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Abstract Inland waters are important emitters of the greenhouse gasses (GHGs) carbon dioxide (COy,
methane (CH,), and nitrous oxide (N,O) to the atmosphere. In the framework of the 2nd phase of the REgional
Carbon Cycle Assessment and Processes (RECCAP-2) initiative, we review the state of the art in estimating
inland water GHG budgets at global scale, which has substantially advanced since the first phase of RECCAP
nearly 10 years ago. The development of increasingly sophisticated upscaling techniques, including statistical
prediction and process-based models, allows for spatially explicit estimates that are needed for regionalized
assessments of continental GHG budgets such as those established for RECCAP. A few recent estimates

also resolve the seasonal and/or interannual variability in inland water GHG emissions. Nonetheless, the
global-scale assessment of inland water emissions remains challenging because of limited spatial and temporal
coverage of observations and persisting uncertainties in the abundance and distribution of inland water surface
areas. To decrease these uncertainties, more empirical work on the contributions of hot-spots and hot-moments
to overall inland water GHG emissions is particularly needed.

1. Introduction

Inland waters (streams, rivers, lakes and reservoirs) are net-sources of greenhouse gasses (GHGs) to the atmos-
phere. They receive considerable amounts of reactive organic matter from terrestrial ecosystems, promoting
the production of GHGs like carbon dioxide (CO,), methane (CH,), and nitrous oxide (N,O). Inland waters are
usually net-heterotrophic, meaning CO, production through respiration exceeds CO, consumption by aquatic
production (Battin et al., 2023). An additional source of inland water GHG emission comes from terrestrial and
wetland runoff and drainage that can be oversaturated in dissolved CO, produced by microbial and root respira-
tion (Abril & Borges, 2019). Once this supersaturated aqueous solution enters surface waters, it can release gas
into the atmosphere and contribute to inland water CO, emissions. Similarly, inland waters receive dissolved CH,
and N,O from oversaturated soils and groundwater (Jurado et al., 2017; Rasilo et al., 2017). In addition, the sharp
fronts between reducing and oxidizing conditions within the water column or at the interface between surface
and subsurface environments (e.g., benthic and hyporheic zones) promotes the production and emissions of N,O
(Marzadri et al., 2017, 2021). Moreover, autochthonous aquatic production may enhance nitrification in the water
column through increased oxygen levels, while it may stimulate denitrification and methanogenesis in reducing,
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benthic sediments through delivery of labile organic matter. These processes play an important role in the N,O
and CH, budgets of eutrophic lakes and reservoirs (DelSontro et al., 2018; Zhou et al., 2021).

While the processes driving GHG production have been known to limnologists for some time, large-scale
quantification of inland water GHG emissions is still difficult and estimates are afflicted by large uncer-
tainties. In their 5th Assessment Report (ARS), the IPCC (2013) acknowledged for the first time that inland
waters are a significant contributor to the global GHG budget. At the same time, however, it was recognized
that GHG fluxes from these ecosystems remain poorly constrained at the global scale. High uncertainties
in inland water GHG emission estimates arise due to a poor spatial and temporal coverage of direct obser-
vations (Bastviken et al., 2011; Deemer et al., 2016; Regnier et al., 2013, 2022; Soued et al., 2016) and are
reflected in the large range of estimated inland water GHG fluxes reported in AR5: 0.8-1.2 Pg C yr~! for
CO,, 8-73 Tg CH, yr~! for CH,, and 0.1-2.9 Tg N yr~! for N,O. In their 6th Assessment Report (AR6), the
IPCC (2021) provides updated ranges for N,O (0.5-1.1 Tg N yr~') and CH, (112-217 Tg CH, yr~") emissions
which are narrower, but still reflect significant uncertainties in estimating inland water GHG emissions. Note
that inland water emissions proportionally remain the largest source of uncertainty in the global land CH,
budget (Canadell et al., 2011).

The REgional Carbon Cycle Assessment and Processes (RECCAP) initiative aims to establish the GHG
budgets of large regions covering the entire globe at the scale of continents (or large regions) and large ocean
basins, which are then synthesized at global scale. While the first phase of this initiative (RECCAP1; Canadell
et al., 2011) focused on CO, only, now the second phase (RECCAP2) accounts for the three GHGs CO,, CH,,
and N,O. As part of RECCAP1, Raymond et al. (2013) re-estimated global inland water CO, evasion suggest-
ing that the total flux could be as high as 2.1 Pg C yr~!, which is about twice the estimates synthesized in
ARS. This much higher estimate was due to a re-estimation of stream surface areas including small headwater
streams which contribute disproportionately to the total water surface area and CO, emission, but which were
neglected in earlier assessments that used data sets representing only larger global rivers (e.g., Cole et al., 2007).
More importantly, Raymond et al. (2013) provided the first global maps of inland water CO, emissions, which
allowed for the use of these estimates in regionalized, global C budgets (Bastos et al., 2020; Ciais et al., 2021;
Zscheischler et al., 2017).

Since RECCAPI, a growing number of global estimates of inland water GHG emissions have been published,
not only for CO, emissions (e.g., Holgerson & Raymond, 2016; Horgby et al., 2019; Lauerwald et al., 2015; Liu
etal., 2022), but also for CH, (e.g., Holgerson & Raymond, 2016; Rosentreter et al., 2021; Stanley et al., 2016) and
N,O (e.g., Huet al., 2016; Lauerwald et al., 2019; Maavara et al., 2019; Marzadri et al., 2021; Soued et al., 2016;
Yao et al., 2020), or for all three GHGs combined (e.g., Deemer et al., 2016; DelSontro et al., 2018). The limited
availability and quality (e.g., length and frequency of time-series), and uneven global coverage of observed emis-
sion rates (see e.g., Deemer et al., 2016) still represent a large source of uncertainty. While many studies build
largely on the same data that was produced over the past decades, the amount and quality of empirical data is
steadily increasing. In addition, global emission estimates profited from the appearance of new, improved data
sets of inland water surface areas (Allen & Pavelsky, 2018; Lehner et al., 2011; Messager et al., 2016; Verpoorter
et al., 2014). Finally, global scale estimation of inland water GHG budgets have been improved through novel
upscaling techniques based on statistical (e.g., DelSontro et al., 2018; Lauerwald et al., 2015) and process-based
models of varying complexity (e.g., Maavara et al., 2019; Yao et al., 2020).

In the framework of RECCAP2, we present a review of existing global estimates of inland water GHG emissions.
We start with a general overview of methods to achieve global scale estimates, starting from methods to measure
flux rates in the field, followed by methods used to upscale flux rates to the global scale and which comprise a
large range of approaches including simple upscaling based on average observed flux rates, statistical prediction
and the use of process-based models (Section 2). Then, in three subsections respectively dedicated to estimates
of emissions of CO, (Section 3), CH, (Section 4) and N,O (Section 5), we discuss the state of the art for each of
these GHGs in more detail, review all existing global estimates, and explore differences between flux assessments
and their underlying methods. In addition, we highlight for each GHG persisting shortcomings and challenges
for future research. The companion paper in the same issue (Lauerwald et al., 2023) then builds on the present
review to derive a regionalized assessment for the 10 regions used in RECCAP2. In this companion paper, each
previously published global estimate reported here was rescaled using the same new global assessment of inland
water surface area, allowing for better consistency and homogeneity across all previously published values.
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2. Overview of Upscaling Strategies and Surface Area Estimates Used in Global
Studies of Inland Water GHG Emissions

This subsection gives a brief overview of different methods that are used to obtain global scale estimates of
inland water GHG emissions. These methods are classified into three main approaches, namely direct upscaling
based on observations Section 2.1, statistical upscaling based on functional relationships between emissions and
environmental drivers Section 2.2, and process-based models Section 2.3. We also briefly review progress in the
global scale assessment of inland water surface areas Section 2.4, which is of vital importance for global upscal-
ing of inland water GHG emissions.

2.1. Upscaling Based on Observations

Large-scale estimates of inland water GHG emission fluxes F, are usually calculated as the product of an
average flux rate f;,5, which can be expressed in units of mass per area and time, as derived from a set of field
observations, and an estimate of the inland water surface area A, for which this flux rate is assumed to be repre-
sentative (Equation 1).

Fone = fong * Amw H

Many estimates have applied this simple upscaling technique directly at the global scale using an average fi,,q
multiplied by the total Ay, of one specific type of inland waters. For instance, Deemer et al. (2016) calculated
the average rates of GHG emissions from reservoirs, using observations from empirical studies around the world
and multiplied those average rates by the estimated total area of reservoirs after Lehner et al. (2011). Others
have first broken down the total of inland waters of one type into different subgroups, for example, based on size
of water body or stream order (Holgerson & Raymond, 2016; Humborg et al., 2010), geographic region (e.g.,
Aufdenkampe et al., 2011; Bastviken et al., 2011; Johnson et al., 2021; Soued et al., 2016) or both (Raymond
et al., 2013; Rosentreter et al., 2021). An area-integrated flux from each subgroup was then calculated following
the same Equation 1, before summing those up to a global flux.

Methods and challenges to obtain estimates of Ay, are presented in detail in Section 2.4. In what follows, we will
first focus on uncertainties associated with measuring and calculating f,,,;. Flux rates can either be obtained from
GHG emission rates directly measured in the field (Section 2.1.1), or from measurements or calculation of GHG
concentration gradients and concomitant measurements or models of gas transfer velocities (Section 2.1.2). Note
that this study does not aim to provide a detailed review of field methods. These aspects are thus only briefly
discussed, with a focus on methodological uncertainties.

2.1.1. Directly Observed Flux Rates

A common method to measure aquatic GHG emission rates is the use of floating chambers, which resemble
inverted plastic buckets put onto the water surface. The emission rates are then calculated based on the accu-
mulation rate of GHGs within the floating chamber headspace. This method detects the emission rate from the
small surface area of the floating chamber across the larger area over which the chamber may be moving during
the deployment. Chambers may drift a few meters if tethered or over longer distances if drifting freely during
the deployment (Lorke et al., 2015). Such a well-defined footprint is advantageous for studies of local flux
regulation and for distinguishing variability in space versus time. Concurrently, the small size of the footprint
leads to potentially high uncertainties in the extrapolation of flux chamber measurements to large areas, with-
out numerous representative measurements (Colas et al., 2020). Eddy covariance towers, though less common
and only applicable in standing water bodies of a certain size have the advantage of generating net fluxes (i.e.,
emission or uptake) from a larger surface area (depending on height, surface roughness and wind speeds, eddy
covariance towers can have a footprint of up to 3-km radius (Chu et al., 2021)), thus delivering a more represent-
ative emission rate (Podgrajsek et al., 2014). In contrast to the floating chamber method, the eddy covariance
technique also allows for continuous measurements which provide better temporal resolution in emission rates.
However, the flux footprint is constantly moving with wind speed and direction, making variability in time and
space challenging to distinguish (Eugster et al., 2011). Fluxes cannot be measured at all when there is no wind
(e.g., typical during night time) and complications associated with rainfall and lateral advective gas flux make
accurate flux measurements challenging (Podgrajsek et al., 2014; Vesala et al., 2006). Eddy covariance also relies
on the performance of advanced equipment and a high level of operator expertise for adequate data filtering and
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QA/QC. Above all, limited eddy covariance measurements mean that global upscaling based only on this method
is not yet possible, and inherent limitations due to its vulnerability toward unfavorable meteorological conditions
and interactions with other nearby ecosystems make eddy covariance suboptimal for key inland water emission
measurements such as fluxes from streams and along lake shores.

While the majority of CO, and N,O emissions occur through diffusive flux across the air-water interface, a
significant but variable fraction of aquatic CH, flux occurs as bubbles (i.e., ebullition) (Bastviken et al., 2011).
Ebullition occurs when CH, produced in aquatic sediments forms gas bubbles that at a certain size, due to buoy-
ancy, evade the sediment layer and ascend through the water column. Existing emission estimates from floating
chambers sometimes intentionally exclude ebullition (e.g., Yang et al., 2021). Other floating chamber methods
include both diffusive and ebullitive emissions (e.g., Barbosa et al., 2021). Also, eddy covariance towers measure
the sum of both emission pathways (Eugster et al., 2011). There are nonetheless various methods to directly quan-
tify ebullition. However, these methods detect bubbles rather than CH, and need supplementary measurements
of CH, concentration within the bubble gas, usually from manually taken samples, to allow flux estimation (e.g.,
Linkhorst et al., 2020). This point is critical as CH, concentration in bubbles can vary widely, from less than 1%
to >80% (Boereboom et al., 2012). The most common methods for directly quantifying ebullition rates is the
bubble trap, an inverted funnel that collects ascending bubbles (Maeck et al., 2013) and is sometimes connected
to a hydrostatic pressure sensor (Varadharajan et al., 2010) or specialized bubble size sensors (Delwiche &
Hemond, 2017) to measure the timing and size distribution of ascending bubbles. Ebullition measurements based
on point measurements in space and time are currently very labor intensive given the high spatiotemporal varia-
bility of ebullitive fluxes (Linkhorst et al., 2020). Echo sounders (Ostrovsky et al., 2008), robotic boats connected
to optical methane detectors (Grinham et al., 2011) and under-ice surveys (Wik et al., 2011) have also been used
to quantify ebullition rates. In addition, radar remote sensing approaches are currently being developed that
could integrate over space and time for more representative measurements (Engram et al., 2020).

2.1.2. Estimating Diffusive Fluxes Based on Concentration Gradients

The methods for directly measuring emission rates can easily be applied in deeper, slower-moving waters (float-
ing chambers and funnel traps) or in larger water bodies (eddy covariance). However, these methods are often
not feasible for smaller streams. Instead, emission flux rates can be calculated from a gradient in concentrations
of a specific GHG (AC,;) in the water close to the surface and in the overlying atmosphere and a gas exchange
velocity kg, (Equation 2). Note that this method can be applied to flowing and standing water bodies of any size,
but only allows estimation of diffusive emissions, and is not applicable for ebullition. The gradient AC,;,; can be
calculated based on direct field measurements using headspace equilibration methods (e.g., Miiller et al., 2015),
or using measured headspace partial pressures and solubility constants that depend on salinity and water temper-
ature (Weiss, 1970).

Jfong = ACgug * kguc (2)

The headspace equilibration method consists of equilibrating a known volume of sampled water and a known
volume of air or gas, with a known initial partial pressure of the GHG to be analyzed. After full equilibration,
a sample of the headspace is analyzed by for example, gas chromatography (Natchimuthu, Wallin, et al., 2017),
optical gas analyzers (Grilli et al., 2020), or other gas analysis methods, to measure the corresponding GHG
partial pressure from which the Cg, 5 in the sampled surface water can be calculated. This concentration is
compared with the theoretical concentration in equilibrium with the background air partial pressure of the GHG
in focus to yield AC,,;. In the case of CO,, concentrations can also be calculated from observations of alkalinity
and pH based on chemical equilibria and the assumption that non-carbonate contributions to alkalinity are negli-
gible, which can be questioned in some common aquatic systems (Abril et al., 2015) (see Section 3.2 for more
discussion).

Gas exchange velocity can be assessed through direct tracer studies in which a specific tracer gas is injected into
the stream, and its loss is measured over a defined length. As this method is too cumbersome and costly to be
applied everywhere, empirical equations have been established that relate kg to the rate of energy dissipation
at the water-air interface. Energy dissipation causes the turbulent mixing of the upper water column and thus
determines the depth of the water column which interacts with the atmosphere through the process of diffusion.
In fact, kgyg in units of length per time (e.g., m day~") represents the depth of the upper water column that
will equilibrate with the overlying atmosphere over that specific amount of time. For streams and rivers, this
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energy dissipation rate can be estimated from stream flow velocity and stream channel geometry, in particu-
lar the slope of the stream channel (Natchimuthu, Sundgren, et al., 2017; Natchimuthu, Wallin, et al., 2017,
O’Connor & Dobbins, 1958; Raymond et al., 2012). More recent work has however noted a breakpoint in the
energy dissipation rate at which air entrainment and bubble formation cause kg to increase more rapidly with
energy dissipation (Ulseth et al., 2019). This suggests that assuming only diffusive water-air gas exchange, as it
is assumed in most studies of inland water CO, emissions, may lead to underestimated gas transfer velocities in
systems with very high hydrological energy. For lakes and reservoirs, empirical equations relate kg, to wind
speed (Cole & Caraco, 1998), lake surface area (Read et al., 2012), or both (Vachon & Prairie, 2013), as the
degree to which wind shear versus convective mixing dominate gas transfer dynamics generally changes as a
function of waterbody size. More sophisticated modeling of kg, from lake hydrodynamics considering multiple
turbulence-generating processes have also been developed (e.g., Maclntyre et al., 2021). It has been suggested
that models of kg should be locally validated whenever possible (e.g., Schilder et al., 2013).

2.2. Upscaling Based on Statistical Prediction

A variety of statistical methods have been used to upscale flux measurements/estimates to the global scale. These
methods can be categorized into two groups of statistical upscaling approaches: (a) methods that predict emission
rates directly, and (b) methods that first predict Ay, ACg;y6, and kg, separately, and combine them using Equa-
tions 1 and 2 to estimate the emission flux Fiyg iy

A simple example for the first group of methods is the use of emission factors (EFs), which has been applied to
estimate N,O emissions from river networks (Beaulieu et al., 2011; Kroeze et al., 2010). Averaged EFs, typically
defined as the ratio of N,O emissions to riverine N loads, were derived from a number of field studies. These EFs
were then multiplied by global, spatially explicit estimates of river N loads (e.g., Mayorga et al., 2010) to estimate
global riverine N,O emissions at the same spatial resolution as the riverine N loads. This method assumes that
riverine N,O emissions simply scale linearly to riverine N loads, which is problematic from a reaction kinetics
point of view, as discussed in Maavara et al. (2019). As an alternative empirical approach, Hu et al. (2016) used
findings from field studies to fit equations predicting riverine N,O emissions as a nonlinear function of dissolved
inorganic N yield and catchment area, thus overcoming some of the limitations of the EF approach.

Another prominent example for the first group of methods is the study by DelSontro et al. (2018), predict-
ing global lake CH, emissions empirically. DelSontro et al. (2018) fitted multilinear regression equations to a
database of literature studies of 166 water bodies quantifying lake CH, emissions, that predict the total (diffu-
sive + ebullitive), annual emission flux from lake size and lake productivity (defined as chlorophyll or phospho-
rus concentration). The fitted regression equations were then applied to different global data sets/estimates of
lake surface area and an assumed statistical distribution of lake productivity across global lakes to estimate the
global-scale CH, emissions from these water bodies.

Examples for the second group of methods are the studies by Raymond et al. (2013), Lauerwald et al. (2015),
and Horgby et al. (2019) that estimated CO, emissions from rivers at the global scale or for specific ecoregions
(Horgby et al., 2019 focused on alpine streams). These studies all used global data sets including digital elevation
models and their derivatives (stream network and channel slope) and gridded estimates of average annual river
flow to explicitly estimate stream surface area and kg, spatially. While Raymond et al. (2013) combined their
estimates of Ay, and kg, with regionalized averages of calculated AC,, Lauerwald et al. (2015) and Horgby
et al. (2019) further used multiple linear regression models to estimate riverine AC, from different spatial
drivers (like terrestrial Net Primary Productivity—NPP, climate, terrain steepness in Lauerwald et al. (2015), or
elevation, soil carbon stocks, and discharge in Horgby et al. (2019)). Note that combining independent estimates
of kg and ACq, introduces an additional source of uncertainty, as ACgy5 is in turn controlled by kg, and its
balance with CO, resupply rates to the surface water, which is for instance evidenced by low AC,,; in turbulent,
high alpine streams (Horgby et al., 2019).

2.3. Process-Based Models

Process-based models of varying degrees of complexity have recently been used to assess inland water GHG
emission at the global scale (Maavara et al., 2019; Marzadri et al., 2021; Yao et al., 2020). Ideally, such models
represent carbon and nutrient transport and transformation processes that drive production, cycling and emission
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of GHGs in a water body or along a cascade of water bodies (like a sequence of stream reaches or a cascade of
reservoirs along a river network). This representation requires boundary condition data at the global scale and in
sufficient quality and quantity. This data requirement is a major limitation for the applicability of process-based
models for inland water GHG emissions at the global scale.

A promising strategy to overcome that limitation is the explicit representation of inland waters and associated
biogeochemical processes in land surface models (LSMs) that simulate the terrestrial cycling of energy, water,
C, nutrients, and GHGs. Using LSMs, the biogeochemical and transport processes that drive the GHG dynam-
ics can be simulated simultaneously for terrestrial and freshwater ecosystems, reducing the need for complex
boundary conditions at the land-inland water interface. Developments in that direction have been achieved for
the LSMs DLEM (Tian, Yang, et al., 2015; Tian, Ren, et al., 2015; Yao et al., 2020) and ORCHIDEE (Lauerwald
et al., 2017, 2020). At global scale, LSM simulations including inland water GHG emissions have yet only been
achieved with DLEM (Yao et al., 2020).

When using LSMs, the simulated water fluxes and associated terrestrial C and nutrient inputs to inland waters are
already afflicted by considerable uncertainties, including those arising from the overparameterization of these
extremely complex models. Thus, an alternative is to use process-based models of only inland waters forced by
data driven information. The global river network N,O modeling studies by Maavara et al. (2019) and Marzadri
et al. (2021) follow two different strategies to overcome data limitations to constrain the models. Maavara
et al. (2019) followed a metamodeling strategy, for which a box model representing all major processes of N
and N,O cycling in a water body was first set-up. While this process-based model could not be applied at global
scale due to data limitations to constrain each biogeochemical process, Maavara and colleagues ran the model
across a realistic range of model input parameters using a Monte Carlo approach to derive simple response func-
tions. The resulting response functions relating N,O emissions to nutrient loads and water residence times were
then applied at global scale using loads and residence times derived from available global data sets. Marzadri
et al. (2021) applied their process-based model of river N,O emissions directly at global scale, which required
spatially resolved model inputs comprising a detailed set of parameters describing stream hydro-morphology and
water quality, which in that form did not yet exist at global scale. To overcome that limitation, machine learning
techniques were applied to derive these input data sets from other, available geodata. These input data were then
used to feed a process-based model that parametrizes N,O emissions as a function of river size by means of two
Damkohler numbers representing the ratio between a characteristic time of transport and a characteristic time
of reaction. The proposed hybrid model (machine learning + process based) allows the consideration of the
contribution of surface (e.g., water column) and subsurface (e.g., benthic and hyporheic zones) processes to N,O
emissions (Marzadri et al., 2021).

For aquatic CH, emissions, process-based modeling efforts have been mostly dedicated to lake and reservoir
systems. For example, an online, open-source predictive model framework “G-res” has recently been developed
to provide global, spatially explicit estimates of the form and magnitude of reservoir CH, and CO, emissions
(Harrison et al., 2021; Prairie et al., 2021). G-res uses a series of calibrated empirical models that integrate
local (reservoir-specific) and regional (watershed attributes) information to predict GHG emissions (Prairie
et al., 2021). The model has been applied to 4,727 reservoirs to estimate global emissions (Harrison et al., 2021).
Tan and Zhuang (2015a, 2015b) have developed and applied a process-based model to estimate CH, emissions
from lakes at pan-arctic scale. That model produces gridded output, resolves seasonal and interannual variability,
and permits for projections of long-term trends following global change scenarios.

2.4. Available Data and Previous Estimates of Global Inland Water Surface Area

The first digital global map of inland water surface areas that was used for inland water GHG emission estimates
was the Global Lake and Wetland Database (GLWD) by Lehner and D61l (2004). GLWD was derived from a
compilation of different global and regional inventories. While GLWD is not globally consistent with regard to
detail and reliability of the data sources, it represented the best available data set for more than a decade and was
used in numerous studies of inland water GHG emissions (e.g., by Raymond et al. (2013) for lakes and reservoirs,
by Aufdenkampe et al. (2011) for all water bodies). Since then, our ability to estimate the global surface area of
rivers, lakes, and reservoirs has progressed significantly. This progress has been driven by advances in satellite
remote sensing, image processing methods, and geospatial analysis techniques. Several freely available global
hydrography data sets have recently become available that can be used to estimate surface area and distribution
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of inland water bodies. Here we discuss a selection of high-resolution, freely available data sets that can be useful
for global-scale evaluations of greenhouse gas emissions from inland water bodies.

A few global inland water body data sets have been developed using optical remote sensing data. The JRC GSW
data sets from Pekel et al. (2016) and the GSWD from Pickens et al. (2020) are two global 30-m-resolution data
sets of open surface water extent, created from the Landsat archive. These data sets are multitemporal and highly
consistent but they do not distinguish between different water body types (e.g., rivers, lakes, etc.). Classifying
water body type is necessary in evaluations of GHG exchange because of differing exchange rates and processes
occurring in different aquatic environments. The Global River Widths from Landsat (GRWL) database (Allen &
Pavelsky, 2018) contains exclusively river surface areas derived from Landsat imagery.

In addition to these image-based data sets, global topography-based data sets derived from digital elevation
models (DEMs) have been used for representing the global extent and distribution of streams and rivers. These
include hydrologically conditioned gridded raster data sets like HydroSHEDS (Lehner et al., 2008) and MERIT
Hydro (Yamazaki et al., 2019) or vectorized flowline data sets derived from these gridded data sets including
HydroRIVERS (Lehner & Grill, 2013) or MERIT Hydro—Vector (Lin et al., 2021). These DEM-based data
sets can be used to infer the location and size of narrow rivers and streams too small to be visible from freely
available satellite data sets. These data sets can also be used to infer other characteristics of river networks
including stream order, slope, upstream area, and topology, which are of potential value for estimating amount
and turbulence of river flow, which in turn are important drivers of GHG emissions. Other hydrography data sets
innovatively combine DEM-based data sets with other sources of data to produce novel information including
machine learning-based estimates of river surface area (Lin et al., 2021) and the extent of non-perennial rivers
(Lin et al., 2021; Messager et al., 2021).

For standing open water bodies like lakes and reservoirs, attempts have also been made to identify water bodies
from satellite imagery using automated algorithms. A prominent example is the Global Water Body (GLOWABO)
data set (Verpoorter et al., 2014). Due to the unsupervised classification method and the fact that ground truth was
evaluated only for Sweden, this data set is however uncertified for other parts of the world and likely contaminated
with wrongly assigned riverine, coastal or temporal water bodies (Pi et al., 2022). In addition, inventory-based
data sets have further been developed, including the Global Reservoir and Dam database (GRanD) (Lehner
et al., 2011) and the HydroLAKES database (Messager et al., 2016) which gives water surface areas of standing
waters distinguishing lakes from reservoirs. Note that HydroLAKES also includes the information from GRanD
and GLWD, which makes these products partly redundant. The advantage of inventory-based data sets as GRanD
and HydroLAKES is the avoidance of contamination with other water bodies and additional attributes such as
names, estimates of water volume and residence time, height and purpose of dam for reservoirs, etc. In particular
the distinction between lakes and reservoirs is of major importance for the assessment of inland water GHG emis-
sions. Reservoirs as artificial water bodies deserve special attention, as they represent an anthropogenic source of
GHGs and a potential lever for controlling future emissions (Almeida et al., 2019). However, we have to expect
an under-classification of reservoirs in inventory data sets such as HydroLAKES, as water bodies for which this
information was not available have been categorized as natural lakes by default (Messager et al., 2016). Smaller
hydropower projects which outnumber large hydropower projects by approximately 11:1 (Couto & Olden, 2018)
may not always be inventoried and accounted for in regional and global data sets. Recently, new data sets of dams
and reservoirs have been created combining remote sensing-based data sets with other sources of information, for
example, GOODD (Mulligan et al., 2020) and GeoDAR (Wang et al., 2021), continuously increasing the numbers
of reservoirs that are taken up into inventories.

Although considerable progress has been made recently in developing global hydrography data sets, much less
work has been done to apply these data sets to estimate global surface area of inland water bodies. For the surface
area of rivers, three notable global estimates have been produced by Downing et al. (2012) of between 485,000
and 682,000 km?, Raymond et al. (2013) of between 487,000 and 761,000 km?2, and Allen and Pavelsky (2018)
of 773,000 + 79,000 km?. Downing et al. (2012) based their estimate on >400 observations of stream width,
data on number and length of streams from HydroSHEDS data set, and statistical scaling relating stream number,
width and length to stream order. While this observational data set covers rivers from all over the world, it is
clearly dominated by North American rivers and the extent to which the statistical relationships identified in that
study is applicable to the global-scale is questionable. Raymond et al. (2013) combined the stream network of
HydroSHEDS with gridded runoff data to obtain a distribution of stream lengths and discharge per stream order
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of medium to large rivers, to which they then applied empirical, hydraulic equations predicting stream width
from discharge. Finally, they used stream-order based scaling laws to estimate stream surface areas for smaller
streams. Allen and Pavelsky (2018) used their remote-sensing based GRWL database for surface areas of medium
to large rivers, which they complemented with topography- and statistical-based estimates for streams narrower
than 90 m to headwater streams as defined by Allen et al. (2018). The GRWL data set is to date the most complete
and reliable data set of its kind.

For the surface area of lakes and reservoirs, three notable global estimates have been made by Downing
et al. (2006), Verpoorter et al. (2014), and Messager et al. (2016). Downing et al. (2006) used surface areas from
standing water bodies >10 km? from GLWD (Lehner & Doll, 2004) and extrapolated the surface area to smaller
water bodies down to 0.001 km? assuming power-law relationships (Pareto distributions) between water body
size and frequency. Note, however, that a more recent empirical study disproved the hypothesis that number
and area of small lakes would follow a power-law distribution (Cael & Seekell, 2016). Verpoorter et al. (2014)
used their remote-sensing derived GloWaBo database which includes lakes as small as 0.002 km?. Messager
et al. (2016) derived their estimate from their inventory based HydroLAKES database, which contains water
bodies >0.1 km?2. Due to this restriction with regard to minimum lake size, Messager et al. (2016) obtained the
lowest of the three global surface area estimates for standing waters with 2.7 x 10% km?. The estimate of Downing
et al. (2006) is substantially higher with 4.2 x 10® km?, while for water bodies larger than 0.1 km?, their estimate
of 2.9 x 10° km? is quite comparable to HydroLAKES. The estimate by Verpoorter et al. (2014) is even higher
with 5 x 10% km?, likely due in part to overestimation of lake areas through contamination with other water
bodies (Pi et al., 2022). A reliable map of smaller bodies of standing water, such as ponds, which are thought to
contribute substantially to the total water surface area and disproportionally to GHG emissions (Holgerson &
Raymond, 2016; Rosentreter et al., 2021), is still not achievable.

3. Inland Water CO, Budget
3.1. Overview of Existing Estimates

Global estimates for the aquatic CO, emission range from 0.84 to 7.33 Pg CO, yr~! for streams and rivers, from
0.40 to 2.14 Pg CO, yr~! for lakes, from 0.08 to 0.14 Pg CO, yr~! for reservoirs (excluding the estimate by Cole
et al. (2007), which is discussed at the end of this section), and from 0.89 to 2.35 Pg CO, yr~! for estimates that
lumped lakes and reservoirs together (Table 1, Figure 1). In general, considerable discrepancies exist in particular
between early estimates that relied mostly on lumped estimates of average CO, concentrations, kg and water
surface area, and more recent estimates relying on more complete concentration data sets, more sophisticated
upscaling approaches and spatially resolved water surface area estimates. For streams and rivers, the earliest
estimates (Cole & Caraco, 2001; Cole et al., 2007, p. 207) were crude and most likely underestimate riverine CO,
emissions because of their reliance on data from large rivers, which tend to show lower areal CO, emission rates
than smaller and more upstream systems, as large rivers tend to be less heterotrophic, receive less important inputs
of CO, enriched groundwater, and show less turbulent stream flow which leads to lower gas exchange velocities
(Raymond et al., 2013). Relying on an extensive database for pCO,, new scaling laws for kg, and stream hydrau-
lic geometry that allowed for spatially resolved estimates for stream surface areas at the global scale, Raymond
et al. (2013) presented the first spatially explicit estimate for the aquatic CO, flux and reports a river CO, evasion
rate that is 3-8 times higher than the earlier lumped estimates (Aufdenkampe et al., 2011; Cole et al., 2007;
Tranvik et al., 2009). Moreover, they demonstrated the importance of small headwaters which contribute dispro-
portionately to the total emission flux. Problematic in that approach was that average pCO, and kg values,
from which the fluxes were calculated, were estimated independently from each other. pCO, values were taken
as average over large regions independent of stream order, while kg, ; was estimated per region and stream order
with values systematically increasing toward the small stream orders. That bears the risk, in particular for low
order streams, that high estimates of kg are combined with high estimates of pCO,, leading to unrealistic high
flux rates, whereas empirical studies have shown that under higher kg, values pCO, normally tends to be close
to equilibrium with the atmosphere (Rocher-Ros et al., 2019). More recent advancements in stream and river
CO, evasion estimates involve the development of data-driven statistical models to resolve temporal and finer
spatial scale variations of the riverine CO, flux (Lauerwald et al., 2015; Liu et al., 2022). For instance, relying
on direct C,, measurements and seasonally varying estimates for kg, and river surface area, Liu et al. (2022)
demonstrated CO, emission from global streams and rivers varied between 411 and 766 Tg CO, yr~! per month,
that is, by a factor of ~2, with the highest global emissions during northern summer in July.
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Table 1
Global Estimates of Inland Water CO, Emissions
References 2CO, o ZA, s (€ CO, m~2 yr1) ZA, e (108 km?) 2CO,,,, (Pg CO, yr™h) Method
Rivers
DLEM Tian, Ren, et al. (2015) 3,531 0.64 2.24 Model
Liu et al. (2022)* 9,900 0.672 7.33 +0.73° Machine learning
Lauerwald et al. (2015)* 3,895 0.55-0.67 2.38 (1.77-3.10)¢ Statistical prediction
Raymond et al. (2013)* 10,644 0.62 6.6 (5.7-7.5)¢ Upscaling from
observations + Statistical
prediction
Aufdenkampe et al. (2011) 5,009 0.31-0.51 2.05 Lumped estimate
Tranvik et al. (2009) 2.02 Literature review
Cole et al. (2007) 1,492 0.74 0.84 Literature review
Streams and small rivers
Liu et al. (2022)? 23,962 0.202 4.84 Machine learning
Marx et al. (2017) 341 Literature review
Lauerwald et al. (2015)* 5,842 0.14-0.26 1.16 (0.78-1.61)¢ Statistical prediction
Mountain streams
Horgby et al. (2019) 17,490 0.035 0.61 Statistical prediction
Large rivers
Liu et al. (2022)? 4,946 0.47 2.31 Machine learning
Lauerwald et al. (2015)* 2,975 0.41 1.22 (0.96-1.54)¢ Statistical prediction
Lakes and reservoirs
DelSontro et al. (2018) 414 3.23-5.36 1.99-3.30 Avg. rates
=" 416 4.42 1.84 (1.72-1.98)¢ Statistical prediction
-" 360 5.36 1.93 (1.80-2.06)¢ Statistical prediction
" 276 3.23 0.89 (0.83-0.96)¢ Statistical prediction
Raymond et al. (2013)* 392 3 1.17 (0.22-3.08)¢ Avg. pCO, + Statistical
prediction
Aufdenkampe et al. (2011) 638 2.80-4.54 2.35 Avg. rates
Lakes (including lakes with dams)
DLEM Tian, Ren, et al. (2015) 312 2.4 0.77 Model
Holgerson and Raymond (2016) 348 5.98 2.14 Avg. rates
Tranvik et al. (2009) 1.94 Literature review
Cole et al. (2007) 257 2 0.4 Literature review
Reservoirs
DLEM Tian, Ren, et al. (2015) 312 0.27 0.08 Model
Deemer et al. (2016) 451 0.3 0.14 (0.12-0.16)¢ Avg. rates
Cole et al. (2007) 686 1.5 1.03 Literature review

Note. For each Estimate, the Total Water Surface Area (ZA

water:

), the Total CO, Emission Elux (ZCO,

YA, ) are Reported. Mass units refer to CO,. For conversion to units of mass of C, divide by 3.67.

) and the Area Weighted Average Emission Rate (ZCO.

/

2 em

aEstimate accounts for effects of seasonal ice cover. "Standard error. ‘Lower and upper 90% (Deemer et al., 2016; Lauerwald et al., 2015; Raymond et al., 2013) or 95%

(DelSontro et al., 2018) CI.

A process-based model has also been developed (DLEM, Tian, Ren, et al., 2015), which predicts a much lower
emission rate than recent data-driven approaches (2.24 vs. 6.60-7.33 Pg CO, yr~!) (Table 1). The DLEM
estimate is however close to the estimate by Lauerwald et al. (2015) (2.38 Pg CO, yr~!) that only accounted
for emissions from medium-sized to large rivers (i.e., 3rd order and above). The large discrepancy (i.e., 2.24
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Figure 1. Estimates of inland water GHG emissions by year of publication. For rivers (a, c, ) versus Lakes and reservoirs (b,
d, 1), and for CO, (a, b), CH, (c, d), and N,O (e, f).

vs. 6.60-7.33 Pg CO, yr~!) however argues for the importance of the smallest streams in global CO, emis-
sion from fluvial networks (Marx et al., 2017). In line with this, Liu et al. (2022) estimated emission from the
medium-to-large rivers (corresponding roughly to stream order 3 and above as in Lauerwald et al. (2015)) of
~2.31 Pg CO, yr~!, while roughly two thirds of the total riverine emissions (~5 Pg CO, yr~!) are predicted to be
emitted by smaller streams (extrapolated to a minimum stream width of 0.3 m).

For lakes, there is a much larger variation in estimates of water surface area than in average emission rates
between different studies (Table 1). In particular, estimates that relied on earlier global lake inventories
(Raymond et al., 2013) report lower surface area and total emissions than more recent estimates based on newer
lake inventories and extrapolated surface area to account for the smallest water bodies (DelSontro et al., 2018;
Hastie et al., 2018; Holgerson & Raymond, 2016). Despite employment of scaling laws (e.g., with lake size
and nutrient status) that account for spatial variability due to system size and autotrophic productivity in more
recent estimates (DelSontro et al., 2018; Holgerson & Raymond, 2016; Raymond et al., 2013), there seems to
be only small difference with regard to global average lake CO, emission rates per water surface area between
those newer estimates (348-414 g CO, m~2 yr~!) and those of the early crude estimates (257 g CO, m~2 yr~!,
Cole et al., 2007). Additionally, though earlier estimates relied more on C, calculated from pH and alkalinity
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(Cole et al., 2007; Raymond et al., 2013), more recent estimates used more often direct measurements (Delson-
tro et al., 2018; Holgerson & Raymond 2016). Differences in lake CO, evasion estimates are more driven by vari-
ation in estimates of lake area than by areal emission rates. Estimates of global average emission rates per water
surface area for lakes and reservoirs (392-638 g CO, m~2 yr!) are about one order of magnitude lower than those
for streams and rivers (1,492-10,644 g CO, m~2 yr~!, Table 1). In comparison to lakes, reported global average
emission rates per water surface area for reservoirs are slightly higher (312-686 vs. 257-348 ¢ CO, m~2 yr~!
for reservoirs and lakes, respectively) (Table 1). This may in part be due to the different geographic distribution
of both types of standing water bodies; with lakes being particularly abundant in high latitudes where aver-
age emission rates tend to be lower (Aufdenkampe et al., 2011). Nonetheless, the current estimates place total
CO, evasion from reservoirs more than one order of magnitude lower than that from lakes (see Table 1, when
excluding the estimate by Cole et al. (2007)), following its low share in the global surface area of standing water
bodies. However, the inventory for global reservoirs (which is growing) is far from complete and thus surface
area might pose the largest uncertainty for CO, evasion from reservoirs. Note that Cole et al. (2007), based on
data from St. Louis et al. (2000), estimated a reservoir CO, emission of 1.03 Pg CO, yr~!, that is, about one order
of magnitude higher than the other estimates listed in Table 1. This number is based on a first-order estimate of
the total surface area of reservoirs including smallest systems such as farm ponds. This estimated total area is
about 5 times larger than that of reservoirs accounted for in recent inventories. While this first order estimate is
an eye-opener for the underestimate related to the exclusion of these small systems, it is also highly uncertain and
represents an expert opinion rather than a reproducible number. Note further that Cole et al. (2007) estimated a
much lower CO, evasion rate from lakes, for which they rely on a much more conservative estimate of surface
area which excludes smaller systems. In that regard, their emission estimate for standing waters is not consistent.
Note finally that other estimates of CO, emissions from reservoirs might be underestimated, as in inventories,
where the required information is missing, reservoirs might wrongly have been classified as lakes (see discussion
in Section 2.4).

3.2. Persisting Shortcomings and Future Challenges
3.2.1. Process Understanding

In the following we discuss our current process understanding of inland water CO, emissions in the light of global
scale estimates. Figure 2 gives an overview of the main fluxes and processes involved, while Table 2 summa-
rizes the known effects of the major environmental drivers. The most prominent gap in the understanding of the
processes that drive inland water CO, emissions is the question of where the emitted CO, is sourced from. A part
of the emitted CO, may be produced in situ from the oxidation of allochthonous organic carbon, while another
part might stem from inflows of water supersaturated in CO, produced during respiration in upland soils and
wetlands. Further, this respiration comprises both heterotrophic respiration of plant and soil organic matter as
well as autotrophic root respiration. Knowledge about the source of the aquatic CO, emissions is of paramount
importance for the integration of these fluxes in the overall C budget of continents, as highlighted in the perspec-
tive article by Abril and Borges (2019). While earlier studies assumed that the net-CO, emissions are entirely the
product of heterotrophic respiration and could thus be regarded as a fraction of terrestrial net-primary production
(Richey et al., 2002), the contributions of autotrophic root respiration demand consideration of these fluxes
as part of total ecosystem respiration that counterbalances gross primary production (Abril & Borges, 2019;
Lauerwald et al., 2020).

For streams and rivers, it is assumed that most of the emitted CO, is sourced from CO, produced by respiration
in adjacent wetlands, but also in upland soils, from where the CO, is then transported with percolating soil water
and groundwater flows (Abril et al., 2014; Liu et al., 2022). The relative importance of groundwater CO, inputs
are highest in headwaters and decrease downstream (Finlay, 2003; Horgby et al., 2019; Hotchkiss et al., 2015;
Liu et al., 2022; Marx et al., 2017), while wetland inputs may be more important in lower reaches as shown for
the Congo River (Borges et al., 2019). Moreover, it was shown that due to the very high oversaturation of emerg-
ing groundwater, a large part of the emission already takes place over a few hundred meters downstream of the
freshwater source (Johnson et al., 2008). It would thus be required to monitor smallest headwaters directly to well
capture those hot spots of aquatic CO, emission, for which however monitoring data are not available in sufficient
quantity (Marx et al., 2017). Assessment of groundwater CO, inputs to inland waters would further require
knowledge about groundwater C content and residence time (to quantify the outflows) for which data are limited
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Figure 2. Schematic representation of inland water GHG budgets: for reservoirs as an example of standing waters (a, c, e) and streams/rivers (b, d, f), and for the three
GHGs CO, (a, b), CH, (c, d), and N,O (e, f). OM = organic matter; Nut. = nutrients.

as well (Downing & Striegl, 2018). While stable C isotopes have been used to estimate source contribution of
riverine C loads and CO, emissions for single aquatic systems (Telmer & Veizer, 1999), observational data are
not yet sufficient for large-scale assessment. Also, these studies do not often include the uppermost parts of the
river network where large amounts of external CO, inputs are evading to the atmosphere.

In addition, only few existing studies of freshwater CO, emissions (e.g., Bogard & DelGiorgio, 2016; Crawford,
Lottig, et al., 2014) have attempted to include estimates of aquatic net ecosystem production (NEP), which is
the difference between aquatic production and respiration. Most studies currently assess inland waters net-CO,
emissions rather as a black box that is fed by allochthonous C inputs. The recent study by Battin et al. (2023)
has nevertheless demonstrated that the inclusion of NEP estimates can help to disentangle autochthonous CO,
production from allochthonous CO, inputs even at global scale. This study corroborates the assumption that most
of the aquatic CO, evasion is derived from external CO, inputs. However, also availability of aquatic NEP data is
limited and does not allow yet for spatially explicit estimates at global scale. More importantly, diurnal variations
in NEP may entail a similar variation in pCO, and air-water CO, exchange. Moreover, predominant sampling
during daytime, when CO, emissions are lower than at night, may lead to important biases in flux estimations.
Goémez-Gener et al. (2021) recently argued that global estimates based on daytime measurements are biased as
night time emissions are on average ~30% higher.

To better understand temporal variability and potential “hot-moments” of inland water CO, emissions, more
process understanding would be required with regard to CO, cycling during periods of ice-cover, spring ice-melt,
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Table 2

Drivers of GHG Emissions From Different Types of Inland Waters*

co, CH, N,0

Streams and rivers

Lakes

Reservoirs

As lakes, plus ++ OM in flooded soils

++ GWP inputs ++ GW inputs ++ GW inputs

++ Inputs from wetlands ++ Inputs from wetlands ++ Inputs from wetlands
0/- Dam outflows

+ Allochtonous OM

++ Dam outflows
0/+ Allochtonous OM

++ Dam outflows
+ Allochtonous OM*¢
+ Temperature + Temperature + Temperature
+ Discharge

+0, oS 20,

? Discharge + Discharge

+ Seasonal drying
+ Allochtonous OM

+ Seasonal drying
+ Allochthonous OM

0 Seasonal drying
+ Allochthonous OM
- Productivity

++ Productivity + Productivity

- Depth and Surface Area -- Depth and Surface Area ++ Nitrogen load
+ Temperature

+0, -0,

++ Temperature ? Depth and Surface Area

+ Temperature
70,
As lakes, plus ++ OM in flooded soils As lakes, plus ++ OM in flooded soils

+ Turbine degassing ++ Turbine degassing 0 Turbine degassing

+ Drawdown areas ? Drawdown areas 0 Drawdown areas

Note. ++, Strong increasing effect; + Increasing effect; 0, No net-effect; -, Decreasing effect; ? Unknown or ambiguous effect.

aMeaning of effects. "GW = groundwater. °OM, organic matter.

spring freshet, lake-turnover, and extreme events like floods for which observations are generally rare. Only
one of the studies included in our synthesis actually accounts for seasonality (Liu et al., 2022), while the other
studies completely ignore seasonality in hydrodynamics, including spring freshet. Further, the estimates of lake
and reservoir CO, emissions synthesized in our study do not account for contributions during lake-turnover,
when emission rates are thought to be highest in boreal to Arctic systems (Sepulveda-Jauregui et al., 2015).
Intense emissions have also been reported for periods of ice melt, during which observations are usually rare
(Denfeld et al., 2018).

Raymond et al. (2013) account for intermittent drying of streams and rivers by decreasing the annual emission
flux relative to the no-flow period. However, existing studies showed that during dry periods, exposed beds might
show even higher CO, emission rates than from the water surface when inundated (Keller et al., 2020). Marcé
et al. (2019) even suggest that taking into account seasonal dry falling and rewetting of bed sediments, estimates
of global inland water CO, emissions would need to be corrected upward by at least 10%. For reservoirs specifi-
cally, existing emission estimates might even be ~50% higher if emissions from dry falling drawdown areas were
taken into account (Keller et al., 2021). On the other hand, no estimate of CO, emissions from occasionally or
seasonally inundated floodplains are available at the global scale. More systematic investigations of flux rates
from both temporally dry falling inland water beds and temporally inundated floodplains would help to refine
estimates of inland water CO, budgets and to better integrate them into continual CO, budgets while avoiding
gaps and overlaps with terrestrial and wetland ecosystems.

Though some studies (Deemer et al., 2016; DelSontro et al., 2018; Raymond et al., 2013) have linked CO, vari-
ability in lakes and reservoirs to predictors such as waterbody size, mean annual precipitation, and ecosystem
productivity, the controls on within-system CO, spatial and temporal variations are not well understood and
effective scaling relationships are still in need to better represent CO, evasion from lakes and reservoirs. Further,
characterizations of spatial variability within water bodies are rather scarce, and the representativeness of the
sampling site within an aquatic system is a large source of uncertainty (Colas et al., 2020). Finally, our estimates
of reservoir CO, emissions do not account for fluxes from hydroelectric turbines and dam outlets, where deep,
hypolimnetic water enriched in CO, is released (Figure 2a). River reaches directly downstream of dams have been
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reported to show increased pCO, while this excess CO, is being emitted rapidly over a few tenths of river-km
(Calamita et al., 2021; Guérin et al., 2006; Teodoru et al., 2015). However, more systematic observations from
these parts of the inland water network are needed to quantify this source of CO, flux at global scale, and to
complete the assessment of reservoir CO, emissions.

3.2.2. Spatial and Temporal Resolution

Spatially and temporally resolved estimates of inland water GHG emissions at global scale can help to better
understand the role of these fluxes in the overall GHG budget, to include these fluxes in regional budgets, and
to evaluate them directly against observations. The realization of spatially and temporally resolved estimates
is, however, limited by the availability of observations and using the utilized estimation techniques. For rivers,
global empirical, spatially explicit estimates have already been achieved at several different resolutions, specif-
ically, 231 regions (Raymond et al., 2013), gridded at 0.5° (Lauerwald et al., 2015), and for individual river
reaches (Horgby et al., 2019; Liu et al., 2022). For lakes and reservoirs, the regionalized estimate based on 231
regions by Raymond et al. (2013) is the only existing spatially explicit estimate of CO, emissions at the global
scale. Hastie et al. (2018) achieved a spatially explicit, pan-boreal estimate of lake and reservoir CO, emissions at
0.5° resolution. As the only process-based model approach at global scale, spatially explicit simulations with the
land surface model DLEM have been achieved at 0.5° resolution for rivers and reservoirs (Tian, Ren, et al., 2015).
ORCHILEAK—the inland water branch of the land surface model ORCHIDEE has so far only been applied at
the continental scale of Europe (Gommet et al., 2022) and in few large-scale basins across the world (Bowring
et al., 2020; Hastie et al., 2021; Lauerwald et al., 2020).

With regard to temporal resolution, most of the empirical studies published so far represent climatologies of
average annual fluxes, often without precise specification of the time frame covered by the observations (Regnier
et al., 2022). The only exception at global scale is the study by Liu et al. (2022) which presents a climatology of
average monthly emission fluxes from rivers, thus representing the typical seasonal cycle of riverine emissions.
The process-based model DLEM simulates time-series of riverine and reservoir CO, emission which reflect
both seasonal and interannual variability. In general, a physically based model approach appears to be the most
promising strategy to obtain seasonal and interannual variations in response to climate variability, for present
day but also for scenario-dependent future projections (Hastie et al., 2021; Lauerwald et al., 2020; Tian, Ren,
etal., 2015).

While empirical studies have highlighted the importance of diurnal variation in water-air CO, exchange, temporal
variations at this time-scale are not yet possible to include in estimates. Process-based models like DLEM (Tian,
Ren, et al., 2015) or ORCHILEAK (Lauerwald et al., 2017) represent aquatic CO, emissions as net-emissions
driven by allochthonous inputs of CO, and net-instream respiration. A simulation of the diurnal variations would
however require the representation of autochthonous aquatic production, which is not yet possible.

3.2.3. Data Requirements

As for all GHGs, data required to improve inland water CO, emission estimates include in the first place direct
observation of emission rates. Many earlier estimates relied heavily on partial pressures of CO, (pCO,) calcu-
lated from pH and alkalinity (Lauerwald et al., 2015; Raymond et al., 2013), which has been demonstrated to
be a significant source of error leading to an overestimation of pCO, particularly in freshwaters with low buffer
capacity against acidification (Abril et al., 2015; Golub et al., 2017; Hunt et al., 2011; Liu et al., 2020). Liu
et al. (2022), relied on direct pCO, observations and suggested that average pCO, in global streams and rivers
obtained by Raymond et al. (2013) is 30% too high.

However, as alkalinity and pH are easier to measure, a vast amount of data is available from a large number of
studies and in data sets from environmental agencies, with greater spatial and temporal coverage (Hartmann
et al., 2014) than that of direct observation. Nevertheless, as potential biases are hard to correct at large scales,
a clear preference should be given to directly observed pCO, values. Liu et al. (2022) synthesized 5,910 direct
pCO, observations from 63 studies, which represents about the latest inventory of available data for stream and
river systems at global scale. Delsontro et al. (2018) synthesized literature data for 7,824 lakes and reservoirs. The
number of direct pCO, observations is still limited, but steadily growing.

Likely for logistical reasons, most observations are from developed countries which contribute most to the research
of inland water GHG budgets. For this reason, systems from temperate climate regions are better represented than
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tropical or high-latitude systems in remote areas (e.g., compare Deemer et al., 2016; Liu et al., 2022). However, it
is these remote areas that play a potentially important role, considering the extensive lake areas in Boreal to Arctic
regions, and the large river systems of the humid tropics. There has been notable progress in sampling tropical
(Africa (Borges et al., 2015, 2019), Amazon (Abril et al., 2014), and SE Asia (Wit et al., 2015)) and high latitude
systems (Siberia (Karlsson et al., 2021; Serikova et al., 2019), Alaska: (Sepulveda-Jauregui et al., 2015)). Despite
these advancements, more observations from these poorly monitored areas would help to improve estimates of
global inland water CO, emissions.

Further, small water bodies require more attention in sampling campaigns. Holgerson and Raymond (2016) have
highlighted the potentially important contribution of small lakes and ponds to global inland water CO, emissions.
However, a regionalized estimate was not yet possible as observations of emission rates are still scarce, and more
importantly, as no spatially explicit data set yet exists that would represent such small water bodies. Datasets that
present the smallest water bodies (<1 km?) reliably would help to better integrate these important CO, sources
into regionalized, global estimates.

Finally, increasing the number, variety and representativeness of investigated systems is only one step to reduce
uncertainties in large-scale estimates of inland water CO, emissions. Temporal and small-scale spatial variations
with small stream networks (Natchimuthu, Sundgren, et al., 2017; Natchimuthu, Wallin, et al., 2017) and with
lakes (Natchimuthu, Sundgren, et al., 2017; Natchimuthu, Wallin, et al., 2017) and reservoirs (Colas et al., 2020)
are substantial, and the choice of one or few sampling locations and a limited measurement period lead to large
uncertainties and may introduce biases in the flux estimate for the whole waterbody. Improved investigation of
CO, budgets of single systems requires measurements at various locations within a stream network or water
body. Further, for reservoirs, observations of turbine emissions and of the release of CO, rich bottom waters from
dams are required to better constrain these important emission pathways that are often ignored in large-scale
assessments. In addition, the observations should be taken over a time period long enough to assess seasonal and
inter-annual variability, and at a high enough frequency to assess short-term variations, including diurnal varia-
tions. In particular, data sets covering longer time periods such as those assembled for the US (Jones et al., 2003),
China (Ran et al., 2021) and the boreal biome (Lapierre et al., 2013) are crucially needed to evaluate the extent
to which trends simulated by LSMs are realistic (Regnier et al., 2022). The development and deployment of auto-
mated data loggers is a promising strategy for achieving this objective (Bastviken et al., 2015).

4. Inland Water CH, Budget
4.1. Overview of Existing Estimates

Global estimates of aquatic CH, emission range from 1.5 to 30 Tg CH, yr~! for streams and rivers, from 8 to
151 Tg CH, yr~! for lakes, from 9.8 to 52 Tg CH,, yr~! for reservoirs, and from 16 to 331 Tg CH, yr~! for estimates
that lumped lakes and reservoirs together (Table 3, Figure 1). The range in these emission estimates is generally
more dramatic than for either CO, or N,O (see Sections 3 and 5, respectively), with the exception of global CO,
emission estimates from rivers and streams.

Some of the variation in global CH, emission estimates is due to large differences in the waterbody surface
areas applied. For example, the earliest estimate of CH, emissions from reservoirs used a very rough estimate of
surface area, multiplying the surface area of reservoirs in the World Register of Dams by a factor of four under
the assumption that this would better represent the total surface area including small reservoirs and farm ponds
not included in that register (St. Louis et al., 2000). This approach resulted in a surface area that is approximately
three times larger than any subsequent estimate. Conversely, the earliest estimate from streams and rivers was
conservative in that it applied a surface area for larger rivers only (quantifiable from global maps as the GLWD;
Bastviken et al., 2011), resulting in approximately a factor of two reduction compared to subsequent estimates
that also account for smaller rivers and streams. While most global estimates have ignored ice cover, Johnson
et al. (2021) produced an estimate of reservoir emissions that accounted for this effect and which resulted in a
CH, emission of 10 Tg CH, yr~! that is half or less of any previous assessment. Harrison et al. (2021) incor-
porated ice cover correction into their global reservoir emission estimate, resulting in similarly low emissions
from reservoir surfaces (9.8 Tg CH, yr™"), but still yielded a higher total flux due to the inclusion of reservoir
turbine degassing (22 Tg CH, yr~!). Rosentreter et al. (2021) also incorporated an ice cover correction into their
assessment of global river (30 Tg CH, yr~"), lake (151 Tg CH, yr~!), and reservoir (24 Tg CH, yr~!) emissions
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Table 3
Existing Global Estimates of Lake, Reservoir, and River CH, Flux
References SCH,,, /A, ; (8 CH, m™2 yr1) ZA, e (106 km?) 3CH,,, (Tg CH, yr™") Method
Rivers
Bastviken et al. (2011) 4 0.36 1.5 Avg. rates
Stanley et al. (2016) 41.42 0.65 27% Avg. rates
Rosentreter et al. (2021) 66.5 0.77 30 Avg. rates
Lakes and Reservoirs
DelSontro et al. (2018) 61.7 3.23-5.36 199-331 Avg. rates
=" 33.7 4.42 149 (95-236)° Statistical prediction
" 34.5 5.36 185 (119-295)° Statistical prediction
- 32.2 3.23 104 (67-165)° Statistical prediction
Holgerson and Raymond (2016) 2.7* 5.98 16* Avg. rates
Stavert et al. (2022) 32.4 2.93 95 Statistical prediction
Lakes (including lakes with dams)
Bastviken et al. (2004) 0.12-122.9 2.8 8-48 Avg. rates
Bastviken et al. (2011) 19.2 3.7 72 Avg. rates
Rosentreter et al. (2021)¢ 54.1 3.71-5.69 151 Avg. rates
Johnson et al. (2022)°¢ 15 2.8 42 + 184 Model
Reservoirs
St. Louis et al. (2000) 35 1.5¢ 52 Avg. rates
Bastviken et al. (2011) 40.1 0.5 20 Avg. rates
Deemer et al. (2016) 58.5 0.31 17 (12-30)° Avg. rates
Rosentreter et al. (2021)¢ 63.8 0.26-0.58 24 Avg. rates
Harrison et al. (2021)¢ 28.3(62.9)¢ 0.35 9.8 (22)¢ Model
Johnson et al. (2021)° 33.3 0.3 10 Model
Note. For each estimate, the total water surface area (ZA,, ), the total CH, emission flux (XCH, ) and the area weighted average emission rate (XCH, /XA ) are

reported.

3Only diffusive emissions. "Lower and upper 90% (Deemer et al., 2016) or 95% (DelSontro et al., 2018) CI. °Estimate accounts for effects of seasonal ice cover. ‘Standard

error. °Includes emissions from turbines.

(estimates upscaled from mean emission rates), but in addition also an ice melt overturn correction that reduced
the impact of ice cover. Moreover, their corrections did not result in a substantial lowering of the global flux due
to increases in the magnitude of areal emission rates applied. The mean areal emission rates applied to upscaling
efforts vary by approximately 2, 3, and 10-fold for reservoirs, lakes, and rivers respectively. In general, there is
a temporal trend wherein older data sets have lower average areal emission rates than newer data sets. Part of
this trend is due to the treatment of ebullition measurements in older emission estimates. Some global estimates
summarized diffusive-only estimates of methane emission (Holgerson & Raymond, 2016; Stanley et al., 2016)
while others combined diffusive only areal fluxes with ebullitive + diffusive estimates without differentiating one
from the other (St. Louis et al., 2000). More recent estimates (Johnson et al., 2021, 2022; Rosentreter et al., 2021)
only included studies that estimated both ebullition and diffusion together. Increasing average areal emission esti-
mates may also be due to the increased likelihood of sampling right-skewed data as sample size for water bodies
increases (see Wik et al., 2016). For example, a recent data set of lake and reservoir CH, emissions contains
some of the highest mean areal fluxes, with about 65% of the estimates contained therein published since 2015
(Rosentreter et al., 2021).

Variation in binned areal emissions (e.g., by latitude, size, and chlorophyll-a) are even larger. For example, Rosen-
treter et al. (2021) reported an average areal CH, flux from the smallest lakes (<0.001 km?) that is nearly an order
of magnitude higher than from lakes in the 0.1-1 km? size category, making these smallest systems responsible
for 38% of the total lake CH, emissions (Rosenteter et al., 2021; Table 3). In addition, Bastviken et al. (2011)
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reported areal reservoir CH, emissions from tropical regions that are an order of magnitude larger than in boreal
regions (Bastviken et al., 2011), although follow-up work suggests that this discrepancy may have more to do with
a lack of boreal ebullition estimates (Deemer et al., 2016) and the fact that latitude is only a weak predictor for
reservoir CH, emission (Deemer & Holgerson, 2021; Johnson et al., 2021). Conversely, Rosentreter et al. (2021)
report average areal CH, emissions from rivers that varied by a factor of about four by latitudinal bin, with the
subtropical region (10-25° absolute latitude) producing the highest areal emissions and the temperate region
(25-40° absolute latitude) producing the lowest areal emissions (Rosentreter et al., 2021).

While a variety of upscaling methods have been used to estimate inland water CH, emission, there does not
appear to be any directional bias in the resulting estimates, that is one type of approach does not seem to system-
atically produce higher or lower emissions than other approaches. Many early estimates and some more recent
estimates have applied the simplest empirical upscaling wherein a single areal flux was applied to a global surface
area of lakes and/or reservoirs (Deemer et al., 2016; DelSontro et al., 2018; St. Louis et al., 2000), and rivers
(Stanley et al., 2016). Other estimates have binned lakes and reservoirs CH, fluxes based on latitude (Bastviken
etal., 2011), waterbody surface area (Bastviken et al., 2004; Holgerson & Raymond, 2016), primary productivity
(e.g., chlorophyll a concentration; DelSontro et al., 2018), or has used some combination of these approaches
(Rosentreter et al., 2021). For rivers, binning has so far only been based on latitude (Bastviken et al., 2011;
Rosentreter et al., 2021). Finally, the most recent efforts to model lake and reservoir CH, flux have used a gridded
approach that considers a variety of factors likely to influence the spatial variations in CH, emission including
temperature, nutrients, and latitudinal variation in emission factors (Harrison et al., 2021; Johnson et al., 2021;
Stavert et al., 2022).

4.2. Persisting Shortcomings and Future Challenges
4.2.1. Process Understanding

In the following we discuss our current process understanding of inland water CH, emissions in the light of
global scale estimates. Figure 2 gives an overview of the main fluxes and processes involved, while Table 2
summarizes the known effects of the major environmental drivers. Significant progress has been made toward
describing the drivers of lake and reservoir CH, flux, which may help improve our understanding of the spatial
and temporal variability in emissions in the future. Specifically, small, shallow, productive, and low latitude lakes
and reservoirs have been found to show higher areal methane emissions than larger, deeper, less productive, high
latitude systems (Deemer & Holgerson, 2021). In northern systems, methane emissions are often further binned
by lake type, with yedoma, peat, and glacial lakes exhibiting different patterns and magnitudes of emission (Kuhn
et al., 2021; Matthews et al., 2020; Wik et al., 2016). Ebullition is usually reported to be the major emission path
with flux rates nearly one order of magnitude higher than that of diffusion on average (Bastviken et al., 2011),
though being less important in deeper parts of standing water bodies (>12 m depth in the study by Grinham
et al. (2011)). CH, emissions from turbines and from anoxic hypolimnic water released from dams have been
shown to be important emission paths (Delwiche et al., 2022; Harrison et al., 2021; Teodoru et al., 2015), but
are still ignored in most global scale assessments. Less is known about the key drivers of river CH, flux. Two of
the three existing global estimates of river and stream CH, flux use latitude to bin emissions, but the latitudinal
trend does not appear to describe much of the spatial variability (Rosentreter et al., 2021). The earlier data set
compiled by Stanley and others contained many estimates from anthropogenically impacted rivers and streams
(Stanley et al., 2016), and could be one explanation for the high global emission estimate despite only considering
diffusive fluxes. While for many stream and river systems, CH, emissions seem indeed to be dominated by the
diffusive path (Rovelli et al., 2022), ebullition has been reported to contribute substantially to stream CH, emis-
sions at least locally (Crawford, Lottig, et al., 2014; Rovelli et al., 2022). Further, the effect of nutrient enrichment
and productivity on river methane emissions has not been established the way it has been for lake and reservoir
CH, emissions (Beaulieu et al., 2019). And even for lakes and reservoirs, empirical evidence for this connection
between productivity and CH, emissions is limited (R? = 0.38 in Beaulieu et al., 2019).

Temperature is generally considered an important predictor of aquatic CH, emission and relationships between
temperature and CH, flux have been used to scale seasonal emissions from reservoirs (Harrison etal.,2021; Johnson
et al., 2021; Prairie et al., 2021). Such temperature-corrections address biases in many flux observations where
measurements are focused during the spring-to-fall period whereas lower emissions during the ice-free winter
period are typically not recorded. Temperature is considered a main driver of CH, production (Yvon-Durocher
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et al., 2014), which limits both ebullitive and diffusive emissions. It was however found that ebullition responds
much more intensely to temperature, in particular with regard to long-term trends. In a series of mesocosm exper-
iments around the Northern Hemisphere, Aben et al. (2017) found that an increase in temperature by 4°C led
to 51% higher annual ebullitive emissions, while diffusive emissions did not seem to be affected. While there is
compelling cross-ecosystem evidence of increasing CH, emission with increasing temperature (Yvon-Durocher
et al., 2014) there are also examples of systems where CH, oxidation is able to keep pace or surpass CH, produc-
tion at higher temperatures (Duc et al., 2010; Shelley et al., 2015). A recent synthesis of CH, oxidation in lakes
and reservoirs showed that CH, oxidation efficiency declines with ecosystem productivity (e.g., trophic status,
D’Ambrosio & Harrison, 2021). In contrast, other studies have shown an increase in CH, oxidation with produc-
tivity (Grasset et al., 2020). Similarly, Sawakuchi et al. (2021) showed experimental evidence that CH, oxidation
may be phosphorus-limited in northern lakes, also providing further evidence of more complex interactions
between lake CH, dynamics and nutrient levels. The synergetic effects of productivity and temperature as driving
factors of CH, emissions, and in particular ebullition as dominant emission path, have been shown in experi-
mental studies (Davidson et al., 2015, 2018). Future work could improve our process understanding of methane
emission dynamics by disentangling the role of temperature and productivity in driving both total emission and
the balance between methane production and consumption.

Within a single waterbody, CH, emissions generally vary substantially in space and time (Wik et al., 2016),
and this variation is likely more substantial than for either CO, or N,O. This spatial and temporal variability
has been shown to cause bias in upscaling, where too few measurements in either space or time can lead to
underestimation of fluxes (Wik et al., 2016). While the regionalization exercise carried out in our companion
paper (Lauerwald et al., 2023) begins to address seasonality by applying an ice cover and ice melt correction,
future work should aim to better constrain temporal variability in methane fluxes within single water bodies.
Temporal variability can arise from seasonal dynamics such as ice melt (Denfeld et al., 2018), fall turnover
(Mayr et al., 2020), seasonal water-level changes (Varadharajan et al., 2010), or in response to phytoplankton
blooms (Waldo et al., 2021). Diel variation can also be important. Daytime sampling might overestimate CH,
flux in lakes (Sieczko et al., 2020), but may underestimate it in wetlands (Anthony & Maclntyre, 2016; Godwin
et al., 2013; Poindexter et al., 2016). Episodic events can also be the source of large temporal variation such as
water level drops in reservoirs (Harrison et al., 2017), storm-driven drops in hydrostatic pressure (Mattson &
Likens, 1990) or increases in wind shear stress (Joyce & Jewell, 2003). In connection to seasonal or occasional
water level drops, it was found that dry falling bed sediments tend to emit CH, at lower rates than when inundated,
but are still a stronger source than upland soils (Paranaiba et al., 2022). For rivers, elevated discharge can lead
to higher methane fluxes, especially in small high-gradient streams where methane is sourced predominantly
from groundwater (Natchimuthu, Sundgren, et al., 2017; Natchimuthu, Wallin, et al., 2017). Spatial variability in
aquatic CH, fluxes can arise for both biological and physical reasons. In lakes and reservoirs, the main drivers are
the spatial variability of sedimentation of allochthonous and autochthonous organic matter (Maeck et al., 2013)
and the reactivity of the sediment organic matter (Sobek et al., 2012; Wilkinson et al., 2015). Accordingly,
higher fluxes are observed in inlets (DelSontro et al., 2011), near the shores (Natchimuthu et al., 2016; Peixoto
et al., 2015) and behind run-of-river dams (Maeck et al., 2013). Further, spatial variability in CH, fluxes may
arise from the heterogeneity of the sediment matrix and associated seeps (Walter Anthony & Anthony, 2013). In
rivers, physical features such as waterfalls can be particularly important sites for CH, emissions (Natchimuthu,
Sundgren, et al., 2017; Natchimuthu, Wallin, et al., 2017). At larger scales, high gradient headwater streams
comprising <1% of catchment stream surface area can contribute 30% of catchment emissions, emphasizing the
need to sample throughout a catchment rather than attempting to capture network-wide flux via single measure-
ments at river mouths (Natchimuthu, Wallin, et al., 2017).

4.2.2. Spatial and Temporal Resolution

At global scale, gridded estimates of inland water CH, emissions exist for reservoirs (Johnson et al., 2021),
lakes (Johnson et al., 2022) and lakes and reservoirs (Stavert et al., 2022). For rivers, disaggregating global
fluxes over broad latitudinal zones (Bastviken et al., 2011; Rosentreter et al., 2021) still seems to be the best
possible practice. Most existing global estimates for lakes and rivers represent climatologies of annual fluxes
that do not resolve the seasonal and interannual variability, and longer-term trends. Using a relatively simple,
process-based model, Johnson et al. (2021, 2022) were able to represent the seasonality in lake and reservoir CH,
emission forced by temperature and ice-cover as drivers. Long-term trends in lake CH, emissions due to climate
change have been predicted for the hol-arctic/boreal region using a more complex process-based model (Tan &

LAUERWALD ET AL.

18 of 32

a ‘S “€20T FTTOYY61

:sdny wouy pap

QSUAIIT SUOWILO)) dATIEAI)) d]qeat[dde ay) Aq PauIdA0S o1e SI[OILIE () AN JO SN 10§ AIRIQIT dUI[UQ AD[IA\ UO (SUOHIPUOD-PUB-SULIA)/W0D AOIm AIeIqrjour[uoy/:sdiy) Suonipuoy) pue suuo | ) 39S ‘[£707/S0/67] uo Areiqi aurjuQ Ad[IA Yod L eruiSuA Aq £69200€9DTT0T/6T01°0/10p/wod Ad]Im’ AIRIqI[oUl[Uo"sq)



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Global Biogeochemical Cycles 10.1029/2022GB007657

Zhuang, 2015a, 2015b). Other complex, process-based models of lake CH, cycling have been developed (e.g.,
Lake 2.0, Stepanenko et al., 2016), but have not been applied at large-scales. A recent study has hinted at the
potential of exploiting global lake physical models to estimate changes in lake CH, cycling (Jansen et al., 2022).
Combining simulated lake temperature profiles with an empirical equation linking sediment CH,, production rates
and temperature (Yvon-Durocher et al., 2014), Jansen et al. (2022) predicted relative increases in CH, production
rates around the globe. In contrast to CO, and N, 0O, no efforts to model river CH, emissions at regional to global
scales have been published yet, which may partly be due to the relative small role of rivers in inland water CH,
emissions as well as to the complexity of processes involved and the scarcity of data for model calibration and
evaluation.

4.2.3. Data Requirements

One critical uncertainty for the inland water CH, budget is the inability to resolve the location and total surface
area of the smallest lakes and impoundments. Waterbodies <0.001 km? have been recently estimated to comprise
37% of the lentic methane flux (Rosentreter et al., 2021). Along the same lines, Grinham et al. (2018) have
estimated for Australia that CH, emissions from impoundments <0.1 km? equal about 10% of the national land
use, land use change and forestry sector emissions. Given high variability in areal emissions from these smallest
water bodies it is also important to increase effort in sampling these systems to reduce uncertainty. In addition
to very small lakes and impoundments, sampling effort should be increased for large lakes (>1 km?) (Deemer
& Holgerson, 2021). Given the additional importance of depth and productivity in regulating lentic CH, flux,
spatially resolved information about the depth, chlorophyll a, and oxygen concentrations as well as quality and
quantity of deposited organic matter in lakes and reservoirs will also help improve regional and global budgets
(and overall upscaling efforts). More generally, systematic, long-term monitoring programs are needed which
account for the high spatio-temporal variability in areal emission rates, in particular for ebullition, to better
constrain the emissions even for individual, monitored systems. Long time-series of observations may finally
help to better constrain the evolution of CH, production and emission in response to environmental change
and climate extremes like droughts and heatwaves. This need for more and better observational data can hardly
be satisfied with conventional methods, but would require the deployment of automatized observation systems
and the use of remote sensing data, for which more research and development is needed. For reservoirs, finally,
more observations of CH, emissions from turbines and of downstream release of CH, rich waters from dams
are required to better constrain these important emission pathways, and to better assess the full impact of river
daming on the CH, budget.

For rivers, many estimates of CH, emission rely on pairing concentration data with estimates of gas transfer
(kgug) especially in low order streams (see Section 2.1 for further discussion). These low order systems have
been observed to contribute disproportionately to CH, emissions at the catchment network scale despite very low
CH, concentrations (Natchimuthu, Sundgren, et al., 2017; Natchimuthu, Wallin, et al., 2017), highlighting the
need to constrain local values of kg, and/or perfect a universal physical model. Further, while most observations
of stream CH, emissions concentrate on the diffusive pathway, ebullitive emissions can be important locally in
small streams (Crawford, Stanley, et al., 2014). The development and application of empirical methods to directly
measure the total GHG flux from low order streams would help constrain emissions from these systems.

S. Inland Water N,O Budget
5.1. Overview of Existing Estimates

N,O emissions from inland waters are poorly constrained at the global scale, which is visible in the largely
divergent global estimates listed in Table 4 and shown in Figure 1: 0.05-3.3 Tg N,O yr~! for streams and rivers
and 0.1-0.6 Tg N,O yr~! for lakes and reservoirs. Most existing global estimates of riverine N,O emissions
are based on modeled N loads from watersheds and emission factors (EFs), in stark contrast to CO, and CH,
global estimates, which are calculated mainly by empirically upscaling local observations. N,O is produced as
an intermediate product in denitrification, that is, the reduction of nitrate to N,, but also as a by-product in the
process of nitrification, that is, the oxidation of ammonium to nitrate (Canfield et al., 2010). The amount of N,O
produced and emitted due to these processes depends on environmental and hydrological factors including water
temperature, N availability and speciation, water body depth, oxygen availability, pH, and labile carbon concen-
trations (Clough et al., 2007; Hu et al., 2019; Outram & Hiscock, 2012; Rosamond et al., 2012; Venkiteswaran

LAUERWALD ET AL.

19 of 32

a ‘S “€20T FTTOYY61

:sdny wouy pap

QSUAIIT SUOWILO)) dATIEAI)) d]qeat[dde ay) Aq PauIdA0S o1e SI[OILIE () AN JO SN 10§ AIRIQIT dUI[UQ AD[IA\ UO (SUOHIPUOD-PUB-SULIA)/W0D AOIm AIeIqrjour[uoy/:sdiy) Suonipuoy) pue suuo | ) 39S ‘[£707/S0/67] uo Areiqi aurjuQ Ad[IA Yod L eruiSuA Aq £69200€9DTT0T/6T01°0/10p/wod Ad]Im’ AIRIqI[oUl[Uo"sq)



At . .
M\I Global Biogeochemical Cycles 10.1029/2022GB007657
Table 4
Global Scale Estimates of Inland Water N,O Emissions
IN,0,, /A
References (mg N,O m~2 yr~!) water (106 km?) N0, (Gg N,O yr™1) Method
Rivers

Seitzinger and Kroeze (1998) and Seitzinger et al. (2000)

Kroeze et al. (2005)
Mosier et al. (1998)
De Klein et al. (2006)
Kroeze et al. (2010)
Beaulieu et al. (2011)
Hu et al. (2016)
Maavara et al. (2019)
Yao et al. (2020)
", stream orders 1-3
", stream orders >4
Marzadri et al. (2021)
", stream orders 1-3
", stream orders >4
Lakes and reservoirs
DelSontro et al. (2018)
DelSontro et al. (2018)
DelSontro et al. (2018)
DelSontro et al. (2018)
Soued et al. (2016)
Lauerwald et al. (2019)
Lakes (including lakes with dams)
Lauerwald et al. (2019)
Reservoirs
Deemer et al. (2016)
Maavara et al. (2019)
Lauerwald et al. (2019)

1,650 (300-2,940)¢

Emission factors

1,975 Emission factors
1,100 Emission factors
550 Emission factors
470-3,300 Emission factors
1,070 Emission factors
51 (19-105)? Statistical prediction
72-78° Model
458 + 92° Model
387 +93° Model
71 +23° Model
114 Machine learning + Model
76 Machine learning + Model
38 Machine learning + Model
78 3.23-5.36 252424 Avg. rates
106 4.42 470 (300-710)* Statistical prediction
112 5.36 600 (380-860)* Statistical prediction
127 3.23 410 (250-600)* Statistical prediction
235 4.20 985 + 465° Avg. rates
34 2.93 98 + 64¢ Model
17 2.68 46 + 29¢ Model
152 0.31 47 31-110)* Avg. rates
148-250¢ 0.45 67-112¢ Model
185 0.25 52 +33¢ Model

Note. For each estimate, the total water surface area (XA

reported.

) are

), the total N,O emission flux (ZN,O,, ) and the area weighted average emission rate (XN,O, /XA

water water

aLower and upper 90% (Deemer et al., 2016; Lauerwald et al., 2015; Raymond et al., 2013) or 95% (DelSontro et al., 2018) CI. Standard error. “Min and max estimate.

et al., 2014). EFs can be defined as average ratios of N,O emission to denitrification and nitrification fluxes.
However, it is difficult to quantify nitrification and denitrification fluxes for entire river systems, and even more
so at the global scale. Therefore, EFs have traditionally been established by linking N,O emissions directly to
riverine N loads, implicitly assuming a certain fraction of riverine N loads to be nitrified and denitrified. Mosier
et al. (1998) assumed that N leached to the river network was denitrified once and nitrified twice along the river
network. Further assuming that 0.25% of both nitrified and denitrified N is emitted as N,O, they concluded that
0.75% of the total N leached to the river is emitted as N,O. Applying that percentage as EF directly to riverine
N loads, they estimated a global riverine N,O emission of 1.1 Tg N,O yr~!. The methodology and EFs estab-
lished by Mosier et al. (1998) also served to assess the river N,O emissions in the 5th Assessment Report of the
IPCC (2013).

In a similar approach, Seitzinger and Kroeze (1998) and Seitzinger et al. (2000) estimated N,O emissions from
only the dissolved inorganic fraction (nitrate, nitrite and ammonium) of N (DIN) leached to rivers. Applying
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EFs of 0.3% and 3% relative to riverine DIN load they estimated a global riverine N,O emission of 1.7 (range
0.3-2.9) Tg N,O/yr. Over the following decade, these two EF approaches, that is, the one of Seitzinger and
Kroeze (1998) and the IPCC approach derived from Mosier et al. (1998), were updated, yielding consistently
large emission fluxes. Kroeze et al. (2005) estimated 2 Tg N,O/yr, and later Kroeze et al. (2010) revised their
estimate to 0.5-3.3 Tg N,O/yr, both using modeled DIN loads and EFs of 0.3% and 3%. De Klein et al. (2006)
predicted a global riverine N,O emission of 0.6 Tg N,O/yr, while Beaulieu et al. (2011) calculated an emission
flux of 1.1 Tg N,O/yr, both using the IPCC approach.

Studies conducted over the last 5-7 years (Hu et al., 2016; Maavara et al., 2019; Marzadri et al., 2021; Yao
et al.,, 2020) consistently calculate N,O emissions for rivers that are substantially lower than those of the
decades before (Figure 1). Hu et al. (2016)'s empirical approach estimated global riverine N,O emissions of 51
(19-105) Gg N,O/yr. Further, the authors report EFs relative to riverine DIN loads of 0.16%-0.19% to be real-
istic, suggesting the EFs used by Seitzinger and Kroeze (1998) to be unrealistically high. Maavara et al. (2019)'s
spatially resolved stochastic-mechanistic river-continuum model is the first to explicitly represent N transfor-
mation processes, and results agreed well with Hu et al.’s predictions, with a global flux of 72-78 Gg N,O/yr.
Moreover, Maavara et al. (2019) estimated that only 7% and 9% of the total N loads are respectively denitri-
fied and nitrified in the global river network. Thus, the assumption behind the IPCC ARS approach that all N
leached to rivers is once denitrified and twice nitrified also appears to be unrealistic and responsible for gross
overestimations.

The studies by Yao et al. (2020) and Marzadri et al. (2021) are complementary as they provide estimates that
also account for small streams that contribute disproportionately to the overall riverine N,O emissions, but which
were ignored in earlier estimates. Marzadri et al. (2021), using a machine learning based approach, reach an
estimate of about 114 Gg N,O yr~!, of which about half is contributed by headwater streams. Note that this is
only a near-global estimate which excludes high latitudes >60° N, which can however be assumed to be small
contributors to the global emission due to low N loads of the corresponding river systems (Maavara et al., 2019).
Yao et al. (2020), using the land surface model DLEM, estimate riverine N,O emissions at even higher values
of 458 + 92 Gg N,Oyr~!, of which 80% stems from small stream emissions up to stream order 3. In their simu-
lations, emissions from these small streams are largely fed by N,O inputs from groundwater and saturated soils,
which are not accounted for in the other studies. Marzadri et al. (2021), although not representing groundwater
N,O inputs, still estimate that about %3 of total riverine N,O emissions is contributed by small streams of orders 3
and lower (see Table 4). In these small streams, nitrification-denitrification processes occur mainly within hypor-
heic and benthic zones, whereas in larger rivers, the contribution of water column exceeds that of subsurface
environments in contributing to N,O production (Marzadri et al., 2021). The estimates for larger rivers only by
Yao et al. (2020) and Marzadri et al. (2021) agree better with those by Hu et al. (2016) and Maavara et al. (2019).

For lakes and reservoirs, the first global estimates were only published recently. Soued et al. (2016) and DelSontro
et al. (2018) gave estimates for the entirety of lakes and reservoirs, without distinguishing between both types of
systems while Deemer et al. (2016) estimated N,O emission from reservoirs only. Maavara et al. (2019), in their
stochastic-mechanistic model of N,O emissions from river networks, included explicit emission estimates for
reservoirs. Lauerwald et al. (2019) then adapted that model to estimate N,O emission from both reservoirs and
lakes. Soued et al. (2016) performed a simple upscaling based on averaged observed N,O emissions rates for three
latitudinal zones, which yielded with 985 + 465 Gg N,O yr~! the highest of the emission fluxes from lakes and
reservoirs listed in Table 4. A major limitation of this study was the poor global coverage of observations. While
they used data from 298 systems worldwide, they had observations from only six systems for their low latitude
estimate, all belonging to the reservoir-class from the study of Guérin et al. (2006). This fact is critical as in their
upscaling, lakes and reservoirs from that zone contributed about 80% of their global estimate of N,O emissions.
Moreover, some of these reservoirs showed extremely high emission rates due to the fact that soils and biomass
had not been removed before dam closure, which contributed massively to GHG production and emission (Guérin
et al., 2006). It is thus highly probable that these reservoirs are not representative for low latitude lakes and reser-
voirs, as later discussed in detail in Lauerwald et al. (2019).

Similar to their estimates of lake and reservoir CO, and CH, emissions (see Sections 3 and 4), DelSontro
et al. (2018) followed two distinct methodological approaches to obtain their global estimates: a direct
upscaling approach based on a global average of observed N,O emission rates (252-346 Gg N,Oyr~!), and a
statistical approach using lake/reservoir size classes and classes of chlorophyll-a concentrations as predictors
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(409-597 Gg N,O yr~!). Note that the second approach did not lead to a spatially explicit estimate, as only global,
statistical distributions of size classes and chlorophyll-a concentrations were used for upscaling. Further, the
statistical upscaling equation had a very low predictive power with an R? below 0.1.

Deemer et al. (2016) performed a simple upscaling to estimate N,O emissions from reservoirs only, obtaining a
global flux of about 47 Gg N,O yr~'. Despite the very different approach, Maavara et al. (2019) and Lauerwald
etal. (2019) estimated global N,O emissions from reservoirs that are comparable to those by Deemer et al. (2016)
(see Table 4). For the entirety of lakes and reservoirs, Lauerwald et al. (2019) by far the lowest global estimate of
99 + 64 Gg N,O yr~!, and which is only about one tenth of what was estimated by Soued et al. (2016). Comparing
their spatially explicit estimate to regional estimates based on direct upscaling, Lauerwald et al. (2019) found that
their model results are reasonable. Moreover, they estimated that lakes, although contributing more than 90%
of the global surface area of standing water bodies, contribute only about half of the emission flux as a result of
their much lower average emission rates. This indicates that it is problematic to lump together lakes and reservoirs
in global upscaling exercises.

5.2. Persisting Shortcomings and Future Challenges
5.2.1. Process Understanding

In the following we discuss our current process understanding of inland water N,O emissions in the light of
global scale estimates. Figure 2 gives an overview of the main fluxes and processes involved, while Table 2
summarizes the known effects of the major environmental drivers. While a basic understanding of processes
involved in aquatic N,O cycling exists from a certain number of field studies, the quantification of these processes
in large-scale estimates is still difficult due to their complexity and the unavailability of sufficient data sets to
support their assessment. For this reason, empirical EFs have long been used to estimate riverine N,O emis-
sions directly from N loads, assuming a constant fraction of N loads to be nitrified and denitrified within the
rivers, independent of the size of the river network and its ecoclimatological setting. While newer, model-based
studies proved the worth of calculating more precise estimates of nitrification and denitrification fluxes taking
into account physical constraints such as water residence time and temperature (Maavara et al., 2019; Marzadri
et al., 2021; Yao et al., 2020), the actual production and/or emission of N,O related to these processes is still
based on simple, empirical factors. As N,O is formed only as a by-product of nitrification and as an intermediate
product in the denitrification process, the actual fraction of N,O produced from these processes is highly variable
and not yet possible to reproduce based on mechanistic formulations.

A better assessment of inland water N,O cycling would require the representation of the vertical profile of oxygen
concentrations through the water column and benthic sediments. Of particular importance is the position of the
oxycline, that is, the rather narrow zone of steep decrease in oxygen concentrations, separating an oxic upper
layer, where nitrification is the dominant process, from an anoxic lower layer, where denitrification dominates.
The oxycline itself is a hot-spot of N,O production because here, anoxic water rich in ammonium mixes with
oxygen-rich waters, promoting nitrification, while in turn nitrate produced from nitrification diffuses down and
fuels denitrification in the anoxic zone (Beaulieu et al., 2015). Depending on water depth, water column mixing
and sediment oxygen consumption, the oxycline lies either in the water column or sediment column. Following
the conceptual model by Marzadri et al. (2017, 2021), the position of the oxycline, and thus the relative impor-
tance of water column versus sediment processes in N,O production, changes along the river network. In head-
waters, the oxycline is situated in the bed sediments and nitrification of emergent, ammonium-rich groundwater
in streambed sediments is the dominant source of N,O. The importance of nitrification decreases downstream
while the oxycline moves up from the sediment into the water column, until finally denitrification in the lower
water column is the dominant source of N,O. Further, it was shown that dissolved N,O inputs from groundwater
and waterlogged soils feed an overproportional contribution of headwaters to riverine N,O emissions (Billen
et al., 2020; Yao et al., 2020). Note that the global assessments of river N,O emissions by Marzadri et al. (2021)
and Maavara et al. (2019) do not account for groundwater N,O inputs which represent an important part of inland
water N,O emissions.

For lakes and reservoirs, the importance of processes in the benthic zone has been implicitly taken into account by
the use of “hydraulic load” to scale denitrification rates (Harrison et al., 2009). Hydraulic load has been defined
as the ratio of water inflow to water surface area, which is identical to the ratio of average lake or reservoir
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depth over water residence time (Harrison et al., 2009). The process of denitrification is assigned an “apparent
settling velocity” which expresses rates of nitrification or denitrification in the benthic zone relative to water
column depth. The deeper the average lake or reservoir, the longer it takes until the whole volume is nitrified or
denitrified. However, this approach does not take into account the actual shape of the lake/reservoir bed and the
proportions of shallow, littoral zones, where the oxycline and thus main source of emitted N,O lies in the bed
sediments (Liikanen et al., 2003; Zhu et al., 2015), versus the deeper zones, where processes in the water column
are the dominant source of N,O (Mengis et al., 1997). While streams and rivers are usually well mixed, deeper
lakes and reservoirs may be temporally stratified, with a pronounced oxycline within the water column—and
important consequences for N,O cycling, which have so far not been taken into account in large-scale assess-
ments. During stratification, only the top layer (epilimnion) is exchangeable with the atmosphere and thus well
oxygenated. Then, nitrification in the epilimnion is the main source of N,O emissions (Beaulieu et al., 2015;
Mengis et al., 1997). In anoxic parts below the oxycline (hypolimnion), denitrification prevails, which can be
a source or sink of N,O, depending on the availability of nitrate for reduction (Beaulieu et al., 2015; Mengis
et al., 1997). As this anoxic water may also be rich in ammonium from the in situ decomposition of organic
matter, mixing with more oxygenated, epilimnetic waters during lake turn-over may represent a ‘“hot moment” for
nitrification and N,O emissions (Beaulieu et al., 2015; Roland et al., 2017). However, a quantitative assessment of
this hot-moment at large scales is not yet possible due to the lack of observational data. Moreover, while a certain
number of studies report measurements of N,O concentrations in the shallow, easy to reach epilimnion, studies
investigating the deeper profile of N,O concentrations through the hypolimnion are scarce (Beaulieu et al., 2015;
Mengis et al., 1997).

Further, also resolving the horizontal zonation would help to better assess the overall N,O budget of a lake.
Within larger lakes, shallow littoral zones have been shown to contribute disproportionately to lake N,O emis-
sions relative to their areal extent (Zhu et al., 2015). Here, benthic sediments contribute most to N,O produc-
tion, while in the deeper, pelagic zone, N,O is produced in the water column, and more specifically, under
stratified conditions with a pronounced oxycline, in the epilimnion (Liikanen et al., 2003; Mengis et al., 1997).
Yet, most observations are constrained to pelagic zones, which dominate lakes and reservoirs with regard to
surface area, but not necessarily emissions. Further, strong horizontal gradients in N,O emissions rates may
be formed towards the points of riverine inflows of reactive N (Miao et al., 2020). However, few studies
conduct systematic sampling which could reveal and account for these internal spatial variations. In contrast
to for instance CH, or CO,, drawdown areas of reservoirs do not appear to emit more N,O than upland soils
(Hao et al., 2019). Also, seasonal streambed drying was not found to increase riverine N,O emissions (Tonina
et al., 2021).

In general, observational studies are skewed towards temperate, eutrophic systems in developed countries, which
are easily accessible for sampling and which represent potentially important N,O sources related to water quality
issues caused by agricultural non-point sources and sewage water injections. In boreal regions where N loads are
usually lower, it was demonstrated that a substantial proportion of aquatic systems is undersaturated with N,O
and thus rather act as sinks for this GHG (Kortelainen et al., 2020; Soued et al., 2016). Further, as for CO, and
CH,, observations of smaller water bodies are generally underrepresented. Interestingly, though small, agricul-
tural ponds could be hypothesized to be strong GHG emitters, a study of 101 such systems across Canada (Webb
etal., 2019) has shown that about two thirds of these systems are on the contrary N,O sinks. In conclusion, global
inland water N,O emissions may have been overestimated due to the bias in observed systems outlined above.
Moreover, most estimation approaches, particularly the use of EFs, do not permit for representing inland waters
as N,O sinks. Finally, samples from temperate and high latitude systems are skewed towards summer months,
while the full seasonal cycle is only rarely covered in observational studies. Kortelainen et al. (2020) have demon-
strated in their study on Finnish lakes that there is a strong seasonality in N,O concentrations and emission rates,
with much higher values in winter when low autotrophic production allows for higher nitrate concentrations. A
flux estimate based on summer-time observations only would thus have led to an underestimation by a factor of
four. Assuming that similar seasonal patterns are to be observed in other temperate to high latitude systems, and
that in particular lake turnover as hot moment of N,O emissions is not well captured in observations, we can
hypothesize that the non-representativeness of sampling times might have introduced a negative bias in upscaling
exercises. Note finally that the non-representativeness of observations does not only affect estimates based on
direct upscaling of average emission rates. With the lack of representative observational data for calibration and
validation, also model-based studies will remain of limited validity.
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5.2.2. Spatial and Temporal Resolution

For riverine systems, global, spatially explicit estimates of N,0O emissions have been achieved by numerous studies.
The spatial resolution ranges from large river basins (Hu et al., 2016), over gridded estimates (Yao et al., 2020) to
estimates per stream segment (Marzadri et al., 2021). For lakes, Soued et al. (2016) have resolved N,O emissions
for three broad latitudinal bands and the only published spatially explicit, gridded estimate is that of Lauerwald
etal. (2019). Most of these studies represent a climatology of average annual fluxes. Only the process-based model
by Yao et al. (2020) allows for spatio-temporally resolved simulation results which cover seasonality, interannual
variability and long-term temporal trends. So far, this model includes rivers and reservoirs. For lakes, a global
scale, process-based model that permits for temporally varying N,O emissions is still missing. In line with what
was discussed in the preceding subsection, such a model would need to couple lake physics and biogeochemistry.

5.2.3. Data Requirements

To achieve better global estimates of inland water N,O emissions, more observational data is needed, in particu-
lar from high latitude and tropical areas. Also, small lentic water bodies, including natural and farm ponds, and
ponds used for aquaculture, are so far undersampled. Finally, the bulk of available observation data is biased by
a tendency to study eutrophic systems that promise high emission rates, while oligotrophic systems that may
even be sinks are underrepresented (Soued et al., 2016). In general, more systematic observational programs
permitting the quantification of seasonality and the impact of seasonal ice cover, lake turn-over and algae blooms
to annual emissions are needed to avoid biased upscaling of annual flux estimates. Finally, long-time series are
needed to assess the long-term evolution of inland water N,O emissions and to evaluate process-based models.

To support the application of more advanced upscaling approaches in the estimation of inland water N,O budgets,
including process-based models, better data on environmental drivers and boundary conditions are required. That
includes the representation of reactive N species to inland waters. While global estimates of total N and DIN inputs
to the river network exist (Mayorga et al., 2010), it would be even better to have information on the more specific
inputs of nitrate, ammonium, and dissolved N,O to set the boundary conditions for processes involved in N,O
production, reduction and emissions. Further, similar to what was pointed out for CH, (Section 4.2.3), the model
representation of N and N,O cycling in inland water would profit from data sets on bed morphology of the water
body and properties of bed sediments. Marzadri et al. (2021) have used a machine learning approach to estimate
all these boundary conditions for the application of their model of stream N,O production. While this seems
a promising strategy, this approach could be steadily improved with new findings from field observations and
improved data sets of predictor variables. Also for lakes and reservoirs, only estimates of volume and average lake
depth are available (Messager et al., 2016), which could be steadily improved using a similar strategy. Finally,
for the better assessment of lake and reservoir N,O budgets, physical processes such as stratification, mixing
and ice cover would need to be represented dynamically. For example, process-based models of lake physical
processes have been developed and even implemented into land surface models for global scale application
(Subin et al., 2012) and the outputs of such models may be included in future lake and reservoir N,O models.

6. Conclusions and Outlook

The number of global scale estimates of inland water GHG emissions is constantly increasing, at an accelerated
step. For CO, and CH,, we see a tendency for increasing numbers in estimates of global scale fluxes following the
inclusion of water bodies which contribute significantly to the overall water surface area, and disproportionally to
overall emissions. For water bodies above a certain size (e.g., stream orders, lake size), estimates of average emis-
sion rates seem to converge in latest estimates. Major discrepancies persist however with regard to the assumed
water surface area and the statistical distribution of water body size classes, in particular for small lakes and
impoundments (<10 ha), and ponds. For riverine N,O emissions on the contrary, we find newer estimates to be
lower than older estimates, following a change in methodologies moving away from the application of emission
factors toward more process oriented modeling. For lake N,O emissions, discrepancies in assumed water surface
area and distribution of lake size classes still play a role as well, but not as strongly as for CO, and CH, because
small water bodies do not appear to contribute disproportionately to the total emission flux.

While uncertainties in global scale assessment of inland water GHG emissions persist, developments in monitor-
ing and upscaling techniques are envisageable to overcome these uncertainties, as discussed in this review paper
and summarized in Table A1. There is ongoing work to improve spatially explicit data sets of inland water surface
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Table A1

areas that will help improve global scale estimates. For streams and rivers, global scale estimates have recently
been largely improved combining high resolution remote sensing of water surface areas and statistical predic-
tion for headwater streams which are too narrow to be detected (GRWL—Allen & Pavelsky, 2018). A similar
strategy may also be the solution for lakes and reservoirs, combining data from inventories and remote sensing.
Inventories are more reliable but less comprehensive as they exclude smallest water bodies and are susceptible
to geographical biases due to differences between national data sources. Remote sensing is able to detect smaller
water bodies but is prone to contaminations with wrongly attributed water surface areas if unsupervised algo-
rithms are applied and checks for ground truth in sufficient quantity and quality are not possible.

More importantly, improving inland water GHG emissions estimates requires more fieldwork to improve quantity
and quality of observational data. In particular, we need more data from systems in remote areas of the high lati-
tudes and the tropics, and systematic measurements with time-series of sufficient length and frequency of obser-
vations to better capture seasonal and inter-annual variability in fluxes as well as long-term trends in response to
environmental change. In addition, more attention has to be paid to hot-spots and hot-moments of inland water
GHG emissions, which likely contribute a substantial fraction of overall emissions.

For upscaling and predictions to achieve better global scale estimates, recent developments of machine
learning-based approaches and process-oriented models seem promising. These approaches help to better
constrain the spatial-temporal variability in global scale estimates, which allows to better include inland water
GHG emissions in regionalized budget efforts such as RECCAP-2, but also in top-down approaches based on
atmospheric inversions, further reducing uncertainties in global estimates.

Appendix A

Table A1 summarizes the main take home messages from our review.

General Uncertainties and Knowledge Gaps That Persist With Regard to Regional to Global Scale Estimation of Inland Water GHG Emissions, and
Recommendations for Monitoring and Upscaling

Uncertainty/knowledge gap

Recommendations for monitoring Recommendations for upscaling

Source attribution of emitted GHGs difficult:
produced in situ or imported from upstream,

surrounding soils or groundwater?

Smallest water bodies contribute overproportionally
to CO, and CH,, emissions, but are not well

constrained yet at global scale.

Watershed scale monitoring with systematic
observations of GHG sources and sinks in
interconnected upland, wetland and inland water
systems, and of lateral GHG transfers along
terrestrial-aquatic continuum.

Process based models that represent sources and
sinks of GHGs within the inland waters and their
catchment, including the reactive transport along
the terrestrial-aquatic continuum.

More systematic observations of GHG emissions
from small lakes, ponds and streams are needed.

Need for reliable spatial data sets of small inland
waters from remote sensing with extensive
ground truthing. Categories of climate and land
use may be useful for upscaling.

Internal variability needs to be better constrained,
especially in large waterbodies with diffuse
inputs, and in reservoirs that flood heterogeneous
landscapes.

Temporal variability (diurnal, event-based, seasonal,
interannual) and contributions from hot moments
(e.g. spring freshet, flood events, ice-out, lake
turn-over, algae blooms, reservoir drawdowns)
are poorly constrained at global scale.

Uneven geographic distribution of observations may
lead to biases in upscaling. Higher uncertainties
persist for high latitude, high elevation, arid, and
tropical systems.

Contributions from ebullition versus diffusion, and
other paths like emission from turbines not well
constrained.

Systematic observations along internal spatial
gradients (along depth gradients, distance to
shore, position to inflows) are required.

Time series of observations needed, which:
- are long enough to capture inter-annual
variability and the effects of climate extremes
such as droughts and heat waves;
- are frequent enough to capture hot moments
(automatic sensors)
-also cover night-time fluxes.

More long-term monitoring networks in remote
tropical, arid, high elevation, and high latitude
areas are required.

More systematic observations of inland water GHG
budgets are needed that cover all important
emission paths.

More detailed information on geometry of
waterbodies, on inflows of water and sediment,
and on reservoir management required to predict
internal heterogeneity of GHG fluxes.

Statistic or process based models that use the
main meteorological (temperature, radiation,
wind speed, air pressure, precipitation) and
hydrodynamic (fluctuations of water flows and
water table, thermal stratification vs. mixing
over lakes) drivers of the physical and biological
processes behind inland water GHG dynamics.

Upscaling techniques are required that bin data per
climate zone, or use relevant climatic drivers as
predictors or as input for process based models.

For upscaling, the different emissions paths need to
be explicitly represented and their specific drivers
taken into account.
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