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Abstract

We show that if a countable discrete group acts properly and isometrically on a spin
manifold of bounded Riemannian geometry and uniformly positive scalar curvature,
then, under a suitable condition on the group action, the maximal higher index of
the Dirac operator vanishes in K -theory of the maximal equivariant Roe algebra. The
group action is not assumed to be cocompact. A key step in the proof is to establish
a functional calculus for the Dirac operator in the maximal equivariant uniform Roe
algebra. This allows us to prove vanishing of the index of the Dirac operator in K-
theory of this algebra, which in turn yields the result for the maximal higher index.
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1 Introduction

The connection between index theory and the existence question for metrics of positive
scalar curvature on spin manifolds goes back to the classical version of the Lichnerow-
icz vanishing theorem [7], which states that if a closed spin manifold admits a metric
of positive scalar curvature, then the Fredholm index of the Dirac operator vanishes.
By taking into account the fundamental group, one can define a more refined invariant
called the higher index. For cocompact group actions, this index takes values in the
K -theory of the (reduced or maximal) group C*-algebra. By a pioneering result of
Rosenberg [12], if a closed spin manifold admits a positive scalar curvature metric,
then the higher index of the Dirac operator lifted to the universal cover vanishes.

For group actions that are not necessarily cocompact, the higher index of the Dirac
operator takes values in the K -theory of the equivariant Roe algebra [11], which for
cocompact manifolds is isomorphic to the K -theory of the reduced group C*-algebra.
In Gong et al. [4] introduced a version of this index that takes values in the K -theory
of the maximal equivariant Roe algebra, in analogy to the situation for group C*-
algebras. The maximal equivariant Roe algebra is well-defined when the manifold
and group action satisfy certain geometric conditions that we shall make precise. One
of the advantages of working with the maximal version of the higher index is that
it enjoys better functoriality properties than its reduced counterpart, making its K-
groups more computable in some cases [3,8]. The maximal higher index is used in an
essential way in the recent work of Chang et al. [1], who establish a new index theory
for non-compact manifolds and use it to provide examples of manifolds with exotic
scalar curvature behavior.

A basic notion on which the results of [1] rest is that the maximal higher index
of the spin-Dirac operator vanishes in the presence of uniformly positive scalar cur-
vature. However, it was pointed out in [13] that, compared to the reduced setting, a
Lichnerowicz-type argument for such a vanishing result needs to be carried out with
more care, due to analytical difficulties that arise in connection with the maximal
equivariant Roe algebra.

Our intention in this paper is to prove that, under a natural geometric assumption
on the group action, which in particular in satisfied in the setting considered in [4],
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A Lichnerowicz vanishing theorem... 719

this index does indeed vanish in the presence of uniformly positive scalar curvature.
More precisely, we prove:

Theorem 1.1 Let (M", g) be a Riemannian manifold with bounded Riemannian geom-
etry and T a countable discrete group acting properly and isometrically on M,
satisfying Assumption 2.6. Suppose that M has a " -equivariant spin structure, with S
and D the spinor bundle and Dirac operator respectively. If M has uniformly positive
scalar curvature, then

index,q (D) = 0 € K, (C}, . (M)D),

where C*

max (M) is the maximal equivariant Roe algebra of M.

We remark that this result is new even when I' is the trivial group.

Let us give a brief overview of the paper. In Sect. 2, we recall some standard notions
from higher index theory, as well as describe the two geometric conditions alluded
to above. We show that, under these geometric conditions, it is possible to define
various related versions of the maximal equivariant Roe algebra of M, in particular
the maximal equivariant uniform Roe algebra. In Sect. 3, we show that this algebra
can be viewed as a Hilbert module on which the operator D acts. A key point is
that this operator is regular and essentially self-adjoint and hence admits a functional
calculus. This allows us to define, in Sect. 4, the maximal equivariant uniform index
of D, which we show vanishes under the positive scalar curvature assumption. This,
together with the fact that the equivariant uniform Roe algebra is a subalgebra of the
maximal equivariant Roe algebra, implies Theorem 1.1.

2 Maximal equivariant Roe algebras
2.1 Notation

Throughout this paper, I" is a countable discrete group acting properly and isometri-
cally on a Riemannian manifold M of positive dimension and which is I"-equivariantly
spin. Let S — M be the spinor bundle.

We will write B(M), C,(M), and Co(M) respectively for the C*-algebras of
complex-valued functions on M that are: bounded Borel, bounded continuous, and
continuous and vanishing at infinity. A superscript ‘*°” may be added to the latter two
algebras to indicate the additional requirement that its elements be smooth.

We will use d to denote the Riemannian distance on M, and B, (S) to denote the
open ball in M of radius r around a subset S € M. For any two sets A and B, we
will write pr; and prp for the projections of the cartesian product A x B, or subsets
thereof, onto A and B respectively. For any set S, let #£S denote its cardinality.

The I'-action on M naturally determines a ["-action on spaces of functions over M:
forafunction f and g € I',let g- f be the function givenby g- f (x) = f (g~ 'x). More
generally, for a section s of a I'-vector bundle over M, define g - s(x) = g(s(g’lx)).
The action of I" on /2(I") will always be given by the left-regular representation.
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720 H.Guo et al.

2.2 Geometric conditions

We now make precise the two geometric conditions alluded to above. The first is that
the manifold M has bounded Riemannian geometry. Under this assumption, it was
established in [4] that, when the acting group I is trivial, the maximal Roe algebra (see
Definition 2.13) is well-defined. However, to prove the analogous result for general
I', we will need a second hypothesis (even if the action is free). This is given by
Assumption 2.6.

2.2.1 Bounded geometry

Definition 2.1 A Riemanniann manifold M is said to have bounded Riemannian geom-
etry if ithas positive injectivity radius, and the curvature tensor and each of its covariant
derivatives is uniformly bounded across M.

There is also a notion of bounded geometry for discrete metric spaces:

Definition 2.2 A discrete metric space (X, d) is said to have bounded geometry if for
any r > 0 there exists N, > 0 such that for any x € X,

#B,(x) = {x" € X|d(x,x") <r} < N,
Suppose M has bounded Riemannian geometry, and let d be the Riemannian dis-

tance. Then the metric space (M, d) contains a countable discrete subspace X s with
bounded geometry such that, for some constants ¢ > rp > 0, we have:

e B.(Xpy) = M, orthat X is c-dense;
e forall x,y € Xy,

Bry(¥) N Byy(y) #% => x = y. (1)
For any r > 0, let us define the following two quantities:

U, := inf {vol B,(x)}, V, := sup {vol B,(x)}. 2)
xeM xeM

Note that bounded Riemannian geometry implies that for each r > 0,
0<U <V, <o0.

The fact that the Ricci curvature of M is bounded from below means that it satisfies
the following volume estimate [9, Lemma 7.1.3]:

Lemma 2.3 There exist constants C1, C2 > O such that for any r > 0,
V, < C1e?.

It follows from this and the definition of X, that:
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A Lichnerowicz vanishing theorem... 721

Lemma 2.4 There exists a constant Cq such that for each x € M and R > 0,
#(Br(x) N Xpy) < CoVr/Uy,.

2.2.2 A condition on the MN-action

To state the second geometric condition, we use the notion of a basic domain. Observe
that, since I' acts properly on M, each x € M is contained in a I'-invariant neighbor-
hood of the form TV = T" x_ V. Here V is an open I';-invariant neighborhood of
x with compact closure, I'y is the stabilizer of x, and I" xr, V denotes the quotient
of I' x V by the relation (g, y) ~ (¢gh~ ', hy),forh € Iy, g € I',and y € V; the
isomorphism is given by sending gy to the class [g, y]. From this it follows that M
can be written as a disjoint union M = L; ' N;, where each N; is a Borel subset of M
that is preserved by the action of an isotropy subgroup F;, and for each i we have a
I'-equivariant homeomorphism I'N; = T x g, N;.

Definition 2.5 We call N := U;N; C M the basic domain for the decomposition
M = u; T'N; given above.

For the rest of this paper, we will make the following standing assumption:

Assumption 2.6 There exists a basic domain N for the I"-action on M such that
l[(g) > 00 = d(N,gN) — o0,

where [ is a fixed proper length function on I', and d is the Riemannian distance.

We remark that Assumption 2.6 is satisfied when the I"-action on M is cocompact,
or when M is a cocompact manifold to which an infinite cylinder is attached. In
particular, it is satisfied in the situation studied in [1]. It is also satisfied by any action
of a finite group on a manifold of bounded Riemannian geometry.

Suppose the I"-action on M satisfies Assumption 2.6. Then we have the following
two easy consequences.

Corollary 2.7 M decomposes into finitely many orbit types.

Proof Since [ is proper, there are only finitely many elements in I" that can fix a point
in M, hence there are only finitely many orbit types. i

Corollary 2.8 For each x € M and R > 0, there exists Cg > 0 such that
#(BrR(x) NG -x) < Cg.

Proof. Observe that Assumption 2.6 implies that this relation holds for x € N. The
general statement follows by observing that for any g € I,

#(Br(x) NG -x) =#(Br(g-x)NG - x). O
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722 H.Guo et al.

2.3 Operator algebras

We now recall the definitions of geometric modules and Roe algebras, with the goal of
proving that, under the previously stated geometric assumptions, the maximal equiv-
ariant Roe algebra is well-defined. We also provide an estimate of the maximal norm
that will be important in Sect. 3 (see Lemma 2.19).

Definition 2.9 An M-I'-module is a separable Hilbert space H equipped with a
non-degenerate *-representation p: Co(M) — B(H) and a unitary representation
U:T' — U(H) such that for all f € Co(M) and g € T, Ug,o(f)U;,‘ =p(g- f).

For brevity, we will omit p from the notation when it is clear from context.
Definition 2.10 Let H be an M-I"-module and T € B(H).

e The support of T, denoted supp(7T'), is the complement in M x M of the set of
(x, y) for which there exist f1, f» € Co(M) with f1(x) # 0, f>(y) # 0, and

NHTf=0;
e The propagation of T is the extended real number

prop(T') = sup{d(x, y) | (x, y) € supp(T)};

e T islocally compact if fT and Tf € IC(H) forall f € Co(M);
o T is I'-invariant if U, TU; =T forall g € T.

Let C[M; H]" € B(H) be the %-subalgebra of I'-invariant, locally compact operators
with finite propagation.

We will work with certain maximal completions of C[M; H]". In order show that
such completions are well-defined, we restrict ourselves to those modules H that satisfy
an additional admissibility condition. To state this, we need the following fact: if H
is a Hilbert space and p: Co(M) — B(H) a non-degenerate *-representation, then p
extends uniquely to a x-representation p: B(M) — B(H) subject to the property that,
for a uniformly bounded sequence in B(M) converging pointwise, the corresponding
sequence in B(H) converges in the strong topology.

Definition 2.11 [15] An M-I'-module H is admissible if:

(i) For any non-zero f € Co(M), n(f) ¢ K(H);

(ii) For any finite subgroup F of I' and any F-invariant Borel subset E of M,
there is a Hilbert space H’ equipped with the trivial F-representation such that
FAH ZI2(F)QH as F -representations, where 7 is defined by extending
7 as above.

If an M-T'-module H is admissible, we will write C[M]" := C[M; H]", noting
that C[M]" is independent of the choice of admissible module.
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A Lichnerowicz vanishing theorem... 723

In this paper we will use two M-I'-modules. The first is L>(S), equipped with the
natural I"-action and Co(M)-representation. In general, L2(S) is not admissible (see
also Remark 2.12). The second is the space

Hy = L2(S) ® 12(T),

equipped with the multiplicative action of Co(M) on the first factor and the diagonal
I"-action. Since we are assuming M to have positive dimension, one verifies that
L?(S) ® [?(") is an admissible M-I"-module.

We can view L2(S) as a submodule of 7, in the following way. Let x € C*®°(M)
be a cut-off function, meaning that supp() has compact intersection with every I'-
orbit and that for all x € M, we have der x(gx)? = 1. Note that this sum is finite
by properness of the action. Then the map

JiLAS) = Hy,  j)(x, g) = x(g ' x)sx)

is a ['-equivariant isometric embedding. Let p: Hy — J(L%(S)) be the orthogonal
projection associated to j. On operators, j induces a map taking 7 +— T~ !p, and
we will denote this by

J: B(L*(S)) — B(Hu). 3

It is an injective x-homomorphism that preserves I'-equivariance, local compact-
ness, as well as finiteness of propagation, and hence restricts to an injective
s-homomorphism C[M, L*(S)]" — C[M]".

Remark 2.12 When the ['-action M is both proper and free, L2(S) is itself an admis-
sible M-I"-module, and the discussion above simplifies.

Definition 2.13 For an operator T € C[M1Y, its maximal norm is

T lmax := sup {I¢(D)llggn | ¢: CIMT" — B(H') is a x -representation} .
¢.H'

*

The maximal equivariant Roe algebra of M, denoted C;, (M ), is the completion

of C[M1F with respect to || - ||max-

2.4 Estimating the maximal norm

To make sense of Definition 2.13, one needs to show that for any 7 € C[M]", there
exists a constant C bounding the norm of 7 in any x-representation. We now show
that this is the case under the geometric conditions in Sect. 2.2, namely:

Proposition 2.14 Suppose that M has bounded geometry and that Assumption 2.6
holds. Then for any T € C[M1" and any x-homomorphism ¢: C[M" — B(H'), for
H' a Hilbert space, we have

o (Tl < 0.
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724 H.Guo et al.

In order to perform the estimates required to prove this, we will work with the
module H s in a discretized form that we now describe.

2.4.1 Discretizing Hy

Let us consider the case when § is the trivial line bundle over M, with the general
case being analogous. Let Xy, ¢, and ro be as in 2.2.1. The fact that X, is c-dense,
together with (1), implies that there exists a Borel cover I/ of M such that, for each
U e U, there exists x € Xy with B, (x) € U C B.(x).

Let m: M — I'\M denote the projection onto orbits. Using the cover I/, we can
construct a subset X of X ;s with the following properties:

o B.(I'-Xo) =M,
e There exists a constant C > 0 such that for any x € X9 and R > 0,

#(BRr(I" - x) N (" - Xo)) = CVR/Uy,
where Vg and Uy, are as in (2). Define
Z:=T - Xo. “)

We can use the set Z to rewrite the module Hyy = L2(M x I') as follows. Since the
(diagonal) action of I' on M x I is proper and free, it admits a fundamental domain
Dy € M x I'. We may choose Dy so that pri(Dg) € N, where N is the basic domain
in Assumption 2.6. Then the set D; := Do N (Z x I') is a fundamental domain for
the I"-subspace Z x I' € M x I'. We may choose Dy in such a way that it contains
D as a c-dense subset. This defines for us a a unitary isomorphism

L*(Dg) =1*(D) ® H
for a separable Hilbert space H. In turn we have I"-equivariant unitary isomorphisms

Hy = L*(M x T)
=~ L2(Dy) @ I*(I)
=D @PI)®H
~2(ZxT)®H, (5)

where H is equipped with the trivial I"-representation.

Now given a point y € Z, let Oy, € Z and Fy < I' denote its orbit and stabilizer
respectively. For each such y, identify (set-theoretically) Oy with I'/Fy to obtain a
bijective map

¢yt Oy x Fy > T/Fy x F,.
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A Lichnerowicz vanishing theorem... 725

Choose a section ¢, : I'/F, — I". Then we have a bijection

¢y: T — I'/Fy x Fy,
g+ (8Fy. 87 dy(gFy)).
Let I" acton I'/ F, x Fy by the pushforward of the I'-action on itself along qSy. Now
consider the collection of orbits W := 7n(Z) € M/T. For each O € W, choose a

representative in the basic domain N, and let Y be the collection of representatives so
obtained as O ranges over W. Define the sets

Z:=|]yxF). E:=||T/F xF, (6)

yeY yeY

and equip them with piecewise I"-actions. Upon taking a disjoint union of the maps
@y, we obtain a I'-equivariant bijection

E.

L

¢: Z
This in turn gives equivalent I"-representations on the Hilbert spaces

PPy x Fy) =P PET/Fy x Fy).

yeY yeY

We have the following:

Proposition 2.15 There is a I"-equivariant unitary isomorphism
Hu =1*(Z)® H,
where H is a Hilbert space equipped with the trivial I'-representation.

Proof. By (5), we have

Hu =@ Oy, xT)@H=@IPT/F, xT) @ H. (7
yey yey

Foreachy € Y, letvy: F)\I' — I be a section. Let ¢, and qu be given as above.
One verifies that the following map is a I'-equivariant bijection:

Wy: T/Fy xT — T'/JFy, x Fy x Fy\T,
(g1Fy, 82) +> (g1Fy, vy(Fygy ' 82)85 'dy(gavy (Fygy 'e) " Fy), Fygi ' ),

where I' acts on the left diagonally, while on the right it acts on I'/ Fy, x Fy by pushing
forward the left-action of I" on itself along q5y, and trivially on Fy\I'. Indeed, ©#, can
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726 H.Guo et al.

be written as a composition of maps as follows. Define the bijection
Vy: I' = Fy x Fy\T', g (gvy(Fyg)_l, Fyg).
Then ¢, is the following composition of bijections:

[/FyxI' > T'xp I' > (' xp, Fy) x {F\I' = T
X F)\I' = I'/F, x Fy x Fy\T,
(&1Fy, &) — [(glygl_lgz)]
> ([g1, pry (Py(g; ' 821, Pra(@y (g7 ' 82)))
> (2vy (Fygy 'g2) ™", Fygy ' g2)
> (y(g2vy(Fygy ') ™). Fygy ' g2).

where I' xp, I'and I' x p, Fy are, respectively, the quotients of I' x I and I x F),

by the equivalence relation (g1, g2) ~ (g1k~!, kga), forg; e I', k € Fy, and g in
either I or Fy. For each y € Y, ¥, induces a I"-equivariant isomorphism

2(T/Fy x T) = 2(T/Fy x Fy) ® *(Fy\I'),
where I" acts trivially on lz(Fy\F). Combining this with (7) gives

Hu =@ PT/Fy x Fy) @ P(F,\[) ® H
yeY

~ @12(0y x Fy) @ P(F,\T') ® H.
yeY

Now, for each y, pick an identification of /2 (F y\I') ® H with H to give

HM;@lz(oy x F))® H=1*(Z)® H. O
yeY

The isomorphism My = [>(Z) ® H constructed in the above proof gives a I'-
equivariant identification between operators in B(H s) and 7 x Z-matrices with entries
in B(H). Furthermore, it imposes a strong relationship between the propagation of
an operator in B(H ) and the off-diagonal support of the corresponding matrix. To
make this precise, we introduce the following notion.

Definition 2.16 The matricial support of T € B(H ) is the set
matsupp(T) = {(w., 2) € Z x Z | Ty # O}
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A Lichnerowicz vanishing theorem... 727

Define the composition

pr:Zﬂ |_|0y<—>M.
yeyY

For subsets S, S’ of Z, let us write
d%(S, 8y = d(pr(S), pr(S)).

(If S or 8" = {z}, we will write z in place of S or S’.) Using the fact that Z is c-dense
in M, we see that for any w, z € matsupp(7),

d?(w, z) < prop(T) + c.

Finally, observe that the subset
F = i(x,e)€Z|xeY}

is a fundamental domain for the I'-action on Z, where e is the identity in I". Thus if
T € B(Hp) is a I'-invariant operator, it is determined entirely by its entries in Z x F.
If, in addition, T has finite propagation, then one only needs to know the entries in the

Z
subset Bpmp(T) +o(F) x F, where

BZ(S):=1{z € Z|d%(z. S) < R},
for a subset S C Zand R > 0.
2.4.2 Norm estimation

We now proceed with the proof of Proposition 2.14. The first observation is:

Lemma 2.17 There exists a constant C such that for any z € F and R > 0,
#B%(z) < CV3.

Proof By Corollary 2.7, the cardinality of the stabilizer Fy of any point x € M is
uniformly bounded. Thus it suffices to show that there exists C such that

#pr(BZ(2)) < CV}
for any z € F and R > 0. In other words, it suffices to show that for any x € N,
#(Br(x)NZ) < CV2, where Z is as in (4). To this end, let I be the Borel cover from

2.4.1. Lemma 2.4 implies that there exists C; such that

#{U € U: UNBr(x) £ 0) < C1Vr/Up.
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728 H.Guo et al.

Corollary 2.8 implies that each element of I/ contains at most Co. points from any
single I"-orbit O € M (here Cy. is the constant Cg from Corollary 2.8 with R = 2¢).
Thus

#(Br(x) N 0) = Vr4cCac/Uy,.

By construction, the number of orbits in the set Z that intersect Br(x) is bounded
above by C> Vg /Uy, for some constant C;. It follows from Lemma 2.3 that

#(Br(x) N Z) < CVy.

where C is independent of R. O

Lemma 2.18 There exists a constant C such that for any z € F and R > 0,
#(BE ()N F) < CVp,

where Z is as in (6).

Proof This follows from the proof of Lemma 2.17, but without the need to consider
the orbit direction. O

We are led to the following lemma, which in particular implies Proposition 2.14:

Lemma2.19 Forany T € C[M1" and any x-homomorphism ¢: CIM1" — B(H'),
where H' is a Hilbert space,

Il (DB < CCT Vi
where Ct = sup,, €7 Ty |l and C is a constant independent of T .

Proof Let 7 denote the operator whose 7 x Z-matrix entries are equal to those of

T on Berop(T) 4o (F) x F, with all others being zero. It follows from the proof of [4,
Lemma 3.4] that we can write F as a disjoint union of subsets Fi, F2, ..., Fr,4+1

with the property that if w, z € F; for some i, then dZ(w, z) > 2prop(T) + 3c. Let

Q=1{(Z,2) € Zx F|d*(Z,z) < prop(T) + c}.

Write Q; = 9N (Z x JFi). By Lemmas 2.17, 2.18, and 2.3, there exist C1, Co > 0
such that for any z € F,

#(BS srop(r)+3¢(2) N F) < CiVaprop(r),

V4 2
#B prop(r)+¢(2) = C2Virop(ry-
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A Lichnerowicz vanishing theorem... 729

Note that C| and C, are independent of 7. Setting
. . 2
L= |CiVapopry s L2 = |C2Vooner)

one sees that forany z € F;, there are at most L, elements 7' € Z such that (Z,2) € Q.
Thus there exists a disjoint union decomposition

(Li+1) L2

o= || 7.
i=1

where the sets P; have the property that, for any two distinct elements (w, z) and
(w', 7') € P;, we have d%(z, z) > 2prop(T) + 3c, and hence w # w’. This gives a
decomposition

(Li+1)L>
T= ) T, matsupp(Ty) C P,
i=1

Observe that, for each i, the operator 7;*7; is I'-invariant and has matricial support
confined to the diagonal of 7 x F and so has norm at most C %

Let [®(Z, K(H))' < C[M]" denote the x-subalgebra of I'-invariant operators
whose matrix entries belong to the diagonal of 7 x Z.Since it is a C*-algebra, the
norm of any operator 7’ € [*° (Z, K(H))" contracts under any x-representation of
C[M]". Applying this to T" = 7.*7;, and using Lemma 2.3, we get:

(Li+1)Ls

I$Dlsay < Y, 1@l < (Li + DL2Cr < CCT Vo),
i=1

for some C independent of T'. O

2.5 Maximal Roe algebras

It follows from Lemma 2.19 that the norm of an operator 7 € C[M]" in any -
representation has a finite bound independent of the x-representation. This allow us
to define several versions of the maximal equivariant Roe algebra, as follows.

The first is the algebra C¥,, (M)" defined on the admissible module H; as the
completion of C[M]" in the norm |- lmax (see Definition 2.13).

We also have:

Definition 2.20 The maximal equivariant Roe algebra on the M-I"-module L%(S),
denoted by C} . (M; LZ(S))F, is the completion of C[M; L2(S)]r under the norm
pulled back under the injective *-homomorphism given by the composition

CIM; L*($)1" — J(CIM; L*()]) = Chp(M)T,

max
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where the map J was defined in (3).

Finally, we define a uniform version of the maximal Roe algebra on the module
L2(S) as the completion in C}\,, (M; L2(S)T of a certain space of Schwartz kernels.

This algebra will play a key role in the results of the next section. Recall:

Definition 2.21 A section k of End(S) = S X S* has finite propagation if there exists
an R > Osuch thatforall x,y € M,

dx,y) >R — k(x,y)=0.

The infimum of such R is called the propagation of k, denoted by prop(k).

Definition 2.22 Let Sur denote the s-subalgebra of B(L?(S)) whose elements are given
by Schwartz kernels k € Cp°(S X §*) that satisfy:

(i) k has finite propagation;
(i) k(x,y) =k(gx,gy) forall g € T';
(iii) Each covariant derivative of k(x, y) is uniformly bounded over M x M.

Note that properties (i) and (ii) imply that S,f is a x-subalgebra of C[M; L.

Definition 2.23 The maximal equivariant uniform Roe algebra of M on L*(S),
denoted by C*__ (M; L*(S)), is the completion of Sll; inC*_(M; L2(S)'.

max, u max

Remark 2.24 Elements of SLI; are approximable on each local piece of the manifold by
finite-rank operators in a way that is uniform across the manifold. The completion of
S MF in the operator norm on B(L2(S)) is referred to as the reduced equivariant uniform
Roe algebra on the module L2(S).

3 Functional calculus

We now use the estimates established in the previous section to complete a key step in
the proof of Theorem 1.1, namely to establish a functional calculus for the unbounded
operator D on the maximal equivariant uniform Roe algebra. The main result of this
section is Theorem 3.1. A basic reference for the material on Hilbert C*-modules used
in this section is [6].

3.1 A Hilbert module operator

We view the C*-algebra C* (M; L2(S))" asa right Hilbert module over itself. The

max,u

inner product and right action on C* . (M; L>(S))" are defined naturally through

max,u

multiplication: fora, b € C* . (M; L>(S),

max, u
{a,b) = a*b, a-b=ab,

where the adjoint is defined on the kernel algebra 8{ in the usual way. The algebra of
compact operators on this Hilbert module can be identified with C*__ (M; L*>(S))"

max,u
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via left multiplication. Similarly, the algebra of bounded adjointable operators can be
identified with the multiplier algebra M of Cy,, ,(M; L2(S)T.

We first show that D can be viewed as an unbounded operator on this Hilbert
module.

The Dirac operator D acts naturally on smooth sections of M x M as follows: for

each s € S'', define Ds to be the section

(x,y) = Dys(x,y),

where D, means the operator D acting on the x-coordinate. One verifies easily that
D is symmetric with respect to the inner product structure defined above.

In keeping with the usual notion of an unbounded operator on a Hilbert module,
we need to ensure that the domain of D is a right Cp,, ,(M; L*(S))" -module. To

do this, let (C*__ (M; L*(S))")T be the unitization of C*__ (M: L2(S))!. Then

max, u max, u

the right ideal Sll; -(C*, (M L*(S))")*T contains S{ and admits a right action

max,u

by Ck.. ,(M; L%(8))F'. We can extend the action of D in a natural way to S}; .

max, u

(Ct (M3 L2(S)T) T by setting, for eacha € ST and b € C};, ,(M; L*>(S),

max,u max, u

D(ab) := (Da)b.

Note that this is well-defined, since if ab = @b, then for any v € S{ , symmetricity of
D, together with continuity of the inner product, shows that

((Da)b, v) = lim ((Da)by, v)

= (ab, Dv)
= (ab, Dv)
= ((DA)b, v),

where by, is a sequence in S} converging to b. Density of S} in Cji,, ,(M; L*(S)"
then implies that (Da)b = (Da)b.

After taking the closure, we obtain a densely defined, closed Cp,, , (M; L2(S)'-
linear operator

D:C:  (M:L*S)' — ¢ (M: L*(S)". (8)

max,u max,u

Further, foreach/ € N, the operatorﬁl is adensely defined, closed C:;lax’u (M; L? (S ))F -
linear operator on Cyy, ,, (M; L2(S)HT.

We make two remarks. First, since the action of D on S,E (Chax.u (M L2(S)HNH*
is determined by its action on S, in practice we may just work with the latter. Second,
for the sake of brevity, we will simply write D to mean its closure D where confusion

is unlikely to arise.
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3.2 Regularity and essential self-adjointness

Let us state main result of this section:

Theorem 3.1 There exists a real number u # 0 such that the unbounded operators

D% pit Chy y(M; LA(S)T — Ch (M LA(S)T

max,u

have dense range.

We will proceed to the proof of this theorem shortly. First observe the following
consequence [6, Lemmas 9.7 and 9.8]:

Corollary 3.2 For each | € N, the unbounded operator 51 on the Hilbert module
Conax.u (M L2(S)Y is regular and self-adjoint.

Regular and essentially self-adjoint operators on a Hilbert C*-module admit a
functional calculus that satisfies the following set of properties [6, Theorem 10.9], [5,

Proposition 16]:

Theorem 3.3 Let B be a C*-algebra and N a Hilbert B-module. Let C(R) be the
x-algebra of complex-valued continuous functions on R. For any regular, essentially
self-adjoint operator T on N, there is a x-preserving linear map

7r: C(R) —> RpWN),
S f(T) =nmr(f),

where Rg(N) denotes the regular operators on N, such that:

(i) mr restricts to a x-homomorphism C,(R) — Lg(N);

) If1f @] = 1g(0)] forall t € R, then dom(g(T)) < dom(f(T));

(iii) If (fu)neN is a sequence in C(R) for which there exists F € C(R) such that
| fn(@®)] < F@)|forallt € R, and if f,, converge to a limit function f € C(R) uni-
formly on compact subsets of R, then f,(T)x +— f(T)x foreachx € dom(f(T)),

(iv) 1d(T) = T, where Id is the function t + t.

In the rest of this section, we will finish the proof of Theorem 3.1.

Let f,: R — C be the function x +— (x + i )y~ Let K /. denote the Schwartz
kernel of the bounded operator f, (D). Since K, is pseudodifferential, it is smooth
on the complement of the diagonal. Furthermore, it satisfies the following estimate:

Proposition 3.4 There exists Cy, > O such that for all x, y € M withd(x,y) > 1,
|K 5o 9] < Cpem 2900,

where ||-|| denotes the fiberwise norm on S X §*.

To prove this, we will use the following lemma, which is an adaptation of [2, Lemma
3.5] to the bounded geometry setting.
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Lemma 3.5 Let T be a bounded linear operator on L*(S) such that

sup H D*T DI H 5 < 00
ktj<3 dim M+3 B2y
Then T is an integral operator with a continuous Schwartz kernel K (x, y), and there
exists C > 0, independent of T, such that

i
sup |K7(x,»)| <C-  sup HD 7D H ,
x,yeM ktj<3 dim M+3 B(L2(S))

where ||-|| denotes the fiberwise norm on S X §*.

Proof. Since M has bounded Riemannian geometry, it admits an open cover {U;};en
and a subordinate smooth partition of unity {¢;};en such that

(i) 0 < ¢ <1 foreachl;
(i) Each U; has compact closure;
(iii) The maximum number of overlapping elements of {U;};cN is finite;
(iv) There exists C > O such that ||[ D, W]”B(LZ(S)) is bounded above by C for all /.

See [14, Lemmas 1.2, 1.3]. By repeated applications of (iv), and using the fact that
DD, o1 + Dz)’k and D[ D, om](1 + D?)~* are bounded operators, we see
that for every /, m € N we have

su D T, D | <
k+j<3 dirr)n M+3 H T s
It follows from [2, Lemma 3.5] in the compact setting that ¢; T ¢,,, is an integral operator
on M with continuous Schwartz kernel K,7,,,, whence T is an integral operator with
continuous Schwartz kernel K7 =}, K¢ 7y, Which is a pointwise finite sum by
(iii).

Foreach x € M, let I, := {l € N: x € U;}, and define the function

Px = ZQOL

lel,

Then there is a neighbourhood of x on which ¢, takes the constant value 1. Together
with [2, Lemma 3.5], this implies that for every (x, y) € M x M, there exists a positive
constant Cy  such that

IKr @0l = [ocKrg, 0] < Coy s | DiecT,D7|

e
ktj<3 dim M+3 B2

Again by repeated applications of (iv), and the fact that DD, o ](1 + D)~k and
D3*[D, oy1(1 + D?)~* are bounded operators, there exists C)’C‘y such that this is
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bounded above by

Ciy- s |piTDI

kt+j<3 dim M+3 HB(L2(S))

Furthermore, the conditions above imply that the constants C_ y are uniformly bounded
above by a constant C, independent of x and y, hence

sup [K7(x, )| <C-  sup HDkTDf
x’y

ket j<3 dim M+3 HB(LZ(S))

Proof of Proposition 3.4 Let x,y € M with A := dist(x, y) > 1. Choose a smooth
function ¢: R — R such that ¢(§) = 1 for [€] > 1 and ¢(§) = 0 if |E] < % Let

O (&) = ¢ (%) Let g,, be the function on R with Fourier transform

2.(6) = ¢ (6) fu ().

Let K, denote the Schwartz kernel of g, (D). By Lemma 3.5, there exists C > 0
such that forall x, y € M,

[koronf=c- s |D'guD)|

1<3 de+3 B2

For a given/ < % dim M + 3, we can estimate the right-hand side as follows. Let ;
be the function given by v;(s) = s gu(s). We have

s (ld\" 4
vi(§) = (Z—E> (P1)(E).

By the Fourier inversion formula
1 [ee) D
D)= — g SPdE,
gu( ) b /ﬂ)ogﬂ(g)e &

and the fact that ¢, is supported on |§| > %, we have:

H D'g, (D) H = [vi(D)llpr2sy)

B(L2($))

| /\

7 Iwé)! d

c12/>;

IA

=1 @) de
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< Cz/ e M1 (0.00) dE
&

forsome C;, C,, C3 > 0, and where we have used that f; &) = @e’“‘s 10,00y, With

1 being the indicator function. It follows that for all x, y with d (x, y) > 1, there exists

Cy > 0 such that |K,, (x,y)| < Cue_%d("’” for a constant C,,. Now a standard
finite-propagation argument for the wave operator shows that K5, (x, y) = Kg, (x, y)
whenever d(x, y) > 1, and we conclude. O

Corollary 3.6 For any k € S', we have
[+ 1~ ke, | = e B,
where C,, is a constant depending on v and ||-|| is the fiberwise norm on S X §*.
Proof. For any y € M, set
Ly={z€ M|k(z,y) #0}.

Observe that sup,,,{diam(L,)} < prop(k). By bounded Riemannian geometry, we
have supyeM{vol(Ly)} < C,’< for some constant C,’{. Let B; be the set of (x,y) €
M x M withd(x,y) < 1, and let BIC denote its complement. Let K1 := Kfu]lgl
and K> 1= Kfﬂ]lBlc. Thus Ky, =K<+ K>1. We have, forall x, y € M,

H/ K-1(x, 2)k(z, y)dz
M

< / | K1, ke, )| dz
Ly
< Cu/ o~ HUGE)=ACY) k(2. v de
L,

< Cpe 24y / 2@ k(z, y)| dz
Ly
< Cue—%d(wi . C]/(e%PTOP(k) k|l oo

_ Cl/{/ef%d(x,y) i

for a new constant C;’. Now, we have

H f K1 (r, Dk(z, v) dz
M

< |+ ke | + H/ K1 (x, Dk(z, y) dz
M

<C+ (Y,
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for a constant C > 0 given by the Sobolev embedding theorem and uniform bound-
edness of M. Also note that the function

(xay)'_)f K<I(X’Z)k(z»y)dz
M

is supported on some ball B of finite radius around the diagonal, so there exists Cy > 0
such that

H(D+/Li)_lk(x,y)H < +(C+ s, y)

/ K>1(x, 2)k(z, y)dz
M

< Cke_%d(xay). |

We now prove the key technical result of this section, Theorem 3.1.

Proof of Theorem 3.1 We will argue in the case of the operator D + i, with the case
of D — i being entirely analogous. Let k € S,f . Fix a countable open cover M whose
elements have uniformly bounded diameter. Let {0} jcn be a smooth partition of unity
subordinate to this cover. We can write

k(x,y) =Y pj(0k(x, ).

J

Note that the Schwartz kernel k; := (D + i)~ p k) is smooth but may not be
compactly supported in M x M. However, since it is compactly supported in the
second coordinate, the sum

ke, y) =) kj(x,y) = (D 4 pi) " k(x, y)
J

still makes sense at each point (x, y) € M x M and moreover is I'-invariant.
Since M x M is complete, there exists a family { f¢}c< (0,17 of smooth functions on
M x M, invariant under the diagonal action of I", such that for all ¢ € (0, 1], we have

(i) fe = 1on Bi(supp(k));
(1) fe = 0 outside B3 (supp(k));
(i) ldfelloo <&
Write dy fe € C°(M x M, T*M x M) for the derivative of f; in the first factor.

Clifford multiplication then defines a map c(d) f¢): M x M — End(S). Note that by
property (ii) above, f:k and c(d; f;)k belong to Sll; for each ¢ € (0, 1]. We have:

(D + pui)(fek) = fo(D + ik + c(d fo)k = k + c(dy fo)k. )
Here the composition c(d) f;)k is given by

(c(di f)k) (x, y) = c(d) fo) (x, ¥)x 0 k(x, ¥), (10)

@ Springer



A Lichnerowicz vanishing theorem... 737

where c(d; f¢)(x, y)x denotes the value of c(d; fz)(x, y) € End(S) at the fiber over
X.
Let ¢: C[M]' — B(H') be a k-representation. By (9), we have

i (J((D + i) (fek) — kD Beary = (T (c(di f)k) | By (11)

We now show that for p sufficiently large, for any k € Sll; the quantity (11) approaches
0 in the limit ¢ — 0, at a rate independent of the representation ¢.

To do this, let Ajpsx s denote the diagonal in M x M, and consider the open cover
V = {Vi}iez., of M x M by the sets

B (Amxm) ifl =0,

Vi = [
: B 1 (Amxm)\B,_3(Amxp) otherwise.
2 7

Note that each V] is preserved by the diagonal action of I' on M x M. Let {{;};ez>1
be a smooth I'-invariant partition of unity subordinate to V. For each [, the kernel

ki(x,y) := Wik(x, y)

is an element of SLI; with propagation at most \/i(l + %). For each ¢ € (0, 1], there
exists a finite N, such that

Ne

c(di fook =) eld fo)ki.

=1

By Lemmas 2.19 and 2.3, there exist constants Cq, Cy, and C3, independent of ¢, k,
and &, such that

o i), = OV, Il sup I uelsou)

w,zeZ

< C2eSMNdfulloo - sup [ kD)wzllBerH)-

w,zeZ
Here (/E,)wz denotes the (w, z)-entry of Igl considered as a Z x Z-matrix, as in

Sect. 2.4.1, and we have used that the map J from (3) preserves propagation and
L?-norm. The entrywise norm ||(k1)wz|| B(H,,) 1s bounded above by ||k1 || times a

constant that is independent of w, z € Z , and hence
[ewec@mn, . < ce sl

where Cy4 is again independent of k. Since ky is supported away from B;_ 3 (Ayvxm),
Proposition 3.4 implies that there exist constants C;, (depending only on ) and Cy
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(depending only on the initial kernel k) such that
Jfal. = Cucie™.

This implies that

Ne
16 (i fORD lscar) = ‘ 90J (D et fok)
=0 B(H’)
Né\
<Y |l¢oJ(cd fa)];l)HB(H/)
=0
Ne
< CiCUCL Y Ndfelloo - e
=0

For p sufficiently large, the last sum converges and is bounded above by
C'Crlldfell < C'Cye,

for some constant C’ independent of ¢ and k. Thus for  large enough, (11) approaches
0 in the limit ¢ — 0, independent of the initial choice of k.

This shows that any k € S'' can be approximated arbitrarily closely in the norm of
Chaxu(M; L2(S)T by elements in the image of D + pi. It follows that, since ST is
dense in C* (M L2(S)T, the Hilbert module operator D + ui has dense range.

max,u

4 Proof of the main theorem

In this section, we first define the maximal uniform index of D and show that under the
positive scalar curvature assumption, this index vanishes. We then use this to prove
our main result, Theorem 1.1.

4.1 The maximal uniform index

Let M := M(C*,.(M; L*>(S))") denote the multiplieralgebraof C* _ (M; L>(S))".

max, u max,u
The short-exact sequence of C*-algebras

0—C:  (M; L>(S)' - M —> M/CE.  (M; L*2(S)HT — 0

max, u max,u
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induces a six-term exact sequence in K -theory:

Ko(Clay (M3 L2(S)HT)

max, u

Ko(M) —— Ko(M/C , (M; L2(S))

max, u

/| |

K1(M/Chr (M5 LH(S)T) =—— K1(M) =——— K1(Ciryy , (M3 L*(S)).

max, u max, u

Let x: R — R be a continuous odd function with limit 1 at oo (called a nor-
malizing function). We now apply the functional calculus of Theorem 3.3 with

N = C;‘m) (M L2(8)T and T = D to form the bounded adjointable operator
X(D): Cha o (M: L*(S)T — Chry (M L*(S).

In the remainder of this section we prove:

Proposition 4.1 The operator x (D) is invertible modulo Cy,, ,(M; L2(S)HY and so
defines a class

[X(D)] € Knj1 (M/Clh (M5 LA(S)HT) (12)

max,u
that is independent of the choice of normalizing function .

Definition 4.2 The maximal uniform index of D, denoted indexmax_, (D), is the image
of [x (D)] under the boundary map

31 Kn1 (M/Clh o (M5 LAHSNT) — Ky (Clhax o (M3 LA2(S)HD).

max,u max,u

Proof of Proposition 4.1 Without loss of generality, let us work in the case when n
is even. By Theorem 3.1, we have x(D) € M(C* . (M;L*(S)'). To see that

max,u
x (D) defines a class in K1 (M/Cy .., (M; L2(S)T), it suffices to show that for any
f € Co(R), we have f(D) € Cjuy ,(M; L*(S)T, since x> — 1 € Co(R). Since

M has bounded Riemannian geometry, [10, Proposition 2.10] implies that for any
f € S(R) with compactly supported Fourier transform, the operator f (D) is given by
a smooth Schwarz kernel that is uniformly bounded along with all of its derivatives.
The fact that S(R) is dense in Co(R), together continuity of the functional calculus
homomorphism (part (i) of Theorem 3.3) shows this is true for general f € Co(R).
Finally, since the difference of any two normalizing functions lies in Co(R), the class
[x (D)] is independent of the choice of .

4.2 Vanishing of the maximal uniform index

Suppose that the scalar curvature function « of (M", g) is uniformly positive; that is,
there exists ¢ > 0 such that ¥ > ¢. Recall that the Lichnerowicz formula states that

D = V*Vu + %v (13)
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for all elements v € S”F , where V is the lift of the Levi-Civita connection to S.

Proposition 4.3 The spectrum of the Hilbert C, . ,(M; L2(8$)Y -module operator D
has a gap (—4, 4).

Proof To be more precise, let us write D foL the closure of the operator D on S,f , as
in Sect. 3.1. By Corollary 3.2, the operator D is self-adjoint. We wish to show that

(9}

(Dv, Dv) > —(v, v) (14)

4
for all v in the domain of D, where (, ) denotes the C ;’;mx# (M L?(S))" -valued inner
product. In fact, it suffices to show that

(5w,5w) > —(w, w)

Ao

forallw € S,f . Indeed, for any v in the domain of D, there is a sequence of elements
(wy)peN In S,f such that v = lim,,_, o w,, and Dv = lim,_, oo Dw,,. Therefore, if we
have shown

(Dwy,, Dwy) > %(w”, wy) foralln € N,

it would then follow that

Now for any w € SMF , we have

(V*Vw, w) = (V*Vw)*w = (Vw)* (Vw) > 0in C*_ (M:; L>(S))'.

max, u

It then follows from (13) that

(5w,5w) = (Dzw, w) > —(w, w)

&~ 0

inC*_ _(M; L*(S))". This finishes the proof. 0

max, u

To see that this implies vanishing of indexmax,u(D), consider the function x on
R\{0} given by

X
x(&x) = —.
|x]
Since D has a spectral gap at 0, we may use the functional calculus for regu-
lar operators on Hilbert modules to form the class [x (D)] in (12). This class lifts
directly to K,4+1(M), and hence its image under the boundary map vanishes in
K (Chax (M L2(S)T).
This yields a version of Theorem 1.1 for the uniform maximal Roe algebra:
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Theorem 4.4 Let (M™, g) be a complete T -spin Riemannian manifold with bounded
Riemannian geometry. Let I' be a countable discrete group acting and properly and
isometrically on M, satisfying Assumption 2.6. If M has uniformly positive scalar
curvature, then

indeXax,u (D) =0 € K (Cphy (M L*(S)D).

max,u
4.3 Vanishing of the maximal index

We can now complete the proof of our main result, Theorem 1.1. Let us first recall the
definition of the maximal higher index of D [4, 4.14]. We will work in the case when
the dimension » is even, with the odd case being analogous.

Given a normalizing function x, we can form the operator x (D) using the functional
calculus for self-adjoint operators on L (S). Pick a locally finite I"-invariant open cover
{U;}ien of M with the property that

sup{diam(U;/T")} < C
ieN

for some C > 0. Let {¢; };en be a continuous partition of unity subordinate to {U; };eN.
Then the sum

Fp:=Y_ ¢ x(D)¢}

defines a bounded, I'-invariant, locally compact operator on L2(S) with finite propa-
gation. Consider the matrix of bounded operators

wo= (37) (s ) (0 7) (1)

Each entry of Wp has finite propagation, and one verifies that

10\ .1 (10
PD:WD(OO)WD _(00>

is a projection in M>(C[M,; L2(S)]r). We define the maximal higher index of D on
L2(S) to be the K -theoretic class of Pp:

. 2
index (9 (D) := [Pp] € Ko(Clhy (M; L2(S)D).
Now the embedding J : C[M; L%(S)]" — C[M]" from (3) extends to an injective -
homomorphism between the maximal completions of both sides that we will continue
to denote by

(M L)' — Cra (M)

max

J:C*

max
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This induces a homomorphism on K -theory:

Ju: Ko(Chax(M; LE(S)T) — Ko(Cla (M)D).

max

The maximal higher index of D is the image of indexrl;,zg(s) (D) under this map:

indexmax (D) := J . (index%-) (D)) € Ko(C*..(M)D).

max max
2
Equivalently, the elements indexﬁlags) (D) and indexax (D) can be obtained in the
following way. Let x’ be a normalizing function with compactly supported Fourier
transform.
Then x’(D) has finite propagation, and the matrix

w — (Lx' D 1 0\ /1% (D)) [0-1
p=\o 1 —x'm*1)\o 1 10

defines a projection

10 _ 10

in My(C[M; L?(S)])'. One then verifies that
. 2
index% (D) = [Pp] = [Pp],

whence they give rise to the same element indexmax (D) € Ko(Cyi, (M .

Proof of Theorem 1.1 Assume, without loss of generality, that n is even. By definition
of the maximal equivariant uniform Roe algebra on LZ(S), there is a natural inclusion
0 Cxo (M L2(S)T — C*, (M; L*(S))'. The composition

max, u max

J
Chaxu M LAS)T = Cro (M L2(S)T = Chho (M)F

induces a composition of group homomorphisms

Ko(Cr  (M: L2S)T) 5 Ko(Crho (M; LA(S)HT) L5 Ko(Cr (M)D).

max, u max max

Choose a normalizing function x’ with compactly supported Fourier transform.

Then x'(D) has finite propagation, and its associated projection P}, represents

indexXmax,u (D). By Theorem 4.4, uniform positive scalar curvature implies that
indexmax,u(D) = 0.

Consequently, we have

indexmax (D) = Ji o ty(indexmax,u (D)) = 0. O
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