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Abstract
Numerical solution of partial differential equations on parallel computers
using domain decomposition usually requires synchronization and
communication among the processors. These operations often have a
significant overhead in terms of time and energy. In this paper, we propose
communication-efficient parallel algorithms for solving partial differential
equations that alleviate this overhead. First, we describe an asynchronous
algorithm that removes the requirement of synchronization and checks for
termination in a distributed fashion while maintaining the provision to
restart iterations if necessary. Then, we build on the asynchronous
algorithm to propose an event-triggered communication algorithm that
communicates the boundary values to neighboring processors only at
certain iterations, thereby reducing the number of messages while
maintaining similar accuracy of solution. We demonstrate our algorithms
on a successive over-relaxation solver for the pressure Poisson equation
arising from variable density incompressible multiphase flows in 3-D and
show that our algorithms improve time and energy efficiency.

1 Introduction 1

In this paper, we propose efficient communication strategies for solving 2

partial differential equations (PDEs) using parallel computers. For 3

concreteness, we focus on the pressure Poisson PDE that arises from 4
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multiphase flows that are found in a wide range of applications, including 5

bubble columns in the chemical industry, nuclear reactors, and various 6

aspects of metal processing. Various strategies to model such flows have 7

been discussed [1–4]. Solving the pressure Poisson equation is usually the 8

most time-consuming part of the numerical solution of the equations 9

governing incompressible flows. The equations are usually discretized to 10

form a linear system of equations. While for unsteady single phase flow it 11

is, at least in principle, possible to invert the coefficient matrix once and 12

then use it at every time step, in multiphase flows with time evolving 13

phase boundaries, the density distribution and the coefficients change at 14

every time step, thus requiring the full pressure equation to be solved 15

repeatedly. In most cases, the linear system of equations is, thus, solved by 16

using an iterative method. It is important to note that it is only the 17

converged solution that is of interest and that convergence is usually 18

evaluated by monitoring the residual. The solution during the intermediate 19

iterations is of no direct relevance and can take any value consistent with 20

driving the solution to the converged value. Ideally, this should be done as 21

efficiently (in the sense of time and energy consumption) as possible. 22

The pressure Poisson equation falls in the broad class of elliptic PDEs. 23

Development of strategies to improve the convergence rate of iterative 24

methods for such PDEs has a long and illustrious history, that includes 25

Gauss-Seidel and successive over-relaxation (SOR) methods to improve the 26

Jacobi method and then further sophistication with alternating direction 27

implicit (ADI), Krylov, and multigrid methods. In some cases, it is 28

possible to use the structure of the particular problem under consideration 29

to improve the solution strategy, such as through extrapolation [5, 6] for 30

pressure equations for multiphase flows in which the density of one fluid is 31

much less than the other. For the solution of these PDEs on parallel 32

computers consisting of many processing elements (PEs), the ability to 33

decompose the domain and solve different parts of the domain on separate 34

PEs is essential to scaling up the calculations to problems of modern 35

interest. Several authors have discussed parallel strategies for solving 36

elliptic problems [7–9]. When implemented on parallel computers, all these 37

methods generally assume full communications at every iteration and 38

synchronized processing by all the PEs. This typically leads to significant 39

time and communication overhead. It has been observed that the 40

communication between elements is generally slow compared to 41

computation done on each PE and also consumes significant energy [10]. 42

Further communication can lead to congestion in the high performance 43

computing (HPC) interconnects [11]. Finding ways to reduce 44

communication is, thus, becoming increasingly important. 45

To tackle this issue, many approaches have been proposed in the parallel 46

computing literature. A major direction is that of developing asynchronous 47
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algorithms in which communication happens as before, but without the 48

concomitant synchronization, so the PEs do not wait for values from each 49

other but continue their computations with whatever values were last 50

received [12–16]. Another approach is to completely avoid communication 51

at certain iterations, thus reducing the requirement of synchronization as 52

well. In addition to reducing synchronization overhead as in asynchronous 53

algorithms, such communication-avoiding algorithms reduce the number of 54

messages as well. Several works have focused on relaxing the global 55

communication needed for calculation of the basis vectors in Krylov 56

subspace methods. As a representative example, in s-step methods, such 57

communication is done once every s steps [17–19]. However, these s-step 58

methods considered parallelization using operator decomposition, i.e., 59

parallelization of operators like matrix-vector or matrix-matrix 60

multiplications. This is different from the parallelization using domain 61

decomposition considered in this paper where the entire simulation grid is 62

divided among multiple PEs instead of the operators involved. 63

In preliminary work [20], we showed that triggering communication 64

based on events using a simple threshold can lead to some communication 65

savings for a simple Poisson problem resulting from electrostatics. Here, 66

we first develop an asynchronous communication algorithm for the more 67

complicated, but well-known pressure Poisson PDE from fluid dynamics 68

and show that it significantly reduces the computation time. Then, we 69

extend our previous event-triggered algorithm [20] to include a more 70

sophisticated mechanism of triggering events based on adaptive thresholds 71

for the fluids PDE. This leads to further savings in time and a prominent 72

reduction in the number of messages exchanged between PEs. Such 73

event-triggered communication has also been shown to be useful in the 74

different context of parallel machine learning [21]. 75

The main contribution in this paper is the design of communication 76

strategies to accelerate iterative solutions of the non-separable pressure 77

equation found in simulations of unsteady incompressible multiphase flows 78

by reducing synchronization and communication. We first use 79

asynchronous communications implemented using one-sided 80

communication routines of the message passing interface (MPI). Not only 81

is the local communication of boundary values with neighbors done 82

asynchronously, but also the convergence detection is done in a distributed 83

manner using asynchronous routines. Modern solver for elliptic equations, 84

like the pressure Poisson equation, have reached a high degree of 85

sophistication and their implementation on parallel computers is fairly 86

elaborate. However, to focus on the communication aspects and to keep 87

the solver as simple as possible we have elected to work with a very simple 88

SOR solver. While state-of-the-art Krylov or multigrid solvers have mostly 89

replaced SOR in computational fluid dynamics and other applications, it is 90
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introduced in almost all modern textbooks and its simple structure makes 91

it ideal for proof of concept software implementations. As such, its 92

performance and properties continue to be of some interest [22,23]. We 93

note that although several variants of the original SOR algorithm have 94

been introduced, here we use the very basic version. This asynchronous 95

solver is shown to be around 6 times faster than the synchronous solver for 96

our example problem. Further, we modify the asynchronous algorithm to 97

describe another algorithm where the communication of boundary values 98

with neighbors happens only when certain criteria have been met, i.e., in 99

an event-triggered fashion. This algorithm can reduce the number of 100

messages communicated among the PEs by upto 90% while preserving the 101

same level of accuracy of solution. Since number of messages is a measure 102

of the overall volume of communication, decreasing that will alleviate the 103

overhead associated with communication. Our codes are available at 104

https://github.com/soumyadipghosh/eventpde. 105

The paper is organized as follows. Section 2 introduces the pressure 106

Poisson equation for multiphase flows which is the PDE we use throughout 107

the paper. Section 3 reviews the usual synchronous solver. Section 4 108

describes the asynchronous solver. In section 5, we extend the solver by 109

adding event-triggered communication. In Section 6, we present results for 110

the respective algorithms. Finally, we conclude with a discussion in 111

Section 7. 112

2 The Pressure Poisson Equation for 113

Multiphase Flows 114

The most common approach for simulations of multiphase flows is the use
of the “one-fluid” formulation of the Navier-Stokes equations, where one set
of equations is solved for the whole flow field on a fixed structured grid,
and the motion of the different phases is tracked by advecting a marker or
index function. The different phases have different material properties,
including densities, and this makes the pressure equation that must be
solved for incompressible flows significantly different than for single phase
flow, due to the discontinuous density field. When a projection method is
used to advance the solution, we first update the solution ignoring the
pressure (or using the pressure field from the last time step as an
approximation) and then find the pressure needed to make the new velocity
field incompressible, thus projecting the velocity field on a subspace
representing divergence free flows. The pressure equation can be written as

r · 1
⇢
rp =

1

�t
r · u⇤

, (1)
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where the right hand side is the divergence of the velocity after the 115

prediction step, ⇢ is the discontinuous density field, and �t is the size of 116

the time step used to update the momentum equations (assumed to be 117

given). The discrete version for a regular structured staggered grid can be 118

expressed as follows: 119

1

�x2

 
pi+1,j � pi,j

⇢
n+1
i+1,j + ⇢

n+1
i,j

� pi,j � pi�1,j

⇢
n+1
i,j + ⇢

n+1
i�1,j

!
+ (2)

1

�y2
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n+1
i,j+1 + ⇢

n+1
i,j
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⇢
n+1
i,j + ⇢

n+1
i,j�1

!
= Si,j, (3)

where 120

Si,j =
1

2�t

⇣u⇤
i+1/2,j � u

⇤
i�1/2,j

�x
+

v
⇤
i,j+1/2 � v

⇤
i,j�1/2

�y

⌘
, (4)

assuming two-dimensional flow for simplicity and using half “integers” to 121

indicate where the variables are on the staggered grid [24]. �x and �y are 122

the grid line spacing in the x and the y-direction. Since the interface 123

separating the different fluids usually moves, the coefficients change. In 124

addition to the discontinuous coefficients, the pressure itself is often 125

discontinuous, if surface tension is non-zero. 126

Fig 1. Bubbles in a liquid illustrating multiphase flows in a periodic 3-D
domain. Only a small section of the domain is shown here.

The pressure equation can be solved in a number of ways such as by
direct or iterative solvers. Iterative solvers are more common and many
sophisticated solvers such as multigrid [25] have been implemented in
widely available software packages. The Hypre library [26], for example,
implements a multigrid solver that is often used to solve (2). In this paper,
where we are focusing on the communications between PEs, we consider a
simple parallel iterative SOR solver using domain decomposition to
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Table 1. Parameters relevant to the simulation setup we consider in this
paper.

Domain 8⇥ 0.5⇥ 0.5 (see Fig 1)
Grid 1600⇥ 100⇥ 100

Fluid densities 1.0 (liquid) and 0.0001 (bubbles)
Boundary Condition Periodic

Solver Successive Over-Relaxation
Solver Tolerance Relative Maximum Residual of 1e-8
Number of PEs 200

Domain Decomposition 1-D along first dimension

demonstrate the algorithms. Thus, we rewrite equation (3) as:

p
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Here, the subscript ↵ is the iteration number and � is the over-relaxation 127

parameter. Although equations (3) and (5) are written for a 2-D flow, we 128

solve the pressure Poisson equation for multiphase flows in the 3-D domain 129

shown in Fig 1. The source term Si,j is computed by taking one step using 130

a full flow solver, with �t = 4⇥ 10�6. Table 1 provides further details 131

about the domain parameters. Here, we take the density of the heavy fluid 132

to be 10, 000 times larger than the density of the lighter fluid to make the 133

solution more challenging, since such large difference generally require a 134

considerably larger number of iterations, compared with density ratios of 135

O(10� 100). In the simulations reported here, we use � = 1.2. The 136

domain decomposition is done by slicing the domain in the long dimension 137

and using one ghost layer for each domain boundary. For the simulations, 138

we use an HPC cluster of nodes with each node having 2 CPU Sockets of 139

AMD’s EPYC 24-core 2.3 GHz processor and 128 GB RAM per node. In 140

order to ensure the 200 PEs for our simulations are equally populated 141

among the 48 core AMD nodes for load balancing purposes, we use only 40 142

cores per node and a total of 5 such nodes. The cluster uses Mellanox 143

EDR interconnect. The MPI library chosen is Open MPI 4.0.1 compiled 144
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with gcc 8.3.0. 145

3 Baseline Synchronous Solver 146

Numerical iterative solvers of partial differential equations based on 147

domain decomposition mostly involve two types of communication – (i) 148

local communication of boundary values with neighboring PEs for 149

computation of the boundary grid points (commonly known as halo 150

exchange), and (ii) global communication of a convergence criterion among 151

all the PEs for detection of the condition for termination. The traditional 152

parallel programming paradigm in most numerical solvers is the bulk 153

synchronous parallel [27] where all the PEs execute iterations in synchrony. 154

This means that if some PEs are slow in their execution, all the other PEs 155

have to wait for them to complete before moving to the next iteration 156

together. In these solvers, the local communication with the neighboring 157

PEs is usually done using MPI point-to-point two-sided communication 158

routines MPI_Send/Recv [28]. The sending PE packs the boundary values 159

into a message and invokes MPI_Send operation while the receiving PE 160

receives and unpacks the message using MPI_Recv and copies it to 161

augmented buffer points around its domain, popularly called ghost cells. 162

The convergence detection involves global communication that is done 163

using a collective communication routine called MPI_Allreduce. While the 164

Allreduce routine aggregates the local convergence criterion from all the 165

PEs to calculate the global convergence criterion, it also introduces a 166

synchronization point at the end of every iteration, meaning that all the 167

PEs have to start the next iteration together. The pseudo code for the 168

synchronous solver is shown in Algorithm A. 169

The global synchronization and the two-sided MPI local communication 170

often impose significant communication overhead which can affect the time 171

and energy performance of the solver. Consequently, many improvements 172

over the baseline algorithm have been suggested. One popular way is to 173

overlap the communication with computation by replacing the blocking 174

versions of communication routines with non-blocking versions [29]. This 175

can be done for both the local and global communication. The 176

non-blocking versions differ from their blocking counterparts in that the 177

communication routine works in the background without pausing the code 178

execution. For the local communication, the blocking versions 179

MPI_Send/Recv can be replaced with non-blocking versions such as 180

MPI_Isend/Irecv. While these non-blocking versions can save on time, 181

they still require MPI_Wait at the end of every iteration to ensure that all 182

non-blocking operations have completed. The MPI_Wait operation is also 183

critical to ensure that the buffer used by the non-blocking operations is 184

freed, otherwise memory leakage will occur. Similarly, the MPI_Allreduce 185
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for global convergence detection can be replaced by its non-blocking 186

equivalent MPI_Iallreduce but MPI_Wait is still required. The MPI_Wait 187

makes the PEs wait for each other before starting the next iteration - thus 188

the solver stays synchronous. In Section 4, we describe an asynchronous 189

algorithm that departs fundamentally from this bulk synchronous parallel 190

paradigm.

Algorithm A : Baseline Bulk Synchronous Parallel Solver
1: do
2: Compute values
3: Communicate boundary values to neighbors using MPI two-sided
4: Calculate Local Residual
5: Calculate Global Residual using MPI collectives
6: if Global Residual < Tolerance then
7: Global Convergence detected
8: end if
9: while Global Convergence not detected

191

4 Proposed Asynchronous Solver 192

To make a solver truly asynchronous, we propose a paradigm of parallel 193

programming where the PEs do not wait for each other but rather execute 194

computations with whatever values were last received from the other PEs. 195

In this paradigm, there are no “global" iterations - rather every PE 196

executes its own “local" iterations at its own pace without any global 197

synchronization. Henceforth we use the term iteration to refer to local 198

iterations of a PE which may differently progress for different PEs. The 199

traditional two-sided MPI communication is not suitable for this purpose. 200

Rather one-sided communication or Remote Memory Access is used [30,31]. 201

In one-sided communication, the sending PE can directly write into the 202

memory of the receiving PE without the involvement of the receiver, unlike 203

two-sided communication. Since no acknowledgement of communication is 204

required from the receiver, there is no synchronization involved and thus 205

one-sided communication is faster than two-sided communication. We note 206

that Nayak et al [32] also developed asynchronous solvers with MPI 207

one-sided communication for domain decomposition but in the context of 208

restricted additive Schwarz solvers. The restricted additive Schwarz solvers 209

are two-level domain decomposition solvers [7] which is different from the 210

simpler one-level SOR solver we consider here. An illustration comparing 211

synchronous and asynchronous solvers is provided in Fig 2. 212

In one-sided communication, typically every PE defines a region of 213

memory called window which is public [30]. This means that the other 214
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Fig 2. Comparison between synchronous and asynchronous solvers
between two PEs. The vertical axis is wall clock time. The variable ki

refers to the iteration count at the i-th PE. In the synchronous solver,
every PE will execute the same iteration number at a certain point in time.
In contrast, every PE in the asynchronous solver independently executes
its iterations and may execute different iteration numbers at a certain
point in time.

PEs have permission to access this window without the involvement of the 215

PE – hence one-sided communication is often alternately called Remote 216

Memory Access. The sending PE can invoke MPI_Put to directly write into 217

this window of the receiving PE without the receiving PE’s involvement. 218

However, one-sided communication requires a mechanism to signal the 219

beginning and end of an epoch of window access. These are of two kinds: 220

(i) active, where the target is actively synchronized before its window can 221

be accessed, and (ii) passive, where no active synchronization is required. 222

We consider passive target synchronization using MPI_Win_lock/unlock 223

to prevent active involvement of the receiver. In this scenario, the 224

communication is considered to be complete once MPI_Win_unlock is 225

called. If the receiver accesses data from the window before the 226

MPI_Win_unlock is called, it might be inconsistent, meaning all the cells in 227

the boundary might not correspond to the latest iteration at the sender. In 228

order to prevent this, we copy the contents of the window to other arrays 229

after MPI_Win_unlock and use these arrays for local computations at the 230

receiver to maintain consistency. 231

There is no synchronization point in the asynchronous algorithm. 232

Consequently there is no opportunity for collective communication with 233

MPI_AllReduce for determining global convergence. Rather, the 234

convergence detection needs to be performed in a distributed manner. 235

Some approaches have been proposed for distributed convergence 236
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detection [33,34]. However, they do not consider the situation in which a 237

PE may have to restart iterations after temporary local convergence if 238

there is a change in the values received from neighbors - this phenomenon 239

is further explained in the next paragraph. We maintain the provision for 240

restarting iterations in our asynchronous solver. 241

The algorithm for our asynchronous solver is specified in Algorithm B. 242

The overarching difference from the synchronous Algorithm A is that there 243

is no two-sided communication and collective communication. This implies 244

that there is no need for synchronization among the PEs. The halo 245

exchange with the neighbors is performed using MPI_Put. Because there is 246

no MPI_AllReduce to aggregate the global convergence criterion to 247

terminate iterations in all the PEs together, there has to be a different 248

scheme to detect global convergence in an asynchronous manner. To do so, 249

one PE is assigned as the Master to monitor global convergence. Each PE 250

checks its local residual and compares it with the specified tolerance. If the 251

local residual stays lesser than the tolerance for a certain number of 252

iterations, the PE is considered to have locally converged and it sends that 253

information to the Master. Checking the local convergence criterion for a 254

range of multiple iterations instead of one iteration makes the algorithm 255

robust to oscillations in the residual. It is important to note that even 256

though a PE stops its iterations after local convergence, it should still keep 257

on monitoring the values received from its neighbors. If there is a sudden 258

change in the values received from neighbors, it means that values from a 259

different source term has reached its domain. If that is the case, the PE is 260

then locally unconverged and made to restart iterations until it satisfies the 261

local convergence criterion again. Finally, when the master detects that all 262

the PEs (including the master itself) have locally converged, it recognizes 263

that as global convergence and sends the global convergence flag to all the 264

PEs so that they terminate the iterations. The solver is then considered to 265

have converged. Note that different PEs will take different number of 266

iterations in this asynchronous solver, unlike the synchronous one. 267

In order to demonstrate the performance gain due to the asynchronous 268

solver over the synchronous solver, we consider the example described in 269

Table 1. Table 2 shows a comparison between Algorithm A and 270

Algorithm B in terms of the solution time and the global relative 271

maximum residual. It is important to note that due to the absence of 272

global communication (MPI_AllReduce), the global relative maximum 273

residual is not calculated during every iteration of the asynchronous solver 274

in Algorithm B. However, for a comparison with the synchronous solver in 275

Algorithm A, we determine the global relative maximum residual for the 276

asynchronous solver using just two MPI_AllReduce calls - one when the 277

iterations start and the other after the iterations have stopped. From 278

Table 2, we note that the global relative residual for both the solvers 279
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Algorithm B : Proposed Asynchronous Solver
1: do
2: if Local Convergence not detected then
3: Compute values
4: Communicate boundary values to neighbors using MPI one-sided
5: Calculate Local Residual
6: if (Local Residual < Tolerance) for a range of iterations then
7: Local Convergence detected
8: end if
9: else

10: if New values from neighbors detected then
11: Nullify Local Convergence
12: end if
13: if PE Not Master then
14: Communicate Local Convergence information to Master
15: else
16: if Local Convergence of all PEs detected then
17: Global Convergence detected - Communicate this to all

PEs
18: end if
19: end if
20: end if
21: while Global Convergence not detected
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remain less than the tolerance (1e-8), indicating that the quality of 280

solution is acceptable and similar with both the solvers. However, the 281

asynchronous solver is about 6 times faster than the synchronous solver. 282

Thus, the asynchronous solver has better performance. It is worth pointing 283

out that this performance improvement is a result of removal of global 284

communication as well as replacement of two-sided with one-sided 285

communication. 286

Table 2. Comparison of the performance of the synchronous Solver
(Algorithm A) and the asynchronous Solver (Algorithm B) for the
simulation setup specified in Table 1. The asynchronous solver achieves the
accuracy threshold in much lesser time.

Solver Type Time[s] Global Relative Max Residual
Synchronous 10346 9.12e-9
Asynchronous 1691 7.38e-9

5 Proposed Event-Triggered Communication 287

Solver 288

In this section, we build on the asynchronous algorithm to present an 289

event-triggered communication algorithm that significantly reduces the 290

number of messages exchanged between the PEs. The asynchronous solver 291

described in Algorithm B assumes that the communication of the 292

boundary values with the neighbor PEs takes place at every iteration of 293

that PE. The basic insight behind the event-triggered algorithm is that 294

communication at every iteration may not be necessary. For instance, if 295

the boundary values either do not change, or change in ways that are 296

predictable without any further information from the sender, then the 297

accuracy of the calculations at the intended receiver do not significantly 298

degrade. In other words, a communication is only needed when triggered 299

by an event at the sender (e.g., the boundary value changing from the 300

previously communicated value by more than a threshold). A solver 301

employing such event-triggered communication is schematically compared 302

to the asynchronous solver in Fig 3. There is some flexibility in defining 303

the events. For concreteness, in this paper, we design the events based on 304

the norm of the boundary values at the sender PE. When this norm 305

changes from the norm at previous communication by more than a 306

specified threshold, the boundary values are communicated to the PE that 307

is the intended receiver. The ghost cells at the receiver are updated only 308

upon communication (possibly with a delay imposed by the MPI one-sided 309

communication). If values are received in the ghost cells at the receiver 310
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due to an event of communication triggered at the sender, the receiver uses 311

those values for its computation. Otherwise, if new values are not received 312

at the ghost cells, the receiver uses values that are extrapolated from 313

previously received values for its computation. Thus the event-triggered 314

communication rule can be summarized as follows: 315

At Sender: Send boundary values if the condition

|Current Norm - Last Communicated Norm| � Threshold

holds; otherwise do not send. 316

At Receiver: Use ghost cell values if new values are received in ghost 317

cells; otherwise use extrapolated values based on previous ghost cell values. 318

Fig 3. Comparison between asynchronous solver and event-triggered
solver as illustrated using two PEs. The vertical axis is wall clock time.
The asynchronous solver communicates at every iteration whereas the
event-triggered solver communicates only when the event condition is
satisfied. At other iterations, it avoids communication as shown by the red
cross signs on the sender side.

Specifically, to track the changes in the boundary values, we compute 319

the L-1 norm of the boundary value vector (by summing the absolute 320

values) and compare it with the L-1 norm when the sending PE last sent 321

its boundary value vector. If the absolute difference between the two 322

norms exceeds a certain threshold, an event of communication is triggered. 323

Selecting the threshold is important for the overall efficiency and is a 324

designer specified parameter. A low fixed value of the threshold will likely 325

not result in much communication savings; however, it ensures that the 326

solution with event-triggered communication closely tracks the solution 327

with regular communication, especially if the boundary values are rapidly 328

changing. On the other hand, a high fixed value of threshold will result in 329
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events being infrequently triggered, leading to communication savings but 330

the solution with event-triggered communication may not track the one 331

with regular communication, especially if the solution is changing slowly 332

(e.g. close to the convergence). To obtain the best of both worlds, we 333

propose an adaptive threshold policy that changes during the course of 334

iterations of the solver. The solution is likely to rapidly change during 335

early iterations in the solver, as high wavenumbers components of the error 336

are eliminated. Therefore the boundary values also rapidly change, making 337

a high value of threshold suitable in this region. However, during the later 338

iterations when the solution starts approaching its final value, the 339

boundary value slowly changes. In this situation, the threshold should be 340

decreased to ensure that communication happens at least once in a while 341

to reach the correct solution. To select the threshold based on how rapidly 342

the solution is changing, at each PE, we compute the rate of change (or 343

slope) of the norm of the vector of boundary values as the difference 344

between the current norm and the norm at the last communication, 345

divided by the number of iterations at the PE since then. The rate of 346

change is then multiplied by a designer specified parameter h called 347

horizon to set the threshold ⌧
⇤. Intuitively, the horizon h signifies the 348

number of iterations to look ahead while calculating the threshold. This is 349

schematically shown in Fig 4(a) between two events E1 and E2. It is 350

important to note that in this idea, the threshold would stay constant 351

between two events. Due to this, there can be situations when the time 352

between events can become excessively long. As an extreme case, we look 353

at Fig 4(a) where the absolute difference of the norm of the boundary never 354

crosses the threshold ⌧
⇤ after event E2. This means that no further events 355

of communication will be triggered which is detrimental to the convergence 356

of the solver. To prevent this phenomenon, we modify the above threshold 357

by adding a term for gradual decay. As shown in Fig 4(b), we define a 358

decay parameter d, where 0 < d < 1 is a user selected parameter. At every 359

iteration, if no communication event happens, the threshold for the next 360

iteration is decreased by multiplying the current threshold by d. Thus the 361

threshold after m iterations since the last transmission (which is event E2 362

in Fig 4(b)) is given by ⌧ = ⌧
⇤
d
m. This decay continues until the next 363

communication event E3 happens. During event E3, the threshold is again 364

set to a new value of ⌧ ⇤, and then decayed similarly. 365

In our experiments, we observed that during the first few thousand 366

iterations, the solution significantly oscillates. Since we want these 367

oscillations to die out soon, we decided to communicate at every iteration 368

for these first few thousand iterations, i.e., without invoking the 369

event-triggered communication rule. However, this number is small 370

compared to the total number of iterations required until convergence. For 371

our experiments, we fix this initial number of iterations to be 2000. 372
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Fig 4. Procedure for calculation of the threshold of event-triggered
communication at the sending PE. When the event E2 is triggered, a new
threshold ⌧

⇤ is calculated by multiplying the local slope s between events
E1 and E2 with the horizon h as shown in the left subfigure (a). Then the
previously calculated threshold ⌧

⇤ is gradually decayed in the form
⌧ = ⌧

⇤
d
m where 0 < d < 1 is the decay rate and m is the number of

iterations since the event E2 when ⌧
⇤ was calculated. This decay

phenomenon, shown in subfigure (b), continues until the next event E3
triggers.

As mentioned before, the receiver PE uses extrapolated values for its 373

computation if new values are not received in the ghost cells. In order to 374

perform the extrapolation, it stores a history of previously received values. 375

The length of the history would obviously depend on the order of 376

extrapolation. In this paper, we assume linear extrapolation although 377

higher order extrapolation may be possible. The extrapolation is subject 378

to certain considerations. In order to understand that, we look at the two 379

scenarios when the receiver PE does not receive a message. First when the 380

corresponding sender PE has not locally converged and does not send a 381

message since the event criterion is not satisfied during that iteration and 382

secondly when the corresponding sender PE has locally converged and 383

hence stops sending messages. The extrapolation should be done for the 384

former but not the latter. In other words, the extrapolation should only be 385

done when the sending PE is still executing iterations and expects to send 386

a message within the next few iterations. To distinguish between the two 387

scenarios, it is important for the sending PE to send the local convergence 388

flag to its neighbors in addition to the master. The pseudo code for the 389

event-triggered communication algorithm is provided in Algorithm C. The 390

major change from Algorithm B is the event-triggered halo exchange 391

section specified in lines 4� 13 and the communication of local 392
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convergence information to neighbors in Line 22. 393

Algorithm C : Proposed Event-Triggered Communication Solver
1: do
2: if Local Convergence not detected then
3: Compute values
4: if Change in Boundary Values > Threshold then
5: Send boundary values to neighbors using MPI one-sided
6: end if
7: if New values from neighbor received then
8: Copy new values to ghost cells
9: else

10: if Neighbor not locally converged then
11: Extrapolate ghost cell values based on history
12: end if
13: end if
14: Calculate Local residual
15: if (Local residual < Tolerance) for a range of iterations then
16: Local Convergence detected
17: end if
18: else
19: if New values from neighbors detected then
20: Nullify Local Convergence
21: end if
22: Communicate Local Convergence information to neighbors
23: if PE Not Master then
24: Communicate Local Convergence information to Master
25: else
26: if Local Convergence of all PEs detected then
27: Global Convergence detected - Communicate this to all

PEs
28: end if
29: end if
30: end if
31: while Global Convergence not detected

6 Simulation Results 394

We now present our experimental results with the event-triggered 395

communication algorithm. Fig 5 shows the L-1 norm of the left boundary 396

values for some PEs, for the case specified in Table 1, using a horizon 397

h = 200 and decay d = 0.8. Note that the x-axis of the plot in Fig 5 starts 398
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from 2000 since the event-triggered communication starts after the first 399

2000 iterations to wait for large scale oscillations to die out as mentioned 400

before in Section 5. Now according to the algorithm, the boundary values 401

are sent to the corresponding receiver only when the change in the norm 402

exceeds the threshold. The corresponding thresholds for the boundaries in 403

Fig 5 are shown in Fig 6. Since the slope of the boundary values decreases 404

with time, the threshold also decreases to follow the trend of evolution of 405

the boundary. The oscillations in the threshold seen in Fig 6 originate and 406

are amplified by the local minor oscillations in Fig 5 that arise from the 407

stochastic implementation delays of MPI one-sided communication. To 408

reduce the effect of those oscillations on the threshold the sender PE keeps 409

a history of multiple previously communicated events (instead of just one 410

event as shown in Fig 4) and calculates the average slope. This average 411

slope is then multiplied by the horizon to obtain the threshold. The length 412

of the history is another user-controlled parameter, similar to the length of 413

a moving average filter. Longer history results in a smoother slope, but at 414

the cost of increased computational complexity. In this paper, we consider 415

the length of this history to be 20 for our simulations. 416

Fig 5. Evolution of the Manhattan or L-1 norm of the top boundary of 4
randomly chosen PEs. Note that the x axis starts from 2000 to wait for
the large scale oscillations to die out.

Various performance metrics for the event-triggered communication 417

algorithm are shown in Figs 7 to 9. Each simulation corresponding to a 418

certain data point in these plots is run for 3 times and then the mean of 419

May 29, 2023 17/24



Fig 6. Corresponding thresholds in a semi-log plot for the boundaries
shown in Fig 5. It is seen that the thresholds overall decrease with
iterations to reflect the decrease in slope of the norm of the boundaries in
Fig 5.

them is plotted to account for the stochasticity of MPI one-sided 420

communication. As a reminder, the parameters used in the experiments are 421

specified in Table 1. The effect of the decay d and horizon h on the total 422

simulation time is shown in Fig 7. Note that the values of time fluctuate a 423

lot over different decay and horizon parameters due to the stochastic 424

effects of MPI one-sided communication. However, we see an overall trend 425

that as the decay and horizon is increased, the total time is reduced. In 426

addition to reducing the total time, the event-triggered communication 427

algorithm reduces the number of messages passed between the PEs. Fig 8 428

shows the reduction in the number of messages for various decay and 429

horizon parameters, where the reduction is expressed as a percentage of 430

the number of messages sent without event-triggered communication. We 431

see that the percentage of messages drastically decreases with increasing 432

decay d as well as increasing horizon h. This reduction in messages can not 433

only lead to a decrease in simulation time as seen before, but also a 434

decrease in energy consumption and congestion in interconnects. Note that 435

it is difficult to measure the reduction in energy consumption directly but 436

we point to a metric in [10] which states that around 1-3 pJ is spent in 437

moving 1 bit of data between processors connected in a network. We also 438

refer to [35] which highlights the aspect of decrease in congestion with 439
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Fig 7. Plot of time for simulation vs the decay d for various values of
horizon h. The decay and horizon are parameters that determine the
event-triggered communication threshold.

Fig 8. Plot of the percentage of messages in the event-triggered
communication solver for various values of horizon h and decay d. Note
that a decay of 0 is used to represent 100% of the messages since an event
of communication is triggered for this case at every iteration. We see that
as the decay and horizon increases, the percentage of messages starts to
decrease.
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reduction in messages. As a reminder, the quality of the solution with each 440

of these event-triggered communication demonstrations is similar to that of 441

the baseline synchronous solver since the global relative maximum residual 442

(introduced in Table 2) is lesser than the specified tolerance of 1e-8. In 443

Fig 9, we take a closer look at the reduction in number of messages for one 444

particular simulation by plotting the number of messages triggered in each 445

of the 200 PEs. The number of iterations that every PE takes to 446

convergence with event-triggered communication is different as expected 447

and depends upon the characteristics of the sub-domain assigned to that 448

particular PE. However, the number of iterations taken in any PE is much 449

lesser than that with the baseline synchronous solver. Further, the number 450

of messages exchanged with event-triggered communication is even lower, 451

highlighting the benefits of our algorithm. 452

7 Discussion 453

Communications between processing elements have always been a major 454

concern with parallel computing. Thus algorithms that reduce the need for 455

communications are likely to be needed in scientific and engineering 456

simulations. Here, we first show that an asynchronous algorithm to solve 457

the pressure Poisson equation encountered in numerical simulations of 458

incompressible multiphase flows can significantly decrease the time to 459

solution while maintaining similar accuracy. Then we develop another 460

algorithm based on event-triggered communications that can further 461

reduce the number of messages exchanged to solve that equation. This can 462

reduce the overhead associated with communication, while maintaining the 463

quality of solution. Although the algorithms introduced here have been 464

implemented using a very simple SOR solver, we believe that the strategy 465

carries over to more sophisticated solvers, although the exact savings will, 466

of course, be different. 467
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