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a b s t r a c t 

The Rayleigh-Debye-Gans approximation for fractal aggregates (RDG-FA) is commonly used to evaluate 

the radiative properties of soot aerosols composed of nano-spheres due to its analytical character. Despite 

neglecting electromagnetic coupling within an aggregate, the RDG-FA provides a simple interpretation of 

angular light-scattering measurements in terms of a structure factor. This factor, in turn, enables the de- 

termination of the aggregate’s fractal dimension D f and radius of gyration R g . The structure factor can 

be expressed as the Fourier transform of a purely morphological autocorrelation function. Here we em- 

ploy the discrete dipole approximation and phasor analysis of the internal electric field in an aggregate 

to study the role of coupling for the specific case of soot particle refractive index. An optical autocorre- 

lation function is defined in terms of an aggregate’s phasors rather than simply its physical distribution 

of material. The new function conveys the effect of the non-uniformity of the internal field distribution, 

due to coupling, to the angular scattering. A correction term is then introduced explaining why coupling 

tends to decrease the structure factor inferred in the power-law regime. Such decrease impacts the de- 

termination of the fractal dimension from scattering data. Finally, it is shown that the inferred structure 

factor is mainly affected by a so-called internal trapping effect associated with a large imaginary part of 

the refractive index. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The characterization of aerosols, in particular soot, i.e., Black 

arbon (BC), has become essential due to its abundance, impact on 

uman health [1,2] , and its contribution to atmospheric radiative 

orcing and related climate impacts [3] . Most soot particles have 

omplex shapes and are frequently considered fractal aggregates 

s illustrated by the scaling law that makes their virtual genera- 

ion and study possible [4–6] , i.e., 

 m = k f 

(
R g 

R m 

)
D f . (1) 

he fractal scaling law of Eq. (1) relates the number N m of pri- 

ary nano-spheres, or monomers, in the aggregate to the aggre- 

ate size as quantified by its radius of gyration R g , monomer radius 

 m , fractal prefactor k f , and fractal dimension D f . The relationship 

xpresses the power-law functionality between particle size and 

ass or surface. 
∗ Corresponding author. 
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Angular light scattering has unique characterization capabilities 

or soot aggregates; it enables the in-situ determination of an ag- 

regate’a size and morphology in the visible-wavelength range [7–

] or in the X-ray range with methods such as small angle X- 

ays scattering (SAXS) [10–12] . Provided the monomers are small, 

 m � λ, the Rayleigh scattering law holds, yielding a monomer dif- 

erential scattering cross section [13,14] : 

d C sca m 

d �
= k 4 R 6 m 

F (m ) . (2) 

n Eq. (2) , k = 2 π/λ is the vacuum wave number, F (m ) is the

bsolute-square of the Lorentz-Lorenz factor (m 
2 − 1) / (m 

2 + 2) , 

he complex-valued refractive index is expressed as m = n + iκ , 
nd � is denotes solid angle. 

Assuming that the material is weakly refractive as defined by 

 ≈ 1 , each monomer is essentially illuminated by only the inci- 

ent light and not the light scattered by the other monomers, i.e., 

here is no internal coupling between the monomers. The differen- 

ial scattering cross section for an aggregate can then be expressed 

https://doi.org/10.1016/j.jqsrt.2022.108451
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2022.108451&domain=pdf
mailto:yon@coria.fr
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y the Rayleigh-Debye-Gans differential scattering cross section: 

d C sca agg 

d �
(q ) = N 

2 
m 

d C sca m 

d �
f (q ) . (3) 

n Eq. (3) , f (q ) is the aggregate structure-factor and q is the scat-

ering wave vector given by q = k inc − k sca where k inc and k sca 

re, respectively, the incident and scattering wave vectors. For the 

orward-scattering direction, q → 0 , any portion of the aggregate is 

ssumed to scatter in phase and f → 1 . For larger scattering angles

, destructive interferences occur across portions of the aggregate, 

educing the value of f . This decrease carries information related 

o the aggregate’s R g and D f as described by the RDG-FA theory [7] .

ndeed, one can show that f is the Fourier transform of the density 

utocorrelation function g(u ) [15] : 

f (q ) = 

1 

V 2 

∫ 
u 

g(u ) exp (i q · u ) d u , (4) 

here 

(u ) = 

∫ 
r ′ 
ρ(r ′ − u ) ρ(r ′ ) d r ′ , (5) 

n Eq. (5) , ρ(r ′ ) is the density function expressing whether ma- 

erial is present ( ρ = 1 ), or not ( ρ = 0 ), at a given position r ′ . The
oncept of g(u ) is first described in Porod [16] and represents the 

robability that a point at a distance u from any given point in the

ggregate will itself also be in the aggregate. It is therefore related 

o the particle size, or volume, and can be used as a morphologi- 

al descriptor. Unfortunately, an accurate analytical expression for 

(u ) exists only for simple shapes such as spheres. For this rea- 

on, one can find many attempts in the literature to express g, or 

f , for complex structures like fractal aggregates [7] . Nevertheless, 

imple and popular approximations exist to interpret the angular 

cattered intensity in terms of R g in the Guinier regime, and D f in 

he power-law regime [17] . 

The RDG-FA approach is popular for the study of soot formation 

n flames. One can be confident with the assumptions involved in 

he approximation for X-rays because the refractive index is very 

lose to one. However, the assumptions become much more ques- 

ionable for visible light as m deviates significantly from one for 

bsorbing materials and internal coupling may not be negligible. 

or this reason, several studies evaluate the range of validity of the 

DG-FA and have shown that the scattering or absorption cross 

ections can deviate up to 30% compared to more rigorous treat- 

ents [18–20] . Some studies were devoted to the improvement 

f such evaluations by considering more precise determinations of 

he primary sphere cross sections [21–23] . These deviations have 

lso been investigated for different morphological parameters such 

s the monomer size distribution [24] , the fractal parameters [25–

7] , the presence of necking and overlapping between neighboring 

onomers [28] , coating [29] , and finally, different refractive index 

alues and wavelength [18,19] . This prior work generally reports 

orrection factors, h and A , for the absorption and forward scatter- 

ng cross sections, respectively. Some studies observe a deviation in 

he slope of the structure factor in the power-law regime, which 

ould alter the determination of the aggregate fractal dimension 

rom light scattering measurements [18,19,26,30] . 

More recently, to have a better understanding for the under- 

ying phenomenon, we examine the non-uniformity of the aggre- 

ate’s internal electric field to understand the origins of the cor- 

ection terms A and h [31,32] . Indeed, internal coupling can alter 

he uniformity of the internal field, rendering the Rayleigh approx- 

mation invalid. The conclusion is made possible with the help of a 

athematical concept called phasor analysis [33] which illustrates 

he contribution of each element of the aggregate to its overall 

cattering behavior. The role played by so-called hot-spots of the 

nternal field as well as the decreasing magnitude of light as it 
2 
rosses an aggregate (trapping) is studied in [31,32] . Also exam- 

ned is the impact of these effects on the A and h factors, i.e., on

orward scattering and absorption. The phasor analysis approach is 

lso applied in an evaluation of backscattering properties of aggre- 

ates in [34] . 

The objective of this work is to extend phasor analysis to the 

escription of the structure factor f , i.e., by investigating the effect 

f the non-uniform internal electric field on f . We aim to advance 

he understanding of the mechanisms responsible for deviations 

f the RDG-FA from the rigorous treatment for backward scat- 

ering. The work will provide a physical understanding for previ- 

usly empirical effort s to determine aggregate size or morphology 

rom backscattering measurements, including the retrieval of num- 

er and mass concentration of soot aggregates in smoke plumes 

sing LIDAR [35] . By using a similar approach as Romanov and 

urkin [36] , we define an optical autocorrelation function, which 

s complex-valued in contrast to the real-valued density autocor- 

elation function. An analytical expression for the structure factor 

ollows, composed of two terms. The first is proportional to the 

lassical expression given in Eq. (4) , while the second appears only 

hen internal coupling results in significant field non-uniformity. 

he findings are illustrated for monomers in point-contact in a dif- 

usion limited cluster-cluster aggregate. 

. Theory 

.1. Optical autocorrelation function 

Consider a planar incident wave propagating along the positive 

 -axis that is linearly polarized along the y -axis in the laboratory 

eference frame, i.e., E inc (r ) = E o exp (ik ̂ x · r ) ̂ y where E o is the field

agnitude. Emphasis will be placed on the vertical component of 

he scattered field, i.e., the y -axis direction, which will be denoted 

y the subscript vv. This is a common experimental configuration 

see Fig. 1 ). In the vertical-vertical polarization configuration, the 

olume Integral Equation (VIE) [38] gives: 

 
sca 
1 , vv , �( ̂ r ) = 

3 k 2 

4 π

m 
2 − 1 

m 
2 + 2 

E o 

∫ 
V 

z y, �( ̂ x ) exp (i q · r ′ ) d r ′ ˆ y , (6)

here � represents a given orientation of the aggregate, ˆ r is the 

cattering direction in the x − z plane, and z y, � is a phasor, which 

s defined for any point r ′ in the aggregate material V . The expres-

ion for a phasor for this specific scattering configuration is: 

 y, �( ̂ x ) = 

m 
2 + 2 

3 E 0 
E int y, �(r ′ ) exp (−ik x ′ ) . (7) 

here E int 
y, �

is the internal electric field in a volume element d r ′ at 
 
′ in V . Note that, the phasors are only defined inside the aggregate 
s the integral in Eq. (6) runs over V. This field can be found nu-

erically via the DDA as implemented with the DDSCAT software 

f Draine and Flatau [39] for a given aggregate orientation � . Note 

hat, z y, � = 1 at any point in the aggregate if the RDG-FA criteria 

re fulfilled. For a more detailed description of the mathematical 

evelopment leading to Eq. (6) , the reader may refer to [31,32] . 

ote, however, that these works are focused on the forward scat- 

ering while the main interest here is the angular dependence of 

he scattered intensity by rotating the scattering direction ˆ r in the 

 − z plane by an angle θ . Given Eq. (6) , the differential scattering 

ross section for vertical-vertical polarization is: 

d C sca 
vv , �

d �
( ̂ r ) = 

(
3 k 2 

4 π

)
2 F (m ) 

∣∣∣
∫ 
V 

z y, �( ̂ x ′ ) exp (i q · r ′ ) d r ′ 
∣∣∣2 (8) 
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Fig. 1. Scattering configuration, � is the orientation of the aggregate as defined in Section 19 of [37] . 
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Expanding the absolute-square in Eq. (8) allows one to write: 

d C sca 
vv , �

d �
( ̂ r ) = 

(
3 k 2 

4 π

)
2 F (m ) 

∫ 
V 

∫ 
V 

z y, �(r ′ ) z ∗y, �(r ′′ ) exp [ i q · (r ′ − r ′′ )] d r ′′ d r ′ . 

(9) 

hen, a change of variables, u = r ′ − r ′′ and d u = d r ′ may be done,

iving a new expression for the differential cross section: 

d C sca 
vv , �

d �
( ̂ r ) = 

(
3 k 2 

4 π

)
2 F (m ) 

∫ 
R 3 

g opt 
�

(u ) exp (i q · u ) d u (10)

ith g 
opt 
�

representing the so-called optical autocorrelation func- 

ion defined as: 

 

opt 
�

(u ) = 

∫ 
V 

z y, �(r ′′ + u ) z ∗y, �(r ′′ ) d r ′′ . (11)

ote that now, the differential scattering cross section for vertical- 

ertical polarization is given in terms of the Fourier transform of 

 

opt 
�

whose accuracy depends on that of the numerical solution of 

he internal electric field used for the determination of the pha- 

or. Readers interested in evaluating the autocorrelation function 

ased on internal fields for unpolarized light can refer to the arti- 

le [36] . The function g 
opt 
�

becomes identical to the density auto- 

orrelation function, g of Eq. (5) , only if the phasors equal 1, i.e., 

hen RDG-FA hypotheses are fulfilled. When non-uniformity of the 

nternal electric field is present, which is a violation of the RDG- 

A assumptions, g 
opt 
�

returns complex numbers even if its Fourier 

ransform still yields the real-valued differential cross section, i.e., 

q. (10) . Next, we examine the properties of the optical autocor- 

elation function, g 
opt 
�

. 

.2. Properties of the optical autocorrelation function 

We first evaluate g 
opt 
�

at the origin, where the result is propor- 

ional to the aggregate’s physical volume. The proportionality coef- 

cient is found to be 
∣∣z y, � ∣∣2 , which has been identified as a proxy 

or the correction factor h v (�) of [31] that brings the RDG-FA the- 

ry absorption cross section into agreement with the true value. 

pecifically, 

(u = 0 ) = 

∣∣z y, �∣∣2 V ≈ h v (�) V and 
 

R 3 

g opt 
�

(u ) d u = 

∣∣z y, �∣∣2 V 2 = A vv (�) V 2 . (12) 

t can be shown that integrating the optical autocorrelation func- 

ion is proportional to the squared aggregate’s volume and to 

z y, �
∣∣2 which is shown to be A vv (�) , i.e., the forward-scattering 
3 
ross section RDG-FA correction in [31] . Thus, in addition to the 

urely morphological description of the particle, the optical au- 

ocorrelation function conveys information about intrinsic optical 

roperties that explain the deviation from RDG-FA theory. 

The phasors are complex numbers, z y, � = a + ib, and so, the 

ptical autocorrelation function can be decomposed into real and 

maginary parts: 

 

opt 
�

(u ) = g re , �(u ) + ig im , �(u ) . (13) 

here 

g re , �(u ) = 

∫ 
V 

a (r ′′ + u ) a (r ′′ ) d r ′′ + 

∫ 
V 

b(r ′′ + u ) b(r ′′ ) d r ′′ , 

 im , �(u ) = 

∫ 
V 

a (r ′′ ) b(r ′′ + u ) d r ′′ −
∫ 
V 

a (r ′′ + u ) b(r ′′ ) d r ′′ . (14) 

irst, consider the case when m → 1 , the RDG-FA case. Here, there

s no internal coupling, as would be the case with X-rays measure- 

ents, and z y, � → 1 , i.e., a = 1 and b = 0 so g im , �(u ) vanishes and

 re , �(u ) = g(u ) . In that case, g re , �(u ) conveys only the aggregate’s

orphological description and the classical RDG-FA treatment is 

alid. 

When m > 1 and thus z y, � � = 1 , one can show based on

q. (14) and an appropriate change of variables that g re , �(u ) is an

ven function. Conversely, because g im , �(u ) depends on the cross 

roduct of the real and imaginary parts of the phasor, one can see 

hat g im , �(u = 0 ) = 0 and g im , �(−u ) = g im , �(u ) , and so, is an odd

unction. Because the phasors depend on the aggregate orientation, 

ne can evaluate an orientation averaged optical autocorrelation 

unction, denoted by g opt or 

 
opt (u ) = 〈 g opt 

�
(u ) 〉 � = g re (u ) + ig im 

(u ) , (15)

ith g re (u ) = 〈 g re , �(u ) 〉 � and g im 
(u ) = 〈 g im , �(u ) 〉 � . 

.3. Internal coupling and the structure factor 

As mentioned above, the correction factors A = 〈 A vv 〉 ψ 
to the 

DG-FA forward scattering are discussed in [32] . The objective here 

s to focus on the specific impact of internal coupling on the struc- 

ure factor f , as this function is used with the correction factor in 

he RDG-FA theory, i.e., 

d C sca 
agg , vv , �

d�
(q ) = A vv (�) N 

2 
m 

d C sca m , vv 

d�
f IC � (q ) , (16) 

here the superscript IC denotes the presence of internal coupling. 

imilarly, when dealing with orientation-averaged aggregates: 

d C sca agg , vv 
(q ) = AN 

2 
m 

d C sca m , vv 
f IC (q ) . (17) 
d� d�
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By comparing Eq. (10) and Eq. (16) one finds that for fixed- 

rientation aggregates (�) , we have: 

f IC � (q ) = 

∫ 
R 3 

g opt 
�

(u ) exp (i q · u )d u 

∫ 
R 3 

g opt 
�

(u )d u 

= 

1 

A vv (�) V 2 

∫ 
R 3 

g opt 
�

(u ) exp (i q · u )d u . (18) 

imilarly, for orientation averaged aggregates via Eq. (17) we have: 

f IC (q ) = 

∫ 
R 3 

g opt (u ) exp (i q · u )d u 
∫ 
R 3 

g opt ( u )d u 
= 

1 

AV 2 

∫ 
R 3 

g opt ( u ) exp ( i q · u )d u , 

(19) 

By separating Eqs. (18 –19) into real and imaginary parts, one 

an show that the structure factor accounting for internal coupling 

an finally be seen as the difference of two terms, expressed in the 

ollowing only for the orientation-averaged aggregate case as: 

f IC (q ) = f 1 (q ) − f 2 (q ) , (20) 

here f 1 (q ) is: 

f 1 (q ) = 

∫ 
R 3 

g re (u ) cos (q · u ) d u 

∫ 
R 3 

g re ( u ) d u 

. (21) 

mportantly, note that the denominator in Eq. (21) only de- 

ends on the real part of the optical autocorrelation function as 
 

R 3 
g im 

(u ) d u = 0 . 

For m → 1 , g re (u ) → g(u ) . Moreover, as the aggregates do not

resent any favoured direction, when the autocorrelation func- 

ions are averaged over all the considered aggregate orientations 

n isotropic function is obtained g(u ) = g(u ) , and the classical for-

ula for the determination of the structure factor [15] is found: 

f 1 (q ) → f (q ) = 

4 π

V 2 

∫ ∞ 

0 

g(u ) 
sin (qu ) 

qu 
u 2 d u. (22) 

or m > 1 , meaning when internal coupling is significant, the fact 

hat incident light is vertically polarized can violate the isotropic 

ssumption of this equation for g re (u ) . This will be discussed in

ection 4.1 . Meanwhile, the second part of Eq. (20) , f 2 (q ) , is given

y: 

f 2 (q ) = 

∫ 
R 3 

g im 
(u ) sin (q · u ) d u 

∫ 
R 3 

g re ( u ) d u 

. (23) 

hen m = 1 , there is no internal coupling, and therefore, g im 
(u )

nd f 2 (q ) are zero. However, when m > 1 , g im 
(u ) differs from zero.

s the sine function is an odd function, the integral of their prod- 

ct is non-zero. The following will study how f 1 deviates from the 

urely morphological autocorrelation function g, examine the new 

erm f 2 , and evaluate their impact on the structure factor. 

. Numerical study 

We will focus on Diffusion Limited Cluster Aggregates 

DLCA) [40] exhibiting a clear fractal character. Most of the 

esults presented here are based on a single aggregate taken 

rom Sorensen et al. [19] having N m = 284 monomers, and repre- 

entative of a D f = 1 . 78 ± 0 . 04 aggregate with k f = 1 . 35 ± 0 . 10 and

veraged over 500 orientations isotropicaly distributed. For Fig. 9 , 

n order to avoid specific morphological dependence and extend 
4

ur analysis, we make use of the ergodicity theorem to abandon 

rientation averaging, and rather, average over 540 different DLCA 

ggregates taken from Yon et al. [41] with N m ∈ [10 , 300] , D f ≈ 1 . 78

nd k f ≈ 1 . 4 , and where each aggregate has an arbitrary fixed ori-

ntation. However, in each cases, the monomer radius is fixed at 

5 nm . 

The wavelengh is fixed at 266 nm in the study. For the mate- 

ial refractive index, the real part ranges from 1.1 to 1.9 and the 

maginary part from 0.01 to 0.8. However, in the first part of the 

tudy, in order to illustrate the phenomenon, the index is fixed at 

 = 1 . 1 + i 0 . 8 corresponding to soot material at this wavelength. 

The internal electric fields are computed with DDSCAT which 

umerically solves the VIE [42] . In this method, the aggregates 

olume V is discretized on a cubic lattice of lattice spacing d to 

orm volume elements 
V = d × d × d. The accuracy of the so- 

ution depends on the fineness of this lattice, i.e., the value of d, 

s compared to λ and has to fulfill the condition | m | kd < 0 . 5 . To

atisfy this condition, 110 dipoles per monomer have been consid- 

red here, which is shown to be sufficient as basic considerations 

n [43] suggest 34 for point-contact monomers is sufficient. 

. Results 

.1. Autocorrelation function 

The real and imaginary parts of the averaged optical autocorre- 

ation function are reported in Fig. 2 , respectively, in Fig. 2 (a) and

ig. 2 (c) where one sees the behavior in the x − z plane. The col- 

rs correspond to amplitudes in log-scale as the functions rapidly 

ecrease as illustrated in linear-scale along the x -axis direction in 

lots (b) and (d). 

Plots Fig. 2 (a) and Fig. 2 (b) clearly illustrate the central sym- 

etry of g re (u x , u y = 0 , u z ) which is consistent with the property

 re (−u ) = g re (u ) . Moreover, as in g, g re seems to show an isotropic

haracter in this plane g re (u ) ≈ g re (u ) . Conversely, plots Fig. 2 (c)

nd Fig. 2 (d) illustrate the asymmetric character of g im 
. One can 

ee that the amplitude of g re and g im 
decrease rapidly away from 

 = 0 . Nevertheless, g re (0 ) is a maximum whereas g im 
(0 ) is zero. 

We show in [32] that the amplitude of the internal electric 

eld decreases along the axis of incident light propagation and 

he phase increases in this direction. This effect is attributed to 

 so-called internal trapping. Because the real part of the opti- 

al autocorrelation function g re (u ) depends on the internal elec- 

ric field, one may wonder if this preferred direction could break 

he isotropy found in the conventional autocorrelation function, g. 

ork by Heinson et al. [44] introduces a method to evaluate the 

nisotropy of an aggregate based on the ratio between the max- 

mum and minimum values of the eigenvalues of the aggregates 

ass inertia-matrix. Since the gyration radius can also be deter- 

ined from the autocorrelation function (Appendix A of [7] ), we 

an define a gyration radius for each plane as illustrated for the 

pecific x − z plane here: 

 g , xy = 

∫ ∞ 

0 

u 3 g re (u x , u y , u z = 0) d u 

2 

∫ ∞ 

0 

u g re (u x , u y , u z = 0) d u 

. (24) 

hus the anisotropy of g re can be illustrated by a variability of the 

yration radius in each considered plane. 

For the range of refractive indices considered, n ∈ 

 1 . 1 − 1 . 9 ] and κ ∈ [ 0 . 01 − 0 . 8 ] , which are sufficient to cover the 

ange of soot indices, and for the aggregate considered ( N m = 284 ),

he relative deviation from one plane to another never exceeds 

% . This empirical observation allows us to say that real part of 

he autocorrelation function after averaging over orientations is 

pproximately isotropic for similar objects and refractive indices. 
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Fig. 2. Section of the optical autocorrelation function averaged over 500 orientations of the aggregate ( N m = 284 , R m = 15 nm ) in the x − z plane for m = 1 . 1 + i 0 . 8 at 

λ = 266 nm . The top row reports the real part g re while the bottom row reports the imaginary part g im . 
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evertheless, in the following, no hypothesis of isotropy will be 

sed for the determination of the structure factors f 1 and f 2 . 

nstead, the 3D description of the pairwise autocorrelation [see 

q. (21) and Eq. (23) ] will be used. 

The fact that g re is approximately isotropic allows us to see 

he effect of the non-uniformity of the internal electric field di- 

ectly by comparing g(u ) and g re (u ) which are averaged over all

he directions of u in R 
3 . This is shown in Fig. 3 which reports in

lack dashed line the conventional, i.e., purely morphological, au- 

ocorrelation function g(u ) for the same aggregate as in Fig. 2 af- 

er averaging over all orientations. The x -coordinate is normalized 

y the aggregate gyration diameter whereas the y -axis is normal- 

zed by the aggregate volume. This normalization ensures a con- 

ergence to 1 for the function as u → 0 and becomes zero when u

pproaches ≈ 1 . 5 D g . Its integral corresponds to the aggregate vol- 

me. This function exhibits a power-law dependence for 0 . 05 < 

/D g < 0 . 4 with a slope of D f − 3 , which is typical for fractal aggre-

ates. For lower u , the function is dominated by the monomer self- 

nteraction effect and for larger u it is affected by the cutoff func- 

ion, see [41] . The g re (u ) function is reported by the blue curve,

hich is clearly different from the purely morphological g, even 

f it is approximately isotropic. This deviation is due to the spa- 

ial departure of the phasor from 1 caused by internal coupling. 

ince the spatial extent of the aggregate is obviously not affected 

y the non-uniformity of the electric field, this function naturally 

nds for the same value of u. On the other hand, this function is af-
 g

5

ected for smaller u. As shown above, the integration of that func- 

ion, which is shown by the colored shaded region, corresponds 

o the forward-scattering correction A multiplied by the aggregate 

olume, V . Here, m = 1 . 1 + i 0 . 8 for λ = 266 nm and A ≈ 0 . 61 , which

mplies that the function intercepts the y -axis at a value less than 

. Also discussed above is that g re (0) /V ≈ h , where h is the absorp-

ion cross section correction for RDG. This correction is of the same 

rder as A , i.e., h/A ≈ 1 . 07 , see Argentin et al. [31] . It is notable that

 simple multiplication of g(u ) by A , which is represented by red

ircles in the plot, produces a very good approximation for g re (u ) .

his suggests that the structure factor is nearly unaffected by inter- 

al coupling as long as A is taken into account, which would be a 

ood approximation if g im 
is zero. Due to its non isotropic nature, 

 im 
cannot be represented in Fig 3 . The next section, however, will 

llustrate the impact of g im 
on the structure factor. 

.2. Structure factor 

The structure factor can be obtained by normalizing to 1 the 

ifferential scattering cross section for the vertical-vertical po- 

arization case calculated by DDSCAT. When the result called 

DDSCAT” in blue dash-dot line in Fig. 4 , is compared with our 

ptical structure factor f IC in red circles, the two are superim- 

osed. This proves that our mathematical development and nu- 

erical post-processing of the internal electric field of the aggre- 

ate calculated by DDSCAT are correct. The purely morphological 
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Fig. 3. Comparison of the conventional autocorrelation function (black dashed line) with that corrected by the forward scattering correction term A (red circle marker) and 

the real part of the pair correlation function following orientation averaging (blue solid line). Shown is the same aggregate as Fig. 2 . 

Fig. 4. Comparison of different structure factors calculated for a DLCA aggregate composed of 284 monomers with a monomer radius R m = 15 nm for m = 1 . 1 + i 0 . 8 at 

λ = 266 nm . Respectively, the morphological function f (black solid line), that generated via phasors f IC (in red circle marker), that of f 1 (red “x” marker), f 2 (red dashed 

line), and that generated by DDSCAT. 
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tructure factor f computed by considering the phasor equal to 

 y = 1 is reported in black line. One can see that it decreases more

apidly when internal coupling is considered. Consequently, inter- 

al coupling tends to overestimate the fractal dimension up to 10% 

s reported by Yon et al. [18] . Fig. 4 also shows the contribution

f f 1 and f 2 [see Eqs. (21 and 23) ]. The log-log plot renders f 1 
nd f similar, yet they do not fully agree. The departure begins 

o increase beyond the Guinier regime, i.e., for qR g > 1 , and can

each up to 10% when θ = 180 ◦. Similarly, f 2 contributes at larger 

 values. Thus, the Guinier regime, and therefore the determina- 

ion of R g from measurements, are in the end unaltered by in- 

ernal coupling. When the structure factor is evaluated with the 

uinier equation, i.e., f (q ) = exp (−q 2 R 2 g / 3) , the difference between

he corresponding R g values based on f 
IC or f never exceed 1% 

this was expected due to the quasi isotropy of g re for the present 
6

tudy). For the behavior of f 2 at larger qR g values, one can see its 

rowth to θ ≈ 23 ◦ depending on the morphology of the aggregate, 

hich corresponds to a qR g value close to the beginning of the 

ower-law regime. After reaching this maximum, f 2 begins to de- 

rease. This particular behavior will be discussed below where it 

s finally shown to have a more important impact than f 1 on the 

ffective structure factor derived in the power-law regime. 

.3. Interpretation of the angular dependence of the structure factor 

As shown in Eq. (21) and Eq. (23) , the components f 1 and 

f 2 result, respectively, from the cosine and sine modulation of the 

eal and imaginary part of the optical autocorrelation function. As 

uggested by Berg et al. [33] , this modulation can be illustrated 

raphically to achieve a phenomenological understanding. The dif- 



C. Argentin, M.J. Berg, M. Mazur et al. Journal of Quantitative Spectroscopy & Radiative Transfer 296 (2023) 108451 

Fig. 5. Section of g re (u ) cos (q · u ) in the plots (a), (c), (e) and g im (u ) sin (q · u ) in the plots (b), (d), (f) for three different scattering angles θ for m = 1 . 1 + i 0 . 8 at λ = 266 nm . 
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erence here is that the slicing approach is applied to the auto- 

orrelation components and not directly to the physical material. 

ig. 5 presents, in the left column, the contribution of f 1 while the 

ight shows f 2 . The three rows corresponds to near-forward scat- 

ering at θ = 5 ◦, side scattering at θ = 23 ◦, and backscattering at
= 180 ◦; these are the angles corresponding to the labled sym- 

ols in Fig. 4 . 

The illustrations in Fig. 5 are restricted to the x − z plane as a 

unction of θ . The slices are caused by the cosine and sine mod- 

lations. Increasing the scattering angle θ , and thus q , increases 
7 
he number of slices spanning the autocorrelation pattern since 

he thickness d x of the slices is inversely proportional to q [7,33] . 

lso, increasing q rotates the modulation pattern in a clockwise 

irection until it becomes orthogonal to the incident light direc- 

ion for θ = 180 ◦. As the slices are caused by the cosine, some 

f them will be negative (blue), which reduces the total contribu- 

ion to f 1 . Moreover, as almost all the contribution is contained 

n the center, the thinner the slices, the smaller the contribution 

s the cosine weight is not always 1. At small scattering angles, 

osine tends to 1 and the structure factor f 1 thus tends to 1 as 
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Fig. 6. Probability density function of the phasor-phase (a) and amplitude (b) for three refractive indices, m = 1 . 1 + i 0 . 01 , m = 1 . 1 + i 0 . 4 , and m = 1 . 1 + i 0 . 8 . 
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ell, see Eq. (21) . Similarly, for θ → 0 ◦, the odd f 2 is divided into
wo regions of opposite sign orthogonal to the incident-light di- 

ection. The integration of this modulated domain is close to zero, 

.e., the green regions compensate the blue regions. This compen- 

ation does not hold when the scattering angle increases as illus- 

rated for θ = 23 ◦ in Fig. 5 (d), where f 2 is maximum. Indeed, as f 2 
tarts at zero for θ = 0 ◦, when the antisymmetry of g im 

[carried by

he y − z plane at x = 0 , see Fig. 2 (c)] is broken due to the slices,

t can only grow, i.e. the blue parts no longer compensate for the 

reen parts f 2 > 0 [see Fig. 5 (b,d,e)]. However, as can be seen in

igure 1(d), most of the contribution of g im 
is carried by the center 

 ≈ 0 . Therefore, the evolution of f 2 depends on how its center is

liced, i.e. the thickness of the green part and the blue part located 

ear u ≈ 0 . Initially, f 2 increases due to the breaking of the asym-

etry. Then, as the slices become thinner, the total contribution 

ecomes progressively more divided between the blue (negative) 

nd green (positive) parts. This leads to a decrease in f 2 which is 

herefore linked to a geometric effect of the slices on g im 
(u ≈ 0 ) . 

.4. Internal trapping effect 

The previous sections have shown that non-uniformity of the 

nternal electric field has an impact on the structure factor in par- 

icular by introducing a term induced by the complex nature of the 

ptical autocorrelation function. In our prior work, it is shown that 

uch non-uniformity can take two forms: hot spots at the vicinity 

f the contact between monomers and a decrease of the internal 

lectric field accompanied by an increase of the phase shift in the 

irection of the light propagation caused by so-called internal trap- 

ing [31,32] . Here, we focus on the role of this internal trapping on 

he optical structure factor’s deviation from the purely morpholog- 

cal function. This is done by varying the imaginary part of the re- 

ractive index. 

Fig. 6 (a) shows the probability density function (PDF) of the 

hasor amplitude � after averaging over aggregate orientations. 

ecall that a phasor is proportional to the internal electric field. 

lot (b) reports the same analysis for the phase � of the pha- 

or. The three curves correspond to the refractive indices m = 1 . 1 +
 0 . 01 , m = 1 . 1 + i 0 . 4 , and m = 1 . 1 + i 0 . 8 (chosen arbitrarily in order

o vary κ). Yet, note that the index m = 1 . 1 + i 0 . 8 is not far from a

raphitic soot index for this wavelength [19] . The dispersion seen 

n the PDF is a good indicator of internal trapping and is clearly 

orrelated with the increase of the imaginary part of the refractive 

ndex. Some elements of the aggregate correspond to amplitudes 

larger than 1. This is explained by the hot-spots whereas low 

mplitudes and large phase shifts are generally attributed to the 

rapping effect. 
8

It is interesting to analytically express the dependence of the 

wo components of the structure factor f 1 and f 2 in terms of the 

hasor magnitude and phase dispersion. This is simply done by 

xpressing the phasor by its Euler expression z y = � exp (i �) in 

qs. (21, 23) : 

f 1 (q ) = 

1 

AV 2 

∫ 
R 3 

∫ 
V 

�(r ′′ + u )�(r ′′ ) cos 
[
�(r ′′ + u ) − �(r ′′ ) 

]
cos ( i q · u ) d r ′′ d u , 

f 2 (q ) = 

1 

AV 2 

∫ 
R 3 

∫ 
V 

�(r ′′ + u )�(r ′′ ) sin 
[
�(r ′′ + u ) − �(r ′′ ) 

]
sin ( i q · u ) d r ′′ d u . 

(25)

his alternative expression is interesting as it highlights the role 

layed by the phase dispersion of the internal electric field. Indeed, 

ithout the dispersion of �, the cosine in the expression of f 1 is 

 and the sine in the expression of f 2 is zero; this explains the 

bsence of the latter component of the structure factor in RDG-FA 

heory. The amplitude � will essentially affect the magnitude of 

he scattering cross sections but this is partially neutralized by the 

orrection factor A in the denominator in Eq. (25) , which causes 

he structure factor to tend toward 1 when scattering angle tends 

oward 0 ◦ according to Eqs. (16 –17) . Based on these equations, the 

reater the dispersion in phase �, the more the optical structure 

actor will deviate from f . 

Fig. 7 (a) confirms our interpretations above where the struc- 

ure factors are shown for four different refractive indices m = 1 , 

 = 1 . 1 + i 0 . 01 , m = 1 . 1 + i 0 . 4 , and m = 1 . 1 + i 0 . 8 . The deviations

rom the m = 1 case are clearly related to the imaginary part of 

he refractive index. Fig. 7 (b) presents the ratio f IC / f to quan- 

ify the deviation from the structure factor f . This plot confirms 

hat the trapping effect causes a deviation of the optical struc- 

ure factor that becomes enhanced for qR g ≥ 1 , thus explaining 

hy the gyration diameter determination by angular light scatter- 

ng experiments is largely unaffected. Conversely, the departure in 

he power-law regime is significant. Indeed, for the refractive in- 

ex m = 1 . 1 + i 0 . 8 , the relative deviation of the structure factor in

ackscattering reaches 25% . It is also interesting to observe bumps, 

uggesting that internal coupling is sensitive to the morphological 

eatures of the aggregate as such bumps precisely correlate with f , 

ee Fig. 7 (a). 

Fig. 8 reports the ratio f 2 / f for different refractive indices. 

he general pattern appears to be a rapid growth followed by an 

symptotic trend. The three previously studied refractive indices 

 = 1 . 1 + i 0 . 01 , m = 1 . 1 + i 0 . 4 , and m = 1 . 1 + i 0 . 8 cause a maxi-

um deviation of 2% , 10% and 20% at θ = 180 ◦, respectively. This 
onfirms the fact that the deviation between f IC and f is mostly 

riven by f 2 . In this curve, the different real parts of the refrac-

ive index Re { m } = n reported in Table 1 are considered as well. 
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Fig. 7. (a) The structure factor for refractive indices, m = 1 . 1 + i 0 . 01 (circle marker), m = 1 . 1 + i 0 . 4 (star marker), m = 1 . 1 + i 0 . 8 (square marker), and m = 1 (black dashed 

line). In (b) is shown the ratio between the exact structure factor f IC and f , the one considered in RDG-FA with m = 1 . 

Fig. 8. Ratio between f 2 and f for several indices. For the three κ , the dashed lines 

correspond to refractive indices with Re { m } = 1 . 1 , the dot lines with Re { m } = 1 . 5 , 

and the dashed-dot lines with Re { m } = 1 . 9 (see Table 1 ). 

Table 1 

Relative errors induced by internal coupling on the evaluation of the fractal dimen- 

sion D f and on the structure factor in the backscattering configuration for different 

refractive indices at λ = 266 nm . 

Refractive index m D f error factors Backscatter error factors 

m = 1 . 1 + i 0 . 01 0% -1% 

m = 1 . 5 + i 0 . 01 0% 2% 

m = 1 . 9 + i 0 . 01 -1% 8% 

m = 1 . 1 + i 0 . 4 4% -17% 

m = 1 . 5 + i 0 . 4 4% -15% 

m = 1 . 9 + i 0 . 4 3% -10% 

m = 1 . 1 + i 0 . 8 8% -28% 

m = 1 . 5 + i 0 . 8 7% -26% 

m = 1 . 9 + i 0 . 8 6% -22% 

T
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b

Fig. 9. Ratio between f 2 and f for m = 1 . 9 + i 0 . 8 and m = 1 . 1 + i 0 . 8 at λ = 266 nm . 

The individual behavior is reported in plain curves. The average result based on 

many DLCA aggregates is reported in dot lines and its fit in dash lines. The color 

shaded areas indicate the 95% confidence interval. 
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he impact seems less sensitive to n than to Im { m } = κ but it con- 

ributes to an amplification of the effect of internal coupling on the 

ptical structure factor. 

Table 1 reports the errors induced by the internal coupling on 

he interpretation of the structure factor in terms of the fractal di- 

ension D f , i.e., the negative the slope measured in the power-law 

egime, and the specific value in backscattering. As for f 2 , those 

arameters are governed by κ , while the role played by n seems 

o be less pronounced due to the contribution of f 1 that has to be

onsidered for the determination of the resulting structure factor. 

owever, it should be noted that the determination of D f , which is 

ased on the slope of the structure factor in the power-law regime, 
9 
argely depends on the region considered for said slope measure- 

ent. 

The bumps and the maximum deviations observed at 180 ◦ seen 

n Figs. 7 and 8 are morphology dependent. A different aggregate 

ould yield different f eatures. To investigate possible morphological 

ependence, we make use of the ergodicity theorem to abandon 

rientation averaging, and rather, average over 540 different DLCA 

ggregates taken from Yon et al. [41] with N m ∈ [10 , 300] , D f ≈ 1 . 78

nd k f ≈ 1 . 4 , and where each aggregate has an arbitrary fixed ori-

ntation. 

As expected, when averaged over many different aggregates 

see Fig. 9 ), the bumps disappear. A fit is proposed by an em- 

irically chosen function a × arctan (b × x c ) with a , b, and c, re-

pectively, equal to 0.133, 0.107, 2.122 for m = 1 . 9 + i 0 . 8 and 0.095,

.052, 2.695 for m = 1 . 1 + i 0 . 8 for λ = 266 nm . 

. Conclusion 

The RDG-FA approximation is commonly used for the model- 

ng of the optical properties of fractal aggregates, including soot, 

nd thus for the interpretation of light scattering measurements. 

owever, its criteria are sometimes difficult to fulfill, especially for 

bsorbing aerosols, and depend on the ratio between the primary- 

phere diameter and wavelength. Those deviations have been nu- 

erically observed in the past and often attributed to internal cou- 

ling (or intra-cluster multiple scattering). Nevertheless, a precise 



C. Argentin, M.J. Berg, M. Mazur et al. Journal of Quantitative Spectroscopy & Radiative Transfer 296 (2023) 108451 

p

t

s

i

f

a

w

e

t

n  

t

i

f

r

g

u

p

r

W

n

t

s

n

i

u

r

e

f  

s  

i

e

w

d

i

i  

n  

v

p

v

m

f  

(  

g

g

c

b

a

i

D

c

i

D

A

0

p

p

p

1

F

s

f

R

 

 

 

 

 

 

[

[

[

[  

[

hysical understanding of the phenomenon was lacking, in par- 

icular concerning the impact on the structure factor. Indeed, the 

tructure factor, for many applications including SAXS experiments, 

s still evaluated as the Fourier transform of the autocorrelation 

unction which is a pure morphological descriptor of the aggregate, 

nd thus, internal coupling cannot be considered. 

In this work, an optical autocorrelation function is introduced, 

hich considers the non-uniformity of the internal electric field 

xpressed in terms of phasors. It is demonstrated that the op- 

ical autocorrelation function is a complex function. The imagi- 

ary part of is at the origin of a new term in the expression of

he structure factor written f 2 in this manuscript. The function’s 

maginary part explains the abnormal decrease of the structure 

actor at large scattering angles where internal coupling becomes 

elevant. This could impacts the optical determination of the ag- 

regates fractal dimension made of absorbing material, in partic- 

lar at lower wavelengths and could have a non-negligible im- 

act on LIDAR measurements, i.e., for the backscattering configu- 

ation in presence of very large particles as superagregates [20] . 

e also show why the determination of the radius of gyration is 

ot much impacted by internal coupling. Finally, it is demonstrated 

hat structure-factor deviation is essentially driven by the phase 

hift of the light as it crosses the particle, induced by the inter- 

al trapping effect, which seems to be essentially driven by the 

maginary part of the refractive index. Therefore, experimenters 

sing UV light must take into account the possibility of large er- 

ors when dealing with optically absorbing materials with a size 

xceeding qR g > 3 . For example, backscatter errors of up to 28% 

or qR g ≈ 10 and up to 8% for the fractal dimension for a possible

oot index m = 1 . 1 + i 0 . 8 at λ = 266 nm are observed. The scale-

nvariant nature of the structure factor [45] makes it possible to 

xtend some of the observations reported in this study to other 

avelengths if the refractive index remains fixed; otherwise, the 

ispersion of the material must be taken into account. However, 

t should be noted that the amorphous and graphitic soot indices 

n [19] , for the UV and near UV, are rather close. Indeed, κ does

ot vary strongly, and as seen here it is the cause of the main de-

iations. Concerning the indices in the IR range, the spectral dis- 

ersion is not necessarily a problem because unless the objects are 

ery large, the structure factor will not go far enough in qR g to 

easure the fractal dimension. Note that, this study has been per- 

ormed for a specific fractal dimension ( D f = 1 . 78 ) and prefactor

 k f = 1 . 40 ) for point touching spheres. Therefore, others morpholo-

ies could affect the observations. 

A perspective of this work would be to consider realistic aggre- 

ate morphologies by adding, for example, overlapping, necking, or 

oating to the monomers [46] . Indeed, such realistic objects have 

een shown to amplify the deviations from the RDG-FA [28,29] and 

ssociated depolarization effects [47] , where the latter observation 

s well-known to be induced by internal coupling [48] . 
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