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The unsteady motion of a gas-liquid interface, such as during splashing or

atomization, often results in complex liquid structures embedded in the am-

bient fluid. Here we explore the use of skeletonization to identify the minimum

amount of information needed to describe their geometry. We skeletonize a

periodic liquid jet by a modification of a recently introduced approach to

coarsen multiphase flows while retaining a sharp interface. The process con-

sists of di↵using an index function and at the same time moving the interfaces

with it, until they “collapse” into each other and form skeletons. The skeleton

represents the basic topology of the jet and we also keep track of how much

the interface is moved (or how much volume is “accumulated”) during the

process, which can be used to approximately reconstruct the jet. We explore

various quantitative measures to characterize and distinguish the skeletons.

Those include standard morphometrics such as branch length distribution,

after segmenting the skeletons into branches, and a more sophisticated rep-

resentation of the skeleton structures called Topology Morphology Descriptor

(TMD), to obtain an “equivalent” description of the skeletons by retaining

information about the topology in a compact way.
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I. INTRODUCTION

Using singular structures as approximations for finite-size objects is common in

fluid mechanics. Point vortices represent smooth finite-size vortices, infinitely thin

boundary layers replace finite-thickness ones and in multiphase flows point particles

are commonly used to model finite-size drops, bubbles and solid particles. Likewise,

thin films are often modeled as one or two-dimensional lines and sheets. When

the shape of the object that is being singularized is simple enough, identifying the

singular structure is straightforward (such as for nearly spherical particles or nearly

flat films), but extending singularization to complex structures requires a more formal

approach. Here, we explore how to develop singular approximations to complex

flow objects such as jets that are breaking up, and where the shape of the singular

structure may not be easily identified, using skeletonization. We are, in particular,

concerned with flow objects that may have non-trivial topology, such as branches,

holes and isolated segments.

Skeletonization, where the dimension of a complex two or three-dimensional ob-

ject is reduced by one or two dimensions by contracting it in the appropriate way, is

used for compact representation of image objects in a variety of applications such as

medical imaging, computer graphics, visualization and shape analysis. Line-skeletons

are, for example, used to create a collision-free path through a 3D object for virtual

navigation and virtual endoscopy1,2. In traditional computer graphics, objects are

represented by stick-like figures (IK-skeletons) and used to facilitate animations3.

Another common application of skeletons is registration, which helps to align two

images taken with di↵erent modalities (MRI, CT) from the same patient4. In fluid

dynamics extracting the lines (skeletons) from the vortex cores has been used by

several authors5–9 for better flow visualization and analysis. Various techniques have

been introduced to obtain skeletons, depending on the data that is available (volu-
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metric description by pixels or parameterized surfaces, for example) and the intended

applications. Skeletonization algorithms can be categorized into four main classes

according to Cornea, Silver, and Min 10 : (1) thinning and boundary propagation; (2)

distance field based; (3) geometric; and (4) general-field functions. In many methods

concepts from more than one class are used to produce a skeleton. Based on this

categorization, here we combine the surface thinning with a general-field function,

and gradually shrink the surface by moving it along with the di↵used field. The most

similar approach that we can find in the literature is Schirmacher et al. 11 , where the

skeleton is obtained by shrinking the surface in the direction indicated by the dis-

tance field. As in the original grassfire algorithm of Blum 12 our strategy is based on

evolving the boundary in (pseudo) time, but we find the normal velocity by solving

a parabolic di↵usion equation instead of taking it to be a constant. For surveys of

the various approaches, a discussion of the many challenges, and examples of appli-

cations, see Cornea, Silver, and Min 10 , Saha, Borgefors, and di Baja 13 , Tagliasacchi

et al.
14 , Saha, Borgefors, and de Baja 15 , for example.

Skeletonization is a compact way of representing the topology, but we are also

interested in how to distinguish skeletons from each other, with minimum level of

measurements. This is usually referred to branching morphology or branching net-

work, and used to analyze the statistical properties of many di↵erent systems that

exhibit tree structures such as gorgonian corals16–18, cells or neurons19–22 and trees

and river networks23–25. The standard measurements, including branch length, bi-

furcation ratio, number of branches and so on, are commonly used to characterize

the branching structure. In biology and river systems, many branching structures

appear to be self-similar across wide range of scales, and those are often studied

using fractal dimension or Tokunaga parameters26–29. Kanari et al.
30 proposed a

more sophisticated measurement of branching structures–Topology Morphology De-

scriptor (TMD) which retains enough topological information to allow systematic
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comparison between branching morphologies and has been used to classify di↵erent

types of neocortical pyramidal cells31. Here we use a slightly modified version of the

TMD algorithm to study fluid skeletons.

For multiphase flows, we believe skeletonization can be useful for at least three

tasks

• Analyze complex flow structures by systematically eliminating scales and ex-

posing the underlying topological structure.

• Find the minimum information needed to describe the structures, and to con-

struct an equivalent—in some sense—skeleton.

• Build reduced order models, similar to point particles, but for more complex

objects.

Here we will focus on the first two. We start by developing a strategy to construct the

skeleton and examine how well it represents the original structure, and then we quan-

tify the shape of the skeleton using a variety of quantitative measures describing both

its spatial layout and its topology. Finally, we examine the use of TMD to represent

the structures in a more compact way. We work mostly with two-dimensional flows

for simplicity, but show one example of the skeletonization of fully three-dimensional

jet.

II. METHOD

Reducing the dimensions of a complex structure can be done in may ways, as

discussed in the references cited in the introduction. Here we use a modified version

of a filtering technique introduced in Chen, Lu, and Tryggvason 32 , where a di↵usion

equation is solved for a phase indicator function and the contour originally identifying
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the interface is tracked. We start by defining an indicator function that takes a

di↵erent value in the di↵erent fluids

�(x) =

8
<

:
0 in fluid 0;

1 in fluid 1,
(1)

and smooth it slightly to give a continuous transition from one fluid to the other.

The interface is identified by the �0 = 0.5 contour. To simplify the interface we

di↵use the indicator function by solving

@�

@⌧
= Dr2�. (2)

Notice that we can set the di↵usion coe�cient to unity (D = 1) since a di↵erent

value simply rescales ⌧ . All the results shown in section III are obtained based on a

constant di↵usion coe�cient. To move the interface with a specific contour, � = �s

that can be di↵erent from the interface contour, we compute the “di↵usion velocity,”

uI = unn ⇡ �(�s � �⇤)

|r�|2�⌧
r�. (3)

where �⇤ is the old value of the index function at the interface. See Chen, Lu, and

Tryggvason 32 for details.

If the indicator function takes a constant value in each phase, then tracking the

contour identified with the average value �0 conserves the volume of both phases

(within numerical errors), but by selecting a di↵erent contour value �s that is di↵erent

from �0 we move the interface into the phase identified by the value of the indicator

function that is closer to the selected contour value. To skeletonize fluid 0 we pick 0.1

and for fluid 1 we select 0.9. Picking di↵erent values only a↵ects the total di↵usion

time (computational time) of the skeletonization process and has no impact on the
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structure of the final skeletons.

The motion of each interface segment is stopped when it runs into another in-

terface and the stationary interface forms the skeleton. The di↵erent parts of the

interface stop moving at di↵erent times (or iterations) depending on how far they

move before encountering another interface. We keep track of the stopping time, ⌧s,

for each point on the skeleton. As we will see in the next section the stopping time is

closely correlated to the width of the original film, thus allowing us to assign mass to

each interface point. Since we track the Lagrangian points on the interface through-

out the process, the one-to-one correspondence of the points on the skeletons with

the original surface is retained. This is beneficial when segmenting di↵erent parts

of the original interface based on the skeleton segments for use in animation10,33.

Based on our experiment, the skeleton quality is not significantly a↵ected by the

time step size, as long as it satisfies the stability condition of the di↵usion equation.

During the skeletonization process, the unstructured mesh on the interface is refined

every pseudo time step and sometimes refining the mesh along the contour is also

necessary. As will be seen later in section III B, the performance of skeletonization

also depends on the Eulerian grid resolution. In principle, being weakly sensitive

to the boundary noise is inherently built into our skeletonization algorithm. This

is referred to as skeleton “robustness” by Cornea, Silver, and Min 10 . Other skele-

tonization methods, such as using a distance field to extract a medial axis, needs

an additional operation called “pruning” to eliminate the noise in the skeletons33.

In our method, we can also control the sensitivity of the skeletons to the interface

noise by changing the constant di↵usion coe�cient into a nonuniform variable that

is dependent on curvature . Details are shown in Appendix A.
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III. RESULTS

A. Demonstration of Skeletonization

We start by applying the skeletonization algorithm to a simple 2D jet. The jet is

obtained by solving the Navier-Stokes equations by a Front-tracking/Finite-volume

solver on a 256 ⇥ 256 grid, with second order accuracy in space and time. The

computational domain is a 1⇥1 square box, with periodic boundary condition in the

x direction and a full-slip wall boundary condition in the y direction. The diameter

of the jet is d = 0.3. The jet has density ⇢j = 2.5 and viscosity µj = 0.01 and

the surrounding fluid has density ⇢f = 1.25 and viscosity µf = 0.001. The density

ratio is therefore r = ⇢j/⇢f = 2 and the viscosity ratio is m = µj/µf = 10. The

surface tension is � = 0.005. The initial velocity of the jet is uj = 2 and the

ambient fluid is stationary so the velocity jump is �u = 2. These parameters give

Re = ⇢j�ud/µj = 150 and We = ⇢j�u2d/� = 600. The computational setup is

similar to Afanador et al. 34 .

Figure 1 shows the evolution as the jet is skeletonized by integrating in pseudo

time at computational time t = 0.43, where 1(a) plots the original interface and

1(d) shows the skeleton. The Lagrangian points on the interface are moved with the

di↵used indicator function and forced not to move if skeletons are formed. The rela-

tively small structures collapse rapidly into skeletons since the indicator function is

di↵used out quickly, according to figure 1(b), while for the large structures (plotted

in red) take more time to collapse into skeletons. Once the whole jet has collapsed

into thin films, the skeletonization process is done. For each part of the skeleton,

we record the local pseudo time ⌧s when the interface stops moving and the segment

has skeletonized. As can be seen from figure 1(e), the skeleton reflects the intrin-

sic topology reasonably well, and in particular, short branches are not shortened.

8



(d) (e)

(a) (b) (c)

FIG. 1. (a)-(d): The skeletonization of the jet at di↵erent pseudo time ⌧ (a) ⌧ = 0, (b)
⌧ = 4⇥10�4, (c) ⌧ = 2.5⇥10�3 and (d) ⌧ = 5⇥10�3. The black lines are the contour lines
of the di↵used indicator function �̃. The interfaces that are close enough and collapsed
into the skeletons are shown in blue and other parts where they still follow the contours
are shown in red. (e) The final skeleton (blue) plot along with the original interface (red).

Moreover, the skeletonization algorithm automatically picks the obvious structures

to form the skeletons and ignores the nonobvious ones (for example the small bump

in 1(e)). This intrinsic property distinguishes our method with the conventional me-

dial axis, where the skeletons will form in response to every single boundary noise in

the medial axis10.
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B. Skeletonization of a Larger Jet

To analyze the skeletonization in more detail, we apply the skeletonization algo-

rithm to a larger jet. The computational domain is enlarged to an 8⇥ 2 rectangular

box and solved on a 1024 ⇥ 256 grid. The density and viscosity for both phases as

well as the velocity jump �u are the same as before. The diameter of the jet is set to

d = 0.6 and surface tension is doubled to � = 0.01, resulting in Re = ⇢j�ud/µj = 300

and We = ⇢j�u2d/� = 600. The initial jet interface is perturbed slightly by adding

30 waves with random amplitude and wavenumbers, making sure that it includes the

most unstable wavenumber, according to Kelvin-Helmholtz instability analysis.

Figure 2 shows the jet and its skeleton at four di↵erent times. The skeletons are

colored based on the local length scale Ls, which is related to the local collapsing

pseudo time by Ls =
p
D⌧s. Note that the grid resolution for the skeletonization is

doubled (2048⇥ 512) for the last 2 rows in order to get better quality skeletons, by

reconstructing the indicator function on the finer grid using the current interface.

Some spurious branches are formed even by doubling the grid resolution, which

usually occur when thin films exist in the other phase. In principle, this can be

solved by using fine enough grid resolution, although we have not done that due

to the limitation of computational time. At the early stage the jet structure is

relatively simple, with short branches connecting to the main trunk, resembling a

fish-bone structure. At later time the branches start to grow longer, generate new

branches, or detach from the main trunk and form branches not connected to the

main contiguous tree. At the final stage the skeleton is longer and consists of a larger

number of branches and isolated segments. In contrast to the original interfaces,

where the topology becomes more complicated with time and harder to visualize, the

skeleton exposes the underlying topology and provides a compact representation.

The local length scales Ls are decreasing with time, as can be seen from the colors
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FIG. 2. The original interfaces (left column) and their skeletons (right column) at (a,b)
t = 0.625, (c,d) t = 1.25, (e,f) t = 1.875 and (g,h) t = 2.5. The skeletons are colored based
on the local length scale Ls.

in the plot. The probability density distribution (pdf) of the local length scales for

di↵erent times is plotted in figure 3. At the beginning there are two peaks in the pdf

of Ls, one for the large scales and the other for the small scales and both are about

as frequent. At later time the small structures become more dominant and the large

structures less so, indicating a gradual shift from large to small scales.

One of the measures of the skeleton quality is the ability to reconstruct the orig-

inal interface topology from the skeleton10. In principle, we can find the medial axis

(surface)35–38, that forms skeletons for every single boundary noise, and reconstruct

the interface exactly. But we should not expect the original interface to be recon-

structed exactly since the skeletons are supposed to eliminate small structures. The

indicator function is reconstructed by computing the union of inscribed balls cen-
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FIG. 3. The probability density function (pdf) of the length scale Ls at 4 di↵erent times.

FIG. 4. A schematic of three inscribed balls (red) centered at the skeleton (solid black) for
reconstructing the indicator function.

tered at every skeleton point, shown in figure 4, and simply setting the values to 1

inside the union of balls and 0 anywhere else. The radius of the balls is proportional

to the skeleton length scale Ls. We determined the relationship between the radius

of the balls and the length scale Ls by numerical experiment, where a flat thin film

is collapsed into a line skeleton, and found that Rs = 2.352Ls. The reconstructed

indicator function is plotted in figure 5, where the original interface is plotted in red.
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The reconstructed shape is very similar to the original jet, although some discrep-

ancies can be seen, as expected. This further justifies the quality of skeletons. As

can be seen from figure 5, structures with high aspect ratio (thin films) and with

aspect ratio of 1 (circular drops) are reconstructed more accurately than structures

with moderate aspect ratio (wavy or elliptical structures). Figure 6 shows the mean

square error (MSE) of the reconstructed indicator fields with the original ones versus

time. The MSE is defiend as MSE = 1
N

PN
j (Ij � Ireconj )2, where I and Irecon are

the original and reconstructed indicator function and N is the total number of grid

points. The MSE is decreasing with time because at later time there are more thin

films and drops while at the initial stage the wavy structures with moderate aspect

ratio dominates and are not captured by the skeletonization.

C. Quantitative Measures of Skeletons

A visual inspection of figure 2 suggests that the skeleton does represent the original

jet reasonably well and using the skeleton as a compact representation of the flow

structures is likely to be an important application. In this section, we further examine

the topology by computing various quantities describing the skeleton.

The total length of the skeleton L0, its centroid Y0 and its second moment Wy are

given by:

L0 =

Z
ds; Y0 =

1

L0

Z
y(s)ds; Wy =

s
1

L0

Z
(y(s)� Y0)2ds, (4)

where y(s) is the y location of each infinitesimal element on the skeleton and ds is

the length. Higher order moments can be defined in the same way. Notice that for

a periodic jet, the centroid and the second moment in x direction are meaningless.

In figure 7 we see that the length of the skeleton increases with time, indicating an
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FIG. 5. The reconstructed indicator function field based on the skeletons are shown in
black and the original interfaces in red, at the same times as in figure 2.

increase in elongated structures, since the total volume is conserved. It should be

mentioned that the number of points needed to represent the skeleton is N ⇡ L0/h,

where h the grid spacing. Therefore, the structure information can be significantly
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FIG. 6. The MSE for the reconstructed indicator fields versus the original ones versus
time, with 4 data points corresponding to the times in figure 5.

compressed, by using 3345, 4943, 7412 and 7424 points to represent the skeletons for

figure 2(b), (d), (f) and (h), respectively. The structures are also more concentrated

near the jet axis at the initial time while later they spread out and become less

compact, as shown by the second moment Wy in figure 7.

To have a deeper look at the skeleton structure, we separate it into trunks and

branches. Since the raw skeletons are actually thin films bounded by two curves (the

original interface), we start by merging the curves into a single curve by setting a

threshold distance ✏ and moving the points to the same coordinate if their distance

is smaller than ✏11. Notice that a carefully chosen ✏ may be necessary to get perfectly

single-lined skeletons and avoid spurious branches. A large ✏may eliminate important

structures while a small ✏ is not able to merge curves into a single curve. Sometimes

merging the curves with a small ✏ followed by merging the curves again with a larger ✏

will help to improve the quality. The choice of ✏ and number of times of merging may

depend on problems. The skeletons processed in this way end up with several points

15



FIG. 7. The skeleton length L0 (orange) and the second moment of the skeleton Wy (black)
versus times, computed at the same times as in figure 2.

having the same coordinates and we delete the redundant points. Then a network

matrix can be constructed, which contains the number of points that a certain point

is connected to. If a point has 2 neighbours, then it is a normal connected point.

Points that have 1 and 3 (or more than 3) neighbours are considered to be endpoints

and junction points respectively. To identify branches, we start at an endpoint and

move to the next connected point until we encounter a junction point or an endpoint.

Then the counting stops and all the points on the path are considered to be a branch.

This segmentation method is similar to the one used by Palágyi, Tschirren, and

Sonka 39 although their skeletons are defined on Eulerian grids. The definition of the

hierarchy of branches follows the Horton-Strahler ordering40,41, where a branch with

an endpoint is order one level, the parent of two same-ordered branches is one order

higher and the parent of two di↵erent ordered branches is assigned the same level as

the branch with the higher level. The periodic “trunk” is assigned the highest level

in the hierarchy.

Figure 8 shows the skeletons after segmentation, using di↵erent colors to distin-
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guish the di↵erent levels. At the initial stage, there are only two levels in the skeleton

tree and the main trunk is the second order level. At the next time, some branches

have their own “children” (branches) and the total number of levels increase to 3. In

figure 8(d), more isolated branches have been produced and they start to generate

their own children. The branches length distribution and the average branch length

versus di↵erent hierarchy order are plotted in figure 9(a) and 9(b), respectively. In

figure 9(a), it can be seen that at the initial stage all the branches are relatively short

and uniform in length. But with time, the pdf distribution starts to skew toward

the longer branches due to the growth of the branches. As some branches generate

children branches, there is still a high proportion of short branches. At even later

time the pdf is skewed more toward the longer branches but a larger number of short

branches can also be seen, mainly due to an increasing number of short isolated

branches. Figure 9(b) shows that the standard deviation of the branch length is

increasing with time for both the first and second order branches, showing that the

branch length is becoming less uniform. Interestingly, the average lengths of the

first order branches are about the same at the three later times, which may indicate

that the breakup of the jet occurs when a critical branch length is reached. The

average length of the second order branches, originally shorter than the first order

branches, also keeps increasing in time and exceeds the average length of the first

order branches. The number of branches versus the hierarchy order for four skele-

tons, in semi-log scale16,18, is plotted in figure 10. The number of first order branches

increases with time while the number of second order branches first increases but

then decreases due to breakups. We note that the bifurcation ratio Rb, defined as

the ratio of the number of branches of a given order, to the number of branches of

the next higher order, is a common quantitative measure in branching morphology,

but here it is ill-posed due to the existence of the main periodic trunk.

17



FIG. 8. The skeleton of the jet after segmentation at 4 di↵erent times (corresponding to
the times in figure 2). Di↵erent colors indicate di↵erent level: blue, black and red stand
for first, second and third order level, respectively. Isolated branches are marked with the
same color as the main trunk.
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FIG. 9. (a) The pdf of the length of the branches for the four skeletons in figure 8. (b)
The average length of branches (marked by ⇤) versus level for the four skeletons in figure
8. The error bar indicates the standard deviation of the branch length within a certain
level.

FIG. 10. The log of the number of branches versus level for the four skeletons in figure 8.
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D. Skeletons Equivalence

How do we tell whether one skeleton is topologically di↵erent from another skele-

ton? The quantitative measures that we calculate above, such as number of branches,

branch length and second order moment, characterize some aspects of the skeletons,

but are not enough to determine the equivalence of the skeletons morphology. Equiv-

alent obviously means a structure having the same quantitative measures, but the

question of how much equivalence is needed may depend on the intended applications.

To analyze the structure of the skeleton in more detail, we use a slightly modified

Topology Morphology Descriptor (TMD) proposed by Kanari et al. 30 . Note that we

do not aim to reconstruct the skeletons fully from the extracted features, but seek a

simplification that retains enough information to distinguish one skeleton structure

from others. A schematic of a skeleton is shown in figure 11(a). First of all, we define

the start and the end points of a branch as the points closest and furthest away from

the trunk, along the skeleton path. The start and the end point of branch 5 are

marked in figure 11(a). The starting and ending distances are the path distance

from the trunk to the start and the end points, respectively. The periodic trunk

has 0 for both starting and ending distance. The starting distance of an isolated

branch (branch 7 in figure 11(a)) is defined as the shortest point-to-point distance

of the endpoint in the branch to the main trunk. The ending distance is simply the

length of the branch plus the starting distance. After defining the starting and the

ending distance for all the branches, we sort the trunk and the isolated branches in a

descending order (branch 1, 7), based on the total length of the skeleton tree, defined

as the combined structure with all interconnecting branches (branch 1 � 6). Then

we find the children of each branch and sort them first in terms of the level and then

by the length in descending order (for sorted children of the trunk 1: branch 4, 3, 2).

If the branches have their own children, they are sorted in the same way. Finally,
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we can draw horizontal lines for each branch, where the left and right endpoints

indicate the starting and ending distance, in the sorted order. This is referred to as

a barcode by Kanari et al. 30 . Figure 11(b) shows the barcode for the skeleton in

11(a), where the vertical axis is the index of the branch after being sorted and x axis

is the distance. The barcode is intended to make the whole structure of the skeleton

tree, and the relationship between each branch, as clear as possible. The branches

are colored according to their level so that the branches that are connected to the

trunk and the isolated branches can be easily distinguished. The barcode is also

independent of the coordinate system being used. In principle, we can use point-to-

point distance rather than the path distance to define the starting and ending, as

in Kanari et al. 30 , but we found that the current definition is more suitable for this

problem, especially for the case that includes a periodic trunk and isolated branches.

We can further compress the information by representing each branch as a point in

a plane where the x axis is the starting distance and the y axis is the ending distance,

as shown in figure 11(c). Kanari et al. 30 refer to this as the persistence image. To

get a smooth distribution, we apply a Gaussian kernel G = e
�|x�x0|2

�2 to those points

with � = 1.0 and then normalize so that the integral of the persistence image over all

the domain is 1. Notice that unlike the persistence image used in Kanari et al. 30,31 ,

where there can be points both above and below the 45� line, since the point-to-point

distance is used rather than path distance, in our persistence image there can only

be points above the 45� line.

Figure 12 shows the barcodes ((a)-(d)) and the persistence images ((e)-(h)) of

the skeletons in figure 8. It is straightforward to tell from the barcodes that more

branches, children and isolated branches are generated with time. At the initial stage

(figure 12(e)), the persistence image shows a high concentration around the bottom

left corner on the y axis, since all the branches are short and connected directly

to the trunk. As time increases (figure 12(f)), the patch in the bottom left corner
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FIG. 11. (a) A schematic of a skeleton, where the numbers are the index for each branch
and the colors correspond to their level. The colors are the same as the ones used in figure
8. (b) The barcode for the skeleton. The numbers next to each line/point are the original
indexes for each branch. (c) The persistence image of the skeleton, where a single ⇤ stands
for a certain branch and the original index of the branch is indicated next to the ⇤. The
45� line is shown in red.

is elongated in the y direction and a separate patch occurs on the right, because

branches start to generate children and their starting distances are not 0. Later,

branches grow in length and generate more children, resulting in the patches being

spread out (figures 12(g) and (h)). Notice that points that sit close to the 45� line

indicate short branches. The high concentration around the origin in those two figures
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reflects a significant number of short branches floating around the main trunk. In

contrast to the initial compact concentration along the y axis, the persistence image

at the later time shows a more expanded and uniform distribution, except for a high

concentration around the origin.

We believe that the persistence image is a good way to characterize the skeleton

structures and can be used to evaluate the similarities and di↵erences between di↵er-

ent structures. To explore this we have simulated the evolution of a jet with exactly

the same flow parameters as in figure 2 but with di↵erent initial perturbations, and

show the interface in figure 13(a) at t = 2.5. The shape is very di↵erent from the one

in figure 2(g) but to evaluate whether they share similar characteristics we extract

the skeleton (figure 13(b)) and plot the persistence image in figure 13(c). While it

is not identical to the persistence images in figure 12(h) there are considerable sim-

ilarities and we can conclude that those two jets are topologically similar. Kanari

et al.
30 and Kanari et al. 31 used persistence images to do classification of neuronal

trees, but here we have not attempted to do that. If the main jet breaks, so the

main trunk does not exist, then the junction node of the highest level branch would

be used as a reference point (or “root”) for calculating the path distance and the

persistence image can presumably still distinguish the structures. For example, if the

skeleton in figure 8(d) stays unchanged except for the trunk breaking in the middle,

the distribution in the persistence image will be more uniformly distributed and not

include a high concentration around the origin, since the starting distance from those

isolated branches to the root is increased.

E. Skeletonization in 3D

The extension of the skeletonization algorithm from 2D to 3D interfaces is straight-

forward and here we show one example. The computational setup is the same as used
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FIG. 12. The barcodes colored based on the hierarchy of each branch (top row) and the
persistence images (bottom row) for each of the 4 skeletons, from left to right corresponding
to the skeletons in figure 8 from top to bottom. 45� lines are drawn in red in the persistence
images. Here we use � = 0.2 to smooth the persistence images.

(a)

(b)

FIG. 13. (a) The original interface at t = 2.5. (b) The corresponding skeleton colored based
on the hierarchy level, in the same way as in figure 8. (c) The corresponding persistence
image with 45� line plotted in red.

in Afanador et al. 34 , giving the nondimensional numbers Re = ⇢j�ud/µj = 150 and

We = ⇢j�u2d/� = 300. We used a 256 ⇥ 128 ⇥ 128 grid to solve for the flow, but
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in order to improve the quality of the skeleton, we took the instantaneous interface

topology and constructed the indicator function on a finer grid (512⇥ 256⇥ 256) for

the skeletonization process.

Figure 14 shows the three dimensional jet at three times (left) and the corre-

sponding skeleton (right). At the two early times, parts of the jet have collapsed

into 2D thin sheets, rather than 1D filaments, shown in the first two rows. Those are

obviously not seen for 2D flows. The sheets are similar to a medial surface defined as

the union of the center points of inscribed balls10, although the skeletons generated

by our algorithm are not guaranteed to be exactly centered. The formation of the

2D sheets indicates a high aspect ratio interface topology, where the length scale

in one direction is much smaller than in the other two directions. When the jet is

about to break into ligaments we see 1D filaments, corresponding to the 2D case, as

shown in the second row. The formation of a 1D skeleton indicates a structure where

the dimensions in two directions are about the same and much smaller than in the

third direction. The last row shows a jet that has completely disintegrated and the

skeleton consists mostly of strings and points, which are topologically di↵erent from

what we see in the first 2 rows. The skeletons show that the flow field involves mostly

long filaments and spherical drops. A small number of surface skeletons can also be

found at the last time (bottom row), bringing out an aspect of the topology of the

interface which is not obvious from the original interface. Thus, the skeleton repre-

sentation is shown to be useful in visualizing and understanding the topology of the

jet. Segmenting the skeletons into di↵erent parts for this case is challenging due to

the existence of the surface skeletons and new quantitative measures are required to

distinguish surface skeletons from line skeletons. Using the area tensor42 to find the

projected area on the principal directions may be one possibility. TMD, including

the barcodes and the persistence images, would need to be redesigned to characterize

the skeleton topology to account for the surface skeletons. For example, it is not ob-
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FIG. 14. On the left plots the original interface (a,c,e), colored based on local length scale
Ls. The skeletons are plotted on the right (b,d,f), colored based on the corresponding
length scale L. From top to bottom the corresponding computational time is t1 = 2.5 for
(a) and (b), t2 = 5 for (c) and (d) and t3 = 15 for (e) and (f).

vious to define the start and the end points for surface skeletons. Moreover, another

quantity is necessary to distinguish surface skeletons with line skeletons, if they have

the same path distance.
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IV. CONCLUSION

We examine the use of skeletonization to visualize and characterize a liquid struc-

ture in multiphase flows in both two and three-dimensions, by representing thin

ligaments with 1D-lines (or 2D-sheets) and spherical drops as points. A way to

systematically skeletonize a fluid strucure is proposed, by gradually shrinking the

surface using di↵usion of an index function, until it has collapsed into thin skeletons.

The skeletons are generated in a robust way that ignores boundary noise, retains one-

to-one correspondence to the original interface, and is able to reveal the underlying

basic topology of complicated fluid structures, as well as allowing us to approximately

reconstruct the original structures. Quantitative measures for the skeletons for 2D

flows, including branch length distribution and second order moment, provides useful

information about the topology of the jet. A more sophisticated “equivalent” com-

pact description, TMD, compresses the information further and generates persistence

images so that di↵erent skeletons can be distinguished topologically.

We expect that this work can be extended to build reduced order models for

multiphase flows, where one phase can be compressed into skeletons and we can evolve

only the skeletons in time with a filtered flow field rather than the whole interfaces.

Representing the complicated topology with skeletons in a systematic way, along

with quantitative measures of skeletons are also potentially useful in studying the

underlying topology of di↵erent structures, including interfaces in multiphase flows

and vortex cores.

ACKNOWLEDGEMENT

This research was supported in part by the National Science Foundation Grant

CBET-1953082 and by ERC Advanced Grant TRUFLOW. Computations were

27



done at the Advanced Research Computing at Hopkins (ARCH) core facility (rock-

fish.jhu.edu), which is supported by the National Science Foundation (NSF) grant

number OAC 1920103.

Appendix A: Controlling the sensitivity of the skeletonization

FIG. 15. The original interface (black) and its skeleton (red), with (a) constant di↵usion
coe�cient D and (b) nonuniform di↵usion coe�cient that depends on curvature D() =
1 + 8||/max(||).

In order to control the sensitivity of the skeletonization to interface noise, we

can make the di↵usion coe�cient D dependent on the local curvature  and solve a

nonlinear di↵usion equation, based on

@�

@⌧
= r ·D()r�, (A1)

to move the interface with a specific contour. Figure 15 shows a comparison of the

skeletonization with a constant di↵usion coe�cient and a curvature dependent one.

By taking the di↵usion coe�cient to be large in high curvature regions, the noise is

quickly eliminated and the skeleton is less sensitive to the boundary shape. Here,
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we use D() = 1 + 8||/max(||). We note that this is just one way to change the

di↵usion coe�cient and we have made no e↵ort to optimize D(), in any way.
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