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A quantitative relative index theorem and Gromov’s
conjectures on positive scalar curvature

Zhizhang Xie

Abstract. In this paper, we prove a quantitative relative index theorem. It provides a conceptual
framework for studying some conjectures and open questions of Gromov on positive scalar curva-
ture. More precisely, we prove a A-Lipschitz rigidity theorem for (possibly incomplete) Riemannian
metrics on spheres with certain types of subsets removed. This A-Lipschitz rigidity theorem is
asymptotically optimal. As a consequence, we obtain an asymptotically optimal A-Lipschitz rigid-
ity theorem for positive scalar curvature metrics on hemispheres. These give positive answers to
the corresponding open questions raised by Gromov. As another application, we prove Gromov’s
"™ inequality on the bound of distances between opposite faces of spin manifolds with cube-
like boundaries with a suboptimal constant. As immediate consequences, this implies Gromov’s
cube inequality on the bound of widths of Riemannian cubes and Gromov’s conjecture on the bound
of widths of Riemannian bands with suboptimal constants. Further geometric applications will be
discussed in a forthcoming paper.

1. Introduction

In the past several years, Gromov has formulated an extensive list of conjectures and open
questions on scalar curvature [9, 10]. This has given rise to new perspectives on scalar
curvature and inspired a wave of recent activity in this area [4-6,9—-11,13,18,21,31,36,37].
In this paper, we develop a quantitative relative index theorem that serves as a conceptual
framework for solving some of these conjectures and open questions.

For example, we answer the following conjecture of Gromov in the spin case for all
dimensions with a suboptimal constant.

Conjecture 1 (Gromov’s (1”7 inequality, [10, Section 5.3]). Let (X, g) be an n-dimen-
sional compact connected orientable manifold with boundary and X , a closed orientable
manifold of dimension n — m. Suppose

X —>[-L1"xX,

is a continuous map, which sends the boundary of X to the boundary of [—1,1]" x X,
and which has nonzero degree. Let 0+, j = 1,...,m, be the pullbacks of the pairs of
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the opposite faces of the cube [—1, 1™ under the composition of f with the projection
(-1 1]" x X, — [, 1]™. Assume that for any m hypersurfaces Y; C X that separate
0j— from dj4 with 1 < j < m, their transversal intersection Yy C X does not admit a
metric with positive scalar curvature; furthermore, the products Yy, X T* of Y4 and k-
dimensional tori do not admit metrics with positive scalar curvature either. If Sc(g) >
n(n — 1), then the distances £; = dist(d;_, 9; +) satisfy the following inequality:

'"1

Consequently, we have

mln dist(d;_ ,J+)<\/_—

1<j<

Here, if (X, g) is a manifold with Riemannian metric g, then Sc(g) stands for the
scalar curvature of g. Sometimes, we also write Sc(X) for the scalar curvature of g if it is
clear from the context which metric we are referring to. In [10], Gromov gave a proof of
Conjecture 1 in dimension < 8 by the minimal surface method [24-26]. In dimension > 9,
Gromov provided an approach towards a proof of Conjecture 1 based on unpublished
results of Lohkamp [20] or a generalization of Schoen—Yau’s result [26]. He stated that the
above inequalities should be regarded as conjectural in dimension > 9, cf. [10, Section 5.2,
page 250].

The conditions in Conjecture 1 may appear technical at the first glance. The following
special case probably makes it clearer what kind of geometric problems we are dealing
with here.

Conjecture 2 (Gromov’s [1” inequality, [10, Section 3.8]). Let g be a Riemannian metric
on the cube I™ = [0, 1]*. If Sc(g) > n(n — 1), then
21 n?
Z 52 Z13 472’
j=1"J
where {; = dist(d;_, 0;, ) is the g-distance between the pair of opposite faces 9;_ and 9;,
of the cube. Consequently, we have

2
1m1n dist(9;_ < _71
<j<

’ ]+ \/ﬁ
One of the key ingredients for the proof of Conjecture 1 is the following quantitative
relative index theorem.

Theorem I (cf. Theorem 3.5). Let Z1 and Z, be two closed n-dimensional Riemannian
manifolds and S; a Euclidean Cl,-bundle' over Z-forj = 1,2. Suppose D; is a Cl,-
linear Dirac-type operator acting on S;j over Zj. Let Z be a Galois I'-covering space
of Z; and D the lift of D;. Let X; be a subset of Z; and X the preimage of X; under

'Here C¢,, is the real Clifford algebra of R”. See [17, Chapter I1.§7 and Chapter II1.§10] for more
details on C{,-vector bundles and the Clifford index of C¢,-linear Dirac operators.
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the covering map Zj — Z;. Denote by N (Z;\X;) the open r-neighborhood of Z;\ X;.
Suppose there is r > 0 such that all geometric data on N,(Z1\X1) and N.(Z3\X3)
coincide, i.e., there is an orientation preserving Riemannian isometry ®: N, (Z\X1) —
Ny (Z2\X2) such that ® lifts to an isometric CLy-bundle isomorphism ®: 81|y, (z,\x,) =
32| N, (2,\X,). Assume that

(1) there exists o > 0 such that

R;(x) > M
n

forall x € X;, where R is the curvature term appearing in D2 V*V + R;,
(2) and D; = ®7'D,® on N, (Z,\X).

Then there exists a universal constant C > 0 such that ifo - r > C, then we have
Indr(D;) — Indr(D,) =0
in K 0,(C*

max

(T"; R)), where Indp (5 ) denotes the maximal higher index of D i and
* (T3 R) is the maximal group C*-algebra of T with real coefficients.

de

The numerical estimates in Appendix B show that the universal constant C is < 40.65.
As an application of the above quantitative relative index theorem, we solve Gromov’s
O™~ inequality (Conjecture 1) for all dimensions with a suboptimal constant. More pre-
cisely, we have the following theorem.

Theorem II (cf. Theorem 4.3). Let X be an n-dimensional compact connected spin
manifold with boundary. Suppose f:X — [—1,1]™ is a continuous map that sends the
boundary of X to the boundary of [-1,1]". Let 0;+, j = 1,...,m, be the pullbacks of the
pairs of the opposite faces of the cube [—1, 1. Suppose Yy, is an (n — m)-dimensional
closed submanifold (without boundary) in X that satisfies the following conditions:
(1) m1(Yy) = m1(X) is injective;
(2) Yy, is the transversal intersection® of m orientable hypersurfaces {Y; }1<j<m of X,
each of which separates 0;_ from 0; 4;
(3) the higher index Indr (Dy, ) does not vanish in KOp—pm(C,,
1 (Ym).
If Sc(X) = n(n — 1), then the distances {; = dist(d;—, 0;4) satisfy the following
C + 471)

inequality: ”
1
Z 2=
j (f
where C is the universal constant from Theorem 1. Consequently, we have

[C + 4x
mm dist(d;—, 0j4) < V/m——"—.
n

1<j<

(I';R)), where I' =

n2

2In particular, this implies that the normal bundle of Y}, is trivial.
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In a subsequent work, with Wang and Yu [30], the author proves Theorem II with the
optimal constant via a different method, hence completely solves Conjecture 1 (in spin
case) and Conjecture 2 for all dimensions. We point out that Cecchini [4] and Zeidler
[36,37] proved a special case of Theorem Il when m = 1 with the optimal constant.

For spin manifolds, the assumptions on Yy in Theorem II above are (stably) equiv-
alent to the assumptions in Conjecture 1, provided that the (stable) Gromov-Lawson—
Rosenberg conjecture holds for I' = 71 (Y4). See the survey paper of Rosenberg and
Stolz [23] for more details. The stable Gromov-Lawson—Rosenberg conjecture for I" fol-
lows from the strong Novikov conjecture for I', where the latter has been verified for a
large class of groups including all word hyperbolic groups [7], all groups acting properly
and isometrically on simply connected and non-positively curved manifolds [15], all sub-
groups of linear groups [12], and all groups that are coarsely embeddable into a Hilbert
space [34].

As a special case of Theorem II, we have the following theorem, which proves
Gromov’s [1"-inequality (Conjecture 2) with a suboptimal constant.

Theorem II1. Let g be a Riemannian metric on the cube 1™ = [0,1]". If Sc(g) = n(n —1),

then

n 2

1 n
— >
2

2 = (8 o 1 an)?
j=1 ej («/_EC + 4J'[)
where £; = dist(d;_, d;, ) is the g-distance between the pair of opposite faces 0;_ and 9;,
of the cube, and C is the universal constant from Theorem 1. Consequently, we have
3.C+4rn

- /3
dist(dj_,0;4) < Y—rnu—
lrfrilrfln ' ( I j+) - \/ﬁ

Proof. Note that the higher index of the Dirac operator on a single point is a generator
of KOy({e}) = Z, hence does not vanish. If X is the cube I"” = [0, 1]” with the given
Riemannian metric g, then the assumptions of Theorem II are satisfied. Hence the theorem
follows from Theorem II. ]

As pointed out by Gromov in [10, Section 3.8], Theorem III has the following imme-
diate corollary. Recall that a map ¢: (X, g) — (Y, h) between two metric spaces is said to
be A-Lipschitz if

disty (9(x1), 9(x2)) < A - distg (x1, X2)

forall x;,x, € X.

Corollary 1.1. Let (X, go) be the standard unit hemisphere S, . If X admits a Riemannian
metric g such that

(1) there is a A,-Lipschitz homeomorphism ¢: (X, g) — (X, go),

(2) and Se(g) = n(n — 1) = Se(go),
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then
2arcsin(L) 1
Iz TEc JZ NG
75(75 + 7'[) 7 + 27

where C is the same universal constant from Theorem 1.

As another application of our quantitative relative index theorem, we prove the fol-
lowing A-Lipschitz rigidity theorem for positive scalar curvature metrics on spheres with
certain subsets removed. This gives a positive answer to a corresponding open question of
Gromoyv, cf. [9, page 687, specific problem].

Theorem IV (cf. Theorem 5.8). Let X be a subset of the standard unit sphere S" con-

tained in a geodesic ball of radius r < 7. Let (X, go) be the standard unit sphere S™

minus 2. If a (possibly incomplete) Riemannian metric g on X satisfies that
(1) there is a Ay-Lipschitz homeomorphism ¢: (X, g) — (X, go),
(2) and Sc(g) > n(n — 1) = Sc(go),

then c
/ B
An > 4/1— w2
where’ )
8C
C, = ——
SR

and C is the universal constant from Theorem 1. Consequently, the lower bound for A,
approaches 1, as n — oo.

This A-Lipschitz rigidity theorem is asymptotically optimal in the sense that the lower
bound for A, becomes sharp, as n = dim S” — oo. In the case where n = dim S” is odd,
an analogue of Theorem IV also holds for subsets that are contained in a pair of antipodal
geodesic balls of radius r < %. We refer the reader to Theorem 5.10 for the precise details.
We point out that when ¥ = &, that is, when (X, g¢) is the standard unit sphere S” itself,
it is a theorem of Llarul that A,, > 1 for all n > 2 [19, Theorem A]. Furthermore, when
¥ is either a single point or a pair of antipodal points, Gromov showed that A, > 1 when
3 <n <8[10, Section 3.9].

As a consequence of Theorem IV, we have the following A-Lipschitz rigidity result
for hemispheres. This answers (asymptotically) an open question of Gromov on the sharp-
ness of the constant A, for the A-Lipschitz rigidity of positive scalar curvature metrics on
hemispheres [10, Section 3.8].

3If n = dim S” is odd, our proof of Theorem IV in fact shows that we can improve C, to be %

2

instead of %
2
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Theorem V (cf. Theorem 5.11). Let (X, go) be the standard unit hemisphere S';. If a
Riemannian metric g on X satisfies that

(1) there is a A,-Lipschitz homeomorphism ¢: (X, g) — (X, go),
(2) and Sc(g) = n(n — 1) = Sc(go),

then
.o [ 8C?
Anz(l—smﬁ) l—m

where C is the universal constant from Theorem 1. Consequently, the lower bound for A,
approaches 1, as n — oo.

The above theorem is asymptotically optimal in the sense that the lower bound for A,
becomes sharp, as n = dim S” — oo. In particular, it improves the lower bound for A, in
Corollary 1.1 when n = dim S” is large.

A key geometric concept behind the proof of Theorem IV is the following notion of
wrapping property for subsets of S”.

Definition 1.2. Let Z be a path-connected metric space. A subset ¥ of Z is called
strongly non-separating if Z\Ng(X) is path-connected for all sufficiently small ¢ > 0,
where N, (X) is the open e-neighborhood of X.

Definition 1.3 (Subsets with the wrapping property). A subset ¥ of the standard unit
sphere S”" is said to have the wrapping property if ¥ is strongly non-separating and
furthermore there exists a smooth distance-contracting* map ®: S — S” such that the
following are satisfied:

(1a) if n is even, ® equals the identity map on Ng(X);

(1b) if n is odd, ® equals either the identity map or the antipodal map on each of the
connected components of Ng(X);

(2) and’® deg(®) # 1.

Note that the conditions for satisfying the wrapping property in the odd dimensional
case are slightly weaker than those in the even dimensional case. Roughly speaking, a
subset ¥ C S” has the wrapping property if its geometric size is “relatively small”. For
example, if ¥ is a strongly non-separating subset of the standard unit sphere S” that is con-
tained in a geodesic ball of radius < 7, then X has the wrapping property (cf. Lemma 5.3).
Moreover, a strongly non-separating subset of an odd dimensional sphere that is contained
in a pair of antipodal geodesic balls of radius < % also satisfies the wrapping property (cf.
Lemma 5.5).

Motivated by the theorems of Llarul and Gromov and the results in the current paper,
we conclude this introduction by the following open question.

“4Recall that a smooth map ¥: X — ¥ between Riemannian manifolds is said to be distance-contracting
if it is 1-Lipschitz, that is, ||« (v)|| < |lv]| for all tangent vectors v € T'X.
SFor example, if ® is not surjective, then clearly deg(®) = 0 # 1.
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Open Question (Rigidity for positive scalar curvature metrics on S*\X). Let ¥ be a
subset with the wrapping property in the standard unit sphere S™. Let (X, go) be the
standard unit sphere S" minus X. If a (possibly incomplete) Riemannian metric g on X
satisfies

(1) & = go,
(2) and Sc(g) = n(n — 1) = Sc(go),
then does it imply that g = g¢?

The paper is organized as follows. In Section 2, we review the construction of some
standard geometric C *-algebras and the construction of higher index. In Section 3, we
prove our quantitative relative index theorem (Theorem 3.4 and Theorem 3.5). Finally, we
apply the quantitative relative index theorem to prove Theorems II-V in Section 4 and
Section 5.

2. Preliminaries

In this section, we review the construction of some standard geometric C*-algebras and
the construction of higher indices (cf. [32]).

Let X be a proper metric space, i.e., every closed ball in X is compact. An X -module is
a Hilbert space H equipped with a x-representation p: Co(X) — B(H) of Cyp(X), where
B(H) is the algebra of all bounded linear operators on H. An X-module H is called
non-degenerate if the x-representation of Cy(X) is non-degenerate, that is, p(Co(X))H
is dense in H. An X-module is called ample if no nonzero function in Cy(X) acts as a
compact operator.

Assume that a discrete group I acts freely and cocompactly® on X by isometries and
Hy is a non-degenerate ample X -module equipped with a covariant unitary representation
of I'. If we denote by p and 7 the representations of Cy(X) and I" respectively, this means

7 () (p(fHv) = p(y* fH((y)v),

where f € Co(X),y €T, v € Hy and y* f(x) = f(y~'x). Inthis case, we call (Hx, T, p)
a covariant system of (X, I').

Definition 2.1. Let (Hy, I', p) be a covariant system of (X, ") and 7 a I'-equivariant
bounded linear operator acting on Hy.

(1) The propagation of T is defined to be the supremum

sup{dist(x, y) : (x, y) € supp(T)},

®More generally, with appropriate modifications, all constructions in this section have their obvious
analogues for the case of proper and cocompact actions instead of free and cocompact actions, cf. [35,
Section 2].
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where supp(7T') is the complement of points (x, y) € X x X for which there exist
f,g € Co(X) such that gTf = 0and f(x) # 0, g(y) # 0;
(2) T is said to be locally compact if fT and Tf are compact for all f € Co(X).

We recall the definition of equivariant Roe algebras.

Definition 2.2. Let X be a locally compact metric space with a free and cocompact iso-
metric action of T'. Let (Hy, T, p) be a covariant system. We define C[X]' to be the
x-algebra of I"-equivariant locally compact finite propagation operators in 8(Hy). The
equivariant Roe algebra C*(X)T is defined to be the completion of C[X]' in B(Hy)
under the operator norm.

There is also a maximal version of equivariant Roe algebras.

Definition 2.3. For an operator T € C[X]F, its maximal norm is

IT llmax == sup {[l(T)| : ¢: C[X]" — B(H) is a *-representation}.
0

The maximal equivariant Roe algebra C.%, (X)!' is defined to be the completion of C[X]"
with respect to || - || max-

We know

cxX)'zcrmye@X and CF (X)) =C*

max

T e X,

where C¥(T") (resp. C.%,, (")) is the reduced (resp. maximal) group C *-algebra of I" and
K is the algebra of compact operators.

Furthermore, there are also real versions of reduced and maximal equivariant Roe
algebras, by using real Hilbert spaces instead of complex Hilbert spaces. We shall denote
these algebras by C," (X )]12 and C* (X )HE. Similarly, we have

max

CYX)k=C*R) @ Kg and CF (X)k =Cr (T;R)® Kg,

max max

where C(T';R) (resp. C.: . (I'; R)) is the reduced (resp. maximal) group C *-algebra
of I with real coefficients and K is the algebra of compact operators on a real infinite
dimensional Hilbert space.

Let us review the construction of the higher index of a first-order symmetric elliptic
differential operator on a closed manifold. Suppose M is a closed Riemannian manifold.
Let M be a Galois covering space of M whose deck transformation group is I". Suppose
D is a symmetric elliptic differential operator acting on some vector bundle § over M. In
addition, if M is even dimensional, we assume S to be Z/2-graded and D has odd-degree
with respect to this Z/2-grading. Let D be the lift of D to M.

We choose a normalizing function y, i.e., a continuous odd function y: R — R such
that

lim y(x) = *1.
x—to00
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By the standard theory of elliptic operators on complete manifolds, D is essentially self-
adjoint and F = y(D) obtained by functional calculus satisfies the condition

F2—leC*M) ~C*I)® X.

In the even dimensional case, since we assume § to be Z/2-graded and D has odd-
degree with respect to this 7 /2-grading, we have

(5 )
00

for some U and V such that UV —1 € C*(M)T and VU — 1 € C*(M)T. Define the
following invertible element:

vl DG D6 D0 )

and form the idempotent

:W(l o)W_IZ(UV(Z—UV) (2—UV)(1—UV)U)_ @)

In particular, it follows that

0 0 V(1 -UV) (1-VU)?

Definition 2.4. In the even dimensional case, the higher index Indr (5) of D is defined

to be

Indr (D) := [p] - [((1) 8)} € Ko(CH(FD)T) = Ko(CH(T)).

Note that if " is the trivial group, then the higher index Indr (5) € Ko(K)=7Zis
simply the classical Fredholm index Ind(D) of D, where the latter is defined to be

Ind(D) := dimker(D ") — dim coker(D ™).

The construction of higher index in the odd dimensional case is similar.

Definition 2.5. In the odd dimensional case, the higher index Indr (5) of D is defined to
be

)((D;—i— 1)

Indr (D) = exp (2m' e Ki(CF(M)T) = K{(CH(I)).

The higher index of D,asa K -theory class, is independent of the choice of the nor-
malizing function y. In particular, if we choose y to be a normalizing function whose
distributional Fourier transform has compact support, then F = )((5) has finite propa-
gation and consequently the formula for defining Indr (5) produces an element of finite
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propagation,’ that is, an element in C [M ]', which certainly also defines a K-theory class
in K, (Cj(I")). We define this class Indp (D) € K, (Cr (")) to be the maximal higher
index of the operator D.

The higher index of an elliptic operator with real coefficients is defined the same
way, and it lies in KO, (C}(I'; R)) or KO,(C.,.(I'; R)), when the elliptic operator is

appropriately graded (e.g. C{,-graded with respect to the real Clifford algebra C{,,). See
[17, Chapter II. §7].

3. A quantitative relative index theorem

In this section, we prove a quantitative relative index theorem (Theorem 3.4 and Theo-
rem 3.5), which serves a conceptual framework for studying some conjectures and open
questions on Riemannian metrics of positive scalar curvature proposed by Gromov in the
past several years [9, 10].

Let Y be a complete n-dimensional Riemannian manifold and § a Euclidean C/,,-
bundle over Y. Suppose D is a first-order symmetric elliptic C{,-linear differential oper-
ator acting on § over Y. Recall the following lemma due to Roe [22, Lemma 2.5].

Lemma 3.1. With the same notation as above, suppose there exist o > 0 and a subset
K C Y such that

IDfI = ol f

forall f € CX(Y\K,S). Given ¢ € §(R), assume the Fourier transform ¢ of ¢ is sup-
ported in (—r,r). If Y € Co(Y) has support disjoint from the 2r-neighborhood of K,
then

le(D)p(Y)llop < 1Y I suptle ()| : [y] = o}.

Here p(Y) is the bounded operator on L*(Y, §) given by multiplication of ¥, and ||| is
the supremum norm of V.

Roe’s proof of the above lemma makes use of the Friedrichs extension of D? on Y\ K
in an essential way. In Appendix A, we shall construct analogues of the Friedrichs exten-
sion in the maximal group C*-algebra setting, which allows us to extend Roe’s lemma
above to the corresponding maximal setting (by following essentially the same proof of
Roe [22, Lemma 2.5]).

Let us consider the case where n = dim Y is even. Consider a normalizing function®
x:R — R such that the distributional Fourier transform y of y is supported on [—1, 1].

7In the odd dimensional case, one can approximate exp(27i %) by a finite propagation element,
since the coefficients in the power series expansion for the function e2™* decay very fast (faster than any
exponential decay, to be more precise).

8 A normalizing function is a continuous odd function y: R — R such that limy_, 1o y(x) = %1.
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Let F; = y(¢D). Since D is assumed to have odd-degree with respect to the Z /2-grading

on §, we have
0 D™
b (2 2).

(0 U,
Ft_(Vt 0)

for some U; and V;. As in line (2.1), we define

In particular, it follows that

t (UtVt(Z Uuv,) @- Usz)(l—UtVr)Uz) 3.1)

Vi(l = U Vi) (1 =V Up)?
The following lemma will be useful in the proof of Theorem 3.4.

Lemma 3.2. With the same notation as above, the following hold for all t > 0.
(1) There exists B > 0 such that || p;|| < B forallt > 0.
(2) The propagation prop(p;) of p; is < 5t.
(3) Ifthere exist 0 > 0 and a closed subset K C Y such that

IDfI = all /Il

forall f € CX(Y\K,S), then there exists n > 0 such that

[CREIIE

forall f € CX(Y\N10:(K),S), where Nyo;(K) is the 10t-neighborhood of K.

Proof. Clearly, there exists & > 0 such that || is uniformly bounded by «. Hence both
U; and V; have operator norm < «. Therefore, part (1) follows from the explicit formula
of p; in line (3.1).

The distributional Fourier transform y of y is supported on [—1, 1]. By the inverse
Fourier transform formula

10) = 5 [ 1@ ag
and the finite propagation of the wave operator ¢’€, we see that y(D) has propagation
no more than 1. Replacing y(x) by y(¢x), we see that the propagation of y(¢D) is < t.In
particular, U; and V; also have propagation < ¢. Hence, part (2) follows from the explicit
formula of p; in line (3.1). Furthermore, part (3) follows Lemma 3.1. This finishes the
proof. ]
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Let e be an element in a Banach algebra such that
le? —e| < 1/4.

Then the spectrum of e is disjoint from the vertical line {% + iy :y € R}. Let X be the
part of spectrum of e that is to the right of the line {% + iy : y € R}. Choose a contour
y containing X but disjoint from X and the vertical line {% +iy:y € R}. Apply the
holomorphic functional calculus and define

5 -1
e = e yz(z e) .
Lemma 3.3. Let p be an idempotent in a Banach algebra with ||p|| < B. Let es = sp +
(1 —s)efors €[0,1]. Suppose e is an element with |le|| < B + 1l and ||p —e|| < (TI-I-Z)%
Then the following hold.
(1) We have

1
2
le? = el < 5

foralls €[0,1].
(2) Ifwe define

1
€y = — /Z(Z —eg)!
2ri J,

as above, then {e;}o<s<1 is a continuous path of idempotents connecting éo and p.
Proof. Part (1) follows from the following estimate:
”es2 —e| = ||e§ — pes + pes — P2 + p—esl

< li(es = plesll + llp(es — P + | p — sl
=< (lesll + llpll + Dlles = pII.

By the definition of holomorphic functional calculus, part (2) is obvious. |

Now we are ready to prove the quantitative relative index theorem. Let us first prove
a version of the quantitative relative index theorem for the reduced group C *-algebras.
The maximal version can be proved in exactly the same way, after applying the results of
Appendix A.

Theorem 3.4. Let Z1 and Z, be two closed n-dimensional Riemannian manifold and
S; a Euclidean Cly-bundle over Zj for j = 1,2. Suppose D; is a first-order symmetric
elliptic Cly-linear differential operators acting on S; over Z;. Let Z; be a Galois T'-
covering space of Z; and 5_; the lift of D;. Let X be a subset of Z; and X ; the preimage
of X; under the covering map Z i — Z;. Denote by N, (Z;\ X;) the open r-neighborhood
of Z;\X;. Suppose there is r > 0 such that all geometric data on N.(Z\X1) and
Ny (Z2\X3) coincide, i.e., there is an orientation preserving Riemannian isometry
®: N (Z1\X1) = N, (Z2\X3) such that ® lifts to an isometric CL,-bundle isomorphism
o: 5 |Nr(Z1\X1) — S2|Nr(Zz\X2)' Assume that
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(1) the restriction of 5_/ on X ; is invertible in the following sense: there exists o > 0
such that

1D; fl = ol /1
forall f e Cfo(ff gj), where f? is the interior of)?j inZ;
(2) and D, = ®7 1Dy ® on N, (Z1\X)).

Then there exists a universal constant C > 0 such that if o - r > C, then we have
Indr(D;) — Indr(D,) =0

in KOp(CY(I';R)), where Indr (5 i) denotes the maximal higher index of D ;i and
C}(I';R) is the reduced group C*-algebra of T with real coefficients.

Proof. Let us prove the theorem for the case where dim Z; is even and § is a Hermitian
C{,,-bundle, mainly for the reason of notational simplicity. Here C¥,, is the complex Clif-
ford algebra of R”. The proof for the real Clifford bundle case is the same. Also, the proof
for the odd dimensional case is completely similar.” Now, if § is a Hermitian C{,,-bundle
and n is even, it is equivalent to view § as a Hermitian vector bundle with a Z /2-grading,
with respect to which the operators D and D, have odd degree.

We apply the usual higher index construction to D ;i (cf. Section 2). Let y:R — R bea
normalizing function such that its distributional Fourier transform is supported in [—1, 1].
Define

Fiy = x(tD1) and Fo, = y(tD2).
Let p; and g, be the idempotents constructed out of F;, and F,; as in line (2.1). Then
for any fixed ¢ > 0, the higher index Indr (51) € Ko(Cx(I')) is represented by

7=y o)

and the higher index Indr (D) € Ko (C¥(I")) is represented by

1 0
- (5 o):
By assumption, there exists o > 0 such that
1D f1 = ol /1

for all f € C® X ;) §j). By a standard rescaling argument, that is, by considering A D
and A D, for some appropriate A > 0, we can without loss of generality assume o = 1, cf.
Remark 3.6. By part (3) of Lemma 3.2, there exists > 0 such that

6 D) =7

9 Alternatively, the odd dimensional case can be reduced to the even dimensional case by a standard
suspension argument.
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forall f € CC"O(Zl\Nlot (Zl\fl), 51). Let us define the operator P; by setting

P(f) = {"f(f ) i f € L2(Nioi(Zi\ X)), 81),
' (30)F if £ € L2(Z1\Nio(Z1\ K1), 51).

In particular, by Lemma 3.3, as long as ¢t = fg is sufficiently large, then || P; — p;|| is
sufficiently small, which implies that

1
1P2 = Pill < 5.
Furthermore, if we define

~ 1
Pz=—./Z(Z—Pz)_1
2ni J,

then part (2) of Lemma 3.3 implies that P; and p: represent the same K-theory class, as
long as t = ¢y is sufficiently large.
We apply the same argument above to g; and define

q:(f) it f € L2(N10:(Z2\X2), $2),

i) = { (30)f if f € LA(Z2\N10t(Z:\X2), S2).

Similarly, we define

Qt = #/VZ(Z— Qz)_l

Then Lemma 3.3 implies that Q ¢+ and g, represent the same K-theory class, as long as
t =ty is sufficiently large.

Now let us set C = 15¢y. Recall that we have already applied a rescaling argument to
reduce the general case to the case where 0 = 1. Then by assumption, we have

r=o-r>C =15t.

It follows from the standard finite propagation of wave operators associated to Dy and D,
that p,, and gy, coincide as operators'’ on

L2(NA(Z:\X1), 81) = L2(N+(Z2\X2), $2).

It follows that 13,0 and Q 1, coincide. In particular, we have

Indr(Dy) = [P,,] — [((1) g)] =[04] - [((1) 8)} = Indr (D)

in Ko(C}(I'; R)). This finishes the proof. L]

0As far as K-theory classes of p;, and ¢y, are concerned, we can simply ignore the subspaces
LZ(ZI\Nr (Zl\)?l), $1) and LZ(ZZ\Nr (Zz\fz), $,), since py, and g4, act on them as the trivial idem-
potent (} §) respectively.
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By applying the results of Appendix A and the estimates in Example 3.7, the same
proof for Theorem 3.4 also proves the following maximal version of the quantitative rela-
tive index theorem.

Theorem 3.5 (Theorem I). Let Zy and Z, be two closed n-dimensional Riemannian ma-
nifolds and S; a Euclidean Cl,-bundle over Z; for j = 1,2. Suppose D; is a CLy-linear
Dirac-type operator acting on 8; over Zj. Let Z j be a Galois I'-covering space of Zj and
ﬁj the lift of D;. Let X be a subset of Z; and )’(vj the preimage of X; under the covering
map Z; — Zj. Denote by N,(Z;\X;) the open r-neighborhood of Z;\X,. Suppose there
is r > 0 such that all geometric data on N, (Z1\X1) and N, (Z,\X>) coincide, i.e., there
is an orientation preserving Riemannian isometry ®: N.(Z1\X1) — N, (Z3\X2) such
that @ lifts to an isometric CL,-bundle isomorphism ®:81|n,(z,\x,) = 32|N,(Z2\X»)-
Assume that

(1) there exists o > 0 such that

R;(x) > M

forall x € X;, where R is the curvature term appearing in Djz =V*V + R;,
(2) and D, = o D, ® on Nr(Zl\Xl).

Then there exists a universal constant C > 0 such that if o - r > C, then we have
Indr(D;) — Indr(D,) = 0

in KO, (C?, (T;R)), where Indp(ﬁj) denotes the maximal higher index of 5j and

max

Cr (L' R) is the maximal group C*-algebra of T with real coefficients.

The numerical estimates in Appendix B show that the universal constant C is < 40.65.

Proof. The proof follows the same strategy as that of Theorem 3.4, so we shall be brief.
We claim we can assume without loss of generality that X; (resp. X») is a codimension
zero submanifold with corners in Z; (resp. Z5). Indeed, let § > 0 be a sufficiently small
constant and U = {Uy} be an open cover of X j consisting of geodesically convex balls
of radius < §. Note that X j 1is closed in Z;, hence compact. It follows that X j admits a
finite open cover 'V consisting of finitely many members of U. Without loss of generality,
we assume
VNnX j * O

for each member V' of V. Denote by W; the union of all members of V. Then the closure
W of W; is contained in N,s(X ). By construction, W; is an n-dimensional compact
manifold with corners under the metric inherited from Z;. If we replace X; by W; and
replace r by r — 26, then all assumptions of the theorem are still satisfied, as long as § is
sufficiently small. Therefore, without loss of generality, we assume that X (resp. X>) is
a codimension zero submanifold with corners in Z; (resp. Z»).



Z. Xie 624

Let L%*' (Z i s j)F be the associated C,, (I'; R)-Hilbert module of sections of S
over Z; (cf. line (A.5)). By assumption there exists o > 0 such that
n—1)o?
Rj(x) = Q
for all x € X;. It follows from Proposition A.5 and the proof of Roe’s lemma ([22,

Lemma 2. 5]) that if the Fourier transform ¢ of a function ¢ is supported in (—a,a) and
Ve CO(Z ) has support disjoint from the 2a-neighborhood of X; i, then

le(Dy)p)Il < Il suplle()] : [y = o).

Here (p(D ) is the bounded operator on L2 . (Z s S )T obtained by applying functional
calculus, and p(y) is the bounded operator on L2 Cx (Z s S )T given by multiplication
of ¥ and ||¥| is supremum norm of . Consequently, we also have the analogues of
Lemma 3.2 and Lemma 3.3 in the current maximal setting. Now the theorem follows by
the exact same proof as the one of Theorem 3.4. ]

Remark 3.6. In the proof of Theorem 3.4, we have implicitly used the fact that a Dirac-
type operator has propagation speed equal to 1. Recall that the propagation speed of a first
order differential operator D on a Riemannian manifold Z is defined to be

cp = sup cp(x),
xeX

where op the principal symbol of D and

ep(x) = sup{llop(x.§)[ : § € T X, [|§]| = 1}.

If we consider more general elliptic operators Dy and D, such that both ¢p, and cp,
are bounded by A, then the corresponding condition ¢ - r > C in Theorem 3.4 should be
replaced by

r>C
o - .
A

The following is a typical geometric setup to which Theorem 3.5 applies.

Example 3.7. Let Z be a closed n-dimensional Riemannian manifold and § a Euclidean
C{,-bundle over Z. Suppose D is a C{,-linear Dirac-type operator acting on § over Z.
Let Z be a Galois I"-covering space of Z and D the lift of D. Let X be a subset of Z and
X the preimage of X under the covering map 7> Z.

By the Lichnerowicz formula, we have

2=V'V+ R,

where R is a symmetric bundle endomorphism of S.If D is an actual Dirac operator,
then R = % where « is the scalar curvature of the metric on Z. By the Cauchy—Schwarz
inequality, we have

(Df,Df)y<n(VLV[)
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forall f € C° (Z .S ) and n = dim Z. Combining the two formulas above, we see that

n—1

(DfDf)= (RS f)

n
forall f € CX(Z,$).
~ ~ 2 -
Let X = X — 90X be the interior of X . If we assume there exists o > 0 such that

— 1o?
R(x) > u
n
forall x € X O, then we have
n—1 ~  «~
—(DSDf)z (RS [y z0*(f ]) (3.2)
forall f € C® (}? °§ ). In other words, we have
IDfI=ollf] (3.3)

forall f € Cf"()?o, §) in this case.

4. Proof of Theorem II

In this section, we apply the quantitative relative index theorem (Theorem 3.5) to prove
Theorem II. In order to make our exposition more transparent, let us first prove the fol-
lowing special case.

Theorem 4.1 (A special case of Theorem II). Suppose M is a closed spin manifold of
dimension n — 1 such that the higher index of its Dirac operator does not vanish in
KOu—1(C (w1 M ; R)). If the manifold M x [0, 1] is endowed with a Riemannian metric
whose scalar curvature is > n(n — 1), then

8
—=C +4n
width(M x [0,1]) < B>
n

where C is the universal constant from Theorem 3.5.

Proof. For simplicity, we shall prove the theorem for the reduced case. In fact, let us
assume that the higher index of the (complexified) Dirac operator on M does not vanish
in K,—1(C}(I")). The proof for the maximal case is essentially the same. For the real
case, see Remark 4.2.

Let X = M x [0, 1] be the universal cover of X = M x [0, 1] and D the associated
C/4,,-linear Dirac operator on X. By the discussion in Example 3.7, since the scalar cur-
vature Sc(g) > n(n — 1), we have

~ n
IDfI = zllfll

forall f € C® (f °§ ), where § is the associated spinor bundle over X.
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We prove the theorem by contradiction. Assume to the contrary that

BC +4n
¢ = width(X) > 32—~
n

Denote by d+ X = M x {1} and 0_X = M x {0}. Then for any sufficiently small ¢ > 0,
there exists a hypersurface Y in X such that

L L
dist(04+X,Y) > 3 e and dist(0_X,Y) > 3 €.

Let ¢: X — R be a real-valued smooth function such that (cf. [8, Proposition 2.1])
(1) lldell <1,
(2) ¢(x) = 0 for all x between Y and d_ X with dist(x, Y) > 27” + &,
(3) and ¢(x) = *Z for all x between Y and 94 X with dist(x,Y) > 2Z + .

From now on, let us fix a sufficiently small ¢ > 0 and denote the lift of ¢ from X to X
still by . Define the function
u(x) = 2™

on X. We have " "
5, = d = — . d < —,
WD ulll = lldull = —lu - do]l < 7
Similarly, we also have
~ n
D.u | < <.
1B, = 5
Consider the following Dirac operator on S! x X’
d ~
D=c-—+ D 4.1)

dt

where c is the Clifford multiplication of the unit vector d /dt and

D, =tD+(1—tuDu™?

foreacht € [0, 1]. Here we have chosen the parametrization ST=10,1]/{0,1}. Let 5 [0,1] be
the associated spinor bundle on [O 1] x X’ and §, its restriction on {t} x X X°. Bach smooth
sectlon feCx(0,1] x X’ S[o 1]) can be viewed as a smooth family f(t) e CX({t} x
xX° 3 ¢). The operator ) acts on the following subspace of C2°([0, 1] x X, [0,1]):

{f € C&(0.11x X" 8.1 ¢ £(1) = uf(0)}.

From now on, we shall simply write C>°(S! x X’ 5 ) for the above subspace of sections.

Clearly, we have
d? ~
B = T D? + c[D,ulu™"
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By using the identity
DuDu™' +uDu™'D = [~,u][5,u_l] +uD?*u~' + D?,
we have
D?=tD*+ (1 —t)uD*>u™" +t(1 —0)[D,u][D,u""]. 4.2)

It follows from the assumptlon Sc(g) = n(n — 1) and the estlmates in Example 3. 7 that
D? > ” on C2(S! x X°,§), which implies also uD2u~! > % ” on C2(S! x X°. ),
since u 1s a unitary. Therefore, we have

b?

n? A D
7 1 =0[D.u D, ul

v

n?2  n?  3n?
> —_——— = —
4 16 16
where the second inequality uses the fact (1 —¢) < 1/4 forall ¢ € [0, 1].
Now, for each A > 0, we define the rescaled version of IJ to be

d
Dy =c- I + /\Dt 4.3)

with Aﬁt in place of 5,. The same calculation from above shows that

d? _
D = —1at A2D2 4 Ac[D, ulu™"

Since D2 > 3%6, it follows that

3n2 n 3n2A2 8
> A2 A= = 1——).
R 16 Az 16 ( 3n)t)

If we want to be explicit about the dependence of [}, on the unitary u, we shall write

D)., instead of Ip,.
Let v = 1 be the trivial unitary on X . Define the operator

d ~
=c— + AD.
¢)L,v Cdl‘ +

A similar (in fact simpler) calculation shows that

2 2 n?
lpl,v > A I

on C=(S! x X°.§).
Consider the doubling ¥ = M x S = X Usx (—X) of X, where —X is a copy of X
but with the opposite orientation. Extend'' the Riemannian metric on X to a Riemannian

"To be precise, we fix a copy of X inside of &£ and equip it with the Riemannian metric given by the
assumption. Then we choose any Riemannian metric on X that coincides with the Riemannian metric on
this chosen copy of X.
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metric on X. The reader should not confuse the copy of S! appearing in ¥ = M x S!
with the copy of S! appearing in S! x X° = S! x M x (0, 1). Note that the Riemannian
metricon ¥ = M x S! does not have positive scalar curvature everywhere in general. But
X is a closed manifold, so the usual higher index theory apphes More precisely, by the
construction of u = e2'?_ it extends trivially to a unitary u on X:=MxS! by setting it
tobe 1 in SE\X . Let D% be the Dirac operator on %. We define

d ~ ~ ~ ~
pE=c. Pl D* where D¥ :=tD¥* + (1 —t)uD*u!

Similarly, let v = 1 be the trivial unitary on X and define

X d Nx
=c.— + D%
Dy, =c T
Claim. Indp(BY) = Indp(DM™) in K,_{(C}(T")), where ' = m M and DM is the
Dirac operator on M.

This can be seen as follows. The higher index Indr (lﬁf) is independent of the choice
of the Riemannian metric on ¥, since ¥ = M x S! is a closed manifold. Furthermore,
if {us}o<s<1 is a continuous family of unitaries on X, then Indp (Dfo) = Indr (lﬁfl) €
Ku—1(C}(I')). Therefore, without loss of generality, we assume the Riemannian metric
on ¥ = M x S! is given by a product metric gps + dx? and assume'” the unitary 11 on
¥ is given by the projection map X = M x S! — S! C C. In this case, the operator lDf
becomes

(c%—i—DtSl)@l—i-l@ﬁM
where DS' = tDS' + (1 —1)e?™1% DS" =210 and 6 is the coordinate for the copy of S!
appearingin ¥ = M x S!. Recall that the index of the operator ¢ d -+ DS is equal to the
spectral flow of the family {D }o<z<1, which has index 1 (cf. [1, Section 7]). Therefore,
it follows that
Indr (%) = Indr (DM)  in Ky—1(C(I).

The same argument also shows that
Indr(B3) =0 in K,—1(C(I)).
We conclude that
Indr (BF) — Indr (B5) = Indr (DM)  in K,y (CF(T)).
On the other hand, since we have assumed that

8
—=C +4n
width(X) > 32—
n

12This can be achieved by a homotopy of unitaries on .
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the operators IDf and IDf coincide on the r-neighborhood N, (X\ X) of X\ X, where we

have
4C

V3n

as long as € chosen at the beginning of the proof is sufficiently small. In particular, we see

that
r [3n2)2 8
(- ) s ¢,
x\/ 16 ( 3nA>>

as long as A is sufficiently large. Now it follows from Theorem 3.5 and Remark 3.6 that

r >

Indr (B3) — Indr (B5) = 0

in K,—1(C;(T")). We arrive at a contradiction, since Indp (DM) = 0 by assumption. This
finishes the proof. |

Remark 4.2. Let us discuss how to adjust the proof of Theorem 4.1 for the real case.
Roughly speaking, we replace the imaginary number i = V=1 by the matrix I = (_01 (1))
while viewing I as a matrix acting on a 2-dimensional Z /2-graded real vector space. For
example, multiplication by the complex number 2%
space is replaced by the operator e27*I acting on a 2-dimensional Z /2-graded real vector
space. More precisely, let us describe such a modification in terms of Clifford algebras. Let
C/, s be the real Clifford algebra generated by {ej, ez, ..., e,+s} subject to the following
relations:

on a 1-dimensional complex vector

—28; if j <,
ejer +erej = { Tk I =

+28;  ifj >
To be clear, our convention for the notation of Clifford algebras is consistent with
that of [17]. In particular, C{, := C{, o stands for the Clifford algebra generated by
{e1,e2,...,e,} subject to the following relations:

ef:—l and ejex +ejep =0 foralll < j k <n.

In terms of Clifford algebras, we define I = eje, in Cly ». The operator D in line (4.1)
now becomes

d ~
mZC'E“‘Dt,

where ¢ € C{y, is the Clifford multiplication of the unit vector d/dt and
D, =tD+(1-0UDU™!

with U = ¢?**1#(X)/¢ 1n particular, the operator B is a C{, 4 »-linear Dirac-type oper-
ator and its higher index lies in KO,—1(Cp,(I'; R)). The same remark applies to other
similar operators that appeared in the proof of Theorem 4.1. With these modifications, the
proof for the real case now proceeds in the same way as the complex case.
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Now we are ready to prove Theorem II.

Theorem 4.3 (Theorem 11). Let X be an n-dimensional compact connected spin manifold
with boundary. Suppose f: X — [—1,1]™ is a smooth map that sends the boundary of X
to the boundary of [—1,1]™. Let d;j+, j = 1,...,m, be the pullbacks of the pairs of
the opposite faces of the cube [—1, 1. Suppose Yy, is an (n — m)-dimensional closed
submanifold (without boundary) in X that satisfies the following conditions:

1) v:m(Yy) — 71 (X) is injective, where t is the canonical morphism on w1 induced
by the inclusion Y4, — m1(X);
(2) Yy is the transversal intersection of m orientable hypersurfaces Y; C X, 1 < j <m,
such that each Y; separates 0;_ from 0;4;
(3) the higher index Indr(Dy, ) does not vanish in KOp—m(Cy,
T (th)-
IfSc(X) > n(n — 1), then the distances £; = dist(d;—, 0, ) satisfy the following inequal-

(I'; R)), where T =

ax

ity:
21 n?
Z E_Z = 8 2°
Consequently, we have
8
—=C +4n
min dist(d;_. d;1) < vmL———
1<j<m ‘ n

Proof. For simplicity, we shall prove the theorem for the complex case, that is, com-
plexified Dirac operators instead of C{,-linear Dirac operators. For the real case, see
Remark 4.2.

We first show that the general case where ¢: 71 (Yy) — m1(X) is injective can be
reduced to the case where t: 771 (Yy,) — 71 (X) is split injective.'? Let X,, be the universal
cover of X . Since by assumption ¢: 771 (Y4) — 71 (X) is injective, we can view [' = 1 (Yy)
as a subgroup of 1 (X). Let Xr = X,,/ " be the covering space of X corresponding to
the subgroup I' C 71 (X). Then the inverse image of Yy, under the projection p: X — X
is a disjoint union of covering spaces of Y}, at least one of which is a diffeomorphic copy
of Yy . Fix such a copy of Yy in Xr and denote it by ?rh- Roughly speaking, the space
X1 equipped with the lifted Riemannian metric from X could serve as a replacement of
the original space X, except that X1 is not compact in general. To remedy this, we shall
choose a “fundamental domain” around Y, 4 in XT as follows.

By assumption, Y4 C X is the transversal intersection of m orientable hypersurfaces
Y; C X.Letr; be the distance function'* from 9;_, that is r; (x) = dist(x, d;_). Without

BWe say : 1 (Yy) — m1(X) is split injective if there exists a group homomorphism w: 7 (X) —
71 (Yy) such that @ ot = 1, where 1 is the identity morphism of 73 (Y).
!4To be precise, let r; be a smooth approximation of the distance function from d;_.
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loss of generality, we can assume Y; = rj_1 (a;) for some regular value a; € [0, £;]. Let
YjF =p! (Y;) be the inverse image of Y; in Xt. Denote by 7; the lift of r; from X to
Xr. Let Vr; be the gradient vector field associated to 7;. A point x € Xr is said to be
permissible if there exist a number s > 0 and a piecewise smooth curve c: [0, s] — X
satisfying the following conditions:

i ¢(0) e ’Y\rh and c(s) = x;
(i) there is a subdivision of [0, 5] into finitely many subintervals {[tx, fx+1]} such
that, on each subinterval [tg, tx 1], the curve c is either an integral curve or a

reversed integral curve' of the gradient vector field V7;, for some 1 < iy <m,
where we require iz ’s to be all distinct from each other;

(iii) furthermore, when c is an integral curve of the gradient vector field V7;, on the
subinterval [tg, fx+1], we require the length of ¢|[;, 5, , ] to be less than or equal
to (€, — a;, — %); and when ¢ is a reversed integral curve of the gradient vector
field Vr;, on the subinterval [f, 1], we require the length of ¢|;, ;. ,] to be
less than or equal to (a;, — %).

Tkt

Let T be the set of all permissible points. Now 7" may not be a manifold with corners.
To fix this, we choose an open cover U = {Uy }4epa of T by geodesically convex metric
balls of sufficiently small radius § > 0. Now take the union of members of U = {Uy }qen
that do not intersect the boundary 07" of T, and denote by Z the closure of the resulting
subset. Then Z is a manifold with corners which, together with the subspace ?,h C Z, sat-
isfies all the conditions of the theorem, provided that £ and § are chosen to be sufficiently
small. In particular, the intersection YjF N Z of each hypersurface YjF with Z gives a
hypersurface of Z. The transversal intersection of the resulting hypersurfaces is precisely
Y4 C Z. Furthermore, note that the isomorphism I' = m(Yy) = mi(XT) =T factors
as the composition
m(Y§) = mi(Z) > m(XD),

where the morphisms 4 (Ydls) — m1(Z) and 71 (Z) — m1(X") are induced by the obvi-
ous inclusions of spaces. It follows that m; (Ydl]‘) — m1(Z) is a split injection. Therefore,
without loss of generality, it suffices to prove the theorem under the additional assumption
that ¢: 71 (Yg) — 71(X) is a split injection.

From now on, let us assume ¢: I' = 1 (Yy) — 71(X) is a split injection with a splitting
morphism w: 71 (X) = m1(Yy) = T Let X be the Galois I'-covering space determined
by w:m1(X) — I. In particular, the restriction of the covering map X—>XonY, h gives
the universal covering space of Y.

5By definition, an integral curve of a vector field is a curve whose tangent vector coincides with the
given vector field at every point of the curve. A reversed integral curve is an integral curve with the reversed
parametrization, that is, the tangent vector field of a reserved integral curve coincides with the negative of
the given vector field at every point of the curve.
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Without loss of generality, assume Yy is the transversal intersection of m orientable
hypersurfaces ¥Y; C X, 1 < j < m such that each Y; separates d;_ from 0,4 and

£ £
dist(d;—, Y;) > 7’ —¢ and dist(d;4,Y;) > 7’ —¢
for some sufficiently small ¢ > 0. Furthermore, without loss of generality, we assume

{1 = min {;.
1<j<m

Let us set .
g% 1/2
j=1"J

Assume to the contrary that

2 (8 2
that is,
2
l . L2 < n—
& (XC+ 471)2.
V3
Therefore, we have
8
(—C + 471)
min 6 =0 >3 (4.4)
1<j<m n

Foreach 1 < j <m, let ¢j: X — R be a real-valued smooth function such that (cf. [8,
Proposition 2.1])

M ldeill =1,
(2) ¢j(x) = 0 for all x between Y; and 0;_ with dist(x,Y) > 2Z& 4 ¢,
(3) and ¢(x) = 4”L for all x between Y; and d; 4 with dist(x, Y) > Z”L + &.

Let us fix a sufﬁmently small ¢ > 0 and denote the lift of ¢; from X to X still by ¢;.
Define the function

j (x) =exp(wZ i (x))
on X. We have
~ I’l(l I’lﬁl
D’ ; = d | = —— -.d <
103l = s | = 575V oy = 570
and 0
ID.u 'l <

T 2Le;C
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Let T™ = S! x --- x S! be the m-dimensional torus. Consider the following differential
operator on T x X %

“9
D= chg + Dt tortm
j=1

where ¢; is the Clifford multiplication of the unit vector 3%_ and Dy, 4,.... 1, is inductively
defined as follows. We define

5;1 = tlﬁ + (1 — tl)ulﬁul_l
and
Dtl,lz ..... tr = tk(Dll ..... lk*l) + (1 - tk)uk(Dtl,...,lk,l)ulzl

for (t1,...,tm) € [0, 1]™. Here we have chosen the parametrization S! = [0, 1]/{0, 1}.
By the assumption Sc(X) > n(n — 1) and the estimates in Example 3.7, we have

52" -mingex Sc(X) - 2
- 4(n—1) -

By the calculation in the proof of Theorem 4.1, we have

n
4

D2 =1,D* + (1 —tp)uy D*ui + 611 — t)[D, uy'][D. uy].

It follows that 2 22
b
4 161243
Note that
[ﬁt] ) u2] = tl [57 u2] + (1 - tl)ul[ﬁ’ Mz]ul_l,

which implies that

~ ~ nZl
I[Dsy u2lll < I[D,u2]ll < 2Ll

By induction, we conclude that
202
~ n nly
Db = 74~ (Z 16L2£2.)
Jj=1 J
for each 1 < k < m. In particular,
~, n “ n2(3 3n?
Dy, sz__<Z 22)=_~
4 ia 16L2¢5 16

By applying the same rescaling argument as in line (4.3), we conclude that there exists
K > 0 such that

m m ~
92 ~ 0D 3n2)?
L D R B T
= 01} = 0t 16

on C2(X°.5).
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Similarly, for each 1 < j < m, we define the operator

IDJ = E :Ct : tl,,..,?j,...,tm

i=1

where D oo} seeostm is defined the same way as D Hyeenst yeonrta EXCEPL that u; is replaced by
the trivial unitary v = 1. More generally, for each subset A C{1,2,...,m}, we define the
operator

lDA = th ron + DA
i=1
where D A is defined the same way as D 1 yoenst revostm EXCEPL that uy is replaced by the trivial
unitary v = 1 for every k € A. The same argument as above shows that
3n%)2
¢§\,l > 16 — AKn

for all A and A.

Now we consider the doubling X = X U (—X) of X and fix a Riemannian metric on
X that extends the metric of X. Of course, this metric on X generally does not satisfy
Sc(¥) > n(n —1). Let X be the corresponding Galois covering of X.

We extend each unitary u; to become a unitary 11; on X as follows. Recall that

uj(x)zexp(nZ z<p](x)) on X.

2L¢;
Let X; be the “partial” doubling of X obtained by identifying the corresponding faces
Or+ of X and —X for all 1 < k < m except the faces d;+. The space X; is a manifold
with corners, whose boundary consists of 04 (X;) and d_(X;). Extend the function ¢;
on the chosen copy of X to a real-valued smooth function (,ZJ ; on X; such that ¢;(x) =0
in an open neighborhood of d_(¥;) in X and ¢;(x) = *%= in an open neighborhood of
04 (X;). We define the unitary

. nty
uj(x) = exp(ng ig;(x )) on X;.

By construction, the unitary 1; = 1 near the boundary of X;, hence actually defines a
unitary'® on X, which will still be denoted by ;. Let us denote the lift of 2, to x by
u; (x). Then u; is a unitary on ¥ whose restriction on X is u; J

We consider the following differential operator on T™ x x:

Z(’]a +Dt112 ..... tm

16We do not require |d ¢; || < 1 on £\ X, where the norm ||d ¢; || is taken with respect to the Riemannian
metric on X.
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is inductively
m

where ¢; is the Clifford multiplication of the unit vector % and D txl faot
7 A2y

defined as follows: B 5 5

DF =, D* + (1 — ty))u; D*uy!
and - ~ ~

Dtl,tz,..,,tk = tk(Dtl,...,tk,l) +(1- tk)uk(Dtl,...,tk,l)uI:I
for (t1,...,tm) € [0, 1]™. More generally, for each subset A € {1,2,...,m}, we define
the operator
x “ 0 ~x
=) ¢i—+D
where 5% is defined the same way as 5% ..... b}t SXCEPE that u is replaced by the trivial
unitary v = 1 for every k € A. See Figure 1 for the case where m = 2.
Let us compute the index

S D™ ndr(BY) 4.5)

AC{1,2,...,m}

in KOy (Cyr\ (I')), where |A] is the cardinality of the set A. Since X is a closed man-
ifold, the index in line (4.5) does not change if we deform the unitaries u; through a
continuous family of unitaries. In particular, we can deform the unitaries 11; through a
continuous family of unitaries so that each 1; becomes trivial (that is, equal to 1) outside
a small neighborhood of the hypersurface ¥Y); in X, where %); is the doubling of Y;. Now

LRI [N

x x
Indr (B 5y) —Indr (D))

—Indr(ﬁﬁ}) Indr(l,7)§)

Figure 1. An illustration of the indices in the m = 2 case where the horizontal (red) lines represent
the unitary 111 and the vertical (blue) lines represent the unitary u,.
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we identify a small tubular neighborhood of Y4 in X with an open set in Y4, x T™. By the
usual relative higher index theorem for closed manifolds (cf. [3,33]) or alternatively the
proof of Theorem 3.4, we can reduce the computation to the corresponding operators on
the closed manifold Y x T™. Hence it remains to compute the index

Yy xT™
> D™ Indr (B
AC{1,2,....m}
where ZDX’“XT is the obvious analogue of Di Now to simplify the computation even
further, we deform the metric on Y4 x T to a product metric. In this case, the operator

Y, xT™
pt becomes

m

ad ~ ~

> (cjg +ujDS1uj‘1> 1418 DY
j

on the space T™ x Yy x T™, where without loss of generality we can assume 11; to be
the smooth function obtained by projecting to the j-component of T™,

Y4 xT™ — S! cC.

The operator Z;’;l(cja% + uj DSluJ-_l) has index 1 (cf. [1, Section 7]). Therefore, it
follows that
Indr (B""") = Indr (DY) € Ky (C, (T)).

max

Similarly, one can show that

Y xT™
Indp (mAth ) =0
whenever A is a proper subset of {1, 2, ..., m}. To summarize, we have
Y. DM Indp(BR) = Indr (D),

On the other hand, we have (cf. line (4.4))

L(ZC +4n)
min 4 =@ > B
1<j<m n

Furthermore, by appropriately choosing the metric on X that extends the metric on X, we
can assume that
L (% C + 4m)
suppx\ x (1; — 1) and suppg\ y (ux — 1) are at least — apart
forall j # k, where suppy\ x (1; — 1) is the support of (11; — 1) in X\ X. Now we apply
the same argument as in the proof of Theorem 3.4 (and Remark 3.6) and iterate the differ-
ence construction from Lemma 4.4 below. It follows that

> D™ ndr(BY) =0
AC{1,2,....m}

in Ky—m(Cyr . (I')). We arrive at a contradiction, since Indr (DYh) # 0 by assumption.
This finishes the proof. ]
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Lemma 4.4 (cf. [14, Section 6]). Let p1 and p, be two idempotents in a Banach alge-
bra B. Then we have

[p1] = [p2] = [E(p1, p2)] — [Eo]
in Ko(B), where

1+ pa(pr—p2)p2 0 p2p1(p1 — p2) 0
0 0 0 0
E(pq, = (4.6)
PeP) = G = ppips 0 (1= p2)(pi— p2)(1—p2) O
0 0 0 0
and
1 0 0O
0 0 00
Eo =
o o0 o0
0 0 0 O
Proof. Consider the invertible element
pz O 1 — pz O
U = I P2 0 0 D2
O O pz 1 — p2
0 1 0 0
whose inverse is given by
2 1—p2 o 0
0 0 0 1
Ul =
1-— P2 0 P2 0
0 P2 1-— P2 0
A direct computation shows that
D1 0 0 0
110 1—p 0 O
E =U~! .
(p1,p2) =U 0 0 0 0 U
0 0 0 0
This proves the lemma. ]

5. Proofs of Theorems IV and V

In this section, we prove Theorems IV and V. Let us first recall the following notion of
subsets with the wrapping property, which was introduced in Definition 1.3.
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Definition 5.1 (Subsets with the wrapping property, cf. Definition 1.3). A subset X of
the standard unit sphere S” is said to have the wrapping property if X is strongly non-
separating (cf. Definition 1.2) and furthermore there exists a smooth distance-contracting
map ®: S” — S” such that the following are satisfied:

(1a) if n is even, @ equals the identity map on N (X);

(1b) if n is odd, ® equals either the identity map or the antipodal map on each of the
connected components of N¢(X);

(2) and'” deg(®) # 1.

Loosely speaking, the class of subsets in S” with the wrapping property includes all
“reasonable” geometric subsets of S” whose sizes are “relatively small”. For example,
Lemma 5.3 below gives a sufficient geometric condition for a subset to satisfy the wrap-
ping property. Let us first fix some terminology.

Definition 5.2. Consider the canonical embedding of the unit sphere S” inside the Euclid-
ean space R"*!. For each unit vector v € R"*!, denote by V,- the linear subspace of
R™*1 that is orthogonal to v. We define an equator [E of S” to be the intersection of V;-
and S” for some unit vector v € R**1,

Lemma 5.3. Let X be a strongly non-separating subset of S". If N.(X) is contained in a
geodesic ball of radius < 7 for some (hence for all) sufficiently small & > 0, then ¥ has
the wrapping property.

Proof. By assumption, for each sufficiently small ¢ > 0, there exists a geodesic ball B of
radius r < 7 that contains Ng(X). Without loss of generality, we assume that there is an
equator [ such that B is contained in a hemisphere determined by [E and dist(B, E) > 2e.
Let us denote the center of B by xo. Consider all geodesics in S” of length < s that
originate from xy, that is, all the shortest geodesics starting at xo and ending at the antipo-
dal point of xo. Now we shall “wrap” the geodesics to define a distance-contracting map
®: S” — S” such that ® equals the identity map on B and its image ®(S") lies in the
hemisphere that contains B. In particular, ® is not surjective, hence deg(®) = 0.

More precisely, let us first consider a smooth function f”:[~%, 5] — [~1, 1] such that
(cf. Figure 2)

(1)  f’isodd, thatis, f'(—t) = —f'(¢),

(i) f'(z) =—1forall? € [e, 7],

(iii) and f'(t) <Oforallz € [0, Z].
Define f:[-7, 5] — R by setting

fo=-3+[ roa.

(SIE}

17For example, if ® is not surjective, then clearly deg(®) = 0 # 1.
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Figure 2. The graph of f”.

For each shortest geodesic y going from Xy to its antipodal point, we parametrize y by its
arc length so that the intersection point of y with the equator [E becomes the origin of the
interval [—7, 7] and xo becomes —7 with respect to the parametrization. Now we define
®p: S" — S” by setting

P (y(1) =y(f (1)) (6.D
for each ¢ € [-7, 7]. For later references, let us call ®g a wrapping map along the equa-
tor E. For brevity, let us denote it by ®. By construction, the wrapping map

o:S" - S”
is a smooth'® distance-contracting map such that ® equals the identity map on B and
®(S") lies in a hemisphere, hence deg(®) = 0 # 1. This finishes the proof. ]
Example 5.4. By Lemma 5.3, the following subsets of S” have the wrapping property:
(a) an open or closed geodesic ball of radius < 7,
(b) any compact simplicial complex of codimension > 2 that is contained in a geodesic

ball of radius < %

For odd dimensional spheres, the following collection of subsets also satisfy the wrap-
ping property.

Lemma 5.5. Let S be a strongly non-separating subset of S?+1. Let {E;}1<j<2k+2 be
a collection of (2k + 2) mutually orthogonal equators of S***1 so that they divide S?*+1
into 2@k+2) regions. If Ne(X) is contained in an antipodal pair of such regions for some
(hence for all) sufficiently small € > 0, then X satisfies the wrapping property.

Due to the specific properties of f, the map @ is smooth everywhere. In particular, ® is smooth at the
antipodal point of xg.
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Proof. Since by assumption N, (X) is contained in a pair of antipodal regions determined
by the equators {IE; };<; <ok +2, We can choose a wrapping map ®g; associated to E; as
defined in line (5.1) for each 1 < j < 2k + 2 such that their composition

® =P, 0oPg,0---0Pg,, .,
satisfies the desired properties (1b) and (2) in Definition 5.1. This finishes the proof. =

Example 5.6. By Lemma 5.5, the following subsets of an odd dimensional sphere S?¢+1
have the wrapping property:

(a) a pair of antipodal points on S2K+1,
(b) a pair of antipodal geodesic balls of radius < % in S2k+1,

(c) any compact simplicial complex of codimension > 2 that is contained in a pair of
antipodal geodesic balls of radius < Z in %1,

For a given ¢ > 0, the geometry of the e-neighborhood N.(X) of X can be very wild,
in particular at the boundary dN,. However, by enlarging or shrinking N (X) if necessary,
we can in fact always find small neighborhoods of X that are manifolds with boundary or
manifolds with corners.

Lemma 5.7. Let ¥ be a subset of S"™. Then for any sufficiently small ¢ > 0, there is a
subspace X C S"™ with ST\ N»¢(2) C X¢ C S"\N¢(X) such that X, is an n-dimensional
compact manifold with corners. Furthermore, if Ng(X) is non-separating for all suffi-
ciently small ¢ > 0, then X, can also be chosen to be path-connected for all sufficiently
small ¢ > 0.

Proof. Let U = {U;} be an open cover of m consisting of geodesically convex balls
of radius < 5. Note that N¢(X) is closed in S”, hence compact. It follows that Ne(Z)
admits a finite open cover V consisting of finitely many members of U. Without loss of
generality, we assume

VNAN(Z) # @

for each member V' of V. Denote by W the union of all members of V. Then the closure
W of W is contained in Noo(X).

Define X, to be S”\W. By construction,'” X, is an n-dimensional compact manifold
with corners under the metric inherited from S” such that

S"™\N2e(X) C Xo C S"\Ne(2).

Furthermore, the above construction shows that if S"\ N,.(X) is path-connected, then X,
is path-connected. ]

YWe do not rule out the possibility that X, could be the empty set.
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Now we are ready to prove Theorem IV, which answers positively an open question
of Gromov, cf. [9, page 687, specific problem] and [10, Section 3.9].

Theorem 5.8 (Theorem IV). Let Y be a subset of the standard unit sphere S™ contained
in a geodesic ball of radius r < Z. Let (X, go) be the standard unit sphere S" minus 3.
If a (possibly incomplete) Rzemanman metric g on X satisfies that

(1) there is a Ay -Lipschitz homeomorphism ¢: (X, g) — (X, go),

(2) and Sc(g) = n(n — 1) = Sc(go),

then
e G
n
where*? )
8C
Cr=F5—=
(7 —r)?

and C is a universal constant from Theorem 1. Consequently, the lower bound for A,
approaches 1, asn — oo.

Proof. We prove the theorem by contradiction. Assume to the contrary that

C,
An 1— PR
To avoid ambiguity, let us denote (X, gog) by X for the rest of the proof.
Let us first prove the even dimensional case. Recall the C¢,,-Dirac bundle Eqy over S”,

Eo = Pspin(S") x¢ Cly (5.2)

where £: Spin,, — End(C¢{,) is the representation given by left multiplication. Equip Ey
with the canonical Riemannian connection determined by the presentation £: Pgpi, (S™) —
End(C{,). Furthermore, when n is even, E carries a natural Z/2-grading Eq = E; e
E . By the Atiyah-Singer index theorem [2], the index of the twisted Dirac operator DS
is nonzero (cf. [19, equation (4.7)]).

We shall give an explicit description of the bundle E¢ as a sub-bundle of a triv-
ial vector bundle over S” so that Ey can be viewed a projection p in My (C(S")) =
M. (C) ® C(S™), where C(S™) is the C*-algebra of continuous functions on S”. Con-
sider the canonical embedding of the unit sphere S” inside the Euclidean space R”*1.
Let V = R**1 x C{, be the canonical C£,-Dirac bundle over R”*!. Clearly, V is
a trivial vector bundle. Let us still denote by V' the restriction of V' on S”. Then we see
that Ey is a sub-bundle of V. Denote by v the outward unit normal vector field of S” in

Difn = d1m S” is 0dd, our proof of Theorem 5.8 in fact shows that we can improve C; to be %

instead of r)2 .



Z. Xie 642

R”*1 Then Ey is isomorphic to the sub-bundle of V' determined by the following Bott
projection’!
iclv) +1
Pn=—"7" (5.3)

where ¢(v) is the Clifford multiplication of v on V = S” x Cl,41.
By assumption, X is contained in a geodesic ball B,(xg) centered at xo of radius
r < 7. Let us define
X, = Sn\B(r)+%(x0)

where B? bs (xo) is the open geodesic ball centered at xo of radius (r + ). By the proof
of Lemma 5.3, there exists a smooth distance-contracting map ®: S” — S” such that

(1) @ equals the identity map on the (5 — r — &)-neighborhood of S"\ X ,;
(2) and deg(®) # 1.

In order to apply the relative index theorem (Theorem 3.4), we shall view X, as a
(topological) subset of the n-dimensional sphere. Since (X,, g) is an n-dimensional mani-
fold with boundary, we can extend the Riemannian metric g on X, to a Riemannian metric
on the sphere. Let us denote by & the resulting n-dimensional sphere with this new met-
ric gg. Of course, the metric gg generally does not satisfy the Lipschitz bound and scalar
curvature bound on the complement of X, in &, when compared to the standard metric gg
on S". Consider the (set-theoretic) identity map

1:6 - S".

The pullback bundles of V' by the map 1: & — S” and the map ® 0 1: © — S” are identi-
cal, since V is a trivial vector bundle with its canonical trivial connection. We shall denote
this pullback bundle on @ by W = & x C¥,,4 from now on. Let § be the spinor bundle
of (&, ge).

Let p; = (1)*(pn) and py = (O o 1)*(py) be the projections induced from the Bott
projection p, on S”, by the maps 1 and ® o 1 respectively. By construction, we have
p1 = p2 on the (5 — r — ¢)-neighborhood of G\ X,. The projections p; and p, can be
viewed as endomorphisms of the bundle § ® W. More precisely, the bundle homomor-
phism1 ® p;:S @ W — § ® W satisfies that (1 ® p;)> =1® p, and (1 ® p;)* =1 ® p;,
for j =1,2. Now consider the twisted Dirac operators Dy, := p; Dp;. Furthermore, since
n is even, the bundle p; W carries a natural Z /2-grading inherited from the Z/2-grading

on Ey. We have
0 D;j
Do =\ps o
Pj

with respect to the decomposition p; W = (p; W)™ & (p; W)™.

The commutator [D, p;] is an endomorphism of the bundle § ® W. Denote by [D, p;]«:
S W)y = (§ ® W), the endomorphism at the point x € &. A key step of the proof is
the following estimate for the operator norm of [D, p;] for every point x € X,.

2170 be precise, the K-theory class of p, is a nonzero multiple of the actual Bott generator of K°(S").
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For each x € X,, we can choose a local go-orthonormal tangent frame {e,,...,¢,}
for T X, and a local g-orthonormal tangent frame {ey, ..., e,} for TX, near x such that
foreach 1 < k < n, we have

Li(ex) = prey
for some pug > 0. Since 1: (X, g) - (X

X, go) is A,-Lipschitz, we have ux < A, for all
1 <k < n.If we write

n
D=7} cler)Ve,.
k=1
then we have

1D, w1l = | D [mkcles) Vey. pal,
k=1

A similar conclusion holds for p,, since ® o 1: (X, g) — S” is also A,-Lipschitz.

Claim 5.9. We have )L
n .
1D, pjlxll < L

for all x € X, and for both j =1, 2.

By the discussion above, we need to estimate

| 2 [uwc(en)Vey. pal, (54
k=1

for each x € S™. Recall that v is the outward unit normal vector field of S” in R?*!. In

particular, at a point x = (x1,X2,...,X,+1) € S® C R"*!, we have
n+1
c)x = ) Xilx
k=1

where ¢; is the Clifford multiplication of the unit vector % on V =S" x Cly,4 from
the right. Since SO(n + 1) acts transitively on S”, it suffices to estimate the term in line
(5.4) at the point x = (0,...,0,1) € S" C R”*1 At this point x, after a local coordinate
change if necessary, we have”

n n a
D nke(e)Ve, = ) Pkcrg
k=1 k=1

where ¢y is the Clifford multiplication of the unit vector % on the spinor bundle of S”

from the left. We conclude that

n

. n a . n
> [ic(er) Ve, Pal, = lz > [Mkckaﬂ_’(v)]i = % D bk ® T
k=1 k=1 j=1

22Here the term d/9x,+ does not appear, since it is in the normal direction.
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Since ||cx ® ¢ || = 1 forall 1 < k < n, it follows that

2 - 2

n
H > [kc(er) Ve, pa,
k=1 B

This proves the claim.
For brevity, let us write p in place of p; in the following estimation. We have

(pDpfipDpf) = (pDpDpfinf)
(p[D.pIDp finf)+ (PD*p fipf)
—(Dpf.[D.plpf) + (pD*p finf)

(D f Do f) — 3D, plp [0, b0 ) + (0D?0 v )

2D 0) ~ S0, plp 1D, vl ).

% |

IV

By the inequality in line (3.2), we have

(D fovf) = ——=(Znfnf).

where « := Sc(g). It follows that

1 nk
(000 2 5 (30 gy ~ 109 D)) on CE(XLS @ pW).
Here, CX°(X3, S ® pW) is the space of compactly supported smooth sections of the sub-

bundle § ® pW C § ® W. By assumption, we have x = Sc(g) > n(n — 1). It follows

from Claim 5.9 that
1—2A2
1Dy, 0l = L2 55

forallv e C°(X3, S ® p; W) and for both j = 1, 2. Furthermore, the same conclusion
from line (5.5) also holds for both D+ and D .onCX(X7, S ®@p; W).
Since we have assumed that

C, . 8C?
A l—n—2 WlthCr:Tr)2

it follows that
1—A2
(z —r— s)n 4= >C
2 8
for some sufficiently small ¢ > 0. By construction, the operators DI and DJr coincide

P1
on the (5 — r — &)-neighborhood of &\ X. It follows from Theorem 3.4 that

Ind(D;) —Ind(D})) = 0.
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On the other hand, by the Atiyah—Singer index theorem [2], we have
Ind(D;) —Ind(D{)) = (1 — deg(®)) - Ind (Di’o;) € Ko(X) =Z.
Since Ind(Di}) # 0 (cf. [19, equation (4.7)]), we conclude that
1 —deg® = 0.

This contradicts the fact that deg @ # 1. This finishes the proof for the even dimensional
case.

Now let us prove the theorem in the odd dimensional case. Since the key ideas are
similar to the even dimensional case, we shall be brief. Again, consider the canonical em-
bedding of the unit sphere S” inside the Euclidean space R"*1. Let V = R**! x C{,, 4,
be the canonical C¥¢,4-Dirac bundle over R”*1 Denote by v the outward unit normal
vector field of S” in R”*1. Since n + 1 is even in the current case, there is a canonical
Z /2-grading of V induced by the following element:

L htl
W =12 C1*Cpt1

where ¢; is the Clifford multiplication by the standard basis element e¢; € R"*!. Let us
write V = VT @ V~ for this Z /2-decomposition. Note that V™ and V'~ are trivial vector
bundles of the same dimension. In particular, we can choose a fixed unitary matrix U €
U, (C) to fiberwise identify ¥V and V' ~. Then a Bott element v,—a nonzero multiple of
a generator of K1(S") = K, (C(S™))—is given by the unitary

vy =ic(v) (5.6)

where ¢(v) is the Clifford multiplication of v on V' = S" x C{f ;.

Similar to the proof of Theorem 4.1, let us consider the following Dirac-type operator
on S x S™:

d
DZC‘E"'Dt

where c is the Clifford multiplication of the unit vector d /dt and
D; :=tD%" + (1 =1)v,D%"v,™! (5.7)

for each ¢ € [0, 1]. Here we have chosen the parametrization S' = [0, 1]/{0, 1}. By the
Atiyah—Singer index theorem [2], we have

Ind(p) = /S A(S™) A ch(vy) # 0

where /T(S”) is the A-form of S" and ch(vy,) is the odd dimensional Chern character
of v,.

Let X, and & be as above. Also, denote by W = & x C{;, ; the pullback bundle of
the trivial bundle V' *. Pull back the unitary v, by the maps 1: @ — S" and ® 0 1: & — S”"
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and denote the resulting unitaries by v; = 1*(v,) and v, = (® o 1)*(v,,) respectively. By
construction, we have v; = v, on the (5 — r — &)-neighborhood of &\ X.
Consider the Dirac-type operators

X d
Dv}- :C'E—'_va,t
on S! x &, where
Dy, s =1D + (1 —t)v; Dv; ",

for j = 1, 2. In particular, E)fl and 1253,(2 coincide on the (% — r — &)-neighborhood of
S! x (\X¢). Now the same calculation as in the proof of Theorem 4.1 shows that

2

d
2 _
lﬁt,j =iz + ng,t + (:[D,vj]nj1

with
D2, =tD*+ (1—1t)v; D*v; " +t(1 = )[D,v;][D. v;"],

cf. line (4.2). It follows that
2 n n=.s N oo (gl
Dy > ———A Z(l_A")T on C(S" x X¢, S @ W).

Similar to the rescaling argument from (4.3), for each y > 0, we define the rescaled
version of ; to be
d
lpv;,u =c- E + MDnj,t-
The same calculation as above shows that

n? n
(Bo; ) = (1 —Aﬁ)T —Hu5 on CR(S' x X, S @ W).

Now, by applying the quantitative relative index theorem (Theorem 3.4), the rest of
the proof for the odd dimensional case proceeds in the same way as the even dimensional
case. We conclude that

4C?2
A > (1l — ————
NG
where C is the universal constant from Theorem I. This completes the proof of Theo-
rem 5.8. ]

In the case where n = dim S” is odd , the same proof for the odd dimensional case of
Theorem IV in fact also proves the A-Lipschitz rigidity of positive scalar curvature metrics
on S”\ ¥ when ¥ is a subset of S” contained in a pair of antipodal geodesic balls of radius

ki1
r<g.
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Theorem 5.10. Let S” = S?**1 be an odd dimensional standard unit sphere. Let X be
a subset of the standard unit sphere S"™ contained in a pair of antipodal geodesic balls of
radius r < %. Let (X, go) be the standard unit sphere S™ minus . If a (possibly incom-
plete) Riemannian metric g on X satisfies that

(1) there is a A,-Lipschitz homeomorphism ¢: (X, g) — (X, go),
(2) and Sc(g) = n(n — 1) = Sc(go),

then
[ G
An > 4/1— pey
where )
4C
“=E_

and C is the universal constant from Theorem 3.4.

Proof. By assumption, X is contained in a pair of antipodal geodesic balls of radius r < %.
Let X, C S"\X be the closed subset of S” with two antipodal open geodesic balls of
radius (r + %) removed. By the proof of Lemma 5.5, there exists a smooth distance-
contracting map ®: S"” — S” such that

(1) @ equals either the identity map or the antipodal map on each path component of
the (¥ — r — ¢)-neighborhood of S"\ X ,;

(2) and deg(®) # 1.

We view X, as a (topological) subset of the n-dimensional sphere and extend the
Riemannian metric g on X, to a Riemannian metric on the sphere. Let us denote by &
the resulting n-dimensional sphere with this new metric gg. Moreover, let v, be the Bott
unitary defined in line (5.6).

Similar to the proof for the odd dimensional case of Theorem 5.8, we pull back the
unitary v, by the maps 1: © — S” and ® 0 1: © — S” and denote the resulting unitaries
by v1 = 1*(v,) and vy = (® o 1)*(v,,) respectively. By construction, we have v; = £v,
on the (¥ — r — &)-neighborhood of &\ X.

Consider the Dirac-type operators

X d
lej :C'E—i—DnJ.,t
on S! x &, where

Dy, s =1D + (1 —t)v; Dv; ",

for j =1, 2. In particular, ﬁfl and 1253,(2 coincide on the (% — r — &)-neighborhood of
S! x (&\X,), since v; = £, on the (g — r — ¢)-neighborhood of &\ X.

Now the rest of the proof proceeds the same way as the proof for the odd dimensional
case of Theorem 5.8. We omit the details. This finishes the proof. |
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As a consequence of Theorem 5.8, we have the following A-Lipschitz rigidity theorem
for hemispheres. This answers (asymptotically) an open question of Gromov on the sharp-
ness of the constant A, for the A,-Lipschitz rigidity of positive scalar curvature metrics
on hemispheres [10, Section 3.8].

Theorem 5.11 (Theorem V). Let (X, go) be the standard unit hemisphere S'}. If a
Riemannian metric g on X satisfies that

(1) there is a A,-Lipschitz homeomorphism ¢: (X, g) — (X, go),
(2) and Sc(g) = n(n — 1) = Sc(go),

then
.oy [, 8C?
)&nz(l—smﬁ) l—m

where C is the universal constant from Theorem 1. Consequently, the lower bound for A,
approaches 1, as n — 0.

This theorem is asymptotically optimal in the sense that the lower bound for A,
becomes sharp, as n = dim S” — oo. In particular, it significantly improves the lower
bound for A, in Corollary 1.1 when n = dim S” is large.

Proof of Theorem 5.11. Let Y be the subspace of the standard unit sphere S” with an
open geodesic ball of radius (5 — %) removed. It is not difficult to see there exists a
(1 —sin %)_1 -Lipschitz homeomorphism from S’ to Y. By composing with the map ¢:
(X,g) > (X, go), we obtain a A, (1 — sin %)_1—Lipschitz homeomorphism ¢: (X, g) —

(Y, go). It follows from Theorem 5.8 that

7 \~1 C,
S (N Y
n s1nﬁ > e
where?
c 8C?2 d b4 T
=——— and r=—— —.
T(E )2 2 Jn

In other words, we have

An > (1 —sin%)

This finishes the proof. ]

. . 2 . 2
BIfn = dim S” is odd, we can set C, = ,ﬁ‘# instead of ,,SL.
(F-1)? (5-1)?
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A. Friedrichs extensions in the maximal group C *-algebra setting

In this section, we show the existence of Friedrichs extensions of semibounded symmetric
operators in the maximal group C *-algebra setting.

More precisely, suppose X is an n-dimensional compact spin manifold with boundary
or corners. Let § be the C{,-Clifford bundle over X and D a C{,-linear Dirac-type oper-
ator acting on . Let X be a Galois I'-covering space of X and S (resp. D) the lift of §
(resp. D). By the Lichnerowicz formula, we have

D2 =V*V+ R

where R is a symmetric bundle endomorphism of S. For the rest of this section, let us
assume there exists o > 0 such that
—Do?
Ry > LD
forallx € X.

Definition A.1. We define H (f 0, 3 ) to be the completion of C2®° X 0, 3 ) with respect

to the Sobolev norm 1/2
ol = (/ o+ [ IWIZ) : (A
X X

Consider the Friedrichs extension F of D on Lz()? °8 ) with respect to the domain
H(X°,5). Let us write
|D|:= FY/2, (A2)

Then it is known that the domain Dom(| D|) of | D| is precisely H{} ()?0, 5), cf. [29, Chap-
ter 8, Proposition 1.10]. Note that the space H X °5 ) is the Sobolev H'! space of
sections that vanish on 09X , i.e., sections that satisfy the Dirichlet boundary condition.
It follows from a standard finite propagation argument that the wave operator ¢'//°! asso-
ciated to |5| has finite propagation, cf. [28, Chapter 2, Section 6].

Let 7 be a fundamental domain of X under the I'-action and p the characteristic
function of ¥ . Define p, to be the y-translation of p, that is,

py(x) = p(y~"x).
For a given a € R, let us write T = (|5| +ia)~!. We define
T, =py,o0Top. (A3)

In the following, we shall fix a length metric /: I' — R on I'. Then there exist Ar > 0
and Br > 0 such that

AR' - dist(yF, F) — Br <I(y) < Ar - dist(y ¥, ¥) + Br (A.4)

forall y € I', where dist(y ¥, &) is the distance between the two sets y ¥ and ¥ measured
with respect to the given Riemannian metric on X .
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Lemma A.2. Let T = (|5| +ia)™! as above. Then there exists a constant Cy > 0 such
that
T, < Cle—lal'AFI'l(y),

forally € T, where || T, || is the operator norm of the operator
T,:L*(X°.5) — L*(X".5).

Proof. If a = 0, the lemma is trivial. Without loss of generality, let us assume a > 0,
since the case where a < 0 can be treated exactly the same way. The Fourier transform of
f(x) = (x+ia) is

A _L —iéx — g —a§
F© == [R FOeE dx = —iv/2me (%)

where 0 is the unit step function

0 iff<0,

ve = {1 ifE > 0.

In particular, f and all of its derivatives are smooth away from £ = 0 and decay exponen-
tially as |§] — oo.

Let ¢ be a smooth function on R with 0 < ¢(x) < 1 such that ¢(x) = 1 forall |x| > 2
and ¢(x) = 0 for all |x| < 1. For each ¢t > 0, we define %, to be the function on R whose
Fourier transform is

he(€) = @(716) f(©).
For each fixed ¢t > 0, we apply functional calculus to define the operator R := h ,(|5|).
We have

R(v) = o(t7) f (@)e'1Ply dg

7 .
2 JR
forallv € Lz()’(“” §). Define

R, =p,oRop.

We see that there exists a constant C, > 0 such that

1 A
Ryl < lpyll- IR - 5—/ ! df < Cre™
IRy Il = Loyl - IRI - ol el OIfENdE =G
for all y € I'. By finite propagation of the wave operator e** D |, it follows that
T, =R,

for all but finitely many y € I'. More precisely, we have T),, = R,, for all y with [(y) >
Ar -t + Br. By varying ¢, it is not difficult to see that there exists a constant C > 0 such
that

” Ty ” < Ce—a~Afl~l(V)

forally e I'. ]
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For any given a # 0 € R, the range R(|5| +ia) of |5| + ia is equal to the whole
space L2(X °§ ), since |D| is self-adjoint. In particular, for each f € C>°(X °§ ), there
isv = (|D|+ia)"'(f) € Dom(|D|) such that

(D] +ia)(v) = f.

We define i%ﬁax (r:R) o be the completion of C®° X °5 ) with respect to the following
Hilbert C* (T'; R)-inner product

(fi. o) =D _(fi.vf2)y € Copy (T:R) (A.5)

yel
forall f1, f> € Cc"o(fo,g), where

(v = [ (A AG ) dx.

Let us define
10 llmax = (v, 0) "2
2
forv e "fC,:aX(F;R)'
The following lemma is a consequence of Lemma A.2.
Lemma A.3. If |a| is sufficiently large, then for every f € C° ()? °§ ), the element v =

(ID| + ia)~ () lies in L2 rmy

Proof. Let {py}yer be the characteristic functions as above. We have

v = Z Py V.
yell
Clearly, each p, v lies in $2C$ax(F;R), since p, v is supported on a metric ball of bounded
radius.
By Lemma A.2, a straightforward calculation shows that there exists a constant®*
Cr > 0 such that
(v.pv) = Cp - e IHAHE ) f 2,

where /() is the word length of  and the constant A" is defined in line (A.4). Since the
group " has at most exponential growth, that is, there exist numbers Kt > 0 and C, such
that

#lael (o) <n} < Crekrn

for all n € N. It follows that
[Wl1Za = (v v) =D (v Bv) B € i (T:R)
Bel

as long as |a| is sufficiently large. This finishes the proof. ]

*The constant Cy depends on f. More precisely, the constant Cy depends on the diameter of the
support of f.
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For each a € R such that |a| is sufficiently large, consider the operator

| D |max: &£ C* (TiR) _>=fc* (T;R)

max

defined by setting | D|max(v) = | D|(v) on the domain
Dom(| Dlmax) = C(X".8) + (1D] + i)™ (C(X".5))
where (|D| + ia)_l(Cé’o(fo, $)) consists of
{ve ‘fzc,;ax(F;R) :v = (|D| +ia)™" f for some f € Cfo(fo,g)}.

As an immediate consequence of Lemma A.3, we see that |D |max 1 well defined. More-
over, |D |max 18 an unbounded symmetric operator, since |D| is symmetric with respect to
the inner product from line (A.5).

Lemma A.4. For each a € R such that |a| is sufficiently large, the closure of |5|max is
regular and self-adjoint.

Proof. By construction, the operator (|D|max + ia) has a dense range. By [16, Lem-
mas 9.7 and 9.8], we conclude that the closure of | D |max is regular and self-adjoint. |

We have the following main result of this section.

Proposition A.5. Suppose X is an n-dimensional compact spin manifold with boundary
or corners. Let § be the CLy,-Clifford bundle over X and D a Cly-linear Dirac-type
operator acting on §. Let X be a Galois I'-covering space of X and s (resp. 5) the
lift of S (resp. D). Let R be the symmetric bundle endomorphism of s appearing in the
following Lichnerowicz formula:

D? = V'V + R.
Assume there exists o > 0 such that

R(x) > M
n

forall x € X. Then there exists a self-adjoint Friedrichs extension Fp.x of D2,

Frnax: fc* (TR) ™ ‘fc* (T;R)

such that the following are satisfied:

(D) 1 Fmax () lmax = 02| f lmax for all f € Dom(Fna),
(2) and the wave operator ¢'*'P! has finite propagation, where |D| = (Fpax)/2.
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Proof. Fix a € R such that |a| is sufficiently large. Let |5|,mlX be the operator from
Lemma A.4. We denote its closure by |D|. Let us define Fin, = |D|?. By construction,
the wave operator ¢*5!P! has finite propagation, since ¢’s!°! has finite propagation, where
|5| is the operator defined in line (A.2).

To prove the proposition, it suffices to verify

DI Imax = [ f llmax
for all v € Dom(|D|pax) = C2(X°,8) + (D] + ia) " H(CX(X°.§)). Given
v=fi+(D|+ia)" f3
for some f1, f» € Cfo(fo, §), we have
(IDlmax +ia)v = (D] +ia) fi + fo,
which implies

1D lmax(v) = —iav + (|D| +ia) fi + f»
=—iafy —ia(|D| +ia)"' fo+ (ID| +ia) fi + fo.

It follows that for each v € Dom(|5|max), we have |5|max(v) € Dom(|5|max). We con-
clude that

D) 120 = (1D lmax(v). D max (v))
= (|D]v.|D[v)
= (Fv.,v)

forall v € Dom(|5|max)
Note that Dom(|D|maX) = C°°(X S) + (|D| +ia)~ (C°°(X S)) is contained in
H} (X S) since Dom(|D|) = H{} (X S) It follows that

(Fv,v) = (D*v,v) = (Dv, Dv)

forall v € Dom(|5 |max)- By definition, we have

n

Dv = Zc(ej)Vejv

Jj=1

for all v € Dom(| D |max), Where the e; are a local orthonormal basis of TX and c(e;) are
the corresponding Clifford multiplication. By the Cauchy—Schwarz inequality, we have

n n

(Dv, Dv)) = <<Z c(ej) Ve, v, Zc(ej)vej v>>

J=1 J=1

=n Z«C(ej)ve]' v, c(ej)vej U»

j=1
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=n ) {(Ve;v,Vev) =n{(Vo, Vo))
j=1
for all v € Dom(| D |;may). Since
(Dv, Dv) = (D?v,v) = (V*Vu,v)) + (Rv,v)

forallv € Dom(|5 |max ), it follows that

(Bv. Do) = (Ro.v) = =D
n n

(v, v, (A.6)
forall v € Dom(|5 |max). To summarize, we have showed that

DI e = (Fo.v) = 0% (v, v)

max

forallv e Dom(|5|max). This finishes the proof. ]

B. An estimate of the universal constant C in Theorem I (by Jinmin
Wang and Zhizhang Xie)

In this appendix, we give a numerical estimate of the universal constant C that appeared in
Theorem I. Part of the numerical computation is done with the assistance of MATLAB. We
would like to thank Li Zhou for many helpful comments on the MATLAB programming.
Throughout this section, we use the following convention of the Fourier transform

F© = [ fwetax
R
and the inverse Fourier transform

1) = 5 [ F@etas

B.1. Increasing normalizing functions

Let y:R — [—1, 1] be a normalizing function, that is, y a continuous odd function such that
limy 400 x(x) = £1. In addition, let us assume y is an increasing function in this sub-
section. This additional assumption is not necessary, but it makes the numerical estimates
somewhat easier. The method in this subsection is inspired by the work of Slepian [27].
We will discuss general normalizing functions in the next subsection and carry out some
estimates via a different method.

Note that given ¢ > 0, there exists 0 > 0 such that

sup |1 — y(x)?| < e.

|x|>0
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Here o has the same meaning as the spectral gap o of D on a subspace Y \ K in Lemma 3.1
and Lemma 3.2. The key step for estimating the universal constant C from Theorem I is
to answer the following minimization question.”

Question B.1. Given ¢ > 0, find the minimum value of 0 among all normalizing functions
x whose Fourier transform j is supported on [-2,2].

Let us set ,

e
=%

where y’ is the derivative of y. Here the factor 1/2 is only introduced as a normalizing
constant. Since y is assumed to be increasing, f is a positive even function such that its
Fourier transform f is supported on [—2, 2] and f (0) = 1. As another simplification,”®
let us only consider f such that f = h2, where / is a function with its Fourier transform
h supported on [—1, 1]. Since f = h?, we have f =hx*h,ie.,

7€) = /R (€ — mh(n) d.

It follows that

£0) = /R Aemihmy dn = 1],

where the second equality uses the fact that / is an even function.
Observe that the minimization question (Question B.1) is essentially equivalent to the
following maximization question.

Question B.2. Given o > 0, find the maximal value of
o
h?(x)dx
—0
among all functions h: R — R with ||| 12 = 1 such that its Fourier transform is supported
on [—1,1].
Let c5 (x) be the characteristic function of [—o, o], that is,
1 if |x| <o,

co(x) =
o) 0 if |x| > o.

Then the Fourier transform of ¢, is given by

2sin(o§)

CAJ(S) = £

25 Alternatively, we can fix the value of the spectral gap o and try to minimize the propagation, that is,
the support of the Fourier transform j. The two approaches are essentially equivalent.
26Such an simplification does not really affect the final estimates at the end of this subsection.
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Note that

f®)d.

o _ _ 1 A _ [ sin(0é) »
e = [ rmewan= o= [ Fomed = [ 2

Recall that f = h2. It follows that

[ peoar= [ [ e - mion anas

‘We conclude that

> sin(o(x + y)) »
/_U he(s)ds = / / oy h(x)h(y) dxdy,

since 7 is supported on [—1, 1].
This naturally leads us to the integral operator T, on L2([—1, 1]) given by
1
Too) = [ TEEE D)
-1 wlx+y)
forall ¢ € L?([—1,1]). Observe that Ty is a bounded self-adjoint compact operator. Hence
the maximum value of o
h2

—0
is equal to the largest (absolute) eigenvalue of 7, which is precisely the operator norm
|75 || of T,. Moreover, the maximum is achieved when / is a corresponding eigen-func-
tion of the largest (absolute) eigenvalue of T,. This eigen-function can be numerically
estimated by considering the following iteration

Yn = ||T0(pn71||221 T (@n—-1),

with g9 = 1. In particular, ¢, converges to an eigen-function of the largest (absolute)
eigenvalue of 7.
The detailed estimates can be carried out as follows.

(1) Given any normalizing function y: R — [—1, 1], let p; be the idempotent from
line (3.1). By Lemma 3.3, we need to estimate the operator norm || p;|| of p;. It
amounts to estimating the operator norm of the following idempotents:

P a’2—a%* (2-a*>)(1—-aa
7 a1l —a? (1 —a?)? ’
for all a € [—1, 1]. A numerical estimate shows that

sup |[P,]|> = sup {eigenvalues of PXP,} ~ (1.04015)>.

a€[—1,1] a€[—1,1]

We conclude that
| pell = 1.04015. (B.1)
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(2) Again, by Lemma 3.3 and part (3) of Lemma 3.2, we need to estimate the operator

norm
_ 1 0
V43 0 0

on some subspace of Y. This amounts to finding & > 0 such that

P L o\| _|/—C —-a®> (2-a>H( —a
¢ (o 0) - (a(l—az) (l—a )
1 1 1

= - =< . (B2
Q|| Pall +2) 4 (2(1.04015) T 2) 47 163212
for all @ with 6 < |a| < 1. A numerical estimate shows that
0 ~ 0.96978. (B.3)

(3) Now the last step is to find o such that
|75 = 6 ~ 0.96978.
Again a numerical estimate shows that
o ~ 2.86821.

Now let y: R — [—1, 1] be a normalizing function that fulfills the above estimates.
Since the Fourier transform y is supported on [—2, 2], it follows from the proof of Theo-
rem I (cf. Theorem 3.4) that we can choose r = 2 - 15 = 30. It follows that the universal
constant C in Theorem I satisfies

C <2.86821-2-15 = 86.0463.

B.2. An improved estimate

In this subsection, we shall improve our estimate for the universal constant C by consid-
ering general normalizing functions. That is, the normalizing function y is not assumed to
be increasing any more.

Let sgn be the sign function, that is,

) 1 if x >0,
sgn(x) =
£ -1 if x <0.
Its Fourier transform is given by
e —ix§ 2
sgn(§) = | sgn(x)e dx = —.
R i§

Our goal is to solve the following analogue of Question B.1.
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Question B.3. For each function f, let us define

1 2 ixe
10 = 5 [ O e

For given g1 > 0 and g5 > 0, find the minimum value of o such that there exists an even
Sfunction f satisfying the following conditions:

(1) f is supported on [-2,2],

2 f0)=1,
(3) e1 < xr(x)—1< e forallx > o,
4) and —e5 < xr(x) +1 < —gy forall x < —o.

Since f is an even function, it follows that xs is an odd function. Furthermore, we
have .
X0
2
It follows that, under the above assumptions on f', the function y  is a normalizing func-
tion.

As a simplification, we shall only consider even functions f such that the function
xr takes values in [—1.2, 1.2]. Our numerical estimates show that such a simplification
essentially does not result in any loss of generality. Under the extra assumption that y s
takes values in [—1.2, 1.2], the norm estimate in line (B.1) will remain the same. Then,
based on the estimate in line (B.2), we can choose

Jim = [ o= fO=1.

g1~ 1—0.96978 = 0.03022,

and
&y ~ 1.02928 — 1 = 0.02928.

Now, to approximate the minimum value of ¢ in Question B.3, we consider the function

f of the form
é k
7@ =Y aweos (2%
k=0

with real numbers {ay }o<k<n to be determined. Note that

1 k 2 . 1 2mwk+2x 2sint
o (x) = —/ cos (Lg)._ezxé de = / sin dt
R 2 2

27 i 27 Jonk—ox t

So we can write

X)) =) argr(x). (B4)
k=0
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We see that Condition (2) in Question B.3 becomes the following linear inequality:

n
0.03022 < Y argr(x) — 1 < 0.02928
k=0

for each x > o. This reduces Question B.3 into solving a system of linear inequalities.
If we set n = 5, then a numerical estimate shows that the function

f() ~ 0.75382052 + 0.25425247 cos (%S) +0.0034679636 cos(r€)

3
— 0.026352193 cos (%S) +0.024841712 cos(27€)

Sné
—0.010030481 cos (7) (B.5)

satisfies the conditions in Question B.3, and we can choose
o ~ 1.41356

in this case. See Figure 3 for the graph of the corresponding normalizing function .
Further numerical estimates show that we can choose

o ~ 1.3633 if we work with n = 20,

and
o ~ 1.355 if we work with n = 50.

This suggests that 1.355 is rather close to the actual minimum value of ¢ in Question B.3.
In any case, we conclude the universal constant C in Theorem I satisfies

C <1.355-2-15 = 40.65.

Figure 3. The graph of yr when f is the function in line (B.5).
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