, we use
variables X, = {z;;:1 <i<j <n} for unknown squared distances between pairs of points.

5.1. The Cayley—Menger ideal and its algebraic matroid. The distance matriz of n
labeled points is the matrix of squared distances between pairs of points. The Cayley matrix
is the distance matrix bordered by a new row and column of 1’s, with zeros on the diagonal:

0 1 1 1 . 1
10 =z 713 -+ T1p
1 z2 0 x23 -+ x94,
1 x3 203 0 - a3,
1 Tinm T2m T3n " 0

Cayley’s Theorem says that if the distances come from a point set in the Euclidean space RY,
then the rank of this matrix must be at most d + 2. Thus all the (d + 3) x (d + 3) minors
of the Cayley matrix should be zero. An additional condition, due to Menger [42] (see also
[6, 14]), guarantees that the entries in a Cayley matrix correspond to actual squared distances
between n points in R%. Menger’s condition states that all m x m minors containing m — 1
points have the sign (—1)™~! or are zero, for m < d + 2. For our purposes, we will make use
only of Cayley’s but not Menger’s condition.

The set of all (d + 3) x (d + 3) minors of the Cayley matrix, each minor inducing a
polynomial in Q[X,,], constitutes a generating set for the (n,d)-Cayley—Menger ideal CM%.
These generators are homogeneous polynomials with integer coeflicients irreducible over Q and

3This equivalence is well known; however, we were not able to track down an original reference, and include
a proof for completeness.
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will be discussed in more detail in section 11. The (n,d)-Cayley—Menger ideal is a prime ideal
of dimension dn — (d”QLl) [8, 23, 26, 30] and codimension gg) —dn + (d;“l).

As defined in section 4, the algebraic matroid A(CM) of the Cayley—Menger ideal is the
matroid on the ground set X, = {z;; | 1 <4 < j < n} where a subset of distance variables
X C X,, is independent if CM% N Q[X] = {0}, i.e., X supports no polynomial in the ideal.

As an immediate consequence of the definition of dimension of an ideal in a ring of poly-
nomials (subsection 4.1), we obtain the following proposition.

Proposition 19. The rank of A(CM%) is equal to dim CM% = dn — (d;ﬂ).

5.2. Equivalence of the (2, 3)-sparsity matroid and the algebraic matroid of CM,,.
From now on,* we work only with the 2D Cayley-Menger ideal CM,, := CM%, generated by
the 5 x 5 minors of the Cayley matrix, and its algebraic matroid, denoted by A(CM,). In
this case, the rank of the algebraic matroid is precisely the rank of the (2, 3)-sparsity matroid
S, on n vertices, introduced in section 2. We establish the equivalence of the two matroids
by proving that both are isomorphic to the 2-dimensional generic linear rigidity matroid that
we now introduce.

2D linear rigidity matroids. Let G = (V,E) be a graph and (G,p) a 2D bar-and-joint
framework on points {p1,...,p,} C R%

The rigidity matriz R p) (or just Rg when there is no possibility of confusion) of the
bar-and-joint framework (G,p) is the |E| x 2n matrix with pairs of columns indexed by the
vertices {1,2,...,n} and rows indexed by the edges ij € E with ¢ < j. The ith entry in the
row ij is p; — pj (2 coordinates), the jth entry is p; — p;, and all other entries are 0.

The rigidity matrix is defined up to an order of the vertices and the edges; to eliminate
this ambiguity we fix the order on the vertices as 1 <2 < --- < n, and we order the edges ij
with i < j lexicographically. For example, let G = K4. Then the rows are ordered as 12, 13,
14, 23, 24, and 34 and the corresponding rigidity matrix R, is given by

pP1—Pp2 P2—D1 0 0
P1— D3 0 P3 —P1 0
Re — | P1— P4 0 0 P4 — D1
K4_

0 D2 — D3 P3— P2 0
0 P2 — P4 0 P4 — D2
0 0 P3— P4 P4 —D3

The linear matroid associated to a matrix is defined on the ground set given by its rows.
An independent set is a linearly independent collection of rows.

The 2D linear rigidity matroid L g p) induced by a framework (G,p) is the linear matroid
associated to the rigidity matrix of the framework. Note that it depends not just on G but
also on the plane configuration p. For example, if G = K4, p is a configuration in which at
most two vertices of K4 are on a line, and ¢ is a configuration in which the vertices {2,3,4}
are on the same line, then rank £, ;) >rank L, 4)-

The 2D linear rigidity matroid L, is the linear matroid associated to the rigidity matrix
of a complete graph framework (K,,p).

4This section is included for completeness and can be skipped.
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Genericity. Let G be a graph and consider the set of all possible plane configurations p
for G. We say that a 2D bar-and-joint framework (G,p) is generic if the rank of the row
space of R(g,) is maximal among all these configurations. If p and p’ are distinct generic
plane configurations for a graph G, the 2D linear matroids £ ;) and Lg,) are isomorphic
[24, Theorem 2.2.1]. Hence we can define the 2D generic linear matroid Lg as the 2D linear
matroid £ g ) for a generic plane configuration p.

An alternative viewpoint [50] is to work with coordinate indeterminates p; = {x;,y;},i €
[n], over the set of variables X,, UY,. We define the generic rigidity matriz as having entries
in these variables. The generic rigidity matrix has rank at least r if there exists an r X r
minor which, as a polynomial in Q[X,, UY,], is not identically zero. An alternative proof of
Theorem 3 given in [50] shows that maximal independent sets of rows in the generic rigidity
matrix of K, correspond to Laman graphs on n vertices. The maximal minors of the generic
rigidity matrix of a Laman graph vanish on a measure-zero set of points, and all points in the
complement of the vanishing locus are said to be generic for the given Laman graph.

The equivalence between the algebraic Cayley—Menger and the sparsity matroids. We are now
ready to prove the following.

Theorem 20. The algebraic matroid A(CM,,) of the 2D Cayley—Menger ideal and the (2,3)-
sparsity matroid S, are isomorphic.

Proof. 1t follows from Theorem 3 that, for a given graph G on n vertices, the generic
linear matroid £ g, and the (2, 3)-sparsity matroid 8, are isomorphic. It remains to show
that the algebraic matroid A(CM,,) is equivalent to the generic linear rigidity matroid Ly, .

This equivalence is a consequence of a classical result of Ingleton [29, section 6] (see
also [17, section 2]) stating that algebraic matroids over a field of characteristic zero are
linearly representable over an extension of the field, with the linear representation given by
the Jacobian. We now note that the Cayley—Menger variety is realized as the Zariski closure
of the image of the map f = (fij){i,j}e(g) L (C?) — C(Z) given by the edge function:

(prs---oom) = (P = 2l i gy ()

The Jacobian of the edge function at a generic point in (C?)" is precisely the matrix 2R(x, p)
for a generic configuration p of the complete graph. |

From now on, we will use the isomorphism to move freely between the formulation of
algebraic circuits as subsets of variables X C X, and their graph-theoretic interpretation as
graphs that are rigidity circuits.

Comment: Beyond dimension 27 Note that the d-dimensional linear rigidity matroid L,
and the algebraic matroid A(CM%) of the (n,d)-Cayley-Menger matroid are isomorphic by
the same Jacobian argument as above. However, the equivalence between the 2D sparsity
matroid &, and A(CM,,) does not extend, in higher dimensions, to some known graphical
matroid. The generalization dn — (d;ﬂ) of the (2n — 3)-sparsity condition from dimension 2
to dimension d, called Maxwell’s sparsity [41], does not satisfy matroid axioms and is known
to be only a necessary but not sufficient condition for minimal rigidity in dimensions d > 3.

6. Preliminaries: Resultants. In this section we review known concepts and facts about
resultants; in the next section we specialize this setup to the Cayley—Menger ideal. In section 8,
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in order to prove Theorem 2, we will use the resultant of two circuit polynomials in the
Cayley—Menger ideal as the algebraic counterpart of the combinatorial resultant operation
which deletes a common edge e of two circuits.

Resultants. The resultant can be introduced in several equivalent ways [22]. Here we use
its definition as the determinant of the Sylvester matrix.

Let f,g € R[z] be two polynomials in = with coefficients in some ring of polynomials R,
with deg, f =r and deg, g = s, such that at least one of r or s is nonzero, and let

f(z)=arz" + -+ a1z + ao,
g(x) =bsax® + -+ b1z + by.
The resultant of f and g with respect to the indeterminate x, denoted Res(f, g, ), is the

determinant of the (r + s) x (r + s) Sylvester matrix made from the coefficients of f and g
arranged in staggered rows according to the following pattern

Ay Qp_1 Qp_2 -+ QG 0 0 0
0 ar Qp_1 -+ @1 G 0 0
0 0 ar c++ ay  aj ag 0
0
_ 0 0 0 Tt Gp Qr—1 Qr-2 i ao
Syl(fa g) ‘T) - bs bsfl bsf2 bO 0 0 0 9
0 bs  bs_1 b1 by 0 0
0 0 bs by b bo 0
: 0
0 0 0 cee bs bs—l bs_g . bQ

where the submatrix Sy containing only the coefficients of f is of dimension s x (r + s), and
the submatrix S, containing only the coefficients of g is of dimension 7 x (r+s). Unless r =s,
the columns (ag ay --- a,) and (bg by --- bs) of S¢ and Sy, respectively, are not aligned in the
same column of Syl(f,g,z), as displayed above, but rather the first is shifted to the left or
right of the second, depending on the relationship between r and s. We will make implicit
use of the following well-known symmetric and multiplicative properties of the resultant.

Proposition 21. Let f,g,h € R[z]|. The resultant of f and g satisfies

(l) Res(f,g,:v) = (_1)T5 Res(g, f: :U)z

(i) Res(fg, h,x) = Res(f,h,x) Res(g, h, ),
(iii) f and g have a common factor in R[z| if and only if Res(f,g,z)=0.

The first two properties can be found in [22, p. 398]. The third one is stated, without proof,
in [25, p. 9] for unique factorization domains. When R is a field, a proof of this property
can be found in [13, Chapter 3, Proposition 3 of section 6], and it directly generalizes to
polynomial rings via Hilbert’s Nullstellensatz.

Resultants and elimination ideals. We will work with multivariate homogeneous polynomials
f and ¢ in Q[X,,], where a particular variable z € X, is singled out. Since the resultant is a
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polynomial in the coefficients of f and g, its net effect is that the specific variable z is being
eliminated. Formally, let X’ C X be nonempty and let R = Q[X']. Let f,g € R[z], where
x € X\ X'. Tt is clear from the definition of the resultant that Res(f,g,z) € R. We will make
frequent use of the following proposition, summarizing this observation; its proof can be found
in [13, p. 167].

Proposition 22. Let I be an ideal of R[x] and f,g € I. Then Res(f, g,x) is in the elimination
ideal IN R.

Homogeneous properties. From the next section on we will be working in the Cayley—
Menger ideal, where the generators and the circuit polynomials are homogeneous. In sections
8 and 13 we will make use of the following proposition.

Proposition 23. Let f =apy—rz" + -+ a1z + am and g=b,_sx°+ -+ bp_12 + b, be
homogeneous polynomials in Qyi, ...,y x] of homogeneous degree m, respectively, n, so that
the coefficients a;,bj € Qlyi,...,y:] are polynomials of homogeneous degree i, respectively, j,
forallie {m—r,...,m} and all j € {n—s,...,n}. If Res(f,g,x) #0, then it is a homogeneous
polynomial in Q[y1,...,y] of homogeneous degree

mdeg, g +ndeg, f —deg, f-deg, g=ms+nr —rs.

We were not able to find a reference for this proposition in the literature. In [13, p. 454]
(Lemma 5 of section 7 of Chapter 8) we found the following special case: let f and g be
homogeneous polynomials of degree r, respectively, s, with deg, f = r and deg,g = s, so
that f = apx” + -+ 4+ a1 + a, and g = bpx® + --- + byz + bs. In this case Res(f,g,z) is of
homogeneous degree rs. The proof below is a direct adaptation of the proof of this special
case, which itself follows directly from Proposition 23 by substituting m — r and n — s so to
obtain rs+ sr —rs=rs.

Proof. Let Syl(f,g,z) = (S; ;) be the Sylvester matrix of f and g with respect to z, and
let, up to sign, [[/7 i.0(i) be a nonzero term in the Leibniz expansion of its determinant for
some permutation o of [r + s].

A nonzero entry S; ;(;) has degree m — (r +i—o(i)) if 1 <i < s and degree n — (i — o(i))
if s+1<i<r+s. Therefore, the total degree of [[/=7 Sio(i) 1

s r+s S s+r r+s

S +i—o@+ > —(i—o@))=3m-r+ > n-> (-0

=1 1=s+1 =1 i=s+1 i=1
=s(m—r)+rn—0=mdeg, g+ ndeg, f —deg, f-deg,g. m

7. Circuit polynomials in the Cayley—Menger ideal. In this section we define circuit
polynomials in the Cayley—Menger ideal and make the connection with combinatorial rigidity
circuits via their supports.

Circuits of A(CM,,) and circuit polynomials in CM,,. The isomorphism between the alge-
braic matroid A(CM,,) and the sparsity matroid S,, (Theorem 20) immediately implies that
the sets of circuits of these two matroids are in a one-to-one correspondence. We will identify
a sparsity circuit C' = (Vg, E¢) € Sy, with the algebraic circuit {z;; | ij € Ec} € A(CM,,),
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and similarly for dependent sets. Conversely, we will identify the support of a polynomial
feQ{xz;;|1<i<j<n}| with the graph Gy = (V}, Ey), where

Vi={i|x;; or x;; €supp f} and Ey = {ij | z;; € supp f}.

Given a (rigidity) circuit C', we denote by pc the corresponding circuit polynomial in the
Cayley—Menger ideal CM,,. Recall that by Theorem 18 the circuit polynomial of a circuit C
in CM,, is the unique (up to multiplication with a unit) polynomial p¢c irreducible over Q such
that supppc = C. Hence we will identify from now on a circuit C with the support supp pc
of its circuit polynomial pc. Furthermore, pc generates the elimination ideal CM,, N Q[C].

Proposition 24. Clircuit polynomials in CM,, are homogeneous polynomials.

Proof. Since CM,, is generated by homogeneous polynomials, any reduced Grobner basis of
CM,, consists only of homogeneous polynomials (see, e.g., Theorem 2 in section 3 of Chapter
8 of [13]). If C is a circuit in CM,,, we can choose an elimination order in which all the
indeterminates in the complement of C' are greater than those in C. The Grobner basis G¢
with respect to that elimination order will necessarily contain pc because Go N Q[C] must
generate the elimination ideal CM,, NQ[C]. [ ]

Example: The K4 circuit. The smallest circuit polynomials are found among the generators
of CM,,. Their supports are in correspondence with the edges of complete graphs K4 on all
subsets of 4 vertices in [n]. The circuit polynomial pgi2s: given below corresponds to a K4 on
vertices 1234. It is homogeneous of degree 3, has 22 terms, and has degree 2 in each of its
variables:

Pgj23a = 1‘3,436%,2 + x§74$1,2 + %1,3%2,371,2 — 1,472371,2 — 1,372471,2
+ 36%4332,3 + $1,3$374 + 21424012 — 1,303 4%1,2 — T1,4034%1,2
+ IE%,3$2,4 + $1,49€373 — T2,3734712 — 24734712 + 123724734
— X1,3702,4%3,4 — X1,301,422,3 — L1,3L1,4L24 — L1,3L2,3T24

— 214%23%24 + 13214234 — £1,422,3T3 4.

Resultants of circuit polynomials. Let f,g be two polynomials in the Cayley—Menger ideal
with x;; one of their common variables. We treat them as polynomials in z;;, and therefore
the coefficients are themselves polynomials in the remaining variables. Our main observa-
tion, which motivated the definition of the combinatorial resultant, is that the entries in the
Sylvester matrix are polynomials supported exactly on the variables corresponding to the
combinatorial resultant of the supports of f and g on elimination variable (edge) ij.

The following lemma, whose proof follows immediately from Proposition 22, will be used
frequently in the rest of the paper.

Lemma 25. Let I in Q[X,,] be an ideal, and let f,g € I be polynomials with support graphs
Gy =supp f and G, =suppg and with x;; a common variable, i.e., with edge ij € Gy N Gy.
Let the combinatorial resultant of the support graphs be S = CRes(Gy,Gy,1j), viewed as a set
of variables S C X,,. Then Res(f,g,2:;) € I NQI[S].
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Algorithm 8.1 CircuitPolynomialResultant({A, B,e}, {pa,p5,zc})

Compute a circuit polynomial based on a given combinatorial resultant decomposition
Input:

Circuits A, B and edge e such that C'= CRes(A, B, e).

Circuit polynomials p4 and pp and elimination variable z..

Output: Circuit polynomial pe for C.

1: Compute the resultant p =Res(pa,pp, Te)-

2: if p is irreducible then
3 pc=p

4: else
5
6

pc = CleanUpResultant(p)
: return pc

8. Computing a circuit polynomial as a resultant of two smaller ones. We are now
ready to complete the proof of our second result, Theorem 2. We show that combinatorial
resultants are the combinatorial analogue of classical polynomial resultants in the following
sense: if a (rigidity) circuit C' is obtained as the combinatorial resultant CRes(A, B,e) of
two circuits A and B with the edge e eliminated, then the resultant Res(pa,pp,ze) of circuit
polynomials p4 and pp with respect to the indeterminate z. is supported on C' and contained
in the elimination ideal (pc) generated by the circuit polynomial pc. When Res(pa, pp, xe) is
irreducible then it will be equal to pc. However, in general po will only be one of its irreducible
factors over Q. In fact ezactly one factor (counted with multiplicity) of Res(pa,pp,x.) may
correspond to pc, and that factor can be deduced by examining the supports of the factors
and performing an ideal membership test on those factors that have the support of pc.

These facts are summarized by Algorithm 8.1, where the work to clean up the resultant in
order to extract the circuit polynomial is presented as the separate Algorithm 8.2. The rest
of this section is devoted to the proof of correctness of Algorithms 8.1 and 8.2, along with
several remaining open problems.

8.1. Correctness of Algorithm 8.1. We proceed by analyzing the steps.
Steps 1-4. Their correctness is established by Theorem 26 and Corollary 27 below.

Theorem 26. Let C be a sparsity circuit on n+ 1 vertices and po its corresponding cir-
cuit polynomial. There exist sparsity circuits A and B on at most n vertices with circuit
polynomials pa and pp such that pc is an irreducible factor over Q of Res(pa,pp,xe), where
ec ANB.

Proof. Given a sparsity circuit C' on n + 1 vertices we can find two sparsity circuits A
and B on at most n vertices such that C'= CRes(A, B, e) for some e € AN B by the proof of
Proposition 9. Let p4 and pp be the corresponding circuit polynomials.

The polynomials p4 and pp are contained in CM,,, for some m > n + 1 and the resul-
tant Res(pa,pp, ) is a nonconstant polynomial in R = Q[(A U B)\{z.}] supported on C.
Since (pa,pp) C CM,,, we have that Res(pa,pp,ze) is contained in the elimination ideal
CM,,, NQ[C] = (pc) (by Lemma 25). [ |
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Corollary 27. Under the assumptions of Theorem 26, the resultant Res(pa,pp,xe) is a
circuit polynomial if and only if it is irreducible (over Q).

The clean-up part would not be necessary if the resultant would always be irreducible.
But in general pc will only be one of the irreducible factors over Q of Res(pa,pp,xe)-

Lemma 28. The resultant of two circuit polynomials is not always a circuit polynomial.

Proof. We prove the lemma with an example, which can be easily generalized. Recall
from Corollary 10 that in general a sparsity circuit C' can be represented as the combinatorial
resultant of two circuits in more than one way. If C' = CRes(C1,C2,¢e) = CRes(C3,Cy, f)
and pc, for i € {1,...,4}, are the corresponding circuit polynomials, then Res(pc,,pc,,xe)
and Res(pc,, pc,,xy) will in general be distinct elements of (pc). The 2-connected circuit in
Figure 10 has two distinct CCR trees, one in which the root is obtained as the combinatorial
resultant of two K’s, and the other in which the root is obtained as the combinatorial resultant
of two wheels on 4 vertices. The corresponding circuit polynomials in the former case are of
homogeneous degree 3 and quadratic in any indeterminate, and in the latter case they are of
homogeneous degree 8 and quartic in any indeterminate (see section 13). Using Proposition
23 to compute the homogeneous degrees of the resultants, we obtain homogeneous degrees 8
and 48, respectively. Both resultants have the same circuit as its supporting set, and hence
they are both in the elimination ideal (pc), but only the one of homogeneous degree 8 is the
circuit polynomial (which was verified by checking for irreducibility). |

We can generalize the example in the proof of Lemma 28 in the following way. Let C be
a sparsity circuit on n > 5 vertices. Consider the set of all possible decompositions of C' as a
combinatorial resultant of two sparsity circuits A and B on at most n vertices,

Decompositions(C') = {(A, B,e) | C =CRes(A, B,e),|V(A)|,|V(B)| < |V(C)|},
and the set of all resultants of corresponding circuit polynomials,
Resultants(C) = {Res(pa, pB,xe) | (A, B,e) € Decompositions(C')}.

The circuit polynomial po of the circuit C' in the proof of Lemma 28 had the property of
being the polynomial in Resultants(C') of minimal homogeneous degree. One might therefore
conjecture that for any sparsity circuit C, the polynomial in Resultants(C') of minimal ho-
mogeneous degree is the circuit polynomial for C'; in that case no irreducibility check would
be required as we can compute the homogeneous degree of Res(pa,pp,z.) from the homoge-
neous degrees and the degrees in z, of p4 and pp (Proposition 23). However, we will show in
Proposition 48 that in general the circuit polynomial of a circuit C' is not necessarily by itself
in Resultants(C); only a multiple of it (by a nontrivial polynomial) is. This fact leads to the
following natural question.

Open Problem 29. Identify sufficient conditions under which Res(pa,pp,ze) is pc.

If Res(pa,pB,Te) is mnot irreducible, Algorithm 8.1 invokes CleanUpResultant
(Algorithm 8.2), whose correctness we now analyze.

Step 1. In Step 1 we first factorize p over QQ, which can be achieved in polynomial time
(see [31] for a historical overview). Up to multiplicity, exactly one of the irreducible factors of
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Algorithm 8.2 CleanUpResultant(C, p)

Extract the circuit polynomial from a reducible polynomial.
Preconditions:

p is a resultant of two other circuit polynomials.

p is supported on a circuit C.

Input: A circuit C = CRes(A, B, e) and the polynomial p obtained as Res(pa,pp,x.).
Assume that p is reducible.

Output: Circuit polynomial po for C.

1: factors = factorize p over Q
2: factors = discard factors with support not equal to C
3: if exactly one remaining factor (possibly with multiplicity) then
4:  pc = the unique factor supported on C
5: return pc
6: else

7:  apply a test of membership in the CM ideal on the remaining factors
8:  pc = unique factor for which ideal membership test succeeded

9 return pc

p is in CM,,, and that factor is precisely the circuit polynomial pc (because po generates the
elimination ideal CM,, NQ[C]). The desired factor can be deduced in two steps: an analysis
of the supports of all the factors and an ideal membership test.

Steps 2-5: Analyzing the supports of the irreducible factors. Recall that we identify a cir-
cuit C' with the variables supppc in the support of the corresponding circuit polynomial
pc and that the elimination ideal (p¢) is an ideal of Q[C]. Let C' = CRes(A4, B,e). Since
Res(pa,pB,ze) € (pc), any irreducible factor (over Q) of this resultant is supported on a sub-
set of supp pc that is not necessarily proper. At least one of these factors must be supported
on exactly supppc, and if there is only one such factor, then that factor must be pc.

Open Problem 30. Identify sufficient conditions for which Res(pa,pp,z) has exactly one
factor (up to multiplicity) supported on C'.

Lacking a definitive answer at this time, we proceed to step 6.

Steps 6-9: Ideal membership test. We take into consideration only those irreducible factors
of Res(pa,pp,z.) that are supported on supppc (the others are automatically discarded as
not belonging to the ideal). We then have to test each factor for membership in CM,,. This
test can be done via a Grobner basis algorithm with respect to any monomial order, not
necessarily an elimination order. The first factor determined to be in CM,, is p¢.

It is not yet clear that this test is necessary: in practical experiments with our method,
we have not yet encountered the need.

Open Problem 31. Produce an example where the resultant of two circuit polynomials in
the Cayley—Menger ideal, whose combinatorial resultant is a circuit C, has a factor different
from pc but supported on supp pc, or prove that this never happens.

8.2. The impact of the ideal membership test. The main complexity-theoretic bottle-
neck in our approach for computing circuit polynomials is that we may still have to compute
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a Grobner basis in order to apply an ideal membership test. If it turns out that this step
cannot be avoided, there are results suggesting that this test will not reduce our method back
to a costly version of a Grobner basis calculation.

An ideal membership test is indeed done by computing a Grobner basis, but it does not
require an elimination order, which is by all accounts impractical. Elimination orders are
only necessary for computing elimination ideals (and this is what we are avoiding with our
resultant-based algorithm): it is well documented that they behave badly (see [4, section 4]
and the “Complexity Issues” section in [13, section 10 of Chapter 2]). On the other hand,
graded orders show better performance but cannot be used to compute elimination ideals.

In summary, our approach avoids the use of an elimination order, requires only one elimi-
nation step that is obtained with resultants, and is followed by a factorization with a potential
ideal membership test that can be performed by a Grobner basis with respect to any mono-
mial order. Hence we are free to choose a monomial order for CM,, that we expect to have the
best performance. Of course, it is difficult to know a priori what that good order will be. A
further investigation of this part of the algorithm remains to be pursued, in connection with
the open problems described previously.

9. Computing a circuit polynomial from a combinatorial circuit-resultant tree. We now
have all the ingredients to describe an algorithmic solution to the main problem stated in the
introduction: given a rigidity circuit C', compute its circuit polynomial p¢.

One way of doing this is captured by Algorithm 9.1. It uses a combinatorial circuit-
resultant (CCR) tree T that was precomputed with Algorithm 3.1. It inductively computes
polynomials supported by circuits at levels of the tree closer to the root from polynomials
supported on circuits on a higher level. This algorithm stores all circuit polynomials on one
level prior to going to the next level. The method becomes impractical when the CCR tree
has a large number of vertices on some level, as would be the case, say, when the binary
CCR tree is balanced. The correctness of Algorithm 9.1 follows directly from Algorithms 3.1
and 8.1.

Algorithm 9.2 takes an alternative approach and traverses the CCR, tree in postfix order.
This is naturally described as a recursive procedure. The recursion stack retains left child

Algorithm 9.1 CircuitPolynomial(7¢)

Compute a circuit polynomial from a CCR tree, inductively.

Input: A CCR tree T with root a circuit C.

Output: Circuit polynomial po for C.

Method: Traverse the tree T bottom-up, level by level.

1: h = height of T

2: level =h—1

3: while level >0 do

4: At all the nodes C; of the current level, compute the circuit polynomial pc, from the
polynomials at its two children nodes {C}, Ci} using CircuitPolynomialResultant
(Algorithm 8.1)

5:  level=level — 1

6: return pc
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Algorithm 9.2 CircuitPolynomialRecursive
Circuit polynomial from CCR tree, postfix traversal processing
Input: A CCR tree T¢ with root a circuit C.
Output: Circuit polynomial pc for C.
Method: Traverse the tree T in postfix order.
1: if C' is isomorphic to K4 then
2:  pc =pk, with the appropriate relabeling of vertices
3:  return pc
4: else
5:  Let T4, Tp be the left and right subtrees of T, with C' = CRes(A, B,¢) and z, the
elimination variable.
pa = CircuitPolynomialRecursive(T})
pp = CircuitPolynomialRecursive(Tg)
pc = CircuitPolynomialResultant({4, B, e}, {pa,pn,z.}) (Algorithm 8.1)
return pc

circuit polynomials along a path to a node from the root in the CCR tree, and thus its space
complexity depends on the depth of the tree.

Finding a performance-optimal CCR tree for the computation of a specific circuit polyno-
mial is a problem that remains to be investigated. It is expected that a tree that balances depth,
breadth, and various algebraic parameters of the polynomials involved in the resultant steps
would yield the best performance.

9.1. The “delayed clean up” heuristic. Algorithms 9.1 and 9.2 described above invoke
a CleanUpResultant within the CircuitPolynomialResultant call associated to each
node of the CCR tree. This is not necessary: we could just compute the resultant instead of
invoking the whole CircuitPolynomialResultant (Algorithm 8.1) and delay the cleaning up
of the resultant polynomials until we reach the root or when absolutely necessary. Absolutely
necessary means that either (a) a resultant vanishes, or (b) the Grobner Basis calculation
for the ideal membership test in the clean up of the resultant is too expensive in terms of
resources (time and memory), e.g., it takes too long, exhausts the available memory resources,
or crashes. This simple “delayed clean up” heuristic may be useful in practice, in the sense
that it may speed up the calculations in specific cases. We prove now that it is correct if we
handle the vanishing resultant as follows.

Let rc =Res(r 4,75, ) be the resultant of two previously computed polynomials, r4 and
rp, that have not been cleaned up. They contain the circuit polynomials p4, respectively,
pp, among their (not common) factors. If r¢ vanishes, then r4 and rp have some common
factors. We proceed with a SimplifiedCleanUp and factorize r4 and rg, remove their
common factors to obtain g4 and ¢gp, and recompute the new (nonvanishing) resultant go =
Res(qa,qp,xc). This simplified cleaning up procedure does not require an ideal membership
test. The resultant g¢ is well defined, because g4 (resp., ¢g) contains the circuit polynomial
pa (resp., pp) among its factors, and hence z. is in the support of both. The multiplicativity
of the resultant (Proposition 21 (ii)) implies that the resultant g¢ of the simplified polynomials
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g4 and ¢p will be nonzero and contain a unique factor (up to multiplicity) equal to the circuit
polynomial pc for C = CRes(A, B, e). Therefore, the algorithm can proceed in a “delayed clean
up” fashion until it encounters another vanishing resultant, performs another factorization,
and so on, until it reaches the root, at which point a full clean up must be performed.

We do not know whether vanishing resultants will ever occur because in our experiments
we have encountered only irreducible polynomials. High-performance computing may help
answer the following remaining questions.

Open Problem 32. Find an example where a reducible polynomial appears in an interme-
diate step of a delayed clean up circuit polynomial calculation.

Open Problem 33. Find an example where a delayed clean up circuit polynomial calculation
has an intermediate resultant equal to zero.

Open Problem 34. Provide experimental evidence on whether the “delayed clean up”
heuristic can speed up a circuit polynomial calculation.

9.2. Complexity measures for CCR trees. Recall from Corollary 10 that a circuit C' can
have more than one CCR tree. The circuit polynomial itself is independent of this choice, but
in its calculation it is useful to keep the size of the intermediate polynomials, with respect
to the number of monomial terms and homogeneous degree, as small as possible. In other
words, for a rigidity circuit C' we would like to be able to identify an optimal CCR tree. The
complexity of the algebraic Algorithms 9.1 and 9.2 is influenced by several factors encoded in
the CCR tree: its size (total number of resultant operations), its breadth (number of nodes
on the largest level), depth (longest path from root to a leaf), as well as the specificity of the
elimination edge at each internal node. This motivates the following open problem.

Open Problem 35. Define a meaningful measure of CCR-tree complexity that would lead
to effective computations of larger” circuit polynomials.

One can aim for a CCR tree in which the homogeneous degrees at each level are minimized
according to the formula given in Proposition 23; however, it is not clear if this is the best
approach. Indeed, in the first algorithm the degree of the circuit polynomial at a node may
be smaller than predicted by Proposition 23, since the circuit polynomial may be just a factor
and not the whole resultant.

Identifying optimal trees would impact the practical calculations of circuit polynomials.
The concrete results reported later on in section 13 of this paper were possible because we
could easily select, when n < 7, an optimal resultant tree from a small set of possibilities, but
this set grows fast with n. It is desirable to be able to directly compute an optimal CCR tree,
rather than having to iterate through all the possibilities when searching for an optimal one.

Open Problem 36. Refine Algorithm 3.1 (and its analysis) to produce an optimal CCR tree,
according to a measure of CCR-tree complexity leading to efficient resultant-based calculations
of circuit polynomials.

With the methods developed so far we were able to compute all the circuit polynomials
in CMg except for the K3 3-plus-one circuit. The computation of the circuit polynomial for

5For example, larger than those reported in section 13.
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the K3 3-plus-one circuit exhausted all memory at the resultant step, i.e., step 1 of Algorithm
8.1. However, by modifying the algorithm so that it also allows polynomials supported on
dependent sets in CM,, that are not necessarily circuits, we were able to compute the circuit
polynomial for the K3 3-plus-one circuit. We now present this extended algorithm.

10. Combinatorial resultant trees. We generalize the algorithms in section 9 by allowing
all dependent sets in the rigidity matroid at the nodes, with the aim of improving computa-
tional performance.

First we relax some of the constraints imposed on the resultant tree by the construction
from subsection 3.4. The internal nodes correspond, as before, to combinatorial resultant
operations, but (a) they are no longer restricted to be applied only on circuits or to produce
only circuits, (b) the leaves can be labeled by graphs other than Kj’s, and (c) the sequence of
graphs on the nodes along a path from a leaf to the root is no longer restricted to be strictly
monotonically increasing in terms of the graphs’ vertex sets.

Definition 37. A finite collection Gen of dependent graphs such that K4 € Gen will be called
a set of generators.

The generators in Gen will be the graphs allowed to label the leaves. For the purpose of
generating (combinatorial) circuits and computing (algebraic) circuit polynomials, we choose
a set of generators, discussed in section 11, that are dependent in the rigidity matroid.

Definition 38. A combinatorial resultant (CR) tree with generators in Gen is a finite binary
tree such that (a) its leaves are labeled with graphs from Gen, and (b) each internal node marked
with a graph G and an edge e € G corresponds to a combinatorial resultant operation applied
on the two graphs G1,Gy labeling its children. Specifically, G = CRes(G1,Goe,¢€), where the
edge e € G1 N Ga.

Hence, CCR trees are special cases of CR trees. An example of a CR tree which is not a
CCR tree is illustrated in Figure 12.

Lemma 39. If the generators Gen are dependent graphs (in the rigidity matroid), then all
the graphs labeling the nodes (internal, not just the leaves) of a combinatorial resultant tree
are also dependent.

Proof. The proof is an induction on the tree nodes, with the base cases at the leaves. We
define an edge of G to be redundant if after its deletion the graph remains rigid; otherwise the
edge is said to be critical: its removal makes the graph flexible. For the inductive step, assume
that G; and G2 are the dependent graphs labeling the two children of a node labeled with
G = CRes(G1,Ga,e), where e € En is an edge in the common intersection Gn. We consider
two cases, depending on whether e is redundant in both or critical in at least one of G and
G>. In each case, we identify a subset of the combinatorial resultant graph G which violates
Laman’s property, and hence we’ll conclude that the entire graph G is dependent.

Case 1: e is redundant in both G1 and G5. This means that there exist subsets of edges
C1 C G1 and Cy C Go, both containing the edge e, which are circuits (their individual spanned-
vertex sets may possibly contain additional edges, but this only makes it easier to reach our
desired conclusion). Their intersection C; N Cy cannot be dependent (by the minimality of
circuits). Hence their union, with edge e eliminated, has at least 2n_ — 2 edges (cf. the proof
of Lemma 6), and hence it is dependent.
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Figure 12. A combinatorial resultant tree for the K3 z-plus-one circuit: its leftmost leaf and the two internal
nodes along the leftmost path to the root are labeled with rigid dependent graphs which are not circuits.

Case 2: e is critical in G1 or critical in Go. Let’s assume it is critical in GG1. Since G is
dependent and e € (G is critical, it means that the removal of e from G creates a flexible graph
which is still dependent. As a flexible graph, it splits into edge-disjoint rigid components; in
this case, at least one of these components R is dependent. Then, since the removal of e
does not affect R, it follows that R and thus the resultant graph G = CRes(G1,G2,e) remain
dependent. |

Definition 40. Given a circuit C, a valid combinatorial resultant tree for C' is a combina-
torial resultant tree with root C' and whose leaves (and hence nodes) are dependent graphs.

The example in Figure 12 is a valid combinatorial resultant tree for the K3 3-plus-one
circuit. After reviewing the necessary algebraic notions in the next section, we will use it in
subsection 13.4 to demonstrate our generalized algebraic elimination algorithm described in
section 12.

11. Generators of the 2D Cayley—Menger ideal. We work with the set GenCM,, of
generators for the 2D Cayley—Menger ideal CM,, as given by the set of all 5 x 5 minors of the
(n+1) x (n+ 1) Cayley matrix. Each generator g € GenCM,, is identified with its support
graph Gy, as defined in section 7. To motivate the possible choices for the family of graphs
Gen for the generalized combinatorial resultant trees defined in section 10, we now tabulate
the support graphs of all generators, up to multiplication by a nonzero constant, relabeling,
and graph isomorphism.

To find all these graphs, it is sufficient to consider the set GenCM;ig of all 5 X 5 minors
of CM1g. Using a computer algebra package, we can verify that this set has 109 619 distinct
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Figure 13. The 14 graph isomorphism classes of Cayley—Menger generators consist in the three complete
graphs K4, K5, Ke¢ and the 11 graphs on 6 to 10 vertices shown here.

minors, of which 106 637 have distinct support graphs. The IsomorphicGraphQ function of
Mathematica was used to reduce them to the 14 graph isomorphism classes, 11 of which are
shown in Figure 13. The only two representatives with fewer than 6 vertices are Ky and
Ks. There are three isomorphism classes on 6, 7, 8 vertices (one is Kg), two on 9, and one
on 10 vertices. The corresponding generator polynomials are, up to isomorphism (relabeling
of variables induced by relabeling of the vertices), unique for the given support, with a few
exceptions: for K5, we found 3 distinct (nonisomorphic) polynomials.

Note that there may be polynomials in CM,, supported on the same set as a generator
from GenCM,,, but which themselves do not arise from a single 5 x 5 minor of a Cayley matrix.
For example, if p € GenCM,, is supported on a K5 and ¢ € GenCM,, is supported on a Kjg
such that suppp C suppgq, then p+ ¢ has the support of a generator on K¢ but itself is not in
GenCM,,.

12. Algorithm: Circuit polynomial from combinatorial resultant tree. We now have
all the ingredients for describing Algorithm 12.1, which computes the circuit polynomial pc
for a circuit C' from a given combinatorial resultant tree T, or returns a message that pc
cannot be computed using T¢. Just like the algorithms of section 9, it computes resultants
at each node of the tree, starting with the resultants of generators of CM,, supported on leaf
nodes. At the root node the circuit polynomial for C' is extracted from the irreducible factors
of the resultant at the root. The main difference lies at the intermediate (nonroot) nodes, as
described in Algorithm 12.1 below. This is because the polynomials sought at nonleaf nodes,
not being supported on circuits, are not necessarily irreducible polynomials supported on the
desired dependent graph, as was the case in section 9. Hence, conceivably, they may have
factors that are not in the Cayley—Menger ideal, and it might be the case that none of their
factors that are in the Cayley—Menger ideal are supported on the desired graph, but their
product with other factors is. Moreover, it might be the case that an intermediate resultant
Res(f,g,x) is zero, with & being present only in the supports of common factors of f and g,
in which case the algorithm cannot resume along the chosen tree T¢. It remains, however, as
an open question (which may entail experimentation with gigantic polynomials) to explicitly
find such examples (we did not find any so far) and to prove what may or may not happen.
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Algorithm 12.1 Computing a polynomial in the Cayley—Menger ideal supported on a node
of a combinatorial resultant tree—simple version.
Input: Nonleaf node G of a combinatorial resultant tree T¢. Polynomials v,w € CM,
supported on the child nodes of G and x., the indeterminate to be eliminated.

Output: Polynomial p € CM,, supported on G or a string stating that p could not be
computed.

1: Compute the resultant r = Res(v,w, x.).

2: If r =0 return “Not possible to compute p”.

3: Factorize r over Q and store all factors supported on dependent sets in the list

candidates.

4: if candidates= {p} then

5 if suppp =G then return p
6: else return p-II x
7: else
8

9

z€G\suppp

for all p € candidates do
Test p for membership in CM,, with an ideal membership test

10: if p e CM,, then
11: if suppp =G then return p
12: else return p - I, con\supp p®

Proof of correctness of Algorithm 12.1. Recall that Q[G] denotes the ring of polynomials
with indeterminates x;; with ¢ < j given by the edges ij of G.

Steps 1-2. Compute the resultant. If the resultant is zero, the algorithm terminates with
the message that it is not possible to continue along T-. We can attempt to replace one or
both of v and w with other polynomials in CM,, with appropriate support that would lead
to a nonzero resultant; however, in our presentation we assume that all the choices made in
previous calls of Algorithm 12.1 (e.g., the choice of a candidate in line 9) remain fixed.

Step 3. The elimination ideal CM,, NQ[G] is prime, and hence at least one irreducible
factor p of r is in CM,,.

Step 4. If there is exactly one factor p supported on a dependent set, then that factor must
necessarily be in CM,,. This follows from the primality of CM,, NQ[G]: assume for simplicity
that r factors as qi - g2 - p, with only p being supported on a dependent set. If ¢ = g1 - qo is
supported on an independent set, then it is not in CM,,, and hence p must be in CM,, NQ[G].
If ¢ is supported on a dependent set, then ¢ € CM,, would imply that one of ¢; or ¢ is in
CM,,, but none of the two are. Therefore p € CM,,NQ[G] in any case.

Steps 5-6. There are now two possibilities for p: either it is supported on G, in which
case we return it, or it is supported on a proper subset of G. If its support is a proper subset
of GG, we can in principle return any polynomial gp such that suppgp = G. Recall that the
resultant is multiplicative (Proposition 21); hence in a subsequent invocation of the algorithm,
in the computation of Res(gp, f,y) = Res(q, f,y) Res(p, f,y) for some f and y we can keep the
factor Res(q, f,y) unevaluated. An alternative would be to modify the resultant tree T by
replacing G with the graph G, given by the support of p (as defined in section 7). However,
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in our presentation we keep the resultant tree fixed throughout and choose ¢ to simply be the
product I, eqgupppe of all indeterminates in G \supp p.

In our experiments we are yet to encounter an example in which an irreducible factor
supported on a dependent set that is a proper subset of G appears. We leave as an open
problem to find such an example, or prove that it cannot occur.

Open Problem 41. Consider an intermediate node G in a combinatorial resultant tree
and let »=Res(f,g,z.) be the resultant supported on G with respect to the polynomials
supported on the child nodes of G, as in Algorithm 12.1. Find examples where r has exactly
one irreducible factor supported on a dependent set, and such that it is properly contained in
G, or prove that this never happens.

Steps 7-12. If there is more than one irreducible factor supported on a dependent set,
we store them in the list candidates in some order. Factors are then tested for membership
in CM,, with an ideal membership test, in the order in which they are stored in the list
candidates. The first irreducible factor that passes the test is returned if its support is G, or
it is completed to a polynomial supported on G in the same way as described above and then
returned.

We have not encountered examples in which more than one irreducible factor supported on
a dependent set appeared; however, this is most likely because we were only able to perform
computations on graphs with up to 8 vertices.

Open Problem 42. Consider an intermediate node GG in a combinatorial resultant tree and
let » =Res(f, g, z.) be the resultant supported on G with respect to the polynomials supported
on the child nodes of G, as in Algorithm 12.1. Find examples where r has more than one
irreducible factor supported on a dependent set, or prove that this never happens.

Since G is not necessarily a circuit, the elimination ideal CM,, NQ[G] is no longer neces-
sarily principal, and we can no longer guarantee the existence of a unique irreducible factor
p of r that is supported both on G and in CM,,. We have not encountered this possibility in
our experiments, and we leave it as an open question.

Open Problem 43. If Open Problem 42 has a positive answer, find examples with two or
more irreducible factors supported on G, or prove that this never happens.

Refinements of Algorithm 12.1. If at a node of T¢ we have Res(v,w,e) =0, we can attempt
to replace v or w with other appropriate polynomials in CM,,. In particular we can attempt
to recompute v or w by choosing a different polynomial from the list of candidates in line 9.
This approach, however, might require recomputing v and w many times, and we can still
not guarantee that Res(v,w,z.) would be nonzero. We leave as an open problem to find the
conditions on v and w so that Res(v,w,x.) is not zero.

Open Problem 44. Consider the case in which at an intermediate node of Ty we have
Res(v,w,e) =0. Is it always possible to recompute v and w with Algorithm 12.1 by choos-
ing a different polynomial from the list of candidates (line 9 of the algorithm) so that
Res(v,w,e) #07

Alternatively we can replace one or both branches of the resultant tree for G (taken as
the subtree of T rooted at G) with a tree that would lead to a nonzero resultant at G. For
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that purpose it would be useful to have an algorithm that enumerates the resultant trees of
a dependent graph. Such enumeration appears to be much more challenging than for CCR
trees (Open Problem 13), and it is unclear that an efficient solution to the following problem
can be obtained.

Open Problem 45. Develop an algorithm for enumerating resultant trees of a dependent
graph.

If the answer to Open Problem 42 is positive, we have to decide which polynomial to
output. In Algorithm 12.1 the first irreducible factor with dependent support that passes
the ideal membership test is chosen and returned (possibly padded by the indeterminates in
G\suppp). However, it may be the case that the first irreducible factor that passes the ideal
membership test is not the best choice if what we have in mind is the goal of simplifying
the resultant computation when this algorithm is invoked on the parent of G. For example,
relative to the remaining factors that pass the ideal membership test, the first factor that
passed the test could have a very large degree in the indeterminate that is to be eliminated
in the subsequent invocation of the algorithm, which, as a consequence, would lead to a very
large dimension of the Sylvester determinant.

We propose the following decision criteria in the case when r has multiple irreducible
factors {p1,...,pr} in CM,,. From the set {p1,...,pr} choose the polynomial:

(i) Choose the one with the least degree in the indeterminate to be eliminated when

Algorithm 12.1 is invoked on the parent of G.

(ii) If there is more than one such choice, we choose the one with the least homogeneous

degree.

(iii) If there still is more than one choice, we choose the first one with the least number of

monomials.
Criterion (i) ensures that when the algorithm is invoked on the parent of G, the dimension of
the Sylvester determinant will be the least possible; criterion (ii) ensures that the resultant
will be of least possible homogeneous degree (Proposition 23), while criterion (iii) minimizes
the total number of monomials that appear as entries in the Sylvester determinant.

This choice of decision criteria may not be the best possible, and we leave as an open
problem to formulate other decision criteria.

Open Problem 46. If Open Problem 42 has a positive answer, establish criteria for deciding
which polynomial to return as output.

13. Experiments. In this section we discuss our experimental work, carried out with the
algorithms presented in this paper, that led to effective computations of all circuit polynomials
in CMg. Table 1 summarizes the results. To the best of our knowledge, except for the circuit
polynomial of K, these polynomials have not been computed before. Each example of a circuit
polynomial is presented up to relabeling of vertices. All the circuit polynomials computed in
this section are available at the GitHub repository [39]. For comparison purposes, we also
include some preliminary calculations done or attempted with Grobner basis methods.

The Ky circuit. The only circuit polynomial that is directly obtainable as a generator of
CM,, for any n > 4, and does not require Grobner basis methods or resultant computations,
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Table 1
Results: all circuit polynomials on n < 6 vertices, two circuit polynomials on n =7 vertices, and two circuit
polynomials on n =8 vertices. The method Grobner is the computation of a Grébner basis of ideals generated
by two circuit polynomials, as explained in subsection 13.1. The method Resultant A9.1 is Algorithm 9.1, and
the method Resultant A12.1 is Algorithm 12.1.

n Circuit Method Comp. time No. terms Hom. degree
(seconds)

4 Ky Determinant 0.0008 22 3

5 Wheel on 4 vertices Grobner 0.02 843 8
Resultant A9.1 0.013

6 2D double banana Grobner 0.164 1752 8
Resultant A9.1 0.029

6 Wheel on 5 vertices Grobner 10 857 273 123 20
Resultant A9.1 7.07

6 Desargues-plus-one Grobner 454 753 658 175 20
Resultant A9.1 14.62

6 K3 3-plus-one Resultant A12.1 979.42 1 018 050 18

7 2D double banana @16 K1°%7 Resultant A9.1 38.14 1053 933 20

7 2D double banana @56 K3°%7 Resultant A9.1 89.86 2 579 050 20

8 2D double banana @45 K{°7® Resultant A9.1 109.8 3 413 204 20

8 2D double banana @5 K5°7° Resultant A9.1 302.47 9 223 437 20

is the circuit polynomial of a K, graph (possibly relabeled). This polynomial has 22 terms,
homogeneous degree 3, and is of degree 2 in any of its variables.

13.1. Computation of circuit polynomials via Grobner bases. In principle a circuit poly-
nomial p € CM,, can be computed by computing a Grobner basis Gon, for CM,, with respect
to an elimination order on the set {z; ;|1 <i < j <n} in which all the indeterminates in the
complement of supp p are greater than all the indeterminates in supp p.

Given Gowm, it is straightforward to determine a Grobner basis Gy, for the ideal (p) =
CM,, NQ[suppp]: it is the intersection Gy = Gom, N Q[suppp]. Therefore, the only element
in Gom,, supported on suppp is precisely p, possibly multiplied by a nonzero scalar.

Grobner basis for CM,, with respect to an elimination order. We were able to compute a
Grobner basis with respect to an elimination order only for n = 5. Already for n =6 we did
not succeed in carrying out such a computation, within a reasonable amount of time, neither
in Mathematica nor in Macaulay?2.

Grobner basis of ideals generated by two circuit polynomials. For comparison purposes, we
describe a second method that we experimented with. This one takes into account the combi-
natorial structure presented in section 3 but works with Grobner bases rather than resultants.
Let A, B, and C be circuits such that C'= CRes(A4, B, ¢), where e is a common edge of A and
B. To compute the circuit polynomial pc of the circuit C, it is sufficient to calculate only a
Grobner basis 3 of the ideal (pa,pp) generated by the circuit polynomials of A and B, with
respect to an elimination order in which the indeterminates in (AU B)\C' are eliminated. This
follows from (p4,pp)NQ[C] C CM,,NQ[C] = (pc), where if (p4, pp) is prime, then the Grobner
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basis 8 will be exactly equal to 8 = {pc}. Otherwise, a factorization and a subsequent ideal
membership test for the factors supported on C' of each polynomial in S will be required.

With this method we were able to compute all the circuit polynomials of circuits on 6
vertices except the K3 3-plus-one circuit. It took us 0.164 seconds to compute the 2D double
banana, a bit over 3 hours to compute the wheel on 5 vertices, and 126 hours to compute the
Desargues-plus-one circuit polynomial (see Table 1).

13.2. Computation of circuit polynomials with resultants. We demonstrate now the
effectiveness of our algorithm by computing all the circuit polynomials on up to 6 vertices.
They are supported on five types of graphs: a 4-wheel Wy (on 4 cycle vertices with a 5th
vertex at the center), a 5-wheel, a 2D “double banana” obtained as a 2-sum of two Ky graphs,
the Desargues-plus-one graph, and the K3 3-plus-one graph. They are shown in Figures 6
and 2. We are recording only the computation of the root of a particular resultant tree. We
chose resultant trees that were most efficient for each computation. The relevant parameters
of each circuit (size, homogeneous degree) and comparative timings for its computation are
shown in Table 1. Two more circuits on 7 vertices, as well as two on 8 vertices, were also
computed using 2-sum resultants, which give the best resultant trees.

Wheel on 4 vertices. This circuit was very fast to compute. It has (up to relabeling) exactly
one resultant tree with two K leaves and a single application of a resultant, which produces
an irreducible polynomial. Irreducibility was verified with Mathematica. This polynomial has
843 terms, its homogeneous degree is 8, and it is of degree 4 in each of its variables.

The “2D double banana”. Recall from Figure 10 that the 2D double banana can be obtained
as the combinatorial resultant of two K4’s or of two 4-wheels. The first tree led to a very fast
calculation, and the resultant produced an irreducible polynomial. This polynomial has 1752
terms, its homogeneous degree is 8, and it is of degree 4 in each of its variables.

However, on our computers we did not succeed in calculating the circuit polynomial using
the second resultant tree, or as a Grobner basis of an ideal generated by the circuit polynomials
of the two 4-wheels, with respect to an elimination order. Here is a possible explanation.
Recall that Proposition 23 allows us to predict the homogeneous degree of the resultant of
two homogeneous polynomials. In particular, the homogeneous degree of the resultant for
two 4-wheels has homogeneous degree 48, whereas the resultant of the circuit polynomials of
two K, graphs has homogeneous degree 8. Hence, we could see immediately that we should
discard the former, as in the latter case we obtain a much simpler polynomial. This example
inspires the following conjecture.

Open Problem 47. Prove that a 2-sum is more efficient than any other type of combinatorial
resultant, in computing a circuit polynomial as a resultant of two circuits.

Wheel on 5 vertices. We computed this circuit from a 4-wheel and a K4 and obtained di-
rectly an irreducible polynomial. Irreducibility was verified in Mathematica. This polynomial
has 273 123 terms, its homogeneous degree is 20, and it is of degree 8 in each of its variables.

The Desargues-plus-one circuit. The rigidity theory literature refers to the graph D with
edges {12,14,15,23,26,34,36,45,56} as the Desargues graph, due to its similarity to the inci-
dence structure arising from the classical Desargues configuration of lines. The graph D can
be completed to a circuit (what we call Desargues-plus-one) by adjoining to it exactly one
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of the missing edges, with all choices of missing edge resulting in isomorphic graphs. The
circuit can be obtained as a combinatorial resultant of a 4-wheel (with cycle 1,2,3,4, and 5
at the center) and a K4 on vertices 2,3,5,6 by eliminating the edge 35. Using the previously
computed 4-wheel circuit polynomial, the resultant calculation took under 15 seconds, which
is impressive when compared to the 5 days and 6 hours taken by the Grébner basis method.
The resultant polynomial is irreducible, has homogeneous degree 20, and is of degree 12 in
the variable x2 5 and of degree 8 in the remaining variables.

13.3. The K3 3-plus-one circuit. The complete bipartite graph K33 on the vertex par-
tition {1,4,5} U{2,3,6} is minimally rigid. It can be completed to a circuit by adding to it
exactly one of the missing edges. All these choices result in isomorphic graphs.

We were not able to compute its circuit polynomial with Algorithm 9.1 or Algorithm 9.2.
All attempts completely exhausted all computational resources at the resultant step. However,
we succeeded with the approach described in section 12. This method allowed us to carry
out the full computation, described step by step in subsection 13.4. The irreducible circuit
polynomial has 1018 050 terms, has homogeneous degree 18, and is of degree 8 in each variable.

The properties of this polynomial imply an interesting fact, which is relevant for a better
understanding of Algorithm 8.1: it provides, indirectly, the first example of a circuit poly-
nomial on which the last resultant step in any of the possible combinatorial resultant trees
would have to produce a polynomial which is never irreducible. Hence a factorization and an
inspection of factors for membership in the Cayley—Menger ideal will be necessary at the root,
either by inspecting the supports or by performing a test of membership in the Cayley—Menger
ideal. The proof is instructive and we include it here.

Proposition 48. Let A and B be rigidity circuits on 6 or fewer vertices such that neither
is the K3 3-plus-one circuit and such that CRes(A, B, e) is the K3 3-plus-one circuit for some
common edge e. If pa and pp are the circuit polynomials for A and B, then Res(pa,pn,Te)
1s reducible.

Proof. Let hy and hp be the homogeneous degrees, and let d4 and dg be the de-
grees in z. of py and pp, respectively. By Proposition 23, the homogeneous degree of
Res(pa,pB,xe) is hadp + hpda — dadp, so if Res(pa,pB, e) = ¢ PK, ,-plus-one fOr some ¢ € Q,
then hadp + hpda — dadp = 18. However, by subsection 13.2 the values of (h4,d4) and
(hp,dp) can only be in the set {(3,2),(8,4),(20,8),(20,12)} and no choice corresponds to
hadp + hpda — dadp = 18. [ |

As a final observation, we note that the K3 3-plus-one graph can be obtained as the
combinatorial resultant of two 4-wheels: one wheel on 1,2,3,4 with 5 in the center, and the
other on 1,3, 4,6 with 5 in the center, on the elimination edge 15. Since the circuit polynomial
for a 4-wheel has homogeneous degree 8 and both have degree 4 in w15, it follows from
Proposition 23 that their resultant has homogeneous degree 48. Hence the circuit polynomial
for K3 3-plus-one appears as a factor in this resultant, with multiplicity not greater than 2.
Unfortunately, we were not able to compute the resultant of these two 4-wheels before our
machines ran out of memory. We have attempted to brute-force the computation by first
computing the resultant of two general degree-4 polynomials in the variable x, which has 219
monomials. We then substituted the coefficients (with respect to ) of the circuit polynomials
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for the two wheels into the 219 monomials. We then proceeded to expand them, and save
each of the 219 expansions to disk. This took approximately 5 days of computing on an HPC
and in total occupies approximately 1.7TB of data (stored in Mathematica’s uncompressed
.mx format). However, adding together the 219 expanded monomials failed, and we did not
pursue this direction further. We estimate that a powerful enough machine with at least 2TB
of RAM could be forced to compute the resultant of two wheels on 4 vertices.

13.4. Example: The K3 3-plus-one circuit polynomial. At the leaves of the tree we are
using irreducible polynomials from among the generators of the Cayley—Menger ideal. The
polynomials corresponding to the nodes on the leftmost path from a leaf to the root are
referred to, below, as D; (leftmost leaf), Dy and D3 (for the next two internal nodes with
dependent graphs on them), and C for the circuit polynomial at the root; see Figure 12. The
leaves on the right are three Ky circuit polynomials: C) supported on vertices {1,2,3,5},
Cs supported on {1,3,4,6}, and C3 supported on {1,4,5,6}. For the polynomial D; at the
bottom leftmost leaf, supported by a dependent K5 graph, we have used the generator:

T15T3, — T16T54 — T56T34 — T14T35T34 + T16T35T34 + T14T36T34 — 2T15T36T34

+ T16T36734 — T13T45T34 + T16T45T34 + T36T45T34 + T13T46T34 — 2X15T46734

+ 216746734 + T35T46734 — 2036746734 + 13056734 + 14056734 — 2T16T56734

+ 236256734 + T462562L34 — $14£U§6 + 561596?,6 - SE13ZE12;6 + $15$4216 - $35$?16 + T14235736

— T16735736 — $§6$45 + T137T36T45 — 2T14T36T45 + T16T36T45 — 2T13T35T46 + T14T35T46
+ 216235746 + T13T36T46 + T14T36T46 — 2T15T36746 + T35T36T46 T T13T45T46

— X16T45%46 + T36L45T46 — T13T36X56 T L14X36L56 T L13L46T56 — L14T46L56-

The set of generators supported on K5 contains more than this polynomial. There are two
other available choices, of homogeneous degrees 4 or 5, which, in addition, can have quadratic
degree in the elimination indeterminate x35. The choice of this particular generator was done
so as to minimize the complexity of (the computation of) the resultant: its homogeneous
degree 3 and degree 1 in the elimination variable x3; are both minimal among the three
available options.

At the internal nodes of the tree we compute, using resultants and factorization, irreducible
polynomials in the ideal whose support matches the dependent graphs of the combinatorial
tree, as follows.

The resultant pp, = Res(pp, , pc,, ©35) is an irreducible polynomial supported on the graph
D5 in Figure 12. This graph contains the final result K3 3-plus-one as a subgraph, as well
as two additional edges, which will have to be eliminated to obtain the final result. Thus
the resultant tree is not strictly increasing with respect to the set of vertices along a path,
as was the case in subsection 3.4. However, when the set of vertices remains constant (as
demonstrated with this example), the dependent graphs on the path towards the root are
strictly decreasing with respect to the edge set.

The resultant pp, = Res(pp,,pc,,13) is a reducible polynomial with 222108 terms and
two nonconstant irreducible factors. Only one of the factors is supported on D3, with the
other factor being supported on a minimally rigid (hence independent) graph. Thus this
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factor, the only one which can be in the Cayley—Menger ideal (and it must be, by primality
considerations), is chosen as the new polynomial pp, with which we continue the computation.

The final step to obtain C'is to eliminate the edge 46 from D3 by a combinatorial resultant
with C5. The corresponding resultant polynomial p¢ is a reducible polynomial with 15197 960
terms and three irreducible factors. As in the previous step, the analysis of the supports of
the irreducible factors shows that only one factor is supported on the K3 3-plus-one circuit,
while the other two factors are supported on minimally rigid graphs. This unique irreducible
factor is the desired circuit polynomial for the K3 3-plus-one circuit.

The computational time on a 2019 iMac with 6 CPU cores at 3.7GHz in Mathematica
v13, including factorizations to irreducible components was 979.42 seconds. The computation
and factorization of the final resultant step took up most of the computational time (562.5
and 394.9 seconds, resp.).

14. Concluding remarks. In this paper we introduced the combinatorial resultant oper-
ation, analogous to the classical resultant of polynomials. We offer here some final comments
and suggestions for further research.

Irreducibility test. Our methods still have several computational drawbacks, in that they
require irreducibility checks, with a possible further factorization and an ideal membership
test for those factors that have the support of a circuit.

Ideally we would like to detect combinatorially when a resultant of two circuit polynomials
that has the support of a circuit will be irreducible. The absolute irreducibility test of Gao
[20], which states that a polynomial is absolutely irreducible if and only if its Newton polytope
is integrally indecomposable, in conjunction with the description of the Newton polytope of
the resultant of two polynomials by Gelfand, Kapranov, and Zelevinsky [21, 22], gives a
combinatorial criterion for absolute irreducibility, but not for irreducibility over Q. However,
not every circuit polynomial is absolutely irreducible; for example, the circuit polynomial of
a wheel on 4 vertices is irreducible over Q but not absolutely irreducible.

What we observed in practice. It is worth noticing that whenever in our computations we
had to decide which factor of a resultant belonged to CM,,, we never had to perform an ideal
membership test. It was always sufficient to inspect only the supports of the irreducible factors
of the resultant. In all cases where the calculation succeeded, all but one irreducible factor
were supported on Laman graphs, and one factor was supported on a dependent set. It seems
unlikely that this is the general case, and it would be of interest to determine under which
conditions the resultant has exactly one factor (up to multiplicity) supported on a dependent
set in A(CM,,).

Open problems. We conclude the paper with a few more open problems concerning the
algebraic and geometric structure of the resultant of two circuit polynomials.

Open Problem 49. Let A, B, and C be circuits such that C'= CRes(A4, B,e). Let pc, pa,
and pp be the corresponding circuit polynomials. Under which conditions is it the case that
Res(pa,pB,z.) is of the form o - pi% for m>1 with a € Q?

Open Problem 50. More generally, for two polynomials p, ¢ € CM,, with z. € suppp Nsuppyq,
under which conditions has the resultant exactly one irreducible factor supported on a depen-
dent set in A(CM,,) ?
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Open Problem 51. Generalize Proposition 48 to the question of whether reducibility of
Res(pa, pp,ze) can be inferred from graph-theoretic data (circuits C, A, B and edge e such
that C' = CRes(4, B,e)).

This question appears to be very challenging. The answer depends heavily on the specific
polynomials p4, pp and the variable x. and pertains to the relationship between (affine)
varieties related to r = Res(pa,pB,Ze), pa, and pp. Let R = C[C] be a polynomial ring, let
pA,pB € Rlx.], and let I, denote the elimination ideal (pa,pp) N R. Let L4 (resp., Ip) be the
leading coefficient of p4 (resp., pp) with respect to x.. Then by the Extension Theorem [13,
Theorem 8 in section 6 of Chapter 3| and the Closure Theorem [13, Theorem 4 in section 4
of Chapter 4] we have the following equality of (affine) varieties: V(r) =V (la,ip) UV (I,).
Furthermore, if r factors as g- p’é for some positive integer k, then V' (r) =V (q)UV (p¢c). Ideally
we would want V (r) =V (pc) =V (I;,) but in general V(pc) is only contained in V(I,) and
V(r). Hence the structure of V(r), in particular its irreducibility, depends on algebraic data
V(la,lp) and V(I ), whose relationship to the combinatorial, graph-theoretical data is yet
to be found.

Further interesting questions pertain to parameters of circuit polynomials such as the
degree in a single variable or the number of monomials. The first one, the degree with respect
to a single variable x. in the support of a circuit polynomial, is related to the literature on
the number of embeddings of Laman graphs, where the best known upper bound is 3.77" [2]
for n vertices. Bounds on the degree of an individual indeterminate of a 3-connected circuit
polynomial can be inferred from here, while for the 2-connected ones their decomposition into
3-connected components is needed. On the other hand, we are not aware of any such bounds
on the number of monomial terms of circuit polynomials, but have observed that their number
quickly becomes large, as shown in the Table 1.

Open Problem 52. How big do circuit polynomials get, i.e., what are upper and lower
bounds on the number of monomial terms relative to the number of vertices n?

Open Problem 53. When working with an extended collection of generators, not all of
them circuits (such as those from section 11), decide if a given circuit has a combinatorial
resultant tree with at least one non-K, leaf from the given generators.
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