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Abstract

Numerical solution of partial differential equations on parallel computers
using domain decomposition usually requires synchronization and
communication among the processors. These operations often have a
significant overhead in terms of time and energy. In this paper, we propose
communication-efficient parallel algorithms for solving partial differential
equations that alleviate this overhead. First, we describe an asynchronous
algorithm that removes the requirement of synchronization and checks for
termination in a distributed fashion while maintaining the provision to
restart iterations if necessary. Then, we build on the asynchronous
algorithm to propose an event-triggered communication algorithm that
communicates the boundary values to neighboring processors only at
certain iterations, thereby reducing the number of messages while
maintaining similar accuracy of solution. We demonstrate our algorithms
on a successive over-relaxation solver for the pressure Poisson equation
arising from variable density incompressible multiphase flows in 3-D and
show that our algorithms improve time and energy efficiency.

1 Introduction

In this paper, we propose efficient communication strategies for solving
partial differential equations (PDEs) using parallel computers. For
concreteness, we focus on the pressure Poisson PDE that arises from
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multiphase flows that are found in a wide range of applications, including
bubble columns in the chemical industry, nuclear reactors, and various
aspects of metal processing. Various strategies to model such flows have
been discussed [1}-4]. Solving the pressure Poisson equation is usually the
most time-consuming part of the numerical solution of the equations
governing incompressible flows. The equations are usually discretized to
form a linear system of equations. While for unsteady single phase flow it
is, at least in principle, possible to invert the coefficient matrix once and
then use it at every time step, in multiphase flows with time evolving
phase boundaries, the density distribution and the coefficients change at
every time step, thus requiring the full pressure equation to be solved
repeatedly. In most cases, the linear system of equations is, thus, solved by
using an iterative method. It is important to note that it is only the
converged solution that is of interest and that convergence is usually
evaluated by monitoring the residual. The solution during the intermediate
iterations is of no direct relevance and can take any value consistent with
driving the solution to the converged value. Ideally, this should be done as
efficiently (in the sense of time and energy consumption) as possible.

The pressure Poisson equation falls in the broad class of elliptic PDEs.
Development of strategies to improve the convergence rate of iterative
methods for such PDEs has a long and illustrious history, that includes
Gauss-Seidel and successive over-relaxation (SOR) methods to improve the
Jacobi method and then further sophistication with alternating direction
implicit (ADI), Krylov, and multigrid methods. In some cases, it is
possible to use the structure of the particular problem under consideration
to improve the solution strategy, such as through extrapolation [5,/6] for
pressure equations for multiphase flows in which the density of one fluid is
much less than the other. For the solution of these PDEs on parallel
computers consisting of many processing elements (PEs), the ability to
decompose the domain and solve different parts of the domain on separate
PEs is essential to scaling up the calculations to problems of modern
interest. Several authors have discussed parallel strategies for solving
elliptic problems [7-9]. When implemented on parallel computers, all these
methods generally assume full communications at every iteration and
synchronized processing by all the PEs. This typically leads to significant
time and communication overhead. It has been observed that the
communication between elements is generally slow compared to
computation done on each PE and also consumes significant energy [10].
Further communication can lead to congestion in the high performance
computing (HPC) interconnects |11]. Finding ways to reduce
communication is, thus, becoming increasingly important.

To tackle this issue, many approaches have been proposed in the parallel
computing literature. A major direction is that of developing asynchronous
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algorithms in which communication happens as before, but without the
concomitant synchronization, so the PEs do not wait for values from each
other but continue their computations with whatever values were last
received [12-16]. Another approach is to completely avoid communication
at certain iterations, thus reducing the requirement of synchronization as
well. In addition to reducing synchronization overhead as in asynchronous
algorithms, such communication-avoiding algorithms reduce the number of
messages as well. Several works have focused on relaxing the global
communication needed for calculation of the basis vectors in Krylov
subspace methods. As a representative example, in s-step methods, such
communication is done once every s steps |17H19]. However, these s-step
methods considered parallelization using operator decomposition, i.e.,
parallelization of operators like matrix-vector or matrix-matrix
multiplications. This is different from the parallelization using domain
decomposition considered in this paper where the entire simulation grid is
divided among multiple PEs instead of the operators involved.

In preliminary work [20], we showed that triggering communication
based on events using a simple threshold can lead to some communication
savings for a simple Poisson problem resulting from electrostatics. Here,
we first develop an asynchronous communication algorithm for the more
complicated, but well-known pressure Poisson PDE from fluid dynamics
and show that it significantly reduces the computation time. Then, we
extend our previous event-triggered algorithm [20] to include a more
sophisticated mechanism of triggering events based on adaptive thresholds
for the fluids PDE. This leads to further savings in time and a prominent
reduction in the number of messages exchanged between PEs. Such
event-triggered communication has also been shown to be useful in the
different context of parallel machine learning [21].

The main contribution in this paper is the design of communication
strategies to accelerate iterative solutions of the non-separable pressure
equation found in simulations of unsteady incompressible multiphase flows
by reducing synchronization and communication. We first use
asynchronous communications implemented using one-sided
communication routines of the message passing interface (MPI). Not only
is the local communication of boundary values with neighbors done
asynchronously, but also the convergence detection is done in a distributed
manner using asynchronous routines. Modern solver for elliptic equations,
like the pressure Poisson equation, have reached a high degree of
sophistication and their implementation on parallel computers is fairly
elaborate. However, to focus on the communication aspects and to keep
the solver as simple as possible we have elected to work with a very simple
SOR solver. While state-of-the-art Krylov or multigrid solvers have mostly
replaced SOR in computational fluid dynamics and other applications, it is
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introduced in almost all modern textbooks and its simple structure makes
it ideal for proof of concept software implementations. As such, its
performance and properties continue to be of some interest [22,[23]. We
note that although several variants of the original SOR algorithm have
been introduced, here we use the very basic version. This asynchronous
solver is shown to be around 6 times faster than the synchronous solver for
our example problem. Further, we modify the asynchronous algorithm to
describe another algorithm where the communication of boundary values
with neighbors happens only when certain criteria have been met, i.e., in
an event-triggered fashion. This algorithm can reduce the number of
messages communicated among the PEs by upto 90% while preserving the
same level of accuracy of solution. Since number of messages is a measure
of the overall volume of communication, decreasing that will alleviate the
overhead associated with communication. Our codes are available at
https://github.com/soumyadipghosh/eventpde.

The paper is organized as follows. Section [2| introduces the pressure
Poisson equation for multiphase flows which is the PDE we use throughout
the paper. Section |3| reviews the usual synchronous solver. Section
describes the asynchronous solver. In section [5] we extend the solver by
adding event-triggered communication. In Section [6] we present results for
the respective algorithms. Finally, we conclude with a discussion in
Section [l

2 The Pressure Poisson Equation for
Multiphase Flows

The most common approach for simulations of multiphase flows is the use
of the “one-fluid” formulation of the Navier-Stokes equations, where one set
of equations is solved for the whole flow field on a fixed structured grid,
and the motion of the different phases is tracked by advecting a marker or
index function. The different phases have different material properties,
including densities, and this makes the pressure equation that must be
solved for incompressible flows significantly different than for single phase
flow, due to the discontinuous density field. When a projection method is
used to advance the solution, we first update the solution ignoring the
pressure (or using the pressure field from the last time step as an
approximation) and then find the pressure needed to make the new velocity
field incompressible, thus projecting the velocity field on a subspace
representing divergence free flows. The pressure equation can be written as

1

1
V.-Vp=
p
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https://github.com/soumyadipghosh/eventpde

where the right hand side is the divergence of the velocity after the
prediction step, p is the discontinuous density field, and At is the size of
the time step used to update the momentum equations (assumed to be
given). The discrete version for a regular structured staggered grid can be
expressed as follows:

1 Dit1,j — Dij Dij — Di—1,j
n ’ "l7 - T'L7 n ; + (2)
Az? (pi—:_ll,j + Pijl Pijl + P¢_+11,j
1 Pij+1 — Dij Pij — Pij—1
n, n? - n, 7n = Si,j, (3)
Ay? (Pz;h + Pijl Pijl + sz—ll
where
1 Uiayey = Uiivyey  Viirije — Vi1
Sl L — ( sJ sJ 5J 5J )7 4
T 2AL Ax + Ay (4)

assuming two-dimensional flow for simplicity and using half “integers” to
indicate where the variables are on the staggered grid . Ax and Ay are
the grid line spacing in the x and the y-direction. Since the interface
separating the different fluids usually moves, the coefficients change. In
addition to the discontinuous coefficients, the pressure itself is often
discontinuous, if surface tension is non-zero.

Fig 1. Bubbles in a liquid illustrating multiphase flows in a periodic 3-D
domain. Only a small section of the domain is shown here.

The pressure equation can be solved in a number of ways such as by
direct or iterative solvers. Iterative solvers are more common and many
sophisticated solvers such as multigrid have been implemented in
widely available software packages. The Hypre library [26], for example,
implements a multigrid solver that is often used to solve . In this paper,
where we are focusing on the communications between PEs, we consider a
simple parallel iterative SOR solver using domain decomposition to
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Table 1. Parameters relevant to the simulation setup we consider in this
paper.

Domain 8 x 0.5 % 0.5 (see Fig|l)
Grid 1600 x 100 x 100
Fluid densities 1.0 (liquid) and 0.0001 (bubbles)
Boundary Condition Periodic

Solver Successive Over-Relaxation
Solver Tolerance Relative Maximum Residual of 1e-8
Number of PEs 200

Domain Decomposition 1-D along first dimension

demonstrate the algorithms. Thus, we rewrite equation as:

1
Py =8

1 ( 1 n 1 )
A2\t + i o+

1 1 1

+ T T _'_ 7 T
Ay \pith + ot el o

« a+1
1 ( Pit1, Pi—1

1 1 1 1
A2 \pis 4ol P+ i

+

ij Pi; i1,

1 b e
< p ,J+1 + p ,j—1 ) . SZJ

Ay2 pz;}il_’_pn—kl n—f,—l_f_pn-‘rl

+ (1= B)pi; (5)

i\j Pi;j ij—1

Here, the subscript « is the iteration number and [ is the over-relaxation
parameter. Although equations and are written for a 2-D flow, we
solve the pressure Poisson equation for multiphase flows in the 3-D domain
shown in Fig[I] The source term S;; is computed by taking one step using
a full flow solver, with At =4 x 107%. Table [1| provides further details
about the domain parameters. Here, we take the density of the heavy fluid
to be 10,000 times larger than the density of the lighter fluid to make the
solution more challenging, since such large difference generally require a
considerably larger number of iterations, compared with density ratios of
O(10 — 100). In the simulations reported here, we use 5 = 1.2. The
domain decomposition is done by slicing the domain in the long dimension
and using one ghost layer for each domain boundary. For the simulations,
we use an HPC cluster of nodes with each node having 2 CPU Sockets of
AMD’s EPYC 24-core 2.3 GHz processor and 128 GB RAM per node. In
order to ensure the 200 PEs for our simulations are equally populated
among the 48 core AMD nodes for load balancing purposes, we use only 40
cores per node and a total of 5 such nodes. The cluster uses Mellanox
EDR interconnect. The MPI library chosen is Open MPI 4.0.1 compiled
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with gce 8.3.0.

3 Baseline Synchronous Solver

Numerical iterative solvers of partial differential equations based on
domain decomposition mostly involve two types of communication — (i)
local communication of boundary values with neighboring PEs for
computation of the boundary grid points (commonly known as halo
exchange), and (ii) global communication of a convergence criterion among
all the PEs for detection of the condition for termination. The traditional
parallel programming paradigm in most numerical solvers is the bulk

synchronous parallel [27] where all the PEs execute iterations in synchrony.

This means that if some PEs are slow in their execution, all the other PEs
have to wait for them to complete before moving to the next iteration
together. In these solvers, the local communication with the neighboring
PEs is usually done using MPI point-to-point two-sided communication
routines MPI_Send/Recv [28|. The sending PE packs the boundary values
into a message and invokes MPI_Send operation while the receiving PE
receives and unpacks the message using MPI_Recv and copies it to
augmented buffer points around its domain, popularly called ghost cells.
The convergence detection involves global communication that is done
using a collective communication routine called MPI_Allreduce. While the
Allreduce routine aggregates the local convergence criterion from all the
PEs to calculate the global convergence criterion, it also introduces a
synchronization point at the end of every iteration, meaning that all the
PEs have to start the next iteration together. The pseudo code for the
synchronous solver is shown in Algorithm

The global synchronization and the two-sided MPI local communication
often impose significant communication overhead which can affect the time
and energy performance of the solver. Consequently, many improvements
over the baseline algorithm have been suggested. One popular way is to
overlap the communication with computation by replacing the blocking
versions of communication routines with non-blocking versions [29]. This
can be done for both the local and global communication. The
non-blocking versions differ from their blocking counterparts in that the
communication routine works in the background without pausing the code
execution. For the local communication, the blocking versions
MPI_Send/Recv can be replaced with non-blocking versions such as
MPI_Isend/Irecv. While these non-blocking versions can save on time,
they still require MPI_Wait at the end of every iteration to ensure that all
non-blocking operations have completed. The MPI_Wait operation is also
critical to ensure that the buffer used by the non-blocking operations is
freed, otherwise memory leakage will occur. Similarly, the MPI_Allreduce
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for global convergence detection can be replaced by its non-blocking
equivalent MPI_Tallreduce but MPI_Wait is still required. The MPI_Wait
makes the PEs wait for each other before starting the next iteration - thus
the solver stays synchronous. In Section |4 we describe an asynchronous
algorithm that departs fundamentally from this bulk synchronous parallel
paradigm.

Algorithm A : Baseline Bulk Synchronous Parallel Solver
do

1:
2 Compute values

3 Communicate boundary values to neighbors using MPI two-sided
4: Calculate Local Residual

5: Calculate Global Residual using MPI collectives

6 if Global Residual < Tolerance then

7 Global Convergence detected

8 end if

9: while Global Convergence not detected

4 Proposed Asynchronous Solver

To make a solver truly asynchronous, we propose a paradigm of parallel
programming where the PEs do not wait for each other but rather execute
computations with whatever values were last received from the other PEs.
In this paradigm, there are no “global" iterations - rather every PE
executes its own “local" iterations at its own pace without any global
synchronization. Henceforth we use the term iteration to refer to local
iterations of a PE which may differently progress for different PEs. The
traditional two-sided MPI communication is not suitable for this purpose.
Rather one-sided communication or Remote Memory Access is used [30,31].
In one-sided communication, the sending PE can directly write into the
memory of the receiving PE without the involvement of the receiver, unlike
two-sided communication. Since no acknowledgement of communication is
required from the receiver, there is no synchronization involved and thus
one-sided communication is faster than two-sided communication. We note
that Nayak et al [32] also developed asynchronous solvers with MPI
one-sided communication for domain decomposition but in the context of
restricted additive Schwarz solvers. The restricted additive Schwarz solvers
are two-level domain decomposition solvers [7] which is different from the
simpler one-level SOR solver we consider here. An illustration comparing
synchronous and asynchronous solvers is provided in Fig [2]

In one-sided communication, typically every PE defines a region of
memory called window which is public [30]. This means that the other
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Fig 2. Comparison between synchronous and asynchronous solvers
between two PEs. The vertical axis is wall clock time. The variable k;
refers to the iteration count at the ¢-th PE. In the synchronous solver,
every PE will execute the same iteration number at a certain point in time.
In contrast, every PE in the asynchronous solver independently executes
its iterations and may execute different iteration numbers at a certain
point in time.

PEs have permission to access this window without the involvement of the 215
PE — hence one-sided communication is often alternately called Remote 216
Memory Access. The sending PE can invoke MPI_Put to directly write into 217
this window of the receiving PE without the receiving PE’s involvement. 218
However, one-sided communication requires a mechanism to signal the 210
beginning and end of an epoch of window access. These are of two kinds: 220
(i) active, where the target is actively synchronized before its window can 2z
be accessed, and (ii) passive, where no active synchronization is required. 222
We consider passive target synchronization using MPI_Win_lock/unlock 223

to prevent active involvement of the receiver. In this scenario, the 224
communication is considered to be complete once MPI_Win_unlock is 225
called. If the receiver accesses data from the window before the 226

MPI_Win_unlock is called, it might be inconsistent, meaning all the cells in 227
the boundary might not correspond to the latest iteration at the sender. In 228
order to prevent this, we copy the contents of the window to other arrays 22
after MPI_Win_unlock and use these arrays for local computations at the 230

receiver to maintain consistency. 231

There is no synchronization point in the asynchronous algorithm. 232
Consequently there is no opportunity for collective communication with 233
MPI_AllReduce for determining global convergence. Rather, the 234
convergence detection needs to be performed in a distributed manner. 235
Some approaches have been proposed for distributed convergence 236
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detection [33}34]. However, they do not consider the situation in which a
PE may have to restart iterations after temporary local convergence if
there is a change in the values received from neighbors - this phenomenon
is further explained in the next paragraph. We maintain the provision for
restarting iterations in our asynchronous solver.

The algorithm for our asynchronous solver is specified in Algorithm B!
The overarching difference from the synchronous Algorithm [A]is that there
is no two-sided communication and collective communication. This implies
that there is no need for synchronization among the PEs. The halo
exchange with the neighbors is performed using MPI_Put. Because there is
no MPI_AllReduce to aggregate the global convergence criterion to
terminate iterations in all the PEs together, there has to be a different
scheme to detect global convergence in an asynchronous manner. To do so,
one PE is assigned as the Master to monitor global convergence. Each PE
checks its local residual and compares it with the specified tolerance. If the
local residual stays lesser than the tolerance for a certain number of
iterations, the PE is considered to have locally converged and it sends that
information to the Master. Checking the local convergence criterion for a
range of multiple iterations instead of one iteration makes the algorithm
robust to oscillations in the residual. It is important to note that even
though a PE stops its iterations after local convergence, it should still keep
on monitoring the values received from its neighbors. If there is a sudden
change in the values received from neighbors, it means that values from a
different source term has reached its domain. If that is the case, the PE is
then locally unconverged and made to restart iterations until it satisfies the
local convergence criterion again. Finally, when the master detects that all
the PEs (including the master itself) have locally converged, it recognizes
that as global convergence and sends the global convergence flag to all the
PEs so that they terminate the iterations. The solver is then considered to
have converged. Note that different PEs will take different number of
iterations in this asynchronous solver, unlike the synchronous one.

In order to demonstrate the performance gain due to the asynchronous
solver over the synchronous solver, we consider the example described in
Table [1} Table [2] shows a comparison between Algorithm [A] and
Algorithm [Bin terms of the solution time and the global relative
maximum residual. It is important to note that due to the absence of
global communication (MPI_AllReduce), the global relative maximum
residual is not calculated during every iteration of the asynchronous solver
in Algorithm [B. However, for a comparison with the synchronous solver in
Algorithm [A] we determine the global relative maximum residual for the
asynchronous solver using just two MPI_Al1Reduce calls - one when the
iterations start and the other after the iterations have stopped. From
Table [2| we note that the global relative residual for both the solvers
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Algorithm B : Proposed Asynchronous Solver

1: do

2: if Local Convergence not detected then

3: Compute values

4: Communicate boundary values to neighbors using MPI one-sided
5: Calculate Local Residual

6: if (Local Residual < Tolerance) for a range of iterations then
7: Local Convergence detected

8: end if

9: else

10: if New values from neighbors detected then

11: Nullify Local Convergence

12: end if

13: if PE Not Master then

14: Communicate Local Convergence information to Master
15: else

16: if Local Convergence of all PEs detected then

17: Global Convergence detected - Communicate this to all

PEs

18: end if

19: end if
20: end if

21: while Global Convergence not detected
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remain less than the tolerance (1le-8), indicating that the quality of
solution is acceptable and similar with both the solvers. However, the
asynchronous solver is about 6 times faster than the synchronous solver.
Thus, the asynchronous solver has better performance. It is worth pointing
out that this performance improvement is a result of removal of global
communication as well as replacement of two-sided with one-sided

communication.

Table 2. Comparison of the performance of the synchronous Solver

(Algorithm [A)) and the asynchronous Solver (Algorithm B) for the
simulation setup specified in Table[I] The asynchronous solver achieves the
accuracy threshold in much lesser time.

Solver Type | Time[s] | Global Relative Max Residual
Synchronous 10346 9.12e-9
Asynchronous 1691 7.38e-9

5 Proposed Event-Triggered Communication

Solver

In this section, we build on the asynchronous algorithm to present an
event-triggered communication algorithm that significantly reduces the
number of messages exchanged between the PEs. The asynchronous solver
described in Algorithm [B assumes that the communication of the
boundary values with the neighbor PEs takes place at every iteration of
that PE. The basic insight behind the event-triggered algorithm is that
communication at every iteration may not be necessary. For instance, if
the boundary values either do not change, or change in ways that are
predictable without any further information from the sender, then the
accuracy of the calculations at the intended receiver do not significantly
degrade. In other words, a communication is only needed when triggered
by an event at the sender (e.g., the boundary value changing from the

previously communicated value by more than a threshold). A solver

employing such event-triggered communication is schematically compared
to the asynchronous solver in Fig[3] There is some flexibility in defining
the events. For concreteness, in this paper, we design the events based on

the norm of the boundary values at the sender PE. When this norm

changes from the norm at previous communication by more than a
specified threshold, the boundary values are communicated to the PE that
is the intended receiver. The ghost cells at the receiver are updated only
upon communication (possibly with a delay imposed by the MPI one-sided
communication). If values are received in the ghost cells at the receiver
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due to an event of communication triggered at the sender, the receiver uses
those values for its computation. Otherwise, if new values are not received
at the ghost cells, the receiver uses values that are extrapolated from
previously received values for its computation. Thus the event-triggered
communication rule can be summarized as follows:

At Sender: Send boundary values if the condition

|Current Norm - Last Communicated Norm| > Threshold

holds; otherwise do not send.
At Receiver: Use ghost cell values if new values are received in ghost
cells; otherwise use extrapolated values based on previous ghost cell values.

PE 1 PE 2 PE1 PE 2
k=0 ko=0 ki=0 k,=0
k1:1 k1=
kq=2 \ ky=2 \
ko=1 ky=1
k=3 2 k=3 ?
l‘(1:4 k1=
ki=5 ko=2 ko=2
1 % 2 ki=5 *\ 2
1 1 1 1
A\ v v v
Asynchronous Solver Event-Triggered Solver

Fig 3. Comparison between asynchronous solver and event-triggered
solver as illustrated using two PEs. The vertical axis is wall clock time.
The asynchronous solver communicates at every iteration whereas the
event-triggered solver communicates only when the event condition is
satisfied. At other iterations, it avoids communication as shown by the red
cross signs on the sender side.

Specifically, to track the changes in the boundary values, we compute
the L-1 norm of the boundary value vector (by summing the absolute
values) and compare it with the L-1 norm when the sending PE last sent
its boundary value vector. If the absolute difference between the two
norms exceeds a certain threshold, an event of communication is triggered.
Selecting the threshold is important for the overall efficiency and is a
designer specified parameter. A low fixed value of the threshold will likely
not result in much communication savings; however, it ensures that the
solution with event-triggered communication closely tracks the solution
with regular communication, especially if the boundary values are rapidly
changing. On the other hand, a high fixed value of threshold will result in

May 29, 2023

13/24

311

312

313

314

315

316

317

318

320

321

322

323

324

325

326

327

329



events being infrequently triggered, leading to communication savings but
the solution with event-triggered communication may not track the one
with regular communication, especially if the solution is changing slowly
(e.g. close to the convergence). To obtain the best of both worlds, we
propose an adaptive threshold policy that changes during the course of
iterations of the solver. The solution is likely to rapidly change during
early iterations in the solver, as high wavenumbers components of the error
are eliminated. Therefore the boundary values also rapidly change, making
a high value of threshold suitable in this region. However, during the later
iterations when the solution starts approaching its final value, the
boundary value slowly changes. In this situation, the threshold should be
decreased to ensure that communication happens at least once in a while
to reach the correct solution. To select the threshold based on how rapidly
the solution is changing, at each PE, we compute the rate of change (or
slope) of the norm of the vector of boundary values as the difference
between the current norm and the norm at the last communication,
divided by the number of iterations at the PE since then. The rate of
change is then multiplied by a designer specified parameter h called
horizon to set the threshold 7*. Intuitively, the horizon h signifies the
number of iterations to look ahead while calculating the threshold. This is
schematically shown in Fig[{[a) between two events F1 and E2. It is
important to note that in this idea, the threshold would stay constant
between two events. Due to this, there can be situations when the time
between events can become excessively long. As an extreme case, we look
at Fig[d|a) where the absolute difference of the norm of the boundary never
crosses the threshold 7% after event £2. This means that no further events
of communication will be triggered which is detrimental to the convergence
of the solver. To prevent this phenomenon, we modify the above threshold
by adding a term for gradual decay. As shown in Fig (b), we define a
decay parameter d, where 0 < d < 1 is a user selected parameter. At every
iteration, if no communication event happens, the threshold for the next
iteration is decreased by multiplying the current threshold by d. Thus the
threshold after m iterations since the last transmission (which is event E2
in Fig[4(b)) is given by 7 = 7*d™. This decay continues until the next
communication event /3 happens. During event 3, the threshold is again
set to a new value of 7%, and then decayed similarly.

In our experiments, we observed that during the first few thousand
iterations, the solution significantly oscillates. Since we want these
oscillations to die out soon, we decided to communicate at every iteration
for these first few thousand iterations, i.e., without invoking the
event-triggered communication rule. However, this number is small
compared to the total number of iterations required until convergence. For
our experiments, we fix this initial number of iterations to be 2000.
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Event E2

Event E1
A A
Value * s= é
Iterations
When an event is triggered When an event is not triggered
=5 #*h T=1'd™
(a) (b)

Fig 4. Procedure for calculation of the threshold of event-triggered

communication at the sending PE. When the event E2 is triggered, a new
threshold 7* is calculated by multiplying the local slope s between events
E1l and E2 with the horizon h as shown in the left subfigure (a). Then the

previously calculated threshold 7* is gradually decayed in the form
7 = 7"d™ where 0 < d < 1 is the decay rate and m is the number of
iterations since the event E2 when 7* was calculated. This decay
phenomenon, shown in subfigure (b), continues until the next event
triggers.

E3

As mentioned before, the receiver PE uses extrapolated values for its
computation if new values are not received in the ghost cells. In order to

perform the extrapolation, it stores a history of previously received values.

The length of the history would obviously depend on the order of

extrapolation. In this paper, we assume linear extrapolation although
higher order extrapolation may be possible. The extrapolation is subject
to certain considerations. In order to understand that, we look at the two
scenarios when the receiver PE does not receive a message. First when the
corresponding sender PE has not locally converged and does not send a
message since the event criterion is not satisfied during that iteration and
secondly when the corresponding sender PE has locally converged and
hence stops sending messages. The extrapolation should be done for the
former but not the latter. In other words, the extrapolation should only be
done when the sending PE is still executing iterations and expects to send
a message within the next few iterations. To distinguish between the two
scenarios, it is important for the sending PE to send the local convergence

flag to its neighbors in addition to the master. The pseudo code for

the

event-triggered communication algorithm is provided in Algorithm [Cl The
major change from Algorithm [Blis the event-triggered halo exchange

section specified in lines 4 — 13 and the communication of local
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convergence information to neighbors in Line 22. 303

Algorithm C : Proposed Event-Triggered Communication Solver

1: do

2: if Local Convergence not detected then

3: Compute values

4: if Change in Boundary Values > Threshold then

5: Send boundary values to neighbors using MPI one-sided
6: end if

7: if New values from neighbor received then

8: Copy new values to ghost cells

9: else

10: if Neighbor not locally converged then

11: Extrapolate ghost cell values based on history

12: end if

13: end if

14: Calculate Local residual

15: if (Local residual < Tolerance) for a range of iterations then
16: Local Convergence detected

17: end if

18: else

19: if New values from neighbors detected then
20: Nullify Local Convergence
21: end if
22: Communicate Local Convergence information to neighbors
23: if PE Not Master then

24: Communicate Local Convergence information to Master
25: else

26: if Local Convergence of all PEs detected then

27: Global Convergence detected - Communicate this to all

PEs

28: end if

29: end if
30: end if

31: while Global Convergence not detected

6 Simulation Results 304
We now present our experimental results with the event-triggered 305
communication algorithm. Fig [5| shows the L-1 norm of the left boundary soe
values for some PEs, for the case specified in Table |1} using a horizon 307

h = 200 and decay d = 0.8. Note that the x-axis of the plot in Fig [5|starts 3o
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from 2000 since the event-triggered communication starts after the first
2000 iterations to wait for large scale oscillations to die out as mentioned
before in Section | Now according to the algorithm, the boundary values
are sent to the corresponding receiver only when the change in the norm
exceeds the threshold. The corresponding thresholds for the boundaries in
Fig [p] are shown in Fig[6] Since the slope of the boundary values decreases
with time, the threshold also decreases to follow the trend of evolution of
the boundary. The oscillations in the threshold seen in Fig [6] originate and
are amplified by the local minor oscillations in Fig [5| that arise from the
stochastic implementation delays of MPI one-sided communication. To
reduce the effect of those oscillations on the threshold the sender PE keeps
a history of multiple previously communicated events (instead of just one
event as shown in Fig [4)) and calculates the average slope. This average
slope is then multiplied by the horizon to obtain the threshold. The length
of the history is another user-controlled parameter, similar to the length of
a moving average filter. Longer history results in a smoother slope, but at
the cost of increased computational complexity. In this paper, we consider
the length of this history to be 20 for our simulations.

Norm at Left Boundary

%107 ‘ ‘ %107
1.504
1.5398
1.502
1.5396
1.5
1.5394
o 2x10° 10% 10% 2x10° 10% 10°
2 PE 8 PE 47
= x10 | %107
1.53704 1 1518
1.537
1.517
2x10° 10% 10° 2x10° 10% 10°
PE 99 [terations PE 184

Fig 5. Evolution of the Manhattan or L-1 norm of the top boundary of 4
randomly chosen PEs. Note that the x axis starts from 2000 to wait for
the large scale oscillations to die out.

Various performance metrics for the event-triggered communication
algorithm are shown in Figs[7]to[9] Each simulation corresponding to a
certain data point in these plots is run for 3 times and then the mean of
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Threshold at Left Boundary

10° 10°
10° 10°
107 107
o 2x10° 10% 10° 2x10° 10% 10°
= PE8 PE 47
>
10° 10°
10° | 10°
107° 107°
2x10° 10% 10° 2x10° 10% 10°
PE 99 Iterations PE 184

Fig 6. Corresponding thresholds in a semi-log plot for the boundaries
shown in Fig [5| It is seen that the thresholds overall decrease with
iterations to reflect the decrease in slope of the norm of the boundaries in

Fig [p|

them is plotted to account for the stochasticity of MPI one-sided
communication. As a reminder, the parameters used in the experiments are
specified in Table [I] The effect of the decay d and horizon h on the total
simulation time is shown in Fig |7l Note that the values of time fluctuate a
lot over different decay and horizon parameters due to the stochastic
effects of MPI one-sided communication. However, we see an overall trend
that as the decay and horizon is increased, the total time is reduced. In
addition to reducing the total time, the event-triggered communication
algorithm reduces the number of messages passed between the PEs. Fig
shows the reduction in the number of messages for various decay and
horizon parameters, where the reduction is expressed as a percentage of
the number of messages sent without event-triggered communication. We
see that the percentage of messages drastically decreases with increasing
decay d as well as increasing horizon h. This reduction in messages can not
only lead to a decrease in simulation time as seen before, but also a
decrease in energy consumption and congestion in interconnects. Note that
it is difficult to measure the reduction in energy consumption directly but
we point to a metric in [10] which states that around 1-3 pJ is spent in
moving 1 bit of data between processors connected in a network. We also
refer to [35] which highlights the aspect of decrease in congestion with
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1400 : : :
0 01 02 03 04 05 06 07 08 09

Decay d

Fig 7. Plot of time for simulation vs the decay d for various values of
horizon h. The decay and horizon are parameters that determine the
event-triggered communication threshold.

1009

©h=10

80
70+

60 -

40 -

Percentage of Messages
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0 0.2 0.4 0.6 0.8 1
Decay d

10

Fig 8. Plot of the percentage of messages in the event-triggered
communication solver for various values of horizon h and decay d. Note
that a decay of 0 is used to represent 100% of the messages since an event
of communication is triggered for this case at every iteration. We see that
as the decay and horizon increases, the percentage of messages starts to
decrease.
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reduction in messages. As a reminder, the quality of the solution with each
of these event-triggered communication demonstrations is similar to that of
the baseline synchronous solver since the global relative maximum residual
(introduced in Table [2)) is lesser than the specified tolerance of le-8. In
Fig[9] we take a closer look at the reduction in number of messages for one
particular simulation by plotting the number of messages triggered in each
of the 200 PEs. The number of iterations that every PE takes to
convergence with event-triggered communication is different as expected
and depends upon the characteristics of the sub-domain assigned to that
particular PE. However, the number of iterations taken in any PE is much
lesser than that with the baseline synchronous solver. Further, the number
of messages exchanged with event-triggered communication is even lower,
highlighting the benefits of our algorithm.

7 Discussion

Communications between processing elements have always been a major
concern with parallel computing. Thus algorithms that reduce the need for
communications are likely to be needed in scientific and engineering
simulations. Here, we first show that an asynchronous algorithm to solve
the pressure Poisson equation encountered in numerical simulations of
incompressible multiphase flows can significantly decrease the time to
solution while maintaining similar accuracy. Then we develop another
algorithm based on event-triggered communications that can further
reduce the number of messages exchanged to solve that equation. This can
reduce the overhead associated with communication, while maintaining the
quality of solution. Although the algorithms introduced here have been
implemented using a very simple SOR solver, we believe that the strategy
carries over to more sophisticated solvers, although the exact savings will,
of course, be different.
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